


Paper's Title:
Inequalities for Discrete FDivergence Measures: A Survey of Recent Results
Author(s):
Sever S. Dragomir^{1,2}
^{1}Mathematics, School of Engineering
& Science
Victoria University, PO Box 14428
Melbourne City, MC 8001,
Australia
Email: sever.dragomir@vu.edu.au
^{2}DSTNRF Centre of Excellence in the Mathematical and Statistical Sciences,
School of Computer Science & Applied Mathematics,
University of the Witwatersrand,
Private Bag 3, Johannesburg 2050,
South Africa
URL:
http://rgmia.org/dragomir
Abstract:
In this paper we survey some recent results obtained by the author in providing various bounds for the celebrated fdivergence measure for various classes of functions f. Several techniques including inequalities of Jensen and Slater types for convex functions are employed. Bounds in terms of KullbackLeibler Distance, Hellinger Discrimination and Varation distance are provided. Approximations of the fdivergence measure by the use of the celebrated Ostrowski and Trapezoid inequalities are obtained. More accurate approximation formulae that make use of Taylor's expansion with integral remainder are also surveyed. A comprehensive list of recent papers by several authors related this important concept in information theory is also included as an appendix to the main text.
Paper's Title:
Ostrowski Type Inequalities for Lebesgue Integral: a Survey of Recent Results
Author(s):
Sever S. Dragomir^{1,2}
^{1}Mathematics, School of Engineering
& Science
Victoria University, PO Box 14428
Melbourne City, MC 8001,
Australia
Email: sever.dragomir@vu.edu.au
^{2}DSTNRF Centre of Excellence in the Mathematical and Statistical Sciences,
School of Computer Science & Applied Mathematics,
University of the Witwatersrand,
Private Bag 3, Johannesburg 2050,
South Africa
URL:
http://rgmia.org/dragomir
Abstract:
The main aim of this survey is to present recent results concerning Ostrowski type inequalities for the Lebesgue integral of various classes of complex and realvalued functions. The survey is intended for use by both researchers in various fields of Classical and Modern Analysis and Mathematical Inequalities and their Applications, domains which have grown exponentially in the last decade, as well as by postgraduate students and scientists applying inequalities in their specific areas.
Paper's Title:
Inequalities for Functions of Selfadjoint Operators on Hilbert Spaces:
a Survey of Recent Results
Author(s):
Sever S. Dragomir^{1,2}
^{1}Mathematics,
College of Engineering
& Science
Victoria University, PO Box 14428
Melbourne City, MC 8001,
Australia
Email: sever.dragomir@vu.edu.au
^{2}DSTNRF Centre of Excellence in the Mathematical and Statistical Sciences,
School of Computer Science & Applied Mathematics,
University of the Witwatersrand,
Private Bag 3, Johannesburg 2050,
South Africa
URL:
https://rgmia.org/dragomir
Abstract:
The main aim of this survey is to present recent results concerning inequalities for continuous functions of selfadjoint operators on complex Hilbert spaces. It is intended for use by both researchers in various fields of Linear Operator Theory and Mathematical Inequalities, domains which have grown exponentially in the last decade, as well as by postgraduate students and scientists applying inequalities in their specific areas.
Paper's Title:
On Some Relations Among the Solutions of the Linear Volterra Integral Equations
Author(s):
Ismet Ozdemir and Faruk Temizer
Inönü Üniversitesi Eğitim Fakültesi,
44280Malatya,
Turkey
Abstract:
The sufficient conditions for y_{1}(x)≤ y_{2}(x) were given in [1] such that y_{m}(x)=f_{m}(x)+∫_{a}^{x} K_{m}(x, t)y_{m}(t)dt,(m=1,2) and x∈ [a, b]. Some properties such as positivity, boundedness and monotonicity of the solution of the linear Volterra integral equation of the form f(t)=1∫_{0}^{t}K(tτ)f(τ)dτ=1K*f, (0≤ t<∞) were obtained, without solving this equation, in [3,4,5,6]. Also, the boundaries for functions f', f'',..., f^{(n)},(n ∈ N) defined on the infinite interval [0, ∞) were found in [7,8].
In this work, for the given equation f(t)=1K* f and n≥ 2, it is derived that there exist the functions L_{2}, L_{3},..., L_{n} which can be obtained by means of K and some inequalities among the functions f, h_{2}, h_{3},..., h_{i} for i=2, 3,...., n are satisfied on the infinite interval [0, ∞), where h_{i} is the solution of the equation h_{i}(t)=1L_{i}* h_{i} and n is a natural number.
Paper's Title:
On the Sendov Conjecture for a Root Close to the Unit Circle
Author(s):
Indraneel G. Kasmalkar
Department of Mathematics,
University of California,
Berkeley, CA 94720
United States of America
Email: indraneelk@berkeley.edu
Abstract:
On Sendov's conjecture, T. Chijiwa quantifies the idea stated by V. Vâjâitu and A. Zaharescu (and M. J. Miller independently), namely that if a polynomial with all roots inside the closed unit disk has a root sufficiently close to the unit circle then there is a critical point at a distance of at most one from that root. Chijiwa provides an estimate of exponential order for the required 'closeness' of the root to the unit circle so that such a critical point may exist. In this paper, we will improve this estimate to polynomial order by making major modifications and strengthening inequalities in Chijiwa's proof.
Paper's Title:
Hyperbolic Barycentric Coordinates
Author(s):
Abraham A. Ungar
Department of Mathematics, North Dakota State University,
Fargo, ND 58105,
USA
Abraham.Ungar@ndsu.edu
URL: http://math.ndsu.nodak.edu/faculty/ungar/
Abstract:
A powerful and novel way to study Einstein's special theory of relativity and its underlying geometry, the hyperbolic geometry of Bolyai and Lobachevsky, by analogies with classical mechanics and its underlying Euclidean geometry is demonstrated. The demonstration sets the stage for the extension of the notion of barycentric coordinates in Euclidean geometry, first conceived by Möbius in 1827, into hyperbolic geometry. As an example for the application of hyperbolic barycentric coordinates, the hyperbolic midpoint of any hyperbolic segment, and the centroid and orthocenter of any hyperbolic triangle are determined.
Paper's Title:
A general theory of decision making
Author(s):
Frank Hansen
Department of Economics,
University of Copenhagen,
Studiestraede 6, DK1455 Copenhagen K
Denmark
Frank.Hansen@econ.ku.dk
URL: http://www.econ.ku.dk/okofh
Abstract:
We formulate a general theory of decision making based on a lattice of observable events, and we exhibit a large class of representations called the general model. Some of the representations are equivalent to the so called standard model in which observable events are modelled by an algebra of measurable subsets of a state space, while others are not compatible with such a description. We show that the general model collapses to the standard model, if and only if an additional axiom is satisfied. We argue that this axiom is not very natural and thus assert that the standard model may not be general enough to model all relevant phenomena in economics. Using the general model we are (as opposed to Schmeidler [16]) able to rationalize Ellsberg's paradox without the introduction of nonadditive measures.
Paper's Title:
Iterative Approximation of Common Fixed Points of a Finite Family of Asymptotically Hemicontractive Type Mappings
Author(s):
JuiChi Huang
Center for General Education,
Northern Taiwan Institute of Science and Technology,
Peito, Taipei,
Taiwan, 11202, R.O.C.
juichi@ntist.edu.tw
Abstract:
In this paper, we prove that the sequence of
the modified IshikawaXu,
IshikawaLiu, MannXu and MannLiu iterative types of a finite family of
asymptotically hemicontractive type mappings converges strongly to a common
fixed point of the family in a real puniformly convex Banach space with
p>1. Our results improve and extend some recent results.
Paper's Title:
Optimization and Approximation for Polyhedra in Separable Hilbert Spaces
Author(s):
Paolo d'Alessandro
Department of Mathematics,
Third University of Rome,
Italy.
Email: pdalex45@gmail.com
Abstract:
This paper studies infinite dimensional polyhedra, covering the case in which range spaces of operators defining inequality systems are not closed. A rangespace method of linear programming is generalized to infinite dimensions and finite dimensional methods of approximation are introduced.
Paper's Title:
New Reverses of Schwarz, Triangle and Bessel Inequalities in Inner Product Spaces
Author(s):
S. S. Dragomir
School of Computer Science and Mathematics, Victoria
University of Technology, PO BOX
14428, MCMC 8001, VICTORIA, AUSTRALIA.
sever.dragomir@vu.edu.au
URL:
http://rgmia.vu.edu.au/SSDragomirWeb.html
Abstract:
New reverses of the Schwarz, triangle and Bessel inequalities in inner product spaces are pointed out. These results complement the recent ones obtained by the author in the earlier paper [13]. Further, they are employed to establish new Grüss type inequalities. Finally, some natural integral inequalities are stated as well.
Paper's Title:
Expected Utility with Subjective Events
Author(s):
Jacob Gyntelberg and Frank Hansen
Bank for International Settlements,
Basel,
Switzerland
Tohoku University, Institute for International Education,
Sendai,
Japan
Abstract:
We provide a new theory of expected utility with subjective events modeled by a lattice of projections. This approach allows us to capture the notion of a ``small world'' as a context dependent or local state space embedded into a subjective set of events, the ``grand world''. For each situation the decision makers' subjective ``small world'' reflects the events perceived to be relevant for the act under consideration. The subjective set of events need not be representable by a classical state space. Maintaining preference axioms similar in spirit to the classical axioms, we obtain an expected utility representation which is consistent across local state spaces and separates subjective probability and utility. An added benefit is that this alternative expected utility representation allows for an intuitive distinction between risk and uncertainty.
Paper's Title:
Polyanalytic Functions on Subsets of Z[i]
Author(s):
Abtin Daghighi
Linköping University,
SE581 83,
Sweden.
Email: abtindaghighi@gmail.com
Abstract:
For positive integers q we consider the kernel of the powers L^{q} where L is one of three kinds of discrete analogues of the CauchyRiemann operator. The first two kinds are wellstudied, but the third kind less so. We give motivations for further study of the third kind especially since its symmetry makes it more appealing for the cases q≥ 2.
From an algebraic perspective it makes sense that the chosen multiplication on the kernels is compatible with the choice of pseudopowers. We propose such multiplications together with associated pseudopowers. We develop a prooftool in terms of certain sets of uniqueness.
Paper's Title:
Inequalities for the Area Balance of Functions of Bounded Variation
Author(s):
Sever S. Dragomir^{1,2}
^{1}Mathematics, School of Engineering
& Science
Victoria University, PO Box 14428
Melbourne City, MC 8001,
Australia
Email: sever.dragomir@vu.edu.au
^{2}DSTNRF Centre of Excellence in the Mathematical and Statistical Sciences,
School of Computer Science & Applied Mathematics,
University of the Witwatersrand,
Private Bag 3, Johannesburg 2050,
South Africa
URL:
http://rgmia.org/dragomir
Abstract:
We introduce the area balance function associated to a Lebesgue
integrable function f:[a,b] →C by
Several sharp bounds for functions of bounded variation are provided. Applications for Lipschitzian and convex functions are also given.
Paper's Title:
On Stan Ulam and his Mathematics
Author(s):
Krzysztof Ciesielski and Themistocles M. Rassias
Mathematics Institute, Jagiellonian University,
Łjasiewicza 6,
30348 Kraków,
Poland
Department of Mathematics. National Technical University of Athens,
Zografou
Campus, 15780 Athens,
Greece
Krzysztof.Ciesielski@im.uj.edu.pl
trassias@math.ntua.gr
Abstract:
In this note we give a glimpse of the curriculum vitae of Stan Ulam, his personality and some of the mathematics he was involved in.
Paper's Title:
Good and Special Weakly Picard Operators for the Stancu Operators with Modified Coefficients
Author(s):
LoredanaFlorentina Galea and AlexandruMihai Bica
The Agora University of Oradea,
Piata Tineretului no. 8,
410526, Oradea,
Romania
University of Oradea,
Str. Universitatii No. 1,
410087, Oradea,
Romania
loredana.galea@univagora.ro
smbica@yahoo.com
abica@uoradea.ro
Abstract:
In this paper some properties of good and special weakly Picard operators for the Stancu operators with modified coefficients are obtained. In the study of the sequence of iterates of these operators, we obtain the property of dual monotone iteration.
Paper's Title:
Inequalities for the Čebyšev Functional of Two Functions of Selfadjoint Operators in Hilbert Spaces
Author(s):
S. S. Dragomir
School of Engineering and Science
Victoria University, PO 14428
Melbourne City MC,
Victoria 8001,
Australia
sever.dragomir@vu.edu.au
URL: http://www.staff.vu.edu.au/RGMIA/dragomir/
Abstract:
Some recent inequalities for the Čebyšev functional of two functions of selfadjoint linear operators in Hilbert spaces, under suitable assumptions for the involved functions and operators, are surveyed.
Paper's Title:
Applications of Relations and Relators in the Extensions of Stability Theorems for Homogeneous and Additive Functions
Author(s):
Árpád Száz
Institute of Mathematics, University of Debrecen,
H4010 Debrecen,
Pf. 12,
Hungary
szaz@math.klte.hu
Abstract:
By working out an appropriate technique of relations and relators and extending the ideas of the direct methods of Z. Gajda and R. Ger, we prove some generalizations of the stability theorems of D. H. Hyers, T. Aoki, Th. M. Rassias and P. Găvruţă in terms of the existence and unicity of 2homogeneous and additive approximate selections of generalized subadditive relations of semigroups to vector relator spaces. Thus, we obtain generalizations not only of the selection theorems of Z. Gajda and R. Ger, but also those of the present author.
Paper's Title:
On Interpolation of L^{2} functions
Author(s):
Anis Rezgui
Department of Mathematics,
Faculty of Sciences,
Taibah University, Al Madina Al Munawara,
KSA.
Mathematics Department,
INSAT,
University of Carthage, Tunis,
Tunisia
Email: anis.rezguii@gmail.com
Abstract:
In this paper we are interested in polynomial interpolation of irregular functions namely those elements of L^{2}(R,μ) for μ a given probability measure. This is of course doesn't make any sense unless for L^{2} functions that, at least, admit a continuous version. To characterize those functions we have, first, constructed, in an abstract fashion, a chain of Sobolev like subspaces of a given Hilbert space H_{0}. Then we have proved that the chain of Sobolev like subspaces controls the existence of a continuous version for L^{2} functions and gives a pointwise polynomial approximation with a quite accurate error estimation.
Paper's Title:
Construction of a Frame Multiresolution Analysis on Locally Compact Abelian Groups
Author(s):
R. Kumar and Satyapriya
Department of Mathematics,
Kirori Mal College,
University of Delhi,
Delhi,
India.
Email: rajkmc@gmail.com
Department of Mathematics,
University of Delhi,
Delhi,
India.
Email: kmc.satyapriya@gmail.com
Abstract:
The frame multiresolution analysis (FMRA) on locally compact Abelian groups has been studied and the results concerning classical MRA have been worked upon to obtain new results. All the necessary conditions, which need to be imposed on the scaling function φ to construct a wavelet frame via FMRA, have been summed up. This process of construction of FMRA has aptly been illustrated by sufficient examples.
Paper's Title:
Merit Functions and Error Bounds for Mixed Quasivariational Inequalities
Author(s):
Muhammad Aslam Noor
Mathematics Department, COMSATS Institute of Information Technology,
Islamabad, Pakistan
noormaslam@hotmail.com
Abstract:
It is well known that the mixed quasivariational inequalities are equivalent to the fixed point problems. We use this equivalent alternative formulation to construct some merit functions for mixed quasivariational inequalities and obtain error bounds under some conditions. Since mixed quasivariational inequalities include the classical variational inequalities and the complementarity problems as special cases, our results continue to hold for these problems.
Paper's Title:
Existence of Bounded Solutions for a Class of Strongly Nonlinear Elliptic Equations in OrliczSobolev Spaces
Author(s):
Abdelmoujib Benkirane and Ahmed Youssfi
Department of Mathematics and Informatics, Faculty of Sciences
Dhar El Mahraz
University Sidi Mohammed Ben Abdallah
PB 1796 FezAtlas, Fez
Morocco
a.benkirane@menara.ma
ahmed.youssfi@caramail.com
Abstract:
We prove, in the setting of OrliczSobolev spaces, the existence of bounded solutions for some strongly nonlinear elliptic equations with operator of the principal part having degenerate coercivity and lower order terms not satisfying the sign condition. The data have a suitable summability and no Δ_{2}condition is needed for the considered Nfunctions.
Paper's Title:
On an Extension of Hilbert’s Integral Inequality with Some Parameters
Author(s):
Bicheng Yang
Department of
Mathematics, Guangdong Education College, Guangzhou, Guangdong 510303, People’s
Republic of China.
bcyang@pub.guangzhou.gd.cn
URL:
http://www1.gdei.edu.cn/yangbicheng/index.html
Abstract:
In this paper, by introducing some parameters and estimating the weight function, we give an extension of Hilbert’s integral inequality with a best constant factor. As applications, we consider the equivalent form and some particular results.
Paper's Title:
Uniqueness of Meromorphic Functions and Weighted Sharing
Author(s):
Indrajit Lahiri and Rupa Pal
Department of Mathematics, University of
Kalyani, West Bengal 741235, India
indr9431@dataone.in
Jhargram Raj College,
Jhargram, Midnapur(W),
West Bengal 721507,
India
rupa.a.pal@gmail.com
Abstract:
With the help of the notion of weighted sharing of values, we prove a result on uniqueness of meromorphic functions and as a consequence we improve a result of P. Li
Paper's Title:
Unital Compact Homomorphisms Between Extended Analytic Uniform Algebras
Author(s):
D. Alimohammadi and M. Mayghani
Department of Mathematics,
Faculty of Science, Arak University,
PO Box 3815688349, Arak,
Iran.
Abstract:
Let X and K be compact plane sets with K⊆X. We denote by A(X,K) and A(X) the algebras of all continuous complexvalued functions on X which are analytic on int(K) and int(X), respectively. It is known that A(X,K) and A(X) are natural uniform algebras on X. A(X) and A(X,K) are called analytic uniform algebra and extended analytic uniform algebra on X, respectively. In this paper we study unital homomorphisms between extended analytic uniform algebras and investigate necessary and sufficient conditions for which these homomorphisms to be compact. We also determine the spectrum of unital compact endomorphisms of extended analytic uniform algebras.
Paper's Title:
The Voronovskaja Type Theorem for the Stancu Bivariate Operators
Author(s):
Ovidiu T. Pop
National College "Mihai Eminescu",
5 Mihai Eminescu Street,
Satu Mare 440014, Romania
Vest University "Vasile Goldis" of
Arad, Branch of Satu Mare,
26 Mihai Viteazul Street
Satu Mare 440030, Romania
ovidiutiberiu@yahoo.com
Abstract:
In this paper, the Voronovskaja type theorem for the Stancu bivariate operators is established. As particular cases, we shall obtain the Voronovskaja type theorem for the Bernstein and Schurer operators.
Paper's Title:
Construction of Lyapunov Functionals In Functional Differential Equations With Applications To Exponential Stability In Volterra Integrodifferential Equations
Author(s):
Youssef N. Raffoul
Department of Mathematics, University of Dayton,
Dayton OH 454692316,
USA
youssef.raffoul@notes.udayton.edu
URL:http://academic.udayton.edu/YoussefRaffoul
Abstract:
Nonnegative definite Lyapunov functionals are employed to obtain sufficient conditions that guarantee the exponential asymptotic stability and uniform exponential asymptotic stability of the zero solution of nonlinear functional differential systems. The theory is applied to Volterra integrodifferential equations in the form of proposition examples.
Paper's Title:
Multivalued Hemiequilibrium Problems
Author(s):
Muhammad Aslam Noor
Mathematics Department,
COMSATS Institute of Information Technology,
Sector H8/1, Islamabad,
Pakistan.
noormaslam@hotmail.com
Abstract:
In this paper, we introduce and study a new class of equilibrium problems, known as multivalued hemiequilibrium problems. The auxiliary principle technique is used to suggest and analyze some new classes of iterative algorithms for solving multivalued hemiequilibrium problems. The convergence of the proposed methods either requires partially relaxed strongly monotonicity or pseudomonotonicity. As special cases, we obtain a number of known and new results for solving various classes of equilibrium and variational inequality problems. Since multivalued hemiequilibrium problems include hemiequilibrium, hemivariational inequalities, variational inequalities and complementarity problems as specials cases, our results still hold for these problems.
Paper's Title:
On Perturbed Reflection Coefficients
Author(s):
J. L. DíazBarrero and J. J. Egozcue
Applied Mathematics III,
Universidad Politécnica de Cataluńa,
Barcelona, Spain
jose.luis.diaz@upc.edu
juan.jose.egozcue@upc.edu
Abstract:
Many control and signal processing applications require testing stability of polynomials. Classical tests for locating zeros of polynomials are recursive, but they must be stopped whenever the so called "singular polynomials" appear. These ``singular cases'' are often avoided by perturbing the "singular polynomial". Perturbation techniques although always successful are not proven to be wellfounded. Our aim is to give a mathematical foundation to a perturbation method in order to overcome "singular cases" when using Levinson recursion as a testing method. The nonsingular polynomials are proven to be dense in the set of all polynomials respect the L˛norm on the unit circle . The proof is constructive and can be used algorithmically.
Paper's Title:
Real Interpolation Methods and Quasilogarithmic Operators
Author(s):
Ming Fan
School of Industrial Technology and Management,
Dalarna University, 781 88 Borlänge, Sweden
fmi@du.se
URL: http://users.du.se/~fmi
Abstract:
The purpose of this paper is to deal with nonlinear quasilogarithmic operators, which possesses the uniformly bounded commutator property on various interpolation spaces in the sense of BrudnyiKrugljak associated with the quasipower parameter spaces. The duality, and the domain and range spaces of these operators are under consideration. Some known inequalities for the Lebesgue integration spaces and the trace classes are carried over to the noncommutative symmetric spaces of measurable operators affiliated with a semifinite von Neumann algebra.
Paper's Title:
Weak solutions of non coercive stochastic NavierStokes equations in R^{2}
Author(s):
Wilhelm Stannat and Satoshi Yokoyama
Technische Universität Berlin,
Strasse des 17. Juni 136, 10623 Berlin,
Germany.
Graduate School of Mathematical Sciences,
The University of Tokyo,
Komaba, Tokyo 1538914,
Japan.
Email: stannat@math.tuberlin.de
Email: satoshi2@ms.utokyo.ac.jp
Abstract:
We prove existence of weak solutions of stochastic NavierStokes equations in R^{2} which do not satisfy the coercivity condition. The equations are formally derived from the critical point of some variational problem defined on the space of volume preserving diffeomorphisms in R^{2}. Since the domain of our equation is unbounded, it is more difficult to get tightness of approximating sequences of solutions in comparison with the case of a bounded domain. Our approach is based on uniform a priori estimates on the enstrophy of weak solutions of the stochastic 2DNavierStokes equations with periodic boundary conditions, where the periodicity is growing to infinity combined with a suitable spatial cutofftechnique.
Paper's Title:
Examples of Fractals Satisfying the Quasihyperbolic Boundary Condition
Author(s):
Petteri Harjulehto and Riku Klén
Department of Mathematics and Statistics,
FI20014 University of Turku,
Finland
Email: petteri.harjulehto@utu.fi
Email: riku.klen@utu.fi
Abstract:
In this paper we give explicit examples of bounded domains that satisfy the quasihyperbolic boundary condition and calculate the values for the constants. These domains are also John domains and we calculate John constants as well. The authors do not know any other paper where exact values of parameters has been estimated.
Paper's Title:
On a Generalized Biharmonic Equation in Plane Polars with Applications to Functionally Graded Materials
Author(s):
Ciro D'Apice
Department of Information Engineering and Applied Mathematics (DIIMA),
University of Salerno, 84084 Fisciano (SA),
Salerno, Italy.
dapice@diima.unisa.it
Abstract:
In this paper we consider a generalized biharmonic equation modelling a twodimensional inhomogeneous elastic state in the curvilinear rectangle _{}_{} where _{} denote plane polar coordinates. Such an archlike region is maintained in equilibrium under selfequilibrated traction applied on the edge _{} while the other three edges _{}_{} and _{} are traction free. Our aim is to derive some explicit spatial exponential decay bounds for the specific Airy stress function and its derivatives. Two types of smoothly varying inhomogeneity are considered: (i) the elastic moduli vary smoothly with the polar angle, (ii) they vary smoothly with the polar distance. Such types of smoothly varying inhomogeneous elastic materials provide a model for technological important functionally graded materials. The results of the present paper prove how the spatial decay rate varies with the constitutive profile.
Paper's Title:
Growth and Products of Subharmonic Functions in the Unit Ball
Author(s):
R. Supper
Université de Strasbourg,
UFR de Mathématique et Informatique, URA CNRS 001,
7 rue René Descartes,
F67 084 Strasbourg Cedex,
France
raphaele.supper@math.unistra.fr
Abstract:
The purpose of this paper is to link information on the application u→gu with some growth conditions on the functions u and g subharmonic in the unit ball of R^{N}. Two kinds of growth are considered: the Blochtype growth and growth conditions expressed through integrals involving involutions of the unit ball.
Paper's Title:
Generalized kdistancebalanced Graphs
Author(s):
Amir Hosseini and Mehdi Alaeiyan
Department of mathematics, Karaj Branch,
Islamic Azad university, Karaj,
Iran.
Email: amir.hosseini@kiau.ac.ir,
hosseini.sam.52@gmail.com
Department of Mathematics,
Iran University of Science and Technology, Tehran,
Iran.
Email: alaeiyan@iust.ac.ir
Abstract:
A nonempty graph Γ is called generalized kdistancebalanced, whenever every edge ab has the following property: the number of vertices closer to a than to b, k^{, }times of vertices closer to b than to a, or conversely, k∈ N .In this paper we determine some families of graphs that have this property, as well as to prove some other result regarding these graphs.
Paper's Title:
Viability
Theory And Differential Lanchester Type Models For Combat.
Differential Systems.
Author(s):
G. Isac and A. Gosselin
Department Of
Mathematics, Royal Military College Of Canada,
P.O. Box 17000, Stn Forces, Kingston,
Ontario, Canada K7k 7b4
isacg@rmc.ca
gosselina@rmc.ca
URL:
http://www.rmc.ca/academic/math_cs/isac/index_e.html
URL:
http://www.rmc.ca/academic/math_cs/gosselin/index_e.html
Abstract:
In 1914, F.W. Lanchester proposed several mathematical models based on differential equations to describe combat situations [34]. Since then, his work has been extensively modified to represent a variety of competitions including entire wars. Differential Lanchester type models have been studied from many angles by many authors in hundreds of papers and reports. Lanchester type models are used in the planning of optimal strategies, supply and tactics. In this paper, we will show how these models can be studied from a viability theory stand point. We will introduce the notion of winning cone and show that it is a viable cone for these models. In the last part of our paper we will use the viability theory of differential equations to study Lanchester type models from the optimal theory point of view.
Paper's Title:
A Simple New Proof of FanTausskyTodd Inequalities
Author(s):
ZhiHua Zhang and ZhenGang Xiao
Zixing Educational Research Section,
Chenzhou City, Hunan 423400, P. R. China.
Zhihua Zhang
Url: http://www.hnzxslzx.com/zzhweb/
Department Of Mathematics, Hunan Institute Of Science And Technology,
Yueyang City, Hunan 423400, P. R. China.
Zhengang Xiao
Abstract:
In this paper we present simple new proofs of the inequalities:
_{ }
which holds for all real numbers a_{0} = 0, a_{1}, · · · , a_{n}, a_{n+1} = 0 and the coefficients 2(1  cos(π/(n + 1))) and 2(1 + cos(π/(n + 1))) are the best possible; and
_{ }
which holds for all real numbers a_{0} = 0, a_{1}, · · · , a_{n} and the coefficients 2(1cos(π/(2n + 1))) and 2(1 + cos(π/(2n + 1))) are the best possible.
Paper's Title:
General Oscillations for Some Third Order Differential Systems with Nonlinear Acceleration Term
Author(s):
Awar Simon Ukpera
Department of Mathematics,
Obafemi Awolowo University,
IleIfe,
Nigeria.
aukpera@oauife.edu.ng
Abstract:
We generate some general nonuniform hypotheses for third order differential systems of the form X''' +F(t,X'' )+BX'+CX = P(t), in which B and C are not necessarily constant matrices. Some results requiring sharp conditions on this system have recently been published by the author in [5]. This work however examines more closely crucial properties associated with the generalised nature of the nonlinear acceleration term F, which were largely overlooked in the earlier paper.
Paper's Title:
Analysis of the Flow Field in Stenosed Bifurcated Arteries Through a Mathematical Model
Author(s):
S. Chakravarty and S. Sen
Department of Mathematics, VisvaBharati University,
Santiniketan 731235,
India
santabrata2004@yahoo.co.in
Abstract:
The present study is dealt with an appropriate mathematical model of the arotic bifurcation in the presence of constrictions using which the physiological flow field is analized. The geometry of the bifurcated arterial segment having constrictions in both the parent and its daughter arterial lumen frequently occurring in the diseased arteries causing malfunction of the cardiovascular system , is formed mathematically with the introduction of appropriate curvatures at the lateral junctions and the flow divider. The flowing blood contained in the stenosed bifurcated artery is treated to be Newtonian and the flow is considered to be two dimensional. The motion of the arterial wall and its effect on local fluid mechanics is not ruled out from the present pursuit. The flow analysis applies the timedependent, twodimensional incompressible nonlinear NavierStokes equations for Newtonian fluid. The flow field can be obtained primarily following the radial coordinate transformation and using the appropriate boundary conditions and finally adopting a suitable finite difference scheme numerically. The influences of the arterial wall distensibility and the presence of stenosis on the flow field, the flow rate and the wall shear stresses are quantified in order to indicate the susceptibility to atherosclerotic lesions and thereby to validate the applicability of the present theoretical model.
Paper's Title:
Positive Periodic Solutions for SecondOrder Differential Equations with Generalized Neutral Operator
Author(s):
WingSum Cheung, Jingli Ren and Weiwei Han
Department of Mathematics,
The University of Hong Kong
Pokfulam
Road,
Hong Kong
Department of Mathematics, Zhengzhou University
Zhengzhou 450001,
P.R. China
wscheung@hkucc.hku.hk
renjl@zzu.edu.cn
Abstract:
By some analysis of the neutral operator and an application of the fixedpoint index theorem, we obtain sufficient conditions for the existence, multiplicity and nonexistence of periodic solutions to a secondorder differential equation with the prescribed neutral operator, which improve and extend some recent results of LuGe, WuWang, and Zhang. An example is given to illustrate our results. Moreover, the analysis of the generalized neutral operator will be helpful for other types of differential equations.
Paper's Title:
Ellipses of Minimal Area and of Minimal Eccentricity Circumscribed About a Convex Quadrilateral
Author(s):
Alan Horwitz
Penn State University,
25 Yearsley Mill Rd.,
Media, PA 19063,
U.S.A
alh4@psu.edu
Abstract:
First, we fill in key gaps in Steiner's nice characterization of the most nearly circular ellipse which passes through the vertices of a convex quadrilateral, . Steiner proved that there is only one pair of conjugate directions, M_{1} and M_{2}, that belong to all ellipses of circumscription. Then he proves that if there is an ellipse, E, whose equal conjugate diameters possess the directional constants M_{1} and M_{2}, then E must be an ellipse of circumscription which has minimal eccentricity. However, Steiner does not show the existence or uniqueness of such an ellipse. We prove that there is a unique ellipse of minimal eccentricity which passes through the vertices of . We also show that there exists an ellipse which passes through the vertices of and whose equal conjugate diameters possess the directional constants M_{1} and M_{2}. We also show that there exists a unique ellipse of minimal area which passes through the vertices of . Finally, we call a convex quadrilateral, , bielliptic if the unique inscribed and circumscribed ellipses of minimal eccentricity have the same eccentricity. This generalizes the notion of bicentric quadrilaterals. In particular, we show the existence of a bielliptic convex quadrilateral which is not bicentric.
Paper's Title:
Shape Diagrams for 2D Compact Sets  Part I: Analytic Convex Sets.
Author(s):
S. Rivollier, J. Debayle and J.C. Pinoli
Ecole Nationale Supérieure des Mines de SaintEtienne,
CIS  LPMG, UMR CNRS 5148, 158 cours Fauriel,
42023 SaintEtienne Cedex 2, France.
rivollier@emse.fr;
debayle@emse.fr; pinoli@emse.fr
Abstract:
Shape diagrams are representations in the Euclidean plane introduced to study 3dimensional and 2dimensional compact convex sets. Such a set is represented by a point within a shape diagram whose coordinates are morphometrical functionals defined as normalized ratios of geometrical functionals. Classically, the geometrical functionals are the area, the perimeter, the radii of the inscribed and circumscribed circles, and the minimum and maximum Feret diameters. They allow thirtyone shape diagrams to be built. Most of these shape diagrams can also been applied to more general compact sets than compact convex sets. Starting from these six classical geometrical functionals, a detailed comparative study has been performed in order to analyze the representation relevance and discrimination power of these thirtyone shape diagrams. The purpose of this paper is to present the first part of this study, by focusing on analytic compact convex sets. A set will be called analytic if its boundary is piecewise defined by explicit functions in such a way that the six geometrical functionals can be straightforwardly calculated. The second and third part of the comparative study are published in two following papers [19.20]. They are focused on analytic simply connected sets and convexity discrimination for analytic and discretized simply connected sets, respectively.
Paper's Title:
Hardy Type Inequalities via Convexity  The Journey so Far
Author(s):
James A.
Oguntuase and LarsErik Persson
Department of Mathematics,
University of Agriculture,
P. M. B. 2240, Abeokuta, Nigeria.
Department of
Mathematics, Luleĺ University of Technology,
SE971 87, Luleĺ , Sweden.
oguntuase@yahoo.com,
larserik@sm.luth.se .
Abstract:
It is nowadays wellknown that Hardy's inequality (like many other inequalities) follows directly from Jensen's inequality. Most of the development of Hardy type inequalities has not used this simple fact, which obviously was unknown by Hardy himself and many others. Here we report on some results obtained in this way mostly after 2002 by mainly using this fundamental idea.
Paper's Title:
Attempts to Define a BaumConnes Map Via Localization of Categories for Inverse Semigroups
Author(s):
Bernhard Burgstaller
Departamento de Matematica,
Universidade Federal de Santa Catarina,
CEP 88.040900 FlorianopolisSC,
Brasil.
Email:
bernhardburgstaller@yahoo.de
URL:
http://mathematik.work/bernhardburgstaller/index.html
Abstract:
An induction functor in inverse semigroup equivariant KKtheory is considered, and together with %a restriction functors certain results similar to those known from the Mackey machinery are shown. It is also verified that for any socalled Econtinuous inverse semigroup its equivariant KKtheory satisfies the universal property and is a triangulated category.
Paper's Title:
The successive approximations method and error estimation in terms of at most the first derivative for delay ordinary differential equations
Author(s):
Alexandru Mihai Bica
Department of Mathematics,
University of Oradea,
Str. Armatei Romane no.5,
410087, Oradea,
Romania
smbica@yahoo.com
abica@uoradea.ro
Abstract:
We present here a numerical method for first order delay ordinary differential equations, which use the Banach's fixed point theorem, the sequence of successive approximations and the trapezoidal quadrature rule. The error estimation of the method uses a recent result of P. Cerone and S.S. Dragomir about the remainder of the trapezoidal quadrature rule for Lipchitzian functions and for functions with continuous first derivative.
Paper's Title:
Local and Global Existence and Uniqueness Results for Second and Higher Order Impulsive Functional Differential Equations with Infinite Delay
Author(s):
Johnny Henderson and Abdelghani Ouahab
Department of Mathematics, Baylor University,
Waco, Texas 767987328
USA.
Johnny_Henderson@baylor.edu
Laboratoire de Mathématiques, Université de Sidi Bel Abbés
BP 89, 22000 Sidi Bel Abbées,
Algérie.
ouahab@univsba.dz
Abstract:
In this paper, we discuss the local and global existence and uniqueness results for second and higher order impulsive functional differential equations with infinite delay. We shall rely on a nonlinear alternative of LeraySchauder. For the global existence and uniqueness we apply a recent Frigon and Granas nonlinear alternative of LeraySchauder type in Fréchet spaces.
Paper's Title:
Long Correlations Applied to the Study of Agricultural Indices in Comparison with the S&P500 index
Author(s):
M. C. Mariani, J. Libbin, M.P. Beccar Varela,
V. Kumar Mani, C. Erickson, D.J. Valles Rosales
Department of Mathematical Sciences,
Science Hall 236, New Mexico State University,
Las Cruces, NM 880038001,
USA.
mmariani@nmsu.edu
Abstract:
Longtime correlations in agricultural indices are studied and their behavior is compared to the wellestablished S&P500 index. Hurst exponent and Detrended Fluctuation Analysis (DFA) techniques are used in this analysis. We detected longcorrelations in the agricultural indices and briefly discussed some features specific in comparison to the S&P500 index.
Paper's Title:
Finite and Infinite Order Solutions of a Class of Higher Order Linear Differential Equations
Author(s):
Saada Hamouda
Department of Mathematics,
Laboratory of Pure and Applied Mathematics,
University of Mostaganem, B. P 227 Mostaganem,
ALGERIA
hamouda_saada@yahoo.fr
Abstract:
In this paper, we investigate the growth of solutions of higher order linear differential equations where most of the coefficients have the same order and type with each other.
Paper's Title:
On Generalization of Hardytype Inequalities
Author(s):
K. Rauf, S. Ponnusamy and J. O. Omolehin
Department of Mathematics,
University of Ilorin, Ilorin,
Nigeria
krauf@unilorin.edu.ng
Department of Mathematics,
Indian Institute of Technology Madras,
Chennai 600 036,
India
samy@iitm.ac.in
Department of Mathematics,
University of Ilorin, Ilorin,
Nigeria
omolehin_joseph@yahoo.com
Abstract:
This paper is devoted to some new generalization of Hardytype integral inequalities and the reversed forms. The study is to determine conditions on which the generalized inequalities hold using some known hypothesis. Improvement of some inequalities are also presented.
Paper's Title:
Existence Results for Second Order Impulsive Functional Differential Equations with Infinite Delay
Author(s):
M. Lakrib, A. Oumansour and K. Yadi
Laboratoire de Mathématiques, Université Djillali
Liabées, B.P. 89 Sidi Bel Abbčs 22000, Algérie
mlakrib@univsba.dz
oumansour@univsba.dz
Laboratoire de Mathématiques, Université Abou Bekr
Belkaid, B.P. 119 Tlemcen 13000, Algérie
k_yadi@mail.univtlemcen.dz
Abstract:
In this paper we study the existence of solutions for second order impulsive functional differential equations with infinite delay. To obtain our results, we apply fixed point methods.
Paper's Title:
TraubPotraType Method for SetValued Maps
Author(s):
Ioannis K. Argyros and Saďd Hilout
Cameron University,
Department of Mathematics Sciences,
Lawton, OK 73505,
USA
URL: http://www.cameron.edu/~ioannisa/
Poitiers University,
Laboratoire de Mathematiques et Applications,
Bd. Pierre et Marie Curie, Teleport 2, B.P. 30179,
86962 Futuroscope Chasseneuil Cedex,
France
said.hilout@math.univpoitiers.fr
http://wwwmath.univpoitiers.fr/~hilout/
Abstract:
We introduce a new iterative method for approximating a locally unique solution of variational inclusions in Banach spaces by using generalized divided differences of the first order. This method extends a method considered by Traub (in the scalar case) and by Potra (in the Banach spaces case) for solving nonlinear equations to variational inclusions. An existenceconvergence theorem and a radius of convergence are given under some conditions on divided differences operator and Lipschitzlike continuity property of setvalued mappings. The Rorder of the method is equal to the unique positive root of a certain cubic equation, which is $1.839..., and as such it compares favorably to related methods such as the Secant method which is only of order $1.618....
Paper's Title:
On a Problem on Periodic Functions
Author(s):
Adel A. Abdelkarim
Mathematics Department, Faculty of
Science,
Jerash Private University, Jerash,
Jordan.
Email:
adelafifo_afifo@yahoo.com
Abstract:
Given a continuous periodic real function f with n translates f_{1 },..., f_{n} , where f_{i}(x)=f(x+a_{i}), i=1,...,n. We solve a problem by Erdos and Chang and show that there are rational numbers r,s such that f(r)≥ f_{i}(r), f(s)≤ f_{i}(s), i=1,...,n. No restrictions on the constants or any further restriction on the function f are necessary as was imposed earlier.
Paper's Title:
Existence and Regularity of Minima of an Integral Functional in Unbounded Domain
Author(s):
L. Aharouch, J. Bennouna and A. Bouajaja
King Khalid University
Faculty of Arts and Science Mha'l Asir
Saudi Arabia.
Email: laharouch@gmail.com
Université Sidi Mohammed Ben Abdellah
Faculté des Sciences DharMahraz
B.P 1796 Atlas Fčs,
Maroc.
Email: jbennouna@hotmail.com
Email: kadabouajaja@hotmail.com
Abstract:
We prove the existence and the regularity of minima for a functional defined on a suitable Sobolev space.
Paper's Title:
Optimization Techniques on Affine Differential Manifolds
Author(s):
Ali S Rasheed, Faik Mayah and Ahmed A H ALJumaili
Ministry of Higher Education and
Scientific Research,
Iraq.
Email: ahmedhashem@gmail.com
Department of Physics, College of
Sciences,
University of Wasit,
Iraq.
Email: faik.mayah@gmail.com
Abstract:
In addition to solid ground of Riemannian manifolds fundamentals, this article interviews some popular optimization methods on Riemannian manifolds. Several optimization problems can be better stated on manifolds rather than Euclidean space, such as interior point methods, which in turns based on selfconcordant functions (logarithmic barrier functions). Optimization schemes like the steepest descent scheme, the Newton scheme, and others can be extended to Riemannian manifolds. This paper introduces some Riemannian and nonRiemannian schemes on manifolds.
Paper's Title:
Long Time Behavior for a Viscoelastic Problem with a Positive Definite Kernel
Author(s):
Nassereddine Tatar
King Fahd
University of Petroleum and Mineral, Department of Mathematical Sciences,
Dhahran, 31261 Saudi Arabia
tatarn@kfupm.edu.sa
Abstract:
We study the asymptotic behavior of solutions for an integrodifferential problem which arises in the theory of viscoelasticity. It is proved that solutions go to rest in an exponential manner under new assumptions on the relaxation function in the memory term. In particular, we consider a new family of kernels which are not necessarily decreasing.
Paper's Title:
A New HardyHilbert's Type Inequality for Double Series and its Applications
Author(s):
Mingzhe Gao
Department of Mathematics and Computer Science, Normal College Jishou University,
Jishou Hunan, 416000,
People's Republic of China
mingzhegao1940@yahoo.com.cn
Abstract:
In this paper, it is shown that a new HardyHilbert’s type inequality for double series can be established by introducing a parameter _{ }and the weight function of the form _{} where c is Euler constant and And the coefficient is proved to be the best possible. And as the mathematics aesthetics, several important constants _{ }and _{} appear simultaneously in the coefficient and the weight function when _{} In particular, for case _{} some new Hilbert’s type inequalities are obtained. As applications, some extensions of HardyLittlewood’s inequality are given.
Paper's Title:
Existence of Large Solutions to NonMonotone Semilinear Elliptic Equations
Author(s):
Alan V. Lair, Zachary J. Proano, and Aihua W. Wood
Air Force Institute of Technology
2950 Hobson Way, AFIT/ENC
WrightPatterson Air Force Base, OH, 454337765,
USA.
Aihua.Wood@afit.edu
URL: www.afit.edu
Abstract:
We study the existence of large solutions of the semilinear elliptic equation Δu=p(x)f(u) where f is not monotonic. We prove existence, on bounded and unbounded domains, under the assumption that f is Lipschitz continuous, f(0) = 0, f(s) > 0 for s > 0 and there exists a nonnegative, nondecreasing Hölder continuous function g and a constant M such that g(s) ≤ f(s) ≤ Mg(s) for large s. The nonnegative function p is allowed to be zero on much of the domain.
Paper's Title:
On the Asymptotic Behavior of Solutions of Third Order Nonlinear Differential Equations
Author(s):
Ivan Mojsej and Alena Tartaľová
Institute of Mathematics,
Faculty of Science, P. J. Šafárik University,
Jesenná 5, 041 54 Košice,
Slovak Republic
ivan.mojsej@upjs.sk
Department of Applied Mathematics and Business Informatics,
Faculty of Economics,
Technical University,
Nemcovej 32, 040 01 Košice,
Slovak Republic
alena.tartalova@tuke.sk
Abstract:
This paper is concerned with the asymptotic behavior of solutions of nonlinear differential equations of the
third order with quasiderivatives. Mainly, we present the necessary and sufficient conditions for the existence
of nonoscillatory solutions with specified asymptotic behavior as
Paper's Title:
On Singular Numbers of Hankel Matrices of Markov Functions
Author(s):
Vasily A. Prokhorov
Department of Mathematics and Statistics,
University of South Alabama,
Mobile, Alabama 366880002,
USA.
Email: prokhoro@southalabama.edu
URL:
http://www.southalabama.edu/mathstat/people/prokhorov.shtml
Abstract:
Let E ⊂ (01,1) be a compact set and let μ be a positive Borel measure with support supp μ=E. Let
In the case when E=[a,b]⊂ (1,1) and μ satisfies the condition dμ/dx>0 a.e. on E, we investigate asymptotic behavior of singular numbers σ_{kn,n} of the Hankel matrix D_{n}, where k_{n}/n→θ∈[0,1] as n→∞. Moreover, we obtain asymptotics of the Kolmogorov, Gelfand and linear kwidths, k=k_{n}, of the unit ball A_{n,2} of P_{n}∩L_{2}(Γ) in the space L_{2}(μ,E), where Γ={z:z=1} and P_{n} is the class of all polynomials of the degree at most n.
Paper's Title:
Existence of Optimal Parameters for Damped SineGordon Equation with Variable Diffusion Coefficient and Neumann Boundary Conditions
Author(s):
N. Thapa
Department of Mathematical Sciences,
Cameron University,
2800 West Gore Blvd,
73505 Lawton, Oklahoma,
USA.
Email: nthapa@cameron.edu
URL: http://www.cameron.edu/~nthapa/
Abstract:
The parameter identification problem for sineGordon equation is of a major interests among mathematicians and scientists.\ In this work we the consider sineGordon equation with variable diffusion coefficient and Neumann boundary data. We show the existence and uniqueness of weak solution for sineGordon equation. Then we show that the weak solution continuously depends on parameters. Finally we show the existence of optimal set of parameters.
Paper's Title:
Multivalued Equilibrium Problems with Trifunction
Author(s):
Muhammad Aslam Noor
Etisalat College of Engineering, P.O. Box 980, Sharjah, United Arab Emirates
noor@ece.ac.ae
Abstract:
In this paper, we use the auxiliary principle technique to suggest some new classes of iterative algorithms for solving multivalued equilibrium problems with trifunction. The convergence of the proposed methods either requires partially relaxed strongly monotonicity or pseudomonotonicity. As special cases, we obtain a number of known and new results for solving various classes of equilibrium and variational inequality problems. Since multivalued equilibrium problems with trifunction include equilibrium, variational inequality and complementarity problems as specials cases, our results continue to hold for these problems.
Paper's Title:
Existence of solutions for Neutral Stochastic Functional Differential Systems with Infinite Delay in Abstract Space
Author(s):
P. Balasubramaniam, A. V. A. Kumar and S. K. Ntouyas
Department of Mathematics, Gandhigram Rural Institute,
Deemed University, Gandhigram  624 302,
Tamil Nadu, India.
pbalgri@rediffmail.com
Department of Mathematics, Gandhigram Rural Institute,
Deemed University, Gandhigram  624 302,
Tamil Nadu, India.
nnddww@tom.com
Department of Mathematics, University of Ioannina,
451 10 Ioannina,
Greece.
sntouyas@cc.uoi.gr
URL: http://www.math.uoi.gr/~sntouyas
Abstract:
In this paper we prove existence results for semilinear stochastic neutral functional differential systems with unbounded delay in abstract space. Our theory makes use of analytic semigroups and fractional power of closed operators and Sadovskii fixed point theorem.
Paper's Title:
Product Formulas Involving Gauss Hypergeometric Functions
Author(s):
Edward Neuman
Department of Mathematics, Mailcode 4408,
Southern Illinois University,
1245 Lincoln Drive,
Carbondale, IL 62901,
USA.
edneuman@math.siu.edu
URL: http://www.math.siu.edu/neuman/personal.html
Abstract:
New formulas for a product of two Gauss hypergeometric functions are derived. Applications to special functions, with emphasis on Jacobi polynomials, Jacobi functions, and Bessel functions of the first kind, are included. Most of the results are obtained with the aid of the double Dirichlet average of a univariate function.
Paper's Title:
On an Elliptic OverDetermined Problem in Dimension Two
Author(s):
Lakhdar Ragoub
Department of Mathematics and Information of Tiyadhechnology
AL Yamamah University
P.O. Box 45 180, Riyadh 11 512
Saudi Arabia.
Abstract:
We extend the method of Weinberger for a
nonlinear overdetermined elliptic problem
in R^{2}.
We prove that the domain in consideration is a ball. The
tool of this investigation are maximum principles and Pfunctions.
Paper's Title:
Some Operator Order Inequalities for Continuous Functions of Selfadjoint Operators in Hilbert Spaces
Author(s):
S. S. Dragomir^{1,2} and Charles E. M. Pearce^{3}
^{1}Mathematics, School of Engineering & Science,
Victoria University,
PO Box 14428,
Melbourne City, MC 8001,
Australia.
^{2}School of Computational & Applied Mathematics,
University of
the Witwatersrand,
Private Bag 3, Johannesburg 2050,
South Africa.
sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
^{3}School
of Mathematical Sciences,
The University of Adelaide,
Adelaide,
Australia
Abstract:
Various bounds in the operator order for the following operator transform
where A is a selfadjoint operator in the Hilbert space H with the
spectrum Sp( A) ⊆ [ m,M]
and f:[m,M] > C is a continuous function on [m,M]
are given. Applications for the power and logarithmic functions are provided as
well.
Paper's Title:
Analysis of a Dynamic Elastoviscoplastic Frictionless Antiplan Contact Problem with Normal Compliance
Author(s):
A. Ourahmoun^{1}, B. Bouderah^{2}, T. Serrar^{3}
^{1,2}Applied Mathematics
Laboratory,
M'sila University, 28000,
Algeria.
Email: ourahmounabbes@yahoo.fr
^{3}Applied Mathematics
Laboratory,
Setif 1 University, 19000,
Algeria.
Abstract:
We consider a mathematical model which describes the dynamic evolution of a thermo elasto viscoplastic contact problem between a body and a rigid foundation. The mechanical and thermal properties of the obstacle coating material near its surface. A variational formulation of this dynamic contact phenomenon is derived in the context of general models of thermo elasto viscoplastic materials. The displacements and temperatures of the bodies in contact are governed by the coupled system consisting of a variational inequality and a parabolic differential equation. The proof is based on a classical existence and uniqueness result on parabolic inequalities,differential equations and fixed point arguments.
Paper's Title:
On the Ulam Stability for EulerLagrange Type Quadratic Functional Equations
Author(s):
Matina John Rassias and John Michael Rassias
Statistics and Modelling Science,
University of Strathclyde,
Livingstone Tower,
26 Richmond Str,
Glasgow, Uk, G1 1xh
Pedagogical Department, E. E., National and Capodistrian University of Athens,
Section of Mathematics and Informatics,
4, Agamemnonos Str, Aghia Paraskevi,
Athens 15342, Greece
Abstract:
In 1940 (and 1968) S. M. Ulam proposed the wellknown Ulam stability problem. In 1941 D.H. Hyers solved the HyersUlam problem for linear mappings. In 1951 D. G. Bourgin has been the second author treating the Ulam problem for additive mappings. In 1978 according to P.M. Gruber this kind of stability problems is of particular interest in probability theory and in the case of functional equations of different types. In 19822004 we established the HyersUlam stability for the Ulam problem for different mappings. In 19922000 J.M. Rassias investigated the Ulam stability for EulerLagrange mappings. In this article we solve the Ulam problem for EulerLagrange type quadratic functional equations. These stability results can be applied in mathematical statistics, stochastic analysis, algebra, geometry, as well as in psychology and sociology.
Paper's Title:
Iterated Order of Fast Growth Solutions of Linear Differential Equations
Author(s):
Benharrat Belaďdi
Department of Mathematics
Laboratory of Pure and Applied Mathematics
University of Mostaganem
B. P. 227 Mostaganem,
ALGERIA.
belaidi@univmosta.dz
Abstract:
In this paper, we investigate the growth of solutions of the differential equation f^{(k)} + A_{k1} (z) f^{(k1)} +...+ A_{1} (z) f' + A_{0} (z) f= F (z), where A_{o} (z), ..., A_{k1} (z) and F (z) _{} 0 are entire functions. Some estimates are given for the iterated order of solutions of the above quation when one of the coefficients A_{s} is being dominant in the sense that it has larger growth than A_{j} (j≠s) and F.
Paper's Title:
Strongly Nonlinear Variational Parabolic Problems in Weighted Sobolev Spaces
Author(s):
L. Aharouch, E. Azroul and M. Rhoudaf
Dép. Math. Faculté des Sciences DharMahraz
B.P 1796 Atlas Fés,
Maroc.
rhoudaf_mohamed@yahoo.fr
Abstract:
In this paper , we study the existence of a weak solutions for the initialboundary value problems of the strongly nonlinear degenerated parabolic equation,
∂u  +A(u)+g(x,t,u,∇ u)=f 
∂t 
where A is a Leraylions operator acted from L^{p}(0,T,W_{0}^{1,p}(Ώ,w)) into its dual. g(x,t,u,∇ u) is a nonlinear term with critical growth condition with respect to ∇ u and no growth with respect to u. The source term f is assumed to belong to L^{p'}(0,T,W^{1,p'}(Ώ,w^{*})).
Paper's Title:
On some Strongly Nonlinear Elliptic Problems in Lądata with a Nonlinearity Having a Constant Sign in Orlicz Spaces via Penalization Methods
Author(s):
E. Azroul, A. Benkirane and M. Rhoudaf
Dep. Math., Faculté des Sciences
DharMahraz,
B.P 1796 Atlas Fčs,
Maroc
Departement of Mathematics,
Faculty of Sciences and Techniques of Tangier,
B.P. 416, Tangier,
Morocco.
rhoudaf_mohamed@yahoo.fr
Abstract:
This paper is concerned with the existence result of the
unilateral problem associated to the equations of the type
in Orlicz spaces, without
assuming the sign condition in the nonlinearity g. The source term f belongs to Lą(Ώ).
Paper's Title:
On a Hilberttype Inequality with the Polygamma Function
Author(s):
Bing He and Bicheng Yang
Department of Mathematics, Guangdong Education College,
Guangzhou, 510303,
China.
Department of Mathematics, Guangdong Education College,
Guangzhou, 510303,
China.
Abstract:
By applying the method of weight function and the technique of real analysis, a Hilberttype inequality with a best constant factor is established, where the best constant factor is made of the polygamma function. Furthermore, the inverse form is given.
Paper's Title:
A Note On The Global Behavior Of A Nonlinear System of Difference Equations
Author(s):
Norman H. Josephy, Mihaela Predescu and Samuel W. Woolford
Department of Mathematical Sciences,
Bentley University,
Waltham, MA 02452,
U.S.A.
mpredescu@bentley.edu
njosephy@bentley.edu
swoolford@bentley.edu
Abstract:
This paper deals with the global asymptotic stability character of solutions of a discrete time deterministic model proposed by Wikan and Eide in Bulletin of Mathematical Biology, 66, 2004, 16851704. A stochastic extension of this model is proposed and discussed. Computer simulations suggest that the dynamics of the stochastic model includes a mixture of the dynamics observed in the deterministic model.
Paper's Title:
Asymptotic Analysis of Positive Decreasing Solutions of a Class of Systems of Second Order Nonlinear Differential Equations in the Framework of Regular Variation
Author(s):
Jaroslav Jaroš, Kusano Takaŝi, Tomoyuki Tanigawa
Department of Mathematical Analysis and
Numerical Mathematics,
Faculty of Mathematics, Physics and Informatics,
Comenius Universiy, 842 48 Bratislava,
Slovakia.
Email: ksntksjm4@gmail.com
Professor Emeritus at: Hiroshima
University,
Department of Mathematics, Faculty of Science,
HigashiHiroshima 7398526,
Japan.
Email: jaros@fmph.uniba.sk
Department of Mathematics, Faculty of
Education,
Kumamoto University, Kumamoto 8608555,
Japan.
Email:
tanigawa@educ.kumamotou.ac.jp
Abstract:
The system of nonlinear differential equations
is under consideration, where α_{i}
and β_{i} are positive constants and
p_{i}(t) and q_{i}(t) are continuous regularly varying functions
on [a,∞). Two kinds of criteria are established for
the existence of strongly decreasing regularly varying solutions with negative
indices of (A) with precise asymptotic behavior at infinity. Fixed point
techniques and basic theory of regular variation are utilized for this purpose.
Paper's Title:
Strong Convergence Theorems for a Common Zero of an Infinite Family of GammaInverse Strongly Monotone Maps with Applications
Author(s):
Charles Ejike Chidume, Ogonnaya Michael Romanus, and Ukamaka Victoria Nnyaba
African University of Science and
Technology, Abuja,
Nigeria.
Email: cchidume@aust.edu.ng
Email: romanusogonnaya@gmail.com
Email: nnyabavictoriau@gmail.com
Abstract:
Let E be a uniformly convex and uniformly smooth real Banach space with
dual space E^{*} and let A_{k}:E→E^{*},
k=1, 2, 3 , ...
be a family of inverse strongly monotone maps such that ∩^{∞}_{k=1}
A_{k}^{1}(0)≠∅.
A new iterative algorithm is constructed and proved to converge strongly to a
common zero of the family.
As a consequence of this result, a strong convergence theorem for approximating
a common Jfixed point for an infinite family of
gammastrictly Jpseudocontractive maps is proved. These results are new and
improve recent results obtained for these classes of nonlinear maps.
Furthermore, the technique of proof is of independent interest.
Paper's Title:
Kinematic Model for Magnetic Nullpoints in 2 Dimensions
Author(s):
Ali Khalaf Hussain AlHachami
Department of Mathematics,
College of Education For Pure Sciences,
Wasit University,
Iraq.
Email: alhachamia@uowasit.edu.iq
Abstract:
The adjacent configurations of twodimensional magnetic null point centers are analyzed by an immediate examination about the null. The configurations are classified as either potential or nonpotential. By then the nonpotential cases are subdivided into three cases depending upon whether the component of current is less than, equal to or greater than a threshold current. In addition the essential structure of reconnection in 2D is examined. It unfolds that the manner by which the magnetic flux is rebuilt. In this paper, we center on the ramifications of kinematic arrangements; that is, we fathom just Maxwell's conditions and a resistive Ohm's law.
Paper's Title:
ResidualBased A Posteriori Error Estimates For A Conforming Mixed Finite Element Discretization of the MongeAmpere Equation
Author(s):
J. Adetola, K. W. Houedanou and B. Ahounou
Institut de Mathematiques et de Sciences
Physiques (IMSP),
Universite d'AbomeyCalavi
Email: adetolajamal58@yahoo.com
Departement de Mathematiques,
Faculte des Sciences et Techniques (FAST),
Universite d'AbomeyCalavi
Email: khouedanou@yahoo.fr
Departement de Mathematiques,
Faculte des Sciences et Techniques (FAST),
Universite d'AbomeyCalavi
Email: bahounou@yahoo.fr
Abstract:
In this paper we develop a new a posteriori error analysis for the MongeAmpere equation approximated by conforming finite element method on isotropic meshes in R^{2}. The approach utilizes a slight variant of the mixed discretization proposed by Gerard Awanou and Hengguang Li in [4]. The a posteriori error estimate is based on a suitable evaluation on the residual of the finite element solution. It is proven that the a posteriori error estimate provided in this paper is both reliable and efficient.
Paper's Title:
The Effect of Harvesting Activities on PreyPredator Fishery Model with Holling type II in Toxicant Aquatic Ecosystem
Author(s):
Moh Nurul Huda, Fidia Deny Tisna Amijaya, Ika Purnamasari
Department of Mathematics, Faculty of
Mathematics and Natural Science,
Mulawarman University,
Samarinda, East Kalimantan,75123
Indonesia.
Email: muh.nurulhuda@fmipa.unmul.ac.id
fidiadta@fmipa.unmul.ac.id
ika.purnamasari@fmipa.unmul.ac.id
Abstract:
This paper discussed preypredator fishery models, in particular by analysing the effects of toxic substances on aquatic ecosystems. It is assumed in this model, that the prey population is plankton and the predator population is fish.\ Interaction between the two populations uses the Holling type II function. The existence of local and global critical points of the system are shown and their stability properties are analysed. Furthermore, Bionomic equilibrium and optimal control of harvesting are discussed. Finally, numerical simulations have been carried out to show in the interpretation of results.
Paper's Title:
A Selfadaptive Subgradient Extragradient Algorithm for Variational Inequality Problems and Fixed Point Problems in Banach Spaces
Author(s):
F. U. Ogbuisi
School of Mathematics, Statistics and
Computer Science,
University of KwaZuluNatal, Durban,
South Africa.
Department of Mathematics,
University of Nigeria, Nsukka,
Nigeria.
Email: ferdinard.ogbuisi@unn.edu.ng
fudochukwu@yahoo.com
Abstract:
In this paper, we propose and analyze a type of subgradient extragradient algorithm for the approximation of a solution of variational inequality problem which is also a common fixed point of an infinite family of relatively nonexpansive mappings in 2uniformly convex Banach spaces which are uniformly smooth. By using the generalized projection operator, we prove a strong convergence theorem which does not require the prior knowledge of the Lipschitz constant of cost operator. We further applied our result to constrained convex minimization problem, convex feasibility problem and infinite family of equilibrium problems. Our results improve and complement related results in 2uniformly convex and uniformly smooth Banach spaces and Hilbert spaces.
Paper's Title:
An Algorithm to Compute GaussianType Quadrature Formulae
that Integrate Polynomials and Some Spline Functions Exactly
Author(s):
Allal Guessab
Laboratoire de Mathématiques Appliquées,
Université de Pau, 64000, Pau,
France.
allal.guessab@univpau.fr
URL: http://www.univpau.fr/~aguessab/
Abstract:
It is wellknown that for sufficiently smooth integrands on an interval, numerical integration can be performed stably and efficiently via the classical (polynomial) Gauss quadrature formulae. However, for many other sets of integrands these quadrature formulae do not perform well. A very natural way of avoiding this problem is to include a wide class among arbitrary functions (not necessary polynomials) to be integrated exactly. The spline functions are natural candidates for such problems. In this paper, after studying Gaussian type quadrature formulae which are exact for spline functions and which contain boundary terms involving derivatives at both end points, we present a fast algorithm for computing their nodes and weights. It is also shown, taking advantage of the close connection with ordinary Gauss quadrature formula, that the latter are computed, via eigenvalues and eigenvectors of real symmetric tridiagonal matrices. Hence a new class of quadrature formulae can then be computed directly by standard software for ordinary Gauss quadrature formula. Comparative results with classical Gauss quadrature formulae are given to illustrate the numerical performance of the approach.
Paper's Title:
On the Optimal Buckling Loads of Clamped Columns
Author(s):
Samir Karaa
Department of Mathematics and Statistics
Sultan Qaboos University, P.O. Box 36, Alkhod 123
Muscat, Sultanate of Oman
skaraa@squ.edu.om
URL: http://ajmaa.org/EditorsU/SKaraa.php
Abstract:
We consider the problem of determining the optimal shape of a clamped column of given length and volume, without minimum cross section constraints. We prove that the necessary condition of optimality derived by Olhoff and Rasmussen is sufficient when 0<α<1. The number alpha appears in Equation 2.1. For the case α =1 it is shown that the value 48 is optimal. We also determine the exact values of the optimal shape at the extremities, and take advantage of a robust nonlinear ordinary differential equation solver COLSYS to compute the optimal buckling load with a high accuracy.
Paper's Title:
Normalized Truncated Levy models applied to the study of Financial Markets
Author(s):
M. C. Mariani, K. Martin, D. W. Dombrowski and D. Martinez
Department of Mathematical Sciences and Department of Finance,
New Mexico State University, P.O. Box 30001
Department 3MB Las Cruces, New Mexico 880038001
USA.
mmariani@nmsu.edu
kjmartin@nmsu.edu
Abstract:
This work is devoted to the study of the statistical properties of financial instruments from developed markets. We performed a new analysis of the behavior of companies corresponding to the DJIA index, and of the index itself, by using a normalized Truncated Levy walk model. We conclude that the Truncated Levy distribution describes perfectly the evolution of the companies and of the index near a crash.
Paper's Title:
Generalized Efficient Solutions to One Class of Vector Optimization Problems in Banach Space
Author(s):
Peter I. Kogut, Rosanna Manzo, and Igor V. Nechay
Department of Differential Equations,
Dnipropetrovsk National University,
Naukova str., 13,
49050 Dnipropetrovsk,
Ukraine
p.kogut@i.ua
Dipartimento di Ingegneria
Dell’informazione e Matematica Applicata,
Universitŕ di Salerno,
Via
Ponte
Don Melillo,
84084 Fisciano
(Sa),
Italy
manzo@diima.unisa.it
Department of Technical Cybernetics,
Dnipropetrovsk Technical University,
Acad. Lazarjan str., 2,
49010
Dnipropetrovsk,
Ukraine
i.nechay@i.ua
Abstract:
In this paper, we study vector optimization problems in Banach spaces for essentially nonlinear operator equations with additional control and state constraints. We assume that an objective mapping possesses a weakened property of lower semicontinuity and make no assumptions on the interior of the ordering cone. Using the penalization approach we derive both sufficient and necessary conditions for the existence of efficient solutions of the above problems. We also prove the existence of the socalled generalized efficient solutions via the scalarization of some penalized vector optimization problem.
Paper's Title:
Shape Diagrams for 2D Compact Sets  Part II: Analytic Simply Connected Sets.
Author(s):
S. Rivollier, J. Debayle and J.C. Pinoli
Ecole Nationale Supérieure des Mines de SaintEtienne,
CIS  LPMG, UMR CNRS 5148, 158 cours Fauriel,
42023 SaintEtienne Cedex 2, France.
rivollier@emse.fr;
debayle@emse.fr; pinoli@emse.fr
Abstract:
Shape diagrams are representations in the Euclidean plane introduced to study 3dimensional and 2dimensional compact convex sets. However, they can also been applied to more general compact sets than compact convex sets. A compact set is represented by a point within a shape diagram whose coordinates are morphometrical functionals defined as normalized ratios of geometrical functionals. Classically, the geometrical functionals are the area, the perimeter, the radii of the inscribed and circumscribed circles, and the minimum and maximum Feret diameters. They allow twentytwo shape diagrams to be built. Starting from these six classical geometrical functionals, a detailed comparative study has been performed in order to analyze the representation relevance and discrimination power of these twentytwo shape diagrams. The first part of this study is published in a previous paper 16. It focused on analytic compact convex sets. A set will be called analytic if its boundary is piecewise defined by explicit functions in such a way that the six geometrical functionals can be straightforwardly calculated. The purpose of this paper is to present the second part, by focusing on analytic simply connected compact sets. The third part of the comparative study is published in a following paper 17. It is focused on convexity discrimination for analytic and discretized simply connected compact sets.
Paper's Title:
Some Inequalities for Gramian Normal Operators and for Gramian SelfAdjoint Operators in PseudoHilbert Spaces
Author(s):
Loredana Ciurdariu
Department of Mathematics,"Politehnica" University of Timisoara,
Pta. Victoriei, No.2, 300006Timisoara,
ROMANIA
cloredana43@yahoo.com.
Abstract:
Several inequalities for gramian normal operators and for gramian selfadjoint operators in pseudoHilbert spaces are presented.
Paper's Title:
Numerical Solution of A System of Singularly Perturbed ConvectionDiffusion BoundaryValue Problems Using Mesh Equidistribution Technique
Author(s):
Pratibhamoy Das and Srinivasan Natesan
Department of Mathematics,
Indian Institute of Technology Guwahati,
Guwahati  781 039,
India.
pratibhamoy@gmail.com
natesan@iitg.ernet.in
URL:
http://www.iitg.ernet.in/natesan/
Abstract:
In this article, we consider a system of singularly perturbed weakly coupled convectiondiffusion equations having diffusion parameters of different magnitudes. These small parameters give rise to boundary layers. An upwind finite difference scheme on adaptively generated mesh is used to obtain a suitable monitor function that gives firstorder convergence which is robust with respect to the diffusion parameters. We present the results of numerical experiments for linear and semilinear system of differential equations to support the effectiveness of our preferred monitor function obtained from theoretical analysis.
Paper's Title:
On Eigenvalues and Boundary Curvature of the C*algebra Numerical Rang
Author(s):
M. T. Heydari
Department of Mathematics,
College of Sciences,
Yasouj University,
Yasouj, 7591474831,
Iran.
Email: heydari@yu.ac.ir
Abstract:
Let A be a C*algebra with unit 1 and a∈A be a nilpotent. By Donoghue's Theorem, all corner points of its numerical range V(a) belong to the spectrum σ(a). It is therefore natural to expect that, more generally, the distance from a point p on the boundary ∂ V(a) of V(a) to σ(a) should be in some sense bounded by the radius of curvature of ∂ V(a) at p.
Paper's Title:
Introducing the Dorfmanian: A Powerful Tool for the Calculus Of Variations
Author(s):
Olivier de La Grandville
Department of Management Science and Engineering,
Stanford University,
475 Via Ortega, Stanford, CA 94305,
U. S. A.
Email: odelagrandville@gmail.com
Abstract:
We show how a modified Hamiltonian proposed by Robert Dorfman [1] to give intuitive sense
to the Pontryagin maximum principle can be extended to easily obtain all
highorder equations of the calculus of variations. This new concept is
particularly efficient to determine the differential equations leading to
the extremals of functionals defined by nuple integrals, while a
traditional approach would require  in some cases repeatedly  an
extension of Green's theorem to nspace.
Our paper is dedicated to the memory of Robert Dorfman (1916  2002).
Paper's Title:
A Multivalued Version of the RadonNikodym Theorem, via the Singlevalued Gould Integral
Author(s):
Domenico Candeloro^{1}, Anca Croitoru^{2}, Alina Gavriluţ^{2}, Anna Rita Sambucini^{1}
^{1}Dept. of Mathematics and Computer
Sciences,
University of Perugia,
1, Via Vanvitelli  06123, Perugia,
Italy.
Email: domenico.candeloro@unipg.it,
anna.sambucini@unipg.it
^{2}Faculty of Mathematics,
Al. I. Cuza University,
700506 Iaşi,
Romania.
Email: croitoru@uaic.ro,
gavrilut@uaic.ro
Abstract:
In this paper we consider a Gould type integral of real functions with respect to a compact and convex valued not necessarily additive measure. In particular we will introduce the concept of integrable multimeasure and, thanks to this notion, we will establish an exact RadonNikodym theorem relative to a fuzzy multisubmeasure which is new also in the finite dimensional case. Some results concerning the Gould integral are also obtained.
Paper's Title:
Global Analysis on Riemannian Manifolds
Author(s):
Louis Omenyi and Michael Uchenna
Department of Mathematics, Computer
Science, Statistics and Informatics,
Alex Ekwueme Federal University, NdufuAlike,
Nigeria.
Email: omenyi.louis@funai.edu.ng,
michael.uchenna@funai.edu.ng
URL: http://www.funai.edu.ng
Abstract:
In this paper, an exposition of the central concept of global analysis on a Riemannan manifold is given. We extend the theory of smooth vector fields from open subsets of Euclidean space to Riemannan manifolds. Specifically, we prove that a Riemannian manifold admits a unique solution for a system of ordinary differential equations generated by the flow of smooth tangent vectors. The idea of partial differential equations on Riemannian manifold is highlighted on the unit sphere.
Paper's Title:
Generalised Models for Torsional Spine Reconnection
Author(s):
Ali Khalaf Hussain AlHachami
Department of Mathematics,
College of Education For Pure Sciences,
Wasit University,
Iraq.
Email: alhachamia@uowasit.edu.iq
Abstract:
Threedimensional (3D) null points are available in wealth in the solar corona, and the equivalent is probably going to be valid in other astrophysical situations. Ongoing outcomes from sun oriented perceptions and from reproductions propose that reconnection at such 3D nulls may assume a significant job in the coronal dynamics. The properties of the torsional spine method of magnetic reconnection at 3D nulls are researched. Kinematic model are created, which incorporate the term ηJ that is spatially localised around the null, stretching out along the spine of the null. The null point is to research the impact of shifting the level of asymmetry of the null point magnetic field on the subsequent reconnection process where past examinations constantly considered a nonnonexclusive radially symmetric null. Specifically we analyse the rate of reconnection of magnetic flux at the spine of null point. Logical arrangements are determined for the enduring kinematic equation, and contrasted and the after effects of torsional spine reconnection models when the current is restricted in which the Maxwell conditions are illuminated. The geometry of the current layers inside which torsional spine reconnection happen is autonomous on the symmetry of the magnetic field. Torsional spine reconnection happens in a thin cylinder around the spine, with circular crosssegment when the fan eigenvalues are extraordinary. The short axis of the circle being along the solid field bearing. Just as it was discovered that the fundamental structure of the method of attractive reconnection considered is unaffected by changing the magnetic field symmetry, that is, the plasma flow is discovered rotational around the spine of null point. The spatiotemporal pinnacle current, and the pinnacle reconnection rate achieved, are found not to rely upon the level of asymmetry.
Paper's Title:
ψ(m,q)Isometric Mappings on Metric Spaces
Author(s):
Sid Ahmed Ould Beinane, Sidi Hamidou Jah and Sid Ahmed Ould Ahmed Mahmoud
Mathematical Analysis and Applications,
Mathematics Department, College of Science,
Jouf University,
Sakaka P.O.Box 2014,
Saudi Arabia.
Email: beinane06@gmail.com
Department of Mathematics, College of
Science Qassim University,
P.O. Box 6640, Buraydah 51452,
Saudi Arabia.
Email: jahsiidi@yahoo.fr
Mathematical Analysis and Applications,
Mathematics Department, College of Science, Jouf University,
Sakaka P.O.Box 2014,
Saudi Arabia.
Email: sidahmed@ju.edu.sa,
sidahmed.sidha@gmail.com
Abstract:
The concept of (m,p)isometric operators on Banach space was extended to
(m,q)isometric mappings on general metric spaces in [6].
This paper is devoted to define the concept of
ψ(m, q)isometric, which is the
extension of A(m, p)isometric operators on Banach spaces introduced in [10].
Let T,ψ: (E,d) > (E, d) be two mappings.
For some positive integer m and q ∈ (0,∞).
T is said to be an ψ(m,q)isometry,
if for all y,z ∈ E,
Paper's Title:
Uniqueness of Meromorphic Functions that Share Three Values
Author(s):
Abhijit Banerjee
Department of Mathematics
Kalyani Government Engineering College
West Bengal 741235
India.
abanerjee_kal@yahoo.co.in
abanerjee@mail15.com
abanerjee_kal@rediffmail.com
Abstract:
In the paper dealing with the uniqueness problem of meromorphic functions we prove five theorems one of which will improve a result given by Lahiri \cite{5} and the remaining will supplement some previous results.
Paper's Title:
A Sum Form Functional Equation and Its Relevance in Information Theory
Author(s):
Prem Nath and Dhiraj Kumar Singh
Department of Mathematics
University of Delhi
Delhi  110007
India
pnathmaths@gmail.com
dksingh@maths.du.ac.in
Abstract:
The general solutions of a sum form functional equation containing four unknown mappings have been investigated. The importance of these solutions in relation to various entropies in information theory has been emphasised.
Paper's Title:
On the Convergence in Law of Iterates of RandomValued Functions
Author(s):
Karol Baron
Uniwersytet
Śląski,
Instytut Matematyki
Bankowa 14,
PL40007 Katowice,
Poland
baron@us.edu.pl
Abstract:
Given a probability space (Ω, A, P) a separable and complete metric space X with the σalgebra B of all its Borel subsets and a B A measurable f : X * Ω → X we consider its iterates f^{n}, n N, defined on X * Ω^{N} by f^{1}(x,ω) = f(x,ω_{1}) and f^{n+1}(x,ω)=f(f^{n}(x,ω),ω_{n+1}), provide a simple criterion for the convergence in law of f^{n}(x,·))_{ n N}, to a random variable independent of x X , and apply this criterion to linear functional equations in a single variable.
Paper's Title:
Asymptotic Inequalities for the Maximum Modulus of the Derivative of a Polynomial
Author(s):
Clément Frappier
Département de Mathématiques et de Génie industriel École Polytechnique de
Montréal,
C.P.~6079, succ. Centreville Montréal (Québec),
H3C 3A7, CANADA
Abstract:
Let be an algebraic polynomial of degree ≤n, and let ∥p∥= max {p(z):z = 1}. We study the asymptotic behavior of the best possible constant φn,k (R), for k = 0 and k=1, in the inequality ∥p'(Rz)∥ + φn,k (R) a_{k} ≤ nR^{n}^{1} ∥p∥, R → ∞.
Paper's Title:
Approximation of an AQCQFunctional Equation and its Applications
Author(s):
Choonkil Park and Jung Rye Lee
Department of Mathematics,
Research Institute for Natural Sciences,
Hanyang University, Seoul 133791,
Korea;
Department of Mathematics,
Daejin University,
Kyeonggi 487711,
Korea
baak@hanyang.ac.kr
jrlee@daejin.ac.kr
Abstract:
This paper is a survey on the generalized HyersUlam stability of an AQCQfunctional equation in several spaces. Its content is divided into the following sections:
1. Introduction and preliminaries.
2. Generalized HyersUlam stability of an AQCQfunctional equation in Banach spaces: direct method.
3. Generalized HyersUlam stability of an AQCQfunctional equation in Banach spaces: fixed point method.
4. Generalized HyersUlam stability of an AQCQfunctional equation in random Banach spaces: direct method.
5. Generalized HyersUlam stability of an AQCQfunctional equation in random Banach spaces: fixed point method.
6. Generalized HyersUlam stability of an AQCQfunctional equation in nonArchimedean Banach spaces: direct method.
7. Generalized HyersUlam stability of an AQCQfunctional equation in nonArchimedean Banach spaces: fixed point method.
Paper's Title:
Some Functional Inequalities for the Geometric Operator Mean
Author(s):
Mustapha Raissouli
Taibah University, Faculty of Sciences,
Department of Mathematics,
Al Madinah Al Munawwarah, P.O.Box 30097,
Kingdom of Saudi Arabia.
Abstract:
In this paper, we give some new inequalities of functional type for the power geometric operator mean involving several arguments.
Paper's Title:
A Dynamic Contact Problem for an Electro Viscoelastic Body
Author(s):
Denche M. and Ait Kaki L.
Laboratoire Equations Differentielles,
Departement de Mathematiques,
Universite Constantine 1,
Algeria.
Ecole Normale Superieure,
Departement des Sciences Exactes et Informatique,
Plateau Mansourah, Constantine.
Algeria.
Email:
m.denche@umc.edu.dz
leilaitkaki@yahoo.fr
Abstract:
We consider a dynamic problem which describes a contact between a piezoelectric body and a conductive foundation. The frictionless contact is modelled with the normal compliance, the electric conditions are supposed almost perfect. We prove the existence of a unique weak solution for almost perfect electric contact.
Paper's Title:
Iterative Approximation of Zeros of Accretive Type Maps, with Applications
Author(s):
Charles Ejike Chidume, Chinedu Godwin Ezea, and Emmanuel Ezzaka Otubo
African University of Science and
Technology, Abuja,
Nigeria.
Email: cchidume@aust.edu.ng
Email: chinedu.ezea@gmail.com
Email: mrzzaka@yahoo.com
Department of Mathematics,
Nnamdi Azikiwe University,
Awka,
Nigeria
Email: chinedu.ezea@gmail.com
Ebonyi State University,
Abakaliki,
Nigeria
Email: mrzzaka@yahoo.com
Abstract:
Let E be a reflexive real Banach space with uniformly Gâteaux differentiable norm. Let J:E→ E^{*} be the normalized duality map on E and let A:E^{*}→ E be a map such that AJ is an accretive and uniformly continuous map. Suppose that (AJ)^{1}(0) in nonempty. Then, an iterative sequence is constructed and proved to converge strongly to some u^{*} in (AJ)^{1}(0). Application of our theorem in the case that E is a real Hilbert space yields a sequence which converges strongly to a zero of A. Finally, nontrivial examples of maps A for which AJ is accretive are presented..
Paper's Title:
A New Interpretation of the Number e
Author(s):
Olivier de La Grandville
Faculty of Economics, Goethe University,
Frankfurt, TheodorAdorno Platz 4,
60323 Frankfurt am Main,
Germany.
Email:
odelagrandville@gmail.com
Abstract:
We show that e is the amount that 1 becomes when it is invested during an arbitrary time span of length T, at any continuously compounded interest rates as long as their average is equal to 1/T . A purely mathematical interpretation of e is the amount a unit quantity becomes after any duration T when the average of its instantaneous growth rates is 1/T. This property can be shown to remain valid if T tends to infinity as long as the integral of the growth rates converges to unity.
Paper's Title:
Analysis of a Frictional Contact Problem for Viscoelastic Piezoelectric Materials
Author(s):
Meziane Said Ameur, Tedjani Hadj Ammar and Laid Maiza
Departement of Mathematics,
El Oued University,
P.O. Box 789, 39000 El Oued,
Algeria.
Email:
saidameurmeziane@univeloued.dz
Departement of Mathematics,
El Oued University,
P.O. Box 789, 39000 El Oued,
Algeria.
Email:
hadjammartedjani@univeloued.dz
Department of Mathematics,
Kasdi Merbah University,
30000 Ouargla,
Algeria.
Email: maiza.laid@univouargla.dz
Abstract:
In this paper, we consider a mathematical model that describes the quasistatic process of contact between two thermoelectroviscoelastic bodies with damage and adhesion. The damage of the materials caused by elastic deformations. The contact is frictional and modeled with a normal compliance condition involving adhesion effect of contact surfaces. Evolution of the bonding field is described by a first order differential equation. We derive variational formulation for the model and prove an existence and uniqueness result of the weak solution. The proof is based on arguments of evolutionary variational inequalities, parabolic inequalities, differential equations, and fixed point theorem.
Paper's Title:
Sharp Inequalities Between Hölder and Stolarsky Means of Two Positive Numbers
Author(s):
M. Bustos Gonzalez and A. I. Stan
The University of Iowa,
Department of Mathematics,
14 MacLean Hall,
Iowa City, Iowa,
USA.
Email:
margaritabustosgonzalez@uiowa.edu
The Ohio State University at Marion,
Department of Mathematics,
1465 Mount Vernon Avenue,
Marion, Ohio,
USA.
Email: stan.7@osu.edu
Abstract:
Given any index of the Stolarsky means, we find the greatest and least indexes of the H\"older means, such that for any two positive numbers, the Stolarsky mean with the given index is bounded from below and above by the Hölder means with those indexes, of the two positive numbers. Finally, we present a geometric application of this inequality involving the FermatTorricelli point of a triangle.
Paper's Title:
General Extension of HardyHilbert's Inequality (I)
Author(s):
W. T. Sulaiman
College of Computer Science and Mathematics, University of Mosul,
Iraq.
waadsulaiman@hotmail.com
Abstract:
A generalization for HardyHilbert's inequality that extends the recent results of Yang and Debnath [6], is given.
Paper's Title:
Boundary Value Problems for Fractional DiffusionWave equation
Author(s):
Varsha DaftardarGejji and Hossein Jafari
Department of Mathematics, University of Pune,
Ganeshkhind, Pune  411007,
INDIA.
vsgejji@math.unipune.ernet.in
jafari_h@math.com
Abstract:
Non homogeneous fractional diffusionwave equation has been solved under linear/nonlinear boundary conditions. As the order of time derivative changes from
0 to 2, the process changes from slow diffusion to classical diffusion to mixed diffusionwave behaviour.
Numerical examples presented here confirm this inference. Orthogonality of eigenfunctions in case of fractional StürmLiouville problem has been established
Paper's Title:
Equilibria and Periodic Solutions of Projected Dynamical Systems on Sets with Corners
Author(s):
Matthew D. Johnston and MonicaGabriela Cojocaru
Department of Applied Mathematics, University of Waterloo,
Ontario, Canada
mdjohnst@math.uwaterloo.ca
Department of Mathematics & Statistics, University of
Guelph,
Ontario, Canada
mcojocar@uoguelph.ca
Abstract:
Projected dynamical systems theory represents a bridge between the static worlds of variational inequalities and equilibrium problems, and the dynamic world of ordinary differential equations. A projected dynamical system (PDS) is given by the flow of a projected differential equation, an ordinary differential equation whose trajectories are restricted to a constraint set K. Projected differential equations are defined by discontinuous vector fields and so standard differential equations theory cannot apply. The formal study of PDS began in the 90's, although some results existed in the literature since the 70's. In this paper we present a novel result regarding existence of equilibria and periodic cycles of a finite dimensional PDS on constraint sets K, whose points satisfy a corner condition. The novelty is due to proving existence of boundary equilibria without using a variational inequality approach or monotonicity type conditions.
Paper's Title:
Contact With Adhesion between a Deformable Body and a Foundation
Author(s):
B. Teniou and M. Sofonea
Laboratoire de Mathematiques Appliquées et Modélisation,
Université Mentouri, Constantine 25000,
Algeria
tenioubou2@yahoo.fr
Laboratoire de Mathématiques et Physiques pour les Systémes,
Univesité de Perpignan,
France.
sofonea@univperp.fr
Abstract:
The aim of this work is study a dynamic contact problem between a deformable body and a foundation where the deformations are supposed to be small. The contact is with adhesion and normal compliance. The behavior of this body is modeled by a nonlinear elasticviscoplastic law. The evolution of bonding field is described by a nonlinear differential equation. We derive a variational formulation of the contact problem and we prove the existence and uniqueness of its solution. The proof is based on the construction of three intermediate problems and then we construct a contraction mapping whose unique fixed point will be the weak solution of the mechanical problem.
Paper's Title:
Integer Sums of Powers of Trigonometric Functions (MOD p), for prime p
Author(s):
G. J. Tee
Department of Mathematics, University of Auckland,
Auckland,
New Zealand
tee@math.auckland.ac.nz
Abstract:
Many multiparameter families of congruences (mod p) are found for integer sums of q^{th} powers of the trigonometric functions over various sets of equidistant arguments, where p is any prime factor of q. Those congruences provide sensitive tests for the accuracy of software for evaluating trigonometric functions to high precision.
Paper's Title:
Fractional Integral Operators and Olsen Inequalities on NonHomogeneous Spaces
Author(s):
Idha Sihwaningrum, Herry P. Suryawan, Hendra Gunawan
Analysis and Geometry Group,
Faculty of Mathematics and Natural Sciences,
Bandung Institute of Technology, Bandung 40132,
Indonesia
hgunawan@math.itb.ac.id
URL:
http://personal.fmipa.itb.ac.id/hgunawan/
Abstract:
We prove the boundedness of the fractional integral operator I_{α} on generalized Morrey spaces of nonhomogeneous type. In addition, we also present Olsentype inequalities for a multiplication operator involving I_{α}. Our proof uses a result of GarcíaCuerva and Martell [3].
Paper's Title:
Some Remarks on a Result of Bougoffa
Author(s):
James A. Oguntuase, LarsErik Persson and Josip E. Pečarič
Department of
Mathematics,University of Agriculture,
P M B 2240, Abeokuta, Nigeria
Department of Mathematics,
Luleĺ University of Technology,
SE971 87, Luleĺ , Sweden
Faculty of Textile Technology, University of Zagreb,
Pierottijeva 6, 10000 Zagreb, Croatia
oguntuase@yahoo.com,
larserik@sm.luth.se,
pecaric@hazu.hr.
Abstract:
Some new generalizations of the result of
L. Bougoffa [J. Inequal. Pure Appl. Math. 7 (2) (2006), Art. 60]
are derived and discussed.
Paper's Title:
L∞ Error Estimate of Schwarz Algorithm for Elliptic QuasiVariational Inequalities Related to Impulse Control Problem
Author(s):
Saadi Samira and Mehri Allaoua
Lab. LANOS, Department of Mathematics,
University Badji Mokhtar Annaba,
P.O.Box 12, Annaba 23000,
Algeria.
Lab. LAIG, Department of Mathematics,
University May 8th 1945,
P.O.Box 401, Guelma 24000,
Algeria.
Email:
saadisamira69@yahoo.fr
allmehri@yahoo.fr
Abstract:
In this work, we study Schwarz method for a class of elliptic quasivariational inequalities. The principal result of this investigation is to prove the error estimate in ∞norm for two domains with overlapping nonmatching grids, using the geometrical convergence, and the uniform convergence of Cortey Dumont.
Paper's Title:
Some Grüss Type Inequalities in Inner Product Spaces
Author(s):
Sever S. Dragomir^{1,2}
^{1}Mathematics, School of Engineering
& Science
Victoria University, PO Box 14428
Melbourne City, MC 8001,
Australia
Email: sever.dragomir@vu.edu.au
^{2}School of Computer Science & Applied Mathematics,
University of the Witwatersrand,
Private Bag 3, Johannesburg 2050,
South Africa
URL: http://rgmia.org/dragomir
Abstract:
Some inequalities in inner product spaces that provide upper bounds for the quantities
and ,
where e,f ∈ H with and x,y are vectors in H satisfying some appropriate assumptions are given. Applications for discrete and integral inequalities are provided as well.
Paper's Title:
On the Constant in a Transference Inequality for the Vectorvalued Fourier Transform
Author(s):
Dion Gijswijt and Jan van Neerven
Delft University of Technology,
Faculty EEMCS/DIAM,
P.O. Box 5031,
2600 GA Delft,
The Netherlands.
URL:
http://aw.twi.tudelft.nl/~neerven/
URL:
http://homepage.tudelft.nl/64a8q/
Email:
J.M.A.M.vanNeerven@TUDelft.nl
Email: D.C.Gijswijt@TUDelft.nl
Abstract:
The standard proof of the equivalence of Fourier type on R^{d} and on the torus T^{d} is usually stated in terms of an implicit constant, defined as the minimum of a sum of powers of sinc functions. In this note we compute this minimum explicitly.
Paper's Title:
Strong Convergence Theorem for a Common Fixed Point of an Infinite Family of Jnonexpansive Maps with Applications
Author(s):
Charlse Ejike Chidume, Otubo Emmanuel Ezzaka and Chinedu Godwin Ezea
African University of Science and
Technology,
Abuja,
Nigeria.
Email:
cchidume@aust.edu.ng
Ebonyi State University,
Abakaliki,
Nigeria.
Email: mrzzaka@yahoo.com
Nnamdi Azikiwe University,
Awka,
Nigeria.
Email: chinedu.ezea@gmail.com
Abstract:
Let E be a uniformly convex and uniformly smooth real Banach space with dual space E^{*}. Let {T_{i}}^{∞}_{i=1} be a family of Jnonexpansive maps, where, for each i,~T_{i} maps E to 2^{E*}. A new class of maps, Jnonexpansive maps from E to E^{*}, an analogue of nonexpansive self maps of E, is introduced. Assuming that the set of common Jfixed points of {T_{i}}^{∞}_{i=1} is nonempty, an iterative scheme is constructed and proved to converge strongly to a point x^{*} in ∩^{∞}_{n=1}F_{J}T_{i}. This result is then applied, in the case that E is a real Hilbert space to obtain a strong convergence theorem for approximation of a common fixed point for an infinite family of nonexpansive maps, assuming existences. The theorem obtained is compared with some important results in the literature. Finally, the technique of proof is also of independent interest.
Paper's Title:
Stability of the DBar Reconstruction Method for Complex Conductivities
Author(s):
^{1}S. El Kontar, ^{1}T. El Arwadi, ^{1}H. Chrayteh, ^{2}J.M. SacÉpée
^{1}Department of Mathematics and
Computer Science,
Faculty of Science, Beirut Arab University,
P.O. Box: 115020, Beirut,
Lebanon.
Email: srs915@student.bau.edu.lb
^{2}Institut Élie Cartan de
Lorraine,
Université de Lorraine  Metz,
France.
Abstract:
In 2000, Francini solved the inverse conductivity problem for twicedifferentiable conductivities and permittivities. This solution was considered to be the first approach using Dbar methods with complex conductivities. In 2012, based on Francini's work, Hamilton introduced a reconstruction method of the conductivity distribution with complex values. The method consists of six steps. A voltage potential is applied on the boundary. Solving a DBar equation gives the complex conductivity. In this paper, the stability of the DBar equation is studied via two approximations, t^{exp} and t^{B}, for the scattering transform. The study is based on rewriting the reconstruction method in terms of continuous operators. The conductivity is considered to be non smooth.
Paper's Title:
Weakly Compact Composition Operators on Real Lipschitz Spaces of Complexvalued Functions on Compact Metric Spaces with Lipschitz Involutions
Author(s):
D. Alimohammadi and H. Alihoseini
Department of Mathematics,
Faculty of Science,
Arak University
P. O. Box,3815688349,
Arak,
Iran.
Email: dalimohammadi@araku.ac.ir
Email:
hr_alihoseini@yahoo.com
URL: http://www.araku.ac.ir
Abstract:
We first show that a bounded linear operator T on a real Banach space E is weakly compact if and only if the complex linear operator T on the complex Banach space E_{C} is weakly compact, where E_{C} is a suitable complexification of E and iT' is the complex linear operator on E_{C} associated with T. Next we show that every weakly compact composition operator on real Lipschitz spaces of complexvalued functions on compact metric spaces with Lipschitz involutions is compact.
Paper's Title:
A Comparison Between Two Different Stochastic Epidemic Models with Respect to the Entropy
Author(s):
Farzad Fatehi and Tayebe Waezizadeh
Department of Mathematics,
University of Sussex,
Brighton BN1 9QH,
UK.
Email: f.fatehi@sussex.ac.uk
URL:
http://www.sussex.ac.uk/profiles/361251
Department of Pure Mathematics, Faculty
of Mathematics and Computer,
Shahid Bahonar University of Kerman,
Kerman 7616914111,
Iran.
Email: waezizadeh@uk.ac.ir
URL:
http://academicstaff.uk.ac.ir/en/tavaezizadeh
Abstract:
In this paper at first a brief history of mathematical models is presented with the aim to clarify the reliability of stochastic models over deterministic models. Next, the necessary background about random variables and stochastic processes, especially Markov chains and the entropy are introduced. After that, entropy of SIR stochastic models is computed and it is proven that an epidemic will disappear after a long time. Entropy of a stochastic mathematical model determines the average uncertainty about the outcome of that random experiment. At the end, we introduce a chain binomial epidemic model and compute its entropy, which is then compared with the DTMC SIR epidemic model to show which one is nearer to reality.
Paper's Title:
A Method of the Study of the Cauchy Problem for~a~Singularly Perturbed Linear Inhomogeneous Differential Equation
Author(s):
E. E. Bukzhalev and A. V. Ovchinnikov
Faculty of Physics,
Moscow State University,
1 Leninskie Gory,
Moscow, 119991,
Russia
Email: bukzhalev@mail.ru
Russian Institute for Scientific and
Technical Information of the Russian Academy of Sciences,
20 Usievicha St., Moscow, 125190,
Russia
Email: ovchinnikov@viniti.ru
Abstract:
We construct a sequence that converges to a solution of the Cauchy problem for a singularly perturbed linear inhomogeneous differential equation of an arbitrary order. This sequence is also an asymptotic sequence in the following sense: the deviation (in the norm of the space of continuous functions) of its nth element from the solution of the problem is proportional to the (n+1)th power of the parameter of perturbation. This sequence can be used for justification of asymptotics obtained by the method of boundary functions.
Paper's Title:
EulerMaclaurin Formulas for Functions of Bounded Variation
Author(s):
G. De Marco, M. De Zotti, C. Mariconda
Dipartimento di Matematica Tullio LeviCivita,
Universita degli Studi di Padova
Via Trieste 63, Padova 35121,
Italy.
Email: carlo.mariconda@unipd.it
URL: http://www.math.unipd.it
Abstract:
The firstorder EulerMaclaurin formula relates the sum of the values of a smooth function on an interval of integers with its integral on the same interval on R. We formulate here the analogue for functions that are just of bounded variation.
Paper's Title:
Existence and Estimate of the Solution for the Approximate Stochastic Equation to the Viscous Barotropic Gas
Author(s):
R. Benseghir and A. Benchettah
LANOS Laboratory,
Badji Mokhtar University,
PO Box 12,
Annaba, Algeria.
Email:
benseghirrym@ymail.com,
abenchettah@hotmail.com
Abstract:
A stochastic equation of a viscous barotropic gas is considered. The application of Ito formula to a specific functional in an infinite dimensional space allows us to obtain an estimate which is useful to analyse the behavior of the solution. As it is difficult to exploit this estimate, we study an approximate problem. More precisely, we consider the equation of a barotropic viscous gas in Lagrangian coordinates and we add a diffusion of the density. An estimate of energy is obtained to analyse the behavior of the solution for this approximate problem and Galerkin method is used to prove the existence and uniqueness of the solution.
Paper's Title:
An Existence of the Solution to Neutral Stochastic Functional Differential Equations Under the Holder Condition
Author(s):
YoungHo Kim
Department of Mathematics,
Changwon National University,
Changwon, Gyeongsangnamdo 51140,
Korea.
Email: iyhkim@changwon.ac.kr
Abstract:
In this paper, we show the existence and uniqueness of solution of the neutral stochastic functional differential equations under weakened H\"{o}lder condition, a weakened linear growth condition, and a contractive condition. Furthermore, in order to obtain the existence of a solution to the equation we used the Picard sequence.
Paper's Title:
Bounds on the Jensen Gap, and Implications for MeanConcentrated Distributions
Author(s):
Xiang Gao, Meera Sitharam, Adrian E. Roitberg
Department of Chemistry, and Department
of Computer & Information Science & Engineering,
University of Florida,
Gainesville, FL 32611,
USA.
Email: qasdfgtyuiop@gmail.com
URL:
https://scholar.google.com/citations?user=t2nOdxQAAAAJ
Abstract:
This paper gives upper and lower bounds on the gap in Jensen's inequality, i.e., the difference between the expected value of a function of a random variable and the value of the function at the expected value of the random variable. The bounds depend only on growth properties of the function and specific moments of the random variable. The bounds are particularly useful for distributions that are concentrated around the mean, a commonly occurring scenario such as the average of i.i.d. samples and in statistical mechanics.
Paper's Title:
Fractional exp(φ(ξ)) Expansion Method and its Application to SpaceTime Nonlinear Fractional Equations
Author(s):
A. A. Moussa and L. A. Alhakim
Department of Management Information
System and Production Management,
College of Business and Economics, Qassim University,
P.O. BOX 6666, Buraidah: 51452,
Saudi Arabia.
Email: Alaamath81@gmail.com
URL:
https://scholar.google.com/citations?user=ccztZdsAAAAJ&hl=ar
Department of Management Information
System and Production Management,
College of Business and Economics, Qassim University,
P.O. BOX 6666, Buraidah: 51452,
Saudi Arabia.
Email: Lama2736@gmail.com
URL:
https://scholar.google.com/citations?user=OSiSh1AAAAAJ&hl=ar
Abstract:
In this paper, we mainly suggest a new method that depends on the fractional derivative proposed by Katugampola for solving nonlinear fractional partial differential equations. Using this method, we obtained numerous useful and surprising solutions for the spacetime fractional nonlinear WhithamBroerKaup equations and spacetime fractional generalized nonlinear HirotaSatsuma coupled KdV equations. The solutions obtained varied between hyperbolic, trigonometric, and rational functions, and we hope those interested in the reallife applications of the previous two equations will find this approach useful.
Paper's Title:
Positive Periodic TimeScale Solutions for Functional Dynamic Equations
Author(s):
Douglas R. Anderson and Joan Hoffacker
Department of Mathematics and Computer Science
Concordia College
Moorhead, MN 56562 USA
andersod@cord.edu
URL: http://www.cord.edu/faculty/andersod/
Department of Mathematical Sciences
Clemson University
Clemson, SC 29634 USA
johoff@clemson.edu
URL: http://www.math.clemson.edu/facstaff/johoff.htm
Abstract:
Using Krasnoselskii's fixed point theorem, we establish the existence of positive periodic solutions to two pairs of related nonautonomous functional delta dynamic equations on periodic time scales, and then extend the discussion to higherdimensional equations. Two pairs of corresponding nabla equations are also provided in an analogous manner.
Paper's Title:
Coincidences and Fixed Points of Hybrid Maps in Symmetric Spaces
Author(s):
S. L. Singh and Bhagwati Prasad
Vedic MRI, 21 Govind Nagar,
Rishikesh 249201
India
vedicmri@gmail.com
Department of Mathematics, Gurukula Kangri University,
Hardwar 249404,
India
Abstract:
The purpose of this paper is to obtain a new coincidence theorem for a singlevalued and two multivalued operators in symmetric spaces. We derive fixed point theorems and discuss some special cases and applications.
Paper's Title:
On Pseudo Almost Periodic Solutions to Some Neutral FunctionalDifferential Equations
Author(s):
Toka Diagana and Eduardo Hernández
Department of Mathematics, Howard University
2441 6th Street NW,
Washington DC 20059,
USA.
tdiagana@howard.edu
Departamento de Matemática, I.C.M.C. Universidade de Săo Paulo,
Caixa Postal
668, 13560970, Săo Carlos SP,
Brazil.
lalohm@icmc.sc.usp.br
Abstract:
This paper discusses the existence and uniqueness of pseudo almost periodic solutions to a class of partial neutral functionaldifferential equations. Under some suitable assumptions, existence and uniqueness results are obtained. An example is given to illustrate abstract results.
Paper's Title:
Shape Diagrams for 2D Compact Sets  Part III: Convexity Discrimination for Analytic and Discretized Simply Connected Sets.
Author(s):
S. Rivollier, J. Debayle and J.C. Pinoli
Ecole Nationale Supérieure des Mines de SaintEtienne,
CIS  LPMG, UMR CNRS
5148,
158 cours Fauriel,
42023 SaintEtienne Cedex 2, France.
rivollier@emse.fr;
debayle@emse.fr; pinoli@emse.fr
Abstract:
Shape diagrams are representations in the Euclidean plane introduced to study 3dimensional and 2dimensional compact convex sets. However, they can also been applied to more general compact sets than compact convex sets. A compact set is represented by a point within a shape diagram whose coordinates are morphometrical functionals defined as normalized ratios of geometrical functionals. Classically, the geometrical functionals are the area, the perimeter, the radii of the inscribed and circumscribed circles, and the minimum and maximum Feret diameters. They allow twentytwo shape diagrams to be built. Starting from these six classical geometrical functionals, a detailed comparative study has been performed in order to analyze the representation relevance and discrimination power of these twentytwo shape diagrams. The two first parts of this study are published in previous papers 8,9. They focus on analytic compact convex sets and analytic simply connected compact sets, respectively. The purpose of this paper is to present the third part, by focusing on the convexity discrimination for analytic and discretized simply connected compact sets..
Paper's Title:
Approximation of Common Fixed Points of a Finite Family of Asymptotically Demicontractive Mappings in Banach Spaces
Author(s):
Yuchao Tang,^{ }Yong Cai, Liqun Hu and Liwei Liu
Department of Mathematics, NanChang University,
Nanchang 330031, P.R. China
Department of Mathematics, Xi'an Jiaotong University,
Xi'an 710049, P.R.
China
Abstract:
By virtue of new analytic techniques, we analyze and
study
several strong convergence theorems for the approximation of
common fixed points of asymptotically demicontractive mappings
via the multistep iterative sequence with errors in Banach
spaces. Our results improve and extend the corresponding ones
announced by Osilike , Osilike and Aniagbosor, Igbokwe, Cho et
al., Moore and Nnoli, Hu and all the others.
Paper's Title:
A New Property of General Means of Order p with an Application to the Theory of Economic Growth
Author(s):
Olivier de La Grandville
Department of Management Science and Engineering,
Huang Engineering Center, Stanford University,
475 Via Ortega, Stanford, California 94305
U.S.A.
Abstract:
The purpose of this note is to demonstrate a new property of the general mean of order p of m ordered positive numbers . If p < 0 and if , the elasticity of with respect to x_{m}, defined by , tends towards zero, and therefore . This property is then applied to optimal growth theory.
Paper's Title:
Ulam Stability of Reciprocal Difference and Adjoint Functional Equations
Author(s):
K. Ravi, J. M. Rassias and B. V. Senthil Kumar
Department of Mathematics,
Sacred Heart College, Tirupattur  635601,
India
Pedagogical Department E. E.,
Section of Mathematics and Informatics,
National and Capodistrian University of Athens,
4, Agamemnonos Str., Aghia Paraskevi,
Athens, Attikis 15342,
GREECE
Department of Mathematics,
C.Abdul Hakeem College of Engineering and
Technology, Melvisharam  632 509, India
shckavi@yahoo.co.in
jrassias@primedu.uoa.gr
bvssree@yahoo.co.in
Abstract:
In this paper, the reciprocal difference functional equation (or RDF equation) and the reciprocal adjoint functional equation (or RAF equation) are introduced. Then the pertinent Ulam stability problem for these functional equations is solved, together with the extended Ulam (or Rassias) stability problem and the generalized Ulam (or UlamGavrutaRassias) stability problem for the same equations.
Paper's Title:
Schwarz Method for Variational Inequalities Related to Ergodic Control Problems
Author(s):
S. Saadi, H. Mécheri
Department of Mathematics, Badji Mokhtar
University, Annaba 23000,
P.O.Box. 12, Annaba 23000, Algeria
Abstract:
In this paper, we study variational inequalities related to ergodic control problems studied by M. Boulbrachčne and H. Sissaoui [11], where the "discount factor" (i.e., the zero order term) is set to 0, we use an overlapping Schwarz method on nomatching grid which consists in decomposing the domain in two subdomains. For α ∈ ]0.1[ we provide the discretization on each subdomain converges in L^{∞} norm.
Paper's Title:
Renormalized Solutions for Nonlinear Parabolic Equation with Lower Order Terms
Author(s):
A. Aberqi^{1}, J. Bennouna^{1}, M. Mekkour^{1} and H. Redwane^{2}
^{1}Université Sidi Mohammed Ben
Abdellah,
Département de Mathématiques,
Laboratoire LAMA, Faculté des Sciences DharMahrez,
B.P 1796 Atlas Fés,
Morocco.
^{2}Faculté des Sciences
Juridiques, Economiques et Sociales,
Université Hassan 1, B.P. 784. Settat,
Morocco.
aberqiahmed@ya_hoo.fr
jbennouna@hotmail.com
mekkour.mounir@yahoo.fr
redwane_hicham@yahoo.fr
Abstract:
In this paper, we study the existence of renormalized solutions for the nonlinear parabolic problem: ,where the right side belongs to L^{1}(Ω×(0,T)) and b(u) is unbounded function of u, the term div(a(x,t,u,∇u)) is a LerayLions operator and the function φ is a nonlinear lower order and satisfy only the growth condition.
Paper's Title:
Some New Nonlinear IntegroDifferential Inequalities of GronwallBellmanPachpatte Type
Author(s):
A. ABDELDAIM
Department of Mathematics and Computer
Sciences,
Faculty of Science,
Port Said University, Port Said,
EGYPT.
Department of Mathematics,
Faculty of Science and Humanities,
Shaqra University, Dawadmi,
SAUDI ARABIA.
Email:
ahassen@su.edu.sa
URL:
http://faculty.ksu.edu.sa/DRABDELDAIM/Pages/Home.aspx
Abstract:
In this paper we establish some new nonlinear integrodifferential inequalities of GronwallBellmanPachpatte type for function of one independent variable. The purpose of this paper is to extend certain results which proved by Pachpatte in [On some fundamental integrodifferential and integral inequalities, An. Sti. Univ. Al. I. Cuza, Iasi, Vol.23 (1977), 7786]. The inequalities obtained here can be used in the theory of some new classes of nonlinear integrodifferential equations. Some applications are also given to illustrate the usefulness of our results.
Paper's Title:
Weak Type Inequalities for Some Operators on Generalized Morrey Spaces Over Metric Measure Spaces
Author(s):
Idha Sihwaningrum, Ari Wardayani, Hendra Gunawan
Faculty of Mathematics and Natural
Sciences,
Jenderal Soedirman University, Purwokerto 53122,
Indonesia.
Email: idha.sihwaningrum@unsoed.ac.id
ariwardayani@yahoo.co.id
Faculty of Mathematics and Natural
Sciences,
Bandung Institute of Technology, Bandung 40132,
Indonesia.
Email: hgunawan@math.itb.ac.id
URL:
http://personal.fmipa.itb.ac.id/hgunawan/
Abstract:
We discuss weak type inequalities for maximal and fractional integral operators on generalized Morrey spaces over metric measure spaces. Here the measure satisfies the so called growth condition. By taking into account the maximal operator, we obtain a Hedberg type inequality, which leads us to the weak type inequality for the fractional integral operator on the same spaces.
Paper's Title:
Some New Generalizations of Jensen's Inequality with Related Results and Applications
Author(s):
Steven G. From
Department of Mathematics
University of Nebraska at Omaha
Omaha, Nebraska 681820243.
Email: sfrom@unomaha.edu
Abstract:
In this paper, some new generalizations of Jensen's inequality are presented. In particular, upper and lower bounds for the Jensen gap are given and compared analytically and numerically to previously published bounds for both the discrete and continuous Jensen's inequality cases. The new bounds compare favorably to previously proposed bounds. A new method based on a series of locally linear interpolations is given and is the basis for most of the bounds given in this paper. The wide applicability of this method will be demonstrated. As byproducts of this method, we shall obtain some new HermiteHadamard inequalities for functions which are 3convex or 3concave. The new method works to obtain bounds for the Jensen gap for nonconvex functions as well, provided one or two derivatives of the nonlinear function are continuous. The mean residual life function of applied probability and reliability theory plays a prominent role in construction of bounds for the Jensen gap. We also present an exact integral representation for the Jensen gap in the continuous case. We briefly discuss some inequalities for other types of convexity, such as convexity in the geometric mean, and briefly discuss applications to reliability theory.
Paper's Title:
Presentation a mathematical model for bone metastases control by using tamoxifen
Author(s):
Maryam Nikbakht, Alireza Fakharzadeh Jahromi and Aghileh Heydari
Department of Mathematics,
Payame Noor University,
P.O.Box 193953697, Tehran,
Iran.
.Email:
maryam_nikbakht@pnu.ac.ir
Department of Mathematics,
Faculty of Basic Science,
Shiraz University of Technology.
Email:
a_fakharzadeh@sutech.ac.ir
Department of Mathematics,
Payame Noor University,
P.O.Box 193953697, Tehran,
Iran.
Email: aheidari@pnu.ac.ir
Abstract:
Bone is a common site for metastases (secondary tumor) because of breast and prostate cancer. According to our evaluations the mathematical aspect of the effect of drug in bone metastases has not been studied yet. Hence, this paper suggested a new mathematical model for bone metastases control by using tamoxifen. The proposed model is a system of nonlinear partial differential equations. In this paper our purpose is to present a control model for bone metastases. At end by some numerical simulations, the proposed model is examined by using physician.
Paper's Title:
Relation Between The Set Of Nondecreasing Functions And The Set Of Convex Functions
Author(s):
Qefsere Doko Gjonbalaj and Luigj Gjoka
Department of Mathematics, Faculty of
Electrical and Computer Engineering,
University of Prishtina "Hasan Prishtina",
Prishtine 10000,
Kosova
Email:
qefsere.gjonbalaj@unipr.edu
Department of Engineering Mathematics,
Polytechnic University of Tirana, Tirana,
Albania.
Email: luigjgjoka@ymail.com
Abstract:
In this article we address the problem of integral presentation of a convex function. Let I be an interval in R. Here, using the Riemann or Lebesgue’s integration theory, we find the necessary and sufficient condition for a function f: I→ R to be convex in I.
Paper's Title:
Stability Analysis Epidemic Model of SIR Type (Susceptible, Infectious, Recovered) On The Spread Dynamic of Malaria in Ambon City
Author(s):
Alwi Smith
Education Faculty, Biology Education
Programme,
University of Pattimura,
Ir. M. Putuhena Street, Poka Ambon, Moluccas, 97233,
Indonesia.
Email: alwi.smith1963@gmail.com
Abstract:
This research discusses the spread of malaria in Ambon city through SIR (Susceptible, Infected, Recovered) model. This research analyzes the stability of equilibrium point on deterministic model and Basic Reproduction Ratio (R_{0}). The result shows that the epidemic model has two equilibrium points. They are disease free equilibrium, [E_{0}=[S,I,R]=[1,0,0]], and epidemic equilibrium, E_{i}=[S,I,R]= [5,497808;3,680341;0,818288]. The Basic Reproduction Ratio of malaria disease in Ambon city is 0,181891. This result implies that malaria disease in Ambon will not be an endemic, because malaria disease in Ambon city will be eradicated slowly over time.
Paper's Title:
Iterative Algorithm for Split Generalized Mixed Equilibrium Problem Involving Relaxed Monotone Mappings in Real Hilbert Spaces
Author(s):
^{1}U.A. Osisiogu, F.L. Adum, and ^{2}C. Izuchukwu
^{1}Department of Mathematics and
Computer Science,
Ebonyi State University, Abakaliki,
Nigeria.
Email: uosisiogu@gmail.com,
adumson2@yahoo.com
^{2}School of Mathematics,
Statistics and Computer Science,
University of KwaZuluNatal, Durban,
South Africa.
Email: izuchukwuc@ukzn.ac.za,
izuchukwu_c@yahoo.com
Abstract:
The main purpose of this paper is to introduce a certain class of split generalized mixed equilibrium problem involving relaxed monotone mappings. To solve our proposed problem, we introduce an iterative algorithm and obtain its strong convergence to a solution of the split generalized mixed equilibrium problems in Hilbert spaces. As special cases of the proposed problem, we studied the proximal split feasibility problem and variational inclusion problem.
Paper's Title:
On Finding Integrating Factors and First Integrals for a Class of Higher Order Differential Equations
Author(s):
Mohammadkheer M. AlJararha
Department of Mathematics,
Yarmouk University,
Irbid, 21163,
Jordan.
Email: mohammad.ja@yu.edu.jo
Abstract:
If the $nth$ order differential equation is not exact, under certain
conditions, an integrating factor exists which transforms the differential
equation into an exact one. Thus, the order of differential equation can be
reduced to the lower order. In this paper, we present a technique for finding
integrating factors of the following class of differential equations:
Here, the functions F_{0},F_{1},F_{2},
…,F_{n} are assumed to be continuous
functions with their first partial derivatives on some simply connected domain
Ω ⊂ R^{n+1}.
We also presented some demonstrative examples
Paper's Title:
Characterization of Caristi Type Mapping Through its Absolute Derivative
Author(s):
M. Muslikh^{1}, A. Kilicman^{2,3}, S. H. Sapar^{4} and N. Bacho^{5}
^{1}Department of Mathematics,
University of Brawijaya,
Malang 65143, East Java,
Indonesia.
Email: mslk@ub.ac.id
^{2}Department of Mathematics,
Universiti Putra Malaysia,
43400 UPM, Serdang, Selangor,
Malaysia
Email: akilic@upm.edu.my
^{3}Department of Electrical and Electronic Engineering,
Istanbul Gelisim University,
Avcilar, Istanbul,
Turkey
^{4}Department of Mathematics,
Universiti Putra Malaysia,
43400 UPM, Serdang, Selangor,
Malaysia
Email: sitihas@upm.edu.my
^{5}Department of Mathematics,
Universiti Putra Malaysia,
43400 UPM, Serdang, Selangor,
Malaysia
Email: norfifah@upm.edu.my
Abstract:
The purpose of this article to characterize the Caristi type mapping by the absolute derivative. The equivalences of the Caristi mapping with contraction mapping is discussed too. In addition, it was shown that the contraction mapping can be tested through its absolute derivative.
Paper's Title:
A Low Order LeastSquares Nonconforming Finite Element Method for Steady Magnetohydrodynamic Equations
Author(s):
Z. Yu, D. Shi and H. Zhu
College of Science,
Zhongyuan
University of Technology,
Zhengzhou 450007,
China.
Email:
5772@zut.edu.cn
School of Mathematics and Statistics,
Zhengzhou University,
Zhengzhou 450001,
China.
Email:
shi_dy@126.com
Mathematics Department,
University of Southern Mississippi,
Hattiesburg MS, 39406,
U.S.A
Email:
huiqing.zhu@usm.edu
Abstract:
A low order leastsquares nonconforming finite element (NFE) method is proposed for magnetohydrodynamic equations with EQ_{1}^{rot} element and zeroorder RaviartThomas element. Based on the above element's typical interpolations properties, the existence and uniqueness of the approximate solutions are proved and the optimal order error estimates for the corresponding variables are derived.
Paper's Title:
Extension of Factorization Theorems of Maurey to spositively Homogeneous Operators
Author(s):
Abdelmoumen Tiaiba
Department of Physics,
University of M'sila,
Algeria.
Email: tiaiba05@yahoo.fr
Abstract:
In the present work, we prove that the class of spositively homogeneous operators is a Banach space. As application, we give the generalization of some Maurey factorization theorems to T which is a spositively homogeneous operator from X a Banach space into L_{p}. Where we establish necessary and sufficient conditions to proof that T factors through L_{q}. After this we give extend result of dual factorization theorem to same class of operators above.
Paper's Title:
Sweeping Surfaces with Darboux Frame in Euclidean 3space E3
Author(s):
F. Mofarreh, R. AbdelBaky and N. Alluhaibi
Mathematical Science Department, Faculty
of Science,
Princess Nourah bint Abdulrahman University
Riyadh 11546,
Saudi Arabia.
Email: fyalmofarrah@pnu.edu.sa
Department of Mathematics, Faculty of Science,
University of Assiut,
Assiut 71516,
Egypt.
Email: rbaky@live.com
Department of Mathematics Science and
Arts, College Rabigh Campus,
King Abdulaziz University
Jeddah,
Saudi Arabia.
Email: nallehaibi@kau.edu.sa
Abstract:
The curve on a regular surface has a moving frame and it is called Darboux frame. We introduce sweeping surfaces along the curve relating to the this frame and investigate their geometrical properties. Moreover, we obtain the necessary and sufficient conditions for these surfaces to be developable ruled surfaces. Finally, an example to illustrate the application of the results is introduced.
Paper's Title:
Existence of Nonspurious Solutions to Discrete Boundary Value Problems
Author(s):
Irena Rachunkova and Christopher C. Tisdell
Department of Mathematics
Palacky University
771 46 Olomouc, Czech Republic.
rachunko@risc.upol.cz
URL: http://phoenix.inf.upol.cz/~rachunekl/mathair/mathaen.htm
School of Mathematics
The University of New South Wales
Sydney 2052, Australia.
cct@unsw.edu.au
URL: http://www.maths.unsw.edu.au/~cct
Abstract:
This paper investigates discrete boundary value problems (BVPs) involving secondorder difference equations and twopoint boundary conditions. General theorems guaranteeing the existence and uniqueness of solutions to the discrete BVP are established. The methods involve a sufficient growth condition to yield an a priori bound on solutions to a certain family of discrete BVPs. The em a priori bounds on solutions to the discrete BVP do not depend on the stepsize and thus there are no ``spurious'' solutions. It is shown that solutions of the discrete BVP will converge to solutions of ordinary differential equations.
Paper's Title:
A Different Proof for the nonExistence of HilbertSchmidt Hankel Operators with AntiHolomorphic Symbols on the Bergman Space
Author(s):
Georg Schneider
Universität Wien, Brünnerstr. 72 A1210 Wien,
Austria.
georg.schneider@univie.ac.at
URL: http://www.univie.ac.at/bwl/cont/mitarbeiter/schneider.htm
Abstract:
We show that there are no (nontrivial) HilbertSchmidt Hankel operators with antiholomorphic symbols on the Bergman space of the unitball B^{2}(B^{l}) for l≥2. The result dates back to [6]. However, we give a different proof. The methodology can be easily applied to other more general settings. Especially, as indicated in the section containing generalizations, the new methodology allows to prove some robustness results for existing ones.
Paper's Title:
A Nonlinear Proximal Alternating Directions Method for Structured Variational Inequalities
Author(s):
M. Li
Department of Management Science and Engineering, School of Economics and Management
Southeast University, Nanjing, 210096,
China.
liminnju@yahoo.com
Abstract:
In this paper, we present a nonlinear proximal alternating directions method (NPADM) for solving a class of structured variational inequalities (SVI). By choosing suitable Bregman functions, we generalize the proximal alternating directions method proposed by He, et al.. The convergence of the method is proved under quite mild assumptions and flexible parameter conditions.
Paper's Title:
Isoperimetric Inequalities for Dual Harmonic Quermassintegrals
Author(s):
Yuan Jun, Zao Lingzhi and Duan Xibo
School of Mathematics and Computer Science,
Nanjing Normal University, Nanjing, 210097,
China.
yuanjun_math@126.com
Department of Mathematics, Nanjing Xiaozhuang University,
Nanjing, 211171,
China.
lzhzhao@163.com
Department of Mathematics, Shandong Water Polytechnic,
Shandong, 276826,
China
dxb1111@sohu.com
Abstract:
In this paper, some isoperimetric inequalities for the dual harmonic quermassintegrals are established.
Paper's Title:
Regular Variation on Time Scales and Dynamic Equations
Author(s):
Pavel Řehák
Institute of Mathematics, Academy of Sciences of the Czech Republic
Žižkova 22, CZ61662 Brno,
Czech Republic
rehak@math.muni.cz
URL:http://www.math.muni.cz/~rehak
Abstract:
The purpose of this paper is twofold. First, we want to initiate a study of regular variation on time scales by introducing this concept in such a way that it unifies and extends well studied continuous and discrete cases. Some basic properties of regularly varying functions on time scales will be established as well. Second, we give conditions under which certain solutions of linear second order dynamic equations are regularly varying. Open problems and possible directions for a future research are discussed, too.
Paper's Title:
Differentiability of Distance Functions in pNormed Spaces
Author(s):
M. S. Moslehian, A. Niknam, S. Shadkam Torbati
Department of Pure Mathematics,
Centre of Excellence in Analysis on Algebraic Structures (CEAAS),,
Ferdowsi University of Mashhad,
P. O. Box
1159, Mashhad,
Iran
moslehian@ferdowsi.um.ac.ir
niknam@math.um.ac.ir
shadkam.s@wali.um.ac.ir
Abstract:
The farthest point mapping in a pnormed space X is studied in virtue of the Gateaux derivative and the Frechet derivative. Let M be a closed bounded subset of X having the uniformly pGateaux differentiable norm. Under certain conditions, it is shown that every maximizing sequence is convergent, moreover, if M is a uniquely remotal set then the farthest point mapping is continuous and so M is singleton. In addition, a HahnBanach type theorem in $p$normed spaces is proved.
Paper's Title:
On Some Mapping Properties of Möbius Transformations
Author(s):
Nihal Yilmaz Özgür
Balkesir University,
Faculty of Arts and Sciences, Department of Mathematics,
10145 Balkesir,
TURKEY
nihal@balikesir.edu.tr
URL: http://w3.balikesir.edu.tr/~nihal/
Abstract:
We consider spheres corresponding to any norm function on the complex plane and their images under the Möbius transformations. We see that the sphere preserving property is not an invariant characteristic property of Möbius transformations except in the Euclidean case.
Paper's Title:
Some Open Problems in Analysis
Author(s):
A.G. Ramm
Mathematics Department, Kansas State University,
Manhattan, KS 665062602,
USA
ramm@math.ksu.edu
URL: http://www.math.ksu.edu/~ramm
Abstract:
In this paper some open problems in analysis are formulated. These problems were formulated and discussed by the author at ICMAA6.
Paper's Title:
Nontrivial Solutions of Singular Superlinear Threepoint Boundary Value Problems at Resonance
Author(s):
Feng Wang, Fang Zhang
School of Mathematics and Physics,
Changzou University,
Changzhou, 213164,
China.
fengwang188@163.com
Abstract:
The singular superlinear second order threepoint boundary value problems at resonance
are considered under some conditions concerning the first eigenvalues corresponding to the relevant linear operators, where n ∈ (0,1) is a constant, f is allowed to be singular at both t=0 and t=1. The existence results of nontrivial solutions are given by means of the topological degree theory.
Paper's Title:
Sharp L^{p} Improving Results for Singular Measures on C^{n+1}
Author(s):
E. Ferreyra, M. Urciuolo
FaMAFCIEM,
Universidad Nacional de CórdobaConicet,
Ciudad Universitaria, 5000 Córdoba,
Argentina
eferrey@famaf.unc.edu.ar
urciuolo@famaf.unc.edu.ar
Abstract:
For j=1,...,n, let Ω_{j} be open sets of the complex plane and let φ_{j} be holomorphic functions on Ω_{j} such that φ_{j}^{''} does not vanish identically on Ω_{j.} We consider φ(z_{1},...,z_{n}) =φ_{1}(z_{1}) +...+φ_{n}(z_{n}). We characterize the pairs (p,q) such that the convolution operator with the surface measure supported on a compact subset of the graph of φ is pq bounded.
Paper's Title:
Solving Fractional Transport Equation via Walsh Function
Author(s):
A. Kadem
L. M. F. N., Mathematics Department,
University of Setif,
Algeria
abdelouahak@yahoo.fr
Abstract:
In this paper we give a complete proof of A method for the solution of fractional transport equation in threedimensional case by using Walsh function is presented. The main characteristic of this technique is that it reduces these problems to those of solving a system of algebraic equations, thus greatly simplifying the problem.
Paper's Title:
A Note on Mixed Norm Spaces of Analytic Functions
Author(s):
K. Avetisyan
Faculty of Physics, Yerevan State
University,
Alex Manoogian st. 1, Yerevan, 375025,
Armenia
avetkaren@ysu.am
Abstract:
A direct and elementary proof of an estimate of Littlewood is given together with an application concerning the sharpness and strictness of some inclusions in mixed norm spaces of analytic functions.
Paper's Title:
New Stochastic Calculus
Author(s):
Moawia Alghalith
Department of Economics,
University of the West Indies, St. Augustine,
Trinidad and Tobago.
Email:
malghalith@gmail.com
Abstract:
We present new stochastic differential equations, that are more general and simpler than the existing Itobased stochastic differential equations. As an example, we apply our approach to the investment (portfolio) model.
Paper's Title:
Commutators of Hardy Type Operators
Author(s):
Chunping Xie
Department of Mathematics,
Milwaukee School of Engineering,
1025 N. Broadway,
Milwaukee, Wisconsin 53202,
USA.
Email:
xie@msoe.edu
URL:
http://www.msoe.edu/people/chunping.xie
Abstract:
The note deals with commutaors of the Hardy operator, Hardy type operators on Morrey spaces on R+. We have proved that the commutators generated by Hardy operator and Hardy type operators with a BMO function b are bounded on the Morrey spaces.
Paper's Title:
Bilinear Regular Operators on QuasiNormed Functional Spaces
Author(s):
D. L. Fernandez and E. B. Silva
Universidade Estadual de Campinas 
Unicamp
Instituto de Matematica
Campinas  SP
Brazil.
Email: dicesar@ime.unicamp.br
Universidade Estadual de MaringaUEM
Departamento de Matematica
Av.~Colombo 5790
Maringa  PR
Brazil.
Email: ebsilva@uem.br
Abstract:
Positive and regular bilinear operators on quasinormed functional spaces are introduced and theorems characterizing compactness of these operators are proved. Relations between bilinear operators and their adjoints in normed functional spaces are also studied.
Paper's Title:
Applications of the Structure Theorem of (w_{1},w_{2})Tempered Ultradistributions
Author(s):
Hamed M. Obiedat and Lloyd E. Moyo
Department of Mathematics,
Hashemite University,
P.O.Box 150459, Zarqa13115,
Jordan.
Email: hobiedat@hu.edu.j
Department of Mathematics, Computer
Science & Statistics,
Henderson State University,
1100 Henderson Street, Arkadelphia, AR 71999,
USA.
Email: moyol@hsu.edu
Abstract:
Using a previously obtained structure theorem for (w_{1}, w_{2})tempered ultradistributions, we prove that these ultradistributions can be represented as initial values of solutions of the heat equation.
Paper's Title:
MSplit Equality for Monotone Inclusion Problem and Fixed Point Problem in Real Banach Spaces
Author(s):
^{1,2}Christian Chibueze Okeke, ^{3}Abdumalik Usman Bello, ^{1}Chinedu Izuchukwu, and ^{1}Oluwatosin Temitope Mewomo
^{1}School
of Mathematics,
Statistics and Computer Science,
University of KwaZuluNatal, Durban,
South Africa.
Email: okekec@ukzn.ac.za
Email: izuchukwuc@ukzn.ac.za
Email: mewomoo@ukzn.ac.za
^{2}DSTNRF
Center of Excellence in Mathematical and Statistical Sciences (CoEMass)
Johannesburg,
South Africa.
^{3}Federal
University,
DutsinMa, Katsina State,
Nigeria.
Email:
uabdulmalik@fudutsinma.edu.ng
Abstract:
In this paper a new iterative algorithm for approximating a common solution of split equality monotone inclusion problem and split equality fixed point problem is introduced. Using our algorithm, we state and prove a strong convergence theorem for approximating an element in the intersection of the set of solutions of a split equality monotone inclusion problem and the set of solutions of a split equality fixed point problem for right Bregman strongly nonexpansive mappings in the setting of puniformly convex Banach spaces which are also uniformly smooth. We also give some applications.
Paper's Title:
New Exact Taylor's Expansions without the Remainder: Application to Finance
Author(s):
Moawia Alghalith
Economics Dept.,
University of the West Indies,
St Augustine,
Trinidad and Tobago.
Email: malghalith@gmail.com
Abstract:
We present new exact Taylor's expansions with fixed coefficients and without the remainder. We apply the method to the portfolio model.
Corrigendum.
A corrigendum for this article has been published. To view the corrigendum,
please click
here.
Paper's Title:
Polynomial Dichotomy of C_{0}Quasi Semigroups in Banach Spaces
Author(s):
Sutrima^{1,2}, Christiana Rini Indrati^{2}, Lina Aryati^{2}
^{1}Department of Mathematics,
Universitas Sebelas Maret,
PO Box 57126, Surakarta,
Indonesia.
Email: sutrima@mipa.uns.ac.id
^{2}Department of Mathematics,
Universitas Gadjah Mada,
PO Box 55281, Yogyakarta,
Indonesia.
Email: rinii@ugm.ac.id,
lina@ugm.ac.id
Abstract:
Stability of solutions of the problems is an important aspect for application purposes. Since its introduction by Datko [7], the concept of exponential stability has been developed in various types of stability by various approaches. The existing conditions use evolution operator, evolution semigroup, and quasi semigroup approach for the nonautonomous problems and a semigroup approach for the autonomous cases. However, the polynomial stability based on C_{0}quasi semigroups has not been discussed in the references. In this paper we propose a new stability for C_{0}quasi semigroups on Banach spaces i.e the polynomial stability and polynomial dichotomy. As the results, the sufficient and necessary conditions for the polynomial and uniform polynomial stability are established as well as the sufficiency for the polynomial dichotomy. The results are also confirmed by the examples.
Paper's Title:
A Generalization of Ostrowski's Inequality for Functions of Bounded Variation via a Parameter
Author(s):
Seth Kermausuor
Department of Mathematics and Computer
Science,
Alabama State University,
Montgomery, AL 36101,
USA.
Email:
skermausour@alasu.edu
Abstract:
In this paper, we provide a generalization of the Ostrowski's inequality for functions of bounded variation for k points via a parameter λ∈[0,1]. As a by product, we consider some particular cases to obtained some interesting inequalities in these directions. Our results generalizes some of the results by Dragomir in [S. S. DRAGOMIR, The Ostrowski inequality for mappings of bounded variation, Bull. Austral. Math. Soc., 60 (1999), pp. 495508.]
Paper's Title:
The Jacobson Density Theorem for NonCommutative Ordered Banach Algebras
Author(s):
Kelvin Muzundu
University of Zambia,
Deparment of Mathematics and Statistics,
P.O. Box 32379, Lusaka,
Zambia.
Email: kmzundu@gmail.com
Abstract:
The Jacobson density theorem for general noncommutative Banach algebras states as follows: Let π be a continuous, irreducible representation of a noncommutative Banach algebra A on a Banach space X. If x_{1},x_{2},...,x_{n} are linearly independent in X and if y_{1},y_{2},...,y_{n} are in X, then there exists an a∈ A such that π(a)x_{i}=y_{i} for i=1,2,...,n. By considering ordered Banach algebras A and ordered Banach spaces X, we shall establish an ordertheoretic version of the Jacobson density theorem.
Paper's Title:
Simplicial (co)homology of Band Semigroup
Author(s):
Yasser Farhat
Academic Support Department,
Abu Dhabi Polytechnic,
P.O. Box 111499, Abu Dhabi,
UAE.
Email: yasser.farhat@adpoly.ac.ae, farhat.yasser.1@gmail.com
Abstract:
We consider the Banach algebra l^{1}(S), with convolution, where S is a band semigroup. We prove directly, without using the cyclic cohomology, that the simplicial cohomology groups H^{n}(l^{1}(S), l^{1}(S)^{*}) vanish for all n≥1. This proceeds in three steps. In each step, we introduce a bounded linear map. By iteration in each step, we achieve our goal.
Paper's Title:
Operators On Frames
Author(s):
Javad Baradaran and Zahra Ghorbani
Department of Mathematics,
Jahrom University, P.B. 7413188941,
Jahrom,
Iran.
Email:
baradaran@jahromu.ac.ir
Department of Mathematics,
Jahrom University, P.B. 7413188941,
Jahrom,
Iran.
Email: ghorbani@jahromu.ac.ir
Abstract:
In this paper, we first show the conditions under which an operator on a Hilbert space H can be represented as sum of two unitary operators. Then, it is concluded that a Riesz basis for a Hilbert space H can be written as a sum of two orthonormal bases. Finally, the study proves that if A is a normal maximal partial isometry on a Hilbert space H and if {e_{k}}^{∞}_{k=1} is an orthonormal basis for H, then {Ae_{k}}^{∞}_{k=1} is a 1tight frame for H.
Paper's Title:
Double Difference of Composition Operator on Bloch Spaces
Author(s):
Rinchen Tundup
Department of Mathematics
University of Jammu
Jammu and Kashmir
India.
Email: joneytun123@gmail.com
Abstract:
In this paper we characterize the compactness of double difference of three noncompact composition operators on Bloch space induced by three holomorphic self maps on the unit disc.
Paper's Title:
Fixed Point Theorems for a Finite Family of Asymptotically Nonexpansive Mappings
Author(s):
E. Prempeh
Department of Mathematics,
Kwame Nkrumah University of Science and Technology,
Kumasi, Ghana
edward_prempeh2000@yahoo.com
Abstract:
Let _{} be a real reflexive Banach space with a uniformly Gâteaux differentiable norm, _{} be a nonempty bounded closed convex subset of _{} i=1,2,...,r be a finite family of asymptotically nonexpansive mappings such that for each _{} Let _{ } be a nonempty set of common fixed points of _{} and define
_{} . Let _{} be fixed and let _{} be such that _{} as _{} . We can prove that the sequence _{} satisfying the relation_{} associated with _{} , converges strongly to a fixed point of _{} provided _{} possesses uniform normal structure. Furthermore we prove that the iterative process: _{} _{}
_{} , converges strongly to a fixed point of _{}
Paper's Title:
Positive Solutions of Evolution Operator Equations
Author(s):
Radu Precup
Department of Applied Mathematics,
BabesBolyai University,
Cluj, Romania
Abstract:
Existence and localization results are derived from Krasnoselskii’s compressionexpansion fixed point theorem in cones, for operator equations in spaces of continuous functions from a compact real interval to an abstract space. The main idea, first used in [12], is to handle two equivalent operator forms of the equation, one of fixed point type giving the operator to which Krasnoselskii’s theorem applies and an other one of coincidence type which is used to localize a positive solution in a shell. An application is presented for a boundary value problem associated to a fourth order partial differential equation on a rectangular domain.
Paper's Title:
Some Approximation for the linear combinations of modified Beta operators
Author(s):
Naokant Deo
Department of Applied Mathematics
Delhi College of Engineering
Bawana Road, Delhi  110042,
India.
dr_naokant_deo@yahoo.com
Abstract:
In this paper, we propose a sequence of new positive linear operators β_{n} to study the ordinary approximation of unbounded functions by using some properties of the Steklov means.
Paper's Title:
Weyl Transform Associated With Bessel and Laguerre Functions
Author(s):
E. Jebbari and M . Sifi
Department of Mathematics Faculty of Sciences of Tunis,
1060 Tunis,
Tunisia.
mohamed.sifi@fst.rnu.tn
Abstract:
We define and study the Wigner transform associated to Bessel and Laguerre transform and we prove an inversion formula for this transform. Next we consider a class of symbols which allows to define the BesselLaguerre Weyl transform. We establish a relation between the Wigner and Weyl transform. At last, we discuss criterion in term of symbols for the boundedness and compactness of the BesselLaguerre Weyl transform.
Paper's Title:
Comparison Results for Solutions of Time Scale Matrix Riccati Equations and Inequalities
Author(s):
R. Hilscher
Department of Mathematical Analysis, Faculty of Science,
Masaryk University, Janáčkovo nám. 2a,
CZ60200, Brno, Czech Republic.
hilscher@math.muni.cz
URL: http://www.math.muni.cz/~hilscher/
Abstract:
In this paper we derive comparison results for Hermitian solutions of time scale matrix Riccati equations and Riccati inequalities. Such solutions arise from special conjoined bases (X,U) of the corresponding time scale symplectic system via the Riccati quotient _{}. We also discuss properties of a unitary matrix solution _{} of a certain associated Riccati equation.
Paper's Title:
A Strengthened HardyHilbert's Type Inequality
Author(s):
Weihong Wang and Bicheng Yang
Department of Mathematics, Guangdong Education Institute,
Guangzhou, Guangdong 520303,
People's Republic Of China
wwh@gdei.edu.cn
bcyang@pub.guangzhou.gd.cn
URL: http://www1.gdei.edu.cn/yangbicheng/index.html
Abstract:
By using the improved EulerMaclaurin's summation formula and estimating the weight coefficient, we give a new strengthened version of the more accurate HardyHilbert's type inequality. As applications, a strengthened version of the equivalent form is considered.
Paper's Title:
On the Generalized Inverse _{ } over Integral Domains
Author(s):
Yaoming Yu and Guorong Wang
College of Education, Shanghai Normal University
Shanghai 200234
People's Republic of China.
yuyaoming@online.sh.cn
grwang@shnu.edu.cn
Abstract:
In this paper, we study further the generalized inverse _{ } of a matrix A over an integral domain. We give firstly some necessary and sufficient conditions for the existence of the generalized inverse _{ }, an explicit expression for the elements of the generalized inverse _{ } and an explicit expression for the generalized inverse _{ }, which reduces to the {1} inverse. Secondly, we verify that the group inverse, the Drazin inverse, the MoorePenrose inverse and the weighted MoorePenrose inverse are identical with the generalized inverse _{ } for an appropriate matrix G, respectively, and then we unify the conditions for the existence and the expression for the elements of the weighted MoorePenrose inverse, the MoorePenrose inverse, the Drazin inverse and the group inverse over an integral domain. Thirdly, as a simple application, we give the relation between some rank equation and the existence of the generalized inverse _{ }, and a method to compute the generalized inverse _{ }. Finally, we give an example of evaluating the elements of _{ } without calculating _{ }.
Paper's Title:
The Iterated Variational Method for the Eigenelements of a Class of TwoPoint Boundary Value Problems
Author(s):
Muhammed I. Syam and Qasem M. AlMdallal
Department of Mathematical Sciences, College of Science, UAE University,
P. O. Box 17551, AlAin,
United Arab Emirates
Q.Almdallal@uaeu.ac.ae
M.Syam@uaeu.ac.ae
Abstract:
The iterated variational method is considered in the approximation of eigenvalues and eigenfunctions for a class of two point boundary value problems. The implementation of this method is easy and competes well with other methods. Numerical examples are presented to show the efficiency of the method proposed. Comparison with the work of others is also illustrated.
Paper's Title:
On Interaction of Discontinuous Waves in a Gas with Dust Particles
Author(s):
J. Jena
Department of Mathematics, Netaji Subhas institute of technology,
Sector3, Dwarka, New Delhi  110 075,
India.
jjena67@rediffmail.com
jjena@nsit.ac.in
Abstract:
In this paper, the interaction of the strong shock with the weak discontinuity has been investigated for the system of partial differential equations describing one dimensional unsteady plane flow of an inviscid gas with large number of dust particles. The amplitudes of the reflected and transmitted waves after interaction of the weak discontinuity through a strong shock are evaluated by exploiting the results of general theory of wave interaction.
Paper's Title:
Ergodic Solenoidal Homology II: Density of Ergodic Solenoids
Author(s):
Vicente Muńoz and Ricardo Pérez Marco
Instituto de Ciencias Matemáticas
CSICUAMUC3MUCM,
Serrano 113 bis, 28006 Madrid,
Spain
and
Facultad de Matemáticas, Universidad Complutense de Madrid,
Plaza
de Ciencias 3, 28040 Madrid,
Spain
CNRS, LAGA UMR 7539, Université
Paris XIII,
99 Avenue J.B. Cl\'ement, 93430Villetaneuse,
France
vicente.munoz@imaff.cfmac.csic.es
ricardo@math.univparis13.fr
Abstract:
A measured solenoid is a laminated space endowed with a tranversal measure invariant by holonomy. A measured solenoid immersed in a smooth manifold produces a closed current (known as a generalized RuelleSullivan current). Uniquely ergodic solenoids are those for which there is a unique (up to scalars) transversal measure. It is known that for any smooth manifold, any real homology class is represented by a uniquely ergodic solenoid. In this paper, we prove that the currents associated to uniquely ergodic solenoids are dense in the space of closed currents, therefore proving the abundance of such objects.
Paper's Title:
An Improved Mesh Independence Principle for Solving Equations and their Discretizations using Newton's Method
Author(s):
Ioannis K. Argyros
Cameron university,
Department of Mathematics Sciences,
Lawton, OK 73505,
USA
iargyros@cameron.edu
Abstract:
We improve the mesh independence principle [1] which states that when Newton's method is applied to an equation on a Banach space as well as to their finitedimensional discretization there is a difference of at most one between the number of steps required by the two processes to converge to within a given error tolerance. Here using a combination of Lipschitz and center Lipschitz continuity assumptions instead of just Lipschitz conditions we show that the minimum number of steps required can be at least as small as in earlier works. Some numerical examples are provided whereas our results compare favorably with earlier ones.
Paper's Title:
A Study of the Effect of Density Dependence in a Matrix Population Model
Author(s):
N. Carter and M. Predescu
Department of Mathematical Sciences,
Bentley University,
Waltham, MA 02452,
U.S.A.
ncarter@bentley.edu
mpredescu@bentley.edu
Abstract:
We study the behavior of solutions of a three dimensional discrete time nonlinear matrix population model. We prove results concerning the existence of equilibrium points, boundedness, permanence of solutions, and global stability in special cases of interest. Moreover, numerical simulations are used to compare the dynamics of two main forms of the density dependence function (rational and exponential).
Paper's Title:
Approximation of Derivatives in a Singularly Perturbed Second Order Ordinary Differential Equation with Discontinuous Terms Arising in Chemical Reactor Theory
Author(s):
R. Mythili Priyadharshini and N. Ramanujam
Department of Mathematics, Bharathidasan University,
Tiruchirappalli  620 024, Tamilnadu, India.
matram2k3@yahoo.com
URL:
http://www.bdu.ac.in/depa/science/ramanujam.htm
Abstract:
In this paper, a singularly perturbed second order ordinary differential equation with a discontinuous convection coefficient arising in chemical reactor theory is considered. A robustlayerresolving numerical method is suggested. An εuniform global error estimate for the numerical solution and also to the numerical derivative are established. Numerical results are provided to illustrate the theoretical results.
Paper's Title:
Trapping of Water Waves By Underwater Ridges
Author(s):
^{1}A. M. Marin, ^{ 1}R. D. Ortiz and ^{2}J. A. RodriguezCeballos.
^{1}Facultad de Ciencias Exactas y Naturales
Universidad de Cartagena
Sede Piedra de Bolivar, Avenida del Consulado
Cartagena de Indias, Bolivar,
Colombia.
^{2}Instituto Tecnológico de
Morelia Facultad de Ciencias Fisico Matematicas
Universidad Michoacana
Tecnológico
1500, Col. Lomas de Santiaguito Edificio Be ,
Ciudad Universitaria,
58120 Morelia, Michoacan,
Mexico.
amarinr@unicartagena.edu.co,
ortizo@unicartagena.edu.co.
URL: www.unicartagena.edu.co.
Abstract:
As is wellknown, underwater ridges and
submerged horizontal cylinders can serve as waveguides for surface water waves.
For large values of the wavenumber in the direction of the ridge, there is only
one trapped wave (this was proved in Bonnet & Joly (1993, SIAM J. Appl. Math.
53, pp 15071550)).
We construct the asymptotics of these trapped waves and their frequencies at
high frequency by means of reducing the initial problem to a pair of boundary
integral equations and then by applying the method of Zhevandrov & Merzon (2003,
AMS Transl. (2) 208, pp 235284), in order to solve
them.
Paper's Title:
Uniform Convergence of Schwarz Method for Noncoercive Variational Inequalities Simple Proof
Author(s):
M. Haiour and E. Hadidi.
Department of mathematics, LANOS Laboratory,
Faculty of the Sciences, University Badji Mokhtar,
P.O 23000 Annaba,
Algeria.
haiourm@yahoo.fr,
ehadidi71@yahoo.fr
Abstract:
In this paper we study noncoercive variational inequalities, using the Schwarz method. The main idea of this method consists in decomposing the domain in two subdomains. We give a simple proof for the main result concerning L^{∞} error estimates, using the Zhou geometrical convergence and the L^{∞} approximation given for finite element methods by CourtyDumont.
Paper's Title:
Necessary and Sufficient Conditions for Cyclic Homogeneous Polynomial Inequalities of Degree Four in Real Variables
Author(s):
Vasile Cirtoaje and Yuanzhe Zhou
Department of Automatic Control and Computers
University of Ploiesti
Romania.
vcirtoaje@upgploiesti.ro.
High School Affiliated to Wuhan University, China
Abstract:
In this paper, we give two sets of necessary and sufficient conditions that the inequality f_{4}(x,y,z) ≥ 0 holds for any real numbers x,y,z, where f_{4}(x,y,z) is a cyclic homogeneous polynomial of degree four. In addition, all equality cases of this inequality are analysed. For the particular case in which f_{4}(1,1,1)=0, we get the main result in [3]. Several applications are given to show the effectiveness of the proposed methods.
Paper's Title:
On an Autocorrection Phenomenon of the Eckhoff Interpolation
Author(s):
A. Poghosyan
Institute of Mathematics, National Academy
of Sciences,
24b Marshal Baghramian ave., Yerevan 0019,
Republic of Armenia
arnak@instmath.sci.am
Abstract:
The paper considers the KrylovLanczos and the Eckhoff interpolations of a function with a discontinuity at a known point. These interpolations are based on certain corrections associated with jumps in the first derivatives. In the Eckhoff interpolation, approximation of the exact jumps is accomplished by the solution of a system of linear equations. We show that in the regions where the 2periodic extension of the interpolated function is smooth, the Eckhoff interpolation converges faster compared with the KrylovLanczos interpolation. This accelerated convergence is known as the autocorrection phenomenon. The paper presents a theoretical explanation of this phenomenon. Numerical experiments confirm theoretical estimates.
Paper's Title:
Szegö Limits and Haar Wavelet Basis
Author(s):
M. N. N. Namboodiri and S. Remadevi
Dept. of Mathematics, Cochin University
of Science and Technology,
Cochin21, Kerala,
India.
Dept. of Mathematics, College of
Engineering,
Cherthala, Kerala,
India.
Abstract:
This paper deals with Szegö type limits for multiplication operators on L^{2} (R) with respect to Haar orthonormal basis. Similar studies have been carried out by Morrison for multiplication operators T_{f} using Walsh System and Legendre polynomials [14]. Unlike the Walsh and Fourier basis functions, the Haar basis functions are local in nature. It is observed that Szegö type limit exist for a class of multiplication operators T_{f} , f∈ L^{∞} (R) with respect to Haar (wavelet) system with appropriate ordering. More general classes of orderings of Haar system are identified for which the Szegö type limit exist for certain classes of multiplication operators. Some illustrative examples are also provided.
Paper's Title:
A OneLine Derivation of the Euler and Ostrogradski Equations
Author(s):
Olivier de La Grandville
Stanford University,
Department of Management Science and Engineering,
Stanford, CA 94305,
U. S. A
Abstract:
At the very heart of major results of classical physics, the Euler and Ostrogradski equations have apparently no intuitive interpretation. In this paper we show that this is not so. Relying on Euler's initial geometric approach, we show that they can be obtained through a direct reasoning that does not imply any calculation. The intuitive approach we suggest offers two benefits: it gives immediate significance to these fundamental secondorder nonlinear differential equations; and second, it allows to obtain a property of the calculus of variations that does not seem to have been uncovered until now: the Euler and Ostrogradski equations can be derived not necessarily by giving a variation to the optimal function  as is always done; one could equally well start by giving a variation to their derivative(s).
Paper's Title:
On Convergence Theorems of an Implicit Iterative Process with Errors for a Finite Family of Asymptotically quasi Inonexpansive Mappings
Author(s):
Farrukh Mukhamedov and Mansoor Saburov
Department of Computational & Theoretical
Sciences,
Faculty of Sciences, International Islamic University Malaysia,
P.O. Box, 141, 25710, Kuantan,
Malaysia
Abstract:
In this paper we prove the weak and strong convergence of the implicit iterative process with errors to a common fixed point of a finite family {T_{j}}^{N}_{i=1} of asymptotically quasi I_{j}nonexpansive mappings as well as a family of {Ij}^{N}_{j=1} of asymptotically quasi nonexpansive mappings in the framework of Banach spaces. The obtained results improve and generalize the corresponding results in the existing literature.
Paper's Title:
An Improvement of the HermiteHadamard Inequality for Functions Convex on the Coordinates
Author(s):
Milica Klaričić Bakula
Faculty of Science,
University of Split,
Teslina 12, 21000 Split.
Croatia
Email: milica@pmfst.hr
Abstract:
An improvement of the HermiteHadamard inequality for functions convex on the coordinates is given.
Paper's Title:
On A Conjecture of A Logarithmically Completely Monotonic Function
Author(s):
Valmir Krasniqi, Armend Sh. Shabani
Department of Mathematics,
University of Prishtina,
Republic of Kosova
Email:
vali.99@hotmail.com
armend_shabani@hotmail.com
Abstract:
In this short note we prove a conjecture, related to a logarithmically completely monotonic function, presented in [5]. Then, we extend by proving a more generalized theorem. At the end we pose an open problem on a logarithmically completely monotonic function involving qDigamma function.
Paper's Title:
EndPoint and Transversality Conditions in the Calculus of Variations: Derivations through Direct Reasoning
Author(s):
Olivier de La Grandville
Stanford University,
Department of Management Science and Engineering,
475 Via Ortega, Stanford, CA 94305,
U. S. A.
Email: ola@stanford.edu
Abstract:
We offer an intuitive explanation of the endpoint and transversality conditions that complement the Euler equation in the calculus of variations. Our reasoning is based upon the fact that any variation given to an optimal function must entail a zero net gain to the functional, all consequences of implied changes in its derivative being fully taken into account.
Paper's Title:
A_{p} Functions and Maximal Operator
Author(s):
Chunping Xie
Department of Mathematics,
Milwaukee School of Engineering,
1025 N. Broadway,
Milwaukee, Wisconsin 53202,
U. S. A.
Email: xie@msoe.edu
URL: http://www.msoe.edu/people/chunping.xie
Abstract:
The relationship between A_{p} functions and HardyLittlewood maximal operator on L^{p,λ}(w), the weighted Morrey space, has been studied. Also the extropolation theorem of L^{p,λ}(w) has been considered.
Paper's Title:
Stability of an Almost Surjective epsilonIsometry in The Dual of Real Banach Spaces
Author(s):
Minanur Rohman, Ratno Bagus Edy Wibowo, Marjono
Department of Mathematics, Faculty of
Mathematics and Natural Sciences,
Brawijaya University,
Jl. Veteran Malang 65145,
Indonesia.
Email:
miminanira@gmail.com
Department of Mathematics, Faculty of
Mathematics and Natural Sciences,
Brawijaya University,
Jl. Veteran Malang 65145,
Indonesia.
Email:
rbagus@ub.ac.id
Department of Mathematics, Faculty of
Mathematics and Natural Sciences,
Brawijaya University,
Jl. Veteran Malang 65145,
Indonesia.
Email:
marjono@ub.ac.id
Abstract:
In this paper, we study the stability of epsilonisometry in the dual of real Banach spaces. We prove that the almost surjective epsilonisometry mapping is stable in dual of each spaces. The proof uses Gâteaux differentiability space (GDS), weakstar exposed points, normattaining operator, and some studies about epsilonisometry that have been done before.
Paper's Title:
Lower and Upper Bounds for the PointWise Directional Derivative of the Fenchel Duality Map
Author(s):
M. Raissouli^{1,2}, M. Ramezani^{3}
^{1}Department
of Mathematics,
Science Faculty, Taibah University,
P.O. Box 30097, Zip Code 41477, Al Madinah Al Munawwarah,
Saudi Arabia.
^{2}Department
of Mathematics,
Science Faculty, Moulay Ismail University, Meknes,
Morocco.
Email:
raissouli.mustapha@gmail.com
^{3}Department
of Mathematics,
University of Bojnord, Bojnord,
Iran.
Email: m.ramezani@ub.ac.ir
Abstract:
In this paper, we introduce the pointwise directional derivative of the Fenchel duality map and we study its properties. The best lower and upper bounds of this pointwise directional derivative are also given. We explain how our functional results contain those related to the positive bounded linear operators.
Paper's Title:
Some New Inequalities of HermiteHadamard and Fejér Type for Certain Functions with Higher Convexity
Author(s):
Steven G. From
Department of Mathematics,
University of Nebraska at Omaha,
Omaha, Nebraska 681820243,
U.S.A.
Email: sfrom@unomaha.edu
Abstract:
In this paper, we present some new inequalities of HermiteHadamard or Fejér
type for certain functions satisfying some higher convexity conditions on one or
more derivatives.
An open problem is given also.
Some applications to the logarithmic mean are given.
Paper's Title:
Extreme Curvature of Polynomials and Level Sets
Author(s):
Stephanie P. Edwards, arah J. Jensen, Edward Niedermeyer, and Lindsay Willett
Department of Mathematics,
Hope College,
Holland, MI 49423,
U.S.A.
Email: sedwards@hope.edu
Email: tarahjaye@gmail.com
Email: eddie.niedermeyer@gmail.com
Email: willettlm1@gmail.com
WWW: http://math.hope.edu/sedwards/
Abstract:
Let f be a real polynomial of degree n. Determining the maximum number of zeros of kappa, the curvature of f, is an easy problem: since the zeros of kappa are the zeros of f'', the curvature of f is 0 at most n2 times. A much more intriguing problem is to determine the maximum number of relative extreme values for the function kappa. Since kappa'=0 at each extreme point of kappa, we are interested in the maximum number of zeros of kappa'. In 2004, the first author and R. Gordon showed that if all the zeros of f'' are real, then f has at most n1 points of extreme curvature. We use level curves and auxiliary functions to study the zeros of the derivatives of these functions. We provide a partial solution to this problem, showing that f has at most n1 points of extreme curvature, given certain geometrical conditions. The conjecture that f has at most n1 points of extreme curvature remains open.
Paper's Title:
Wavelet Frames in Higher Dimensional Sobolev Spaces
Author(s):
Raj Kumar, Manish Chauhan, and Reena
Department of Mathematics,
Kirori Mal College, University of Delhi,
New Delhi110007,
India.
Email: rajkmc@gmail.com
Department of Mathematics,
University of Delhi,
New Delhi110007,
India
Email: manish17102021@gmail.com
Department of Mathematics,
Hans Raj College, University of Delhi,
New Delhi110007,
India
Email: reena.bhagwat29@gmail.com
Abstract:
In this paper, we present sufficient condition for the sequence of vectors to be a frame for H^{s}(R^{d}) are derived. Necessary and sufficient conditions for the sequence of vectors to be tight wavelet frames in H^{s}(R^{d}) are obtained. Further, as an application an example of tight wavelet frames for H^{s}(R^{2}) as bivariate box spline over 3direction are given.
Paper's Title:
Cubic Alternating Harmonic Number Sums
Author(s):
Anthony Sofo
Victoria University,
College of Engineering and Science,
Melbourne City,
Australia.
Email:
Anthony.Sofo@vu.edu.au
Abstract:
We develop new closed form representations of sums of cubic alternating harmonic numbers and reciprocal binomial coefficients. We also identify a new integral representation for the ζ (4) constant.
Paper's Title:
Numerical Approximation by the Method of Lines with Finitevolume Approach of a Solute Transport Equation in Periodic Heterogeneous Porous Medium
Author(s):
D. J. Bambi Pemba and B. Ondami
Université Marien Ngouabi,
Factuté des Sciences et Techniques,
BP 69, Brazzaville,
Congo.
Email: bondami@gmail.com
Abstract:
In this paper we are interested in the numerical approximation of a twodimensional solute transport equation in heterogeneous porous media having periodic structures. It is a class of problems which has been the subject of various works in the literature, where different methods are proposed for the determination of the socalled homogenized problem. We are interested in this paper, in the direct resolution of the problem, and we use the method of lines with a finite volume approach to discretize this equation. This discretization leads to an ordinary differential equation (ODE) that we discretize by the Euler implicit scheme. Numerical experiments comparing the obtained solution and the homogenized problem solution are presented. They show that the precision and robustness of this method depend on the ratio between, the mesh size and the parameter involved in the periodic homogenization.
Paper's Title:
Existence and Approximation of Traveling Wavefronts for the Diffusive MackeyGlass Equation
Author(s):
C. RamirezCarrasco and J. MolinaGaray
Facultad de Ciencias Basicas,
Universidad Catolica del Maule, Talca,
Chile
Email: carloshrc1989@gmail.com
molina@imca.edu.pe
Abstract:
In this paper, we consider the diffusive MackeyGlass model with discrete delay. This equation describes the dynamics of the blood cell production. We investigate the existence of traveling wavefronts solutions connecting the two steady states of the model. We develop an alternative proof of the existence of such solutions and we also demonstrate the existence of traveling wavefronts moving at minimum speed. The proposed approach is based on the use technique of upperlower solutions. Finally, through an iterative procedure, we show numerical simulations that approximate the traveling wavefronts, thus confirming our theoretical results.
Paper's Title:
Some Properties of Cosine Series with Coefficients from Class of General Monotone Sequences Order r
Author(s):
Corina Karim, Moch. Aruman Imron
Department of Mathematics,
Universitas Brawijaya,
Indonesia.
Email: co_mathub@ub.ac.id
maimr@ub.ac.id
Abstract:
The coefficient of sine series from general monotone class has been generalized by Bogdan Szal to the new class which is called class of general monotone order r. This coefficient class is more general than class of general monotone introduced by Tikhonov. By special case, we study properties of cosine series with coefficient of sine series from the class of general monotone order r.
Paper's Title:
Pseudomonotonicity and Quasimonotonicity by Translations versus Monotonicity in Hilbert Spaces
Author(s):
George Isac and Dumitru Motreanu
Department of
Mathematics, Royal Military College of Canada, P.O. Box 17000 Stn Forces
Kingston, Ontario, Canada, K7k 7b4.
gisac@juno.com
Département de Mathématiques, Université de Perpignan, 66860
Perpignan, France.
motreanu@univperp.fr
Abstract:
Let _{ }be a Gâteaux differentiable mapping on an open convex subset _{ }of a Hilbert space_{}. If there exists a straight line _{ }such that _{ }is pseudomonotone for any _{ }then _{ }is monotone. Related results using a regularity condition are given.
Paper's Title:
Integrability of Sine and Cosine Series Having Coefficients of a New Class
Author(s):
L. Leindler
Bolyai Institute,
University of Szeged, Aradi Vértanúk Tere 1, H6720 Szeged, Hungary
leindler@math.uszeged.hu
Abstract:
Some integrability theorems or only their sufficient part are generalized such that the coefficients of the sine and cosine series belong to a new class of sequences being wider than the class of sequences of rest bounded variation, which itself is a generalization of the monotone decreasing sequences, but a subclass of the almost monotone decreasing sequences. It is also verified that the new class of sequences and the class of almost monotone decreasing sequences are not comparable.
Paper's Title:
Reverses of the Triangle Inequality in Inner Product Spaces
Author(s):
Sever S. Dragomir
School of Computer Science and Mathematics,
Victoria University Of Technology,
PO Box 14428, Mcmc 8001,
Victoria, Australia.
sever@csm.vu.edu.au
Url:
http://rgmia.vu.edu.au/SSDragomirWeb.html
Abstract:
Some new reverses for the generalised triangle inequality in inner product spaces are given. Applications in connection to the Schwarz inequality and for vectorvalued integrals are provided as well.
Paper's Title:
Essential Random Fixed Point Set of Random Operators
Author(s):
Ismat Beg
Centre for Advanced Studies in Mathematics,
Lahore University of Management Sciences (LUMS),
54792Lahore, PAKISTAN.
ibeg@lums.edu.pk
URL: http://web.lums.edu.pk/~ibeg
Abstract:
We obtain necessary and sufficient conditions for the existence of essential random fixed point of a random operator defined on a compact metric space. The structure of the set of essential random fixed points is also studied.
Paper's Title:
Logarithmically complete monotonicity properties for the gamma functions
Author(s):
ChaoPing Chen and Feng Qi
Department of Applied Mathematics and Informatics,
Research Institute of Applied Mathematics,
Henan Polytechnic University,
Jiaozuo City, Henan 454010,
China.
chenchaoping@hpu.edu.cn
Department of Applied Mathematics and Informatics,
Research Institute of Applied Mathematics,
Henan Polytechnic University,
Jiaozuo City, Henan 454010,
China.
qifeng@hpu.edu.cn
fengqi618@member.ams.org
Abstract:
Some logarithmically completely monotonic functions involving the gamma functions are presented. As a consequence, some known results are proved and refined.
Paper's Title:
Inverse problems for parabolic equations
Author(s):
A. G. Ramm
Mathematics Department,
Kansas State University,
Manhattan, KS 665062602,
USA
ramm@math.ksu.edu
URL: http://www.math.ksu.edu/~ramm
Abstract:
Let _{} in _{}, where _{} is a bounded domain with a smooth connected boundary _{}, _{}, _{} is the deltafunction. Assume that _{}, _{} on _{}. Given the extra data _{}, _{}, can one find _{}, _{} and _{} Here _{} is some number. An answer to this question and a method for finding _{}, _{} and _{} are given.
Paper's Title:
Solution of the HyersUlam Stability Problem for Quadratic Type Functional Equations in Several Variables
Author(s):
John Michael Rassias
Pedagogical Department, E.E., National and Capodistrian University of Athens,
Section of Mathematics and Informatics,
4, Agamemnonos Str., Aghia Paraskevi,
Athens 15342,
Greece
jrassias@primedu.uoa.gr
URL: http://www.primedu.uoa.gr/~jrassias/
Abstract:
In 1940 (and 1968) S. M. Ulam proposed the wellknown Ulam stability problem. In 1941 D. H. Hyers solved the HyersUlam problem for linear mappings. In 1951 D. G. Bourgin has been the second author treating the Ulam problem for additive mappings. In 1978 according to P. M. Gruber this kind of stability problems is of particular interest in probability theory and in the case of functional equations of different types. In 19822004 we established the HyersUlam stability for the Ulam problem for different mappings. In this article we solve the HyersUlam problem for quadratic type functional equations in several variables. These stability results can be applied in stochastic analysis, financial and actuarial mathematics, as well as in psychology and sociology.
Paper's Title:
A New Family of Periodic Functions as Explicit Roots of a Class of Polynomial Equations
Author(s):
M. Artzrouni
Department of Mathematics, University of Pau
64013 Pau Cedex
Pau, France
marc.artzrouni@univpau.fr
URL: http://www.univpau.fr/~artzroun
Abstract:
For any positive integer n a new family of periodic functions in power series form and of period n is used to solve in closed form a class of polynomial equations of order n. The n roots are the values of the appropriate function from that family taken at 0, 1, ... , n1.
Paper's Title:
Some Stability Results For Fixed Point Iteration Processes
Author(s):
M. O. Olatinwo, O. O. Owojori, and C. O. Imoru
Department of Mathematics, Obafemi Awolowo University,
IleIfe,
Nigeria.
polatinwo@oauife.edu.ng
walejori@oauife.edu.ng
cimoru@oauife.edu.ng
Abstract:
In this paper, we present some stability results for both the general Krasnoselskij and the Kirk's iteration processes. The method of Berinde \cite{VBE1} is employed but a more general contractive condition than those of Berinde \cite{VBE1}, Harder and Hicks \cite{HAM}, Rhoades \cite{RHO1} and Osilike \cite{OSI1} is considered.
Paper's Title:
Reconstruction of Discontinuities of Functions Given Noisy Data
Author(s):
Eric D. Mbakop
67A Beaver Park Rd,
Framingham, MA, 01702,
U. S. A.
ericsteve86@yahoo.fr
Abstract:
Suppose one is given noisy data of a discontinuous piecewisesmooth function along with a bound on its second derivative. The locations of the points of discontinuity of f and their jump sizes are not assumed known, but are instead retrieved stably from the noisy data. The novelty of this paper is a numerical method that allows one to locate some of these points of discontinuity with an accuracy that can be made arbitrarily small.
Paper's Title:
On the Numerical Solution for Deconvolution Problems with Noise
Author(s):
N. H. Sweilam
Cairo University, Faculty of Science, Mathematics Department,
Giza, Egypt.
nsweilam@yahoo.com
Abstract:
In this paper three different stable methods for solving numerically deconvolution problems with noise are studied. The methods examined are the variational regularization method, the dynamical systems method, and the iterative regularized processes. Gravity surveying problem with noise is studied as a model problem. The results obtained by these methods are compared to the exact solution for the model problem. It is found that these three methods are highly stable methods and always converge to the solution even for large size models. The relative higher accuracy is obtained by using the iterative regularized processes.
Paper's Title:
Existence of Solutions for Third Order Nonlinear Boundary Value Problems
Author(s):
Yue Hu and Zuodong Yang
School of Mathematics and Computer Science, Nanjing Normal University, Jiangsu Nanjing 210097,
China.
huu3y2@163.com
College of Zhongbei, Nanjing Normal University, Jiangsu Nanjing 210046,
China.
zdyang_jin@263.net
yangzuodong@njnu.edu.cn
Abstract:
In this paper, the existence of solution for a class of third order quasilinear ordinary differential equations with nonlinear boundary value problems
(Φ_{p}(u"))'=f(t,u,u',u"), u(0)=A, u'(0)=B, R(u'(1),u"(1))=0
is established. The results are obtained by using upper and lower solution methods.
Paper's Title:
On Oscillation of SecondOrder Delay Dynamic Equations on Time Scales
Author(s):
S. H. Saker
Department of Mathematics, Faculty of Science,
Mansoura University, Mansoura, 35516,
Egypt.
shsaker@mans.edu.eg
Abstract:
Some new oscillation criteria for secondorder linear delay dynamic equation on a time scale T are established. Our results improve the recent results for delay dynamic equations and in the special case when T=R, the results include the oscillation results established by Hille [1948, Trans. Amer. Math. Soc. 64 (1948), 234252] and Erbe [Canad. Math. Bull. 16 (1973), 4956.] for differential equations. When T=Z the results include and improve some oscillation criteria for difference equations. When T=hZ, h>0, T=q^{N} and T=N^{2}, i.e., for generalized second order delay difference equations our results are essentially new and can be applied on different types of time scales. An example is considered to illustrate the main results.
Paper's Title:
Existence Results for Perturbed Fractional Differential Inclusions
Author(s):
Y.K. Chang
Department of Mathematics,
Lanzhou Jiaotong University, Lanzhou, Gansu 730070, People's
Republic of China
lzchangyk@163.com
Abstract:
This paper is mainly concerned with the following fractional differential inclusions with boundary condition
A sufficient condition is established for the existence of solutions of the above problem by using a fixed point theorem for multivalued maps due to Dhage. Our result is proved under the mixed generalized Lipschitz and Carathéodory conditions.
Paper's Title:
Some Properties of the Solution of a Second Order Elliptic Abstract Differential Equation
Author(s):
A. Aibeche and K. Laidoune
Mathematics Department, Faculty of Sciences,
University Ferhat Abbas, Setif,
Route de Scipion, 19000,
Setif,
Algeria
aibeche@univsetif.dz
Abstract:
In this paper we study a class of non regular boundary value problems for elliptic differentialoperator equation of second order with an operator in boundary conditions. We give conditions which guarantee the coerciveness of the solution of the considered problem, the completeness of system of root vectors in Banachvalued functions spaces and we establish the Abel basis property of this system in Hilbert spaces. Finally, we apply this abstract results to a partial differential equation in cylindrical domain.
Paper's Title:
On a Method of Proving the HyersUlam Stability of Functional Equations on Restricted Domains
Author(s):
Janusz Brzdęk
Department of Mathematics
Pedagogical University Podchorąźych 2,
30084 Kraków,
Poland
jbrzdek@ap.krakow.pl
Abstract:
We show that generalizations of some (classical) results on the HyersUlam stability of functional equations, in several variables, can be very easily derived from a simple result on stability of a functional equation in single variable
Paper's Title:
Ulam Stability of Functional Equations
Author(s):
Stefan Czerwik and Krzysztof Król
Institute of Mathematics
Silesian University of Technology
Kaszubska 23,
44100 Gliwice,
Poland
Stefan.Czerwik@polsl.pl
Krzysztof.Krol@polsl.pl
Abstract:
In this survey paper we present some of the main results on UlamHyersRassias stability for important functional equations.
Paper's Title:
On the Generalized Stability and Asymptotic Behavior of Quadratic Mappings
Author(s):
HarkMahn Kim, SangBaek Lee and Eunyoung Son
Department of Mathematics
Chungnam National University
Daejeon,
305764,
Republic of Korea
hmkim@cnu.ac.kr
Abstract:
We extend the stability of quadratic mappings to the stability of general quadratic mappings with several variables, and then obtain an improved asymptotic property of quadratic mappings on restricted domains.
Paper's Title:
Fixed Points and Stability of the Cauchy Functional Equation
Author(s):
Choonkil Park and Themistocles M. Rassias
Department of Mathematics, Hanyang University,
Seoul 133791,
Republic of Korea
Department of Mathematics,
National Technical University of Athens,
Zografou Campus, 15780 Athens,
Greece
baak@hanyang.ac.kr
trassias@math.ntua.gr
Abstract:
Using fixed point methods, we prove the generalized HyersUlam stability of homomorphisms in Banach algebras and of derivations on Banach algebras for the Cauchy functional equation.
Paper's Title:
The RiemannStieltjes Integral on Time Scales
Author(s):
D. Mozyrska, E. Pawłuszewicz, D. Torres
Faculty Of Computer Science,
Białystok University Of Technology,
15351 Białystok,
Poland
d.mozyrska@pb.edu.pl
Department Of Mathematics,
University Of Aveiro,
3810193 Aveiro,
Portugal
ewa@ua.pt
Department Of Mathematics,
University Of Aveiro,
3810193 Aveiro,
Portugal
delfim@ua.pt
Abstract:
We study the process of integration on time scales in the sense of RiemannStieltjes. Analogues of the classical properties are proved for a generic time scale, and examples are given
Paper's Title:
Asymptotic Distribution of Products of Weighted Sums of Dependent Random Variables
Author(s):
Y. Miao and J. F. Li
College
of Mathematics
and Information
Science,
Henan Normal
University
Henan,
China
yumiao728@yahoo.com.cn
College
of Mathematics
and Information
Science,
Henan Normal
University, 453007
Henan,
China.
junfen_li@yahoo.com.cn
Abstract:
In this paper we establish the asymptotic distribution of products of weighted sums of dependent positive random variable, which extends the results of Rempała and Wesołowski (2002).
Paper's Title:
Topological Aspects of Scalarization in Vector Optimization Problems.
Author(s):
Peter I. Kogut, Rosanna Manzo and Igor V. Nechay
Department of Differential Equations,
Dnipropetrovsk National University, Naukova
STR.,
13,
49010 Dnipropetrovsk,
Ukraine
p.kogut@i.ua
Universitŕ di Salerno,
Dipartimento di Ingegneria dell'Informazione e Matematica Applicata,
Via Ponte don Melillo, 84084 Fisciano (SA),
Italy
manzo@diima.unisa.it
Department of Technical Cybernetics,
Dnipropetrovsk Technical University,
Acad. Lazarjan
STR., 2,
49010 Dnipropetrovsk,
Ukraine
i.nechay@i.ua
Abstract:
In this paper, we study vector optimization problems in partially ordered Banach spaces. We suppose that the objective mapping possesses a weakened property of lower semicontinuity and make no assumptions on the interior of the ordering cone. We derive sufficient conditions for existence of efficient solutions of the above problems and discuss the role of topological properties of the objective space. We discuss the scalarization of vector optimization problems when the objective functions are vectorvalued mappings with a weakened property of lower semicontinuity. We also prove the existence of the socalled generalized efficient solutions via the scalarization process. All principal notions and assertions are illustrated by numerous examples.
Paper's Title:
On the Degree of Approximation of Continuous Functions that Pertains to the SequenceToSequence Transformation
Author(s):
Xhevat Z. Krasniqi
University of Prishtina,
Department of Mathematics and Computer Sciences,
5
Mother Teresa Avenue, Prishtinë, 10000,
Republic of Kosovo.
Abstract:
In this paper we prove analogous theorems like Leindler's 3 using the socalled Atransform of the Btransform of the partial sums of Fourier series. In addition, more than two such transforms are introduced and for them analogous results are showed as well.
Paper's Title:
Hyperbolic Models Arising in the Theory of Longitudinal Vibration of Elastic Bars
Author(s):
^{1}I. Fedotov, ^{1}J. Marais, ^{1,2}M. Shatalov and ^{1}H.M. Tenkam
^{1}Department of Mathematics and Statistics,
Tshwane University
of
Technology
Private Bag X6680, Pretoria 0001
South Africa.
fedotovi@tut.ac.za,
julian.marais@gmail.com,
djouosseutenkamhm@tut.ac.za.
^{2}Manufacturing and
Materials
Council of Scientific and Industrial
Research (CSIR)
P.O. Box 395, Pretoria, 0001
South Africa.
mshatlov@csir.co.za
Abstract:
In this paper a unified approach to the
derivation of families of one
dimensional hyperbolic differential equations and boundary conditions describing
the longitudinal vibration of elastic bars is outlined. The longitudinal and
lateral displacements are expressed in the form of a power series expansion in
the lateral coordinate. Equations of motion and boundary conditions are derived
using Hamilton's variational principle. Most of the well known models in this
field fall within the frames of the proposed theory, including the classical
model, and the more elaborated models proposed by by Rayleigh, Love, Bishop,
Mindlin, Herrmann and McNiven. The exact solution is presented for the
MindlinHerrmann case in terms of Green functions. Finally, deductions regarding
the accuracy of the models are made by comparison with the exact
PochhammerChree solution for an isotropic cylinder.
Paper's Title:
Generalizing Polyhedra to Infinite Dimension
Author(s):
Paolo d'Alessandro
Department of Mathematics, Third University of Rome,
Lgo S.L. Murialdo 1, 00146 Rome, Italy.
URL:
http://www.mat.uniroma3.it/users/dalex/dalex.html.
Abstract:
This paper generalizes polyhedra to infinite dimensional Hilbert spaces as countable intersections of closed semispaces. Highlights are the structure theory that shows that a polyhedron is the sum of compact set (in a suitable topology) plus a closed pointed cone plus a closed subspace, giving the internal representation of polyhedra. In the final part the dual range space technique is extended to the solution of infinite dimensional LP problems.
Paper's Title:
Error Estimates for Approximations of the Laplace transform of Functions in L_{p} Spaces
Author(s):
Andrea Aglić Aljinović
Department of Applied Mathematics,
Faculty of Electrical Engineering and Computing,
University of Zagreb,
Unska 3, 10 000 Zagreb,
Croatia
Abstract:
In this paper error estimates of approximations in complex domain for the Laplace transform are given for functions which vanish beyond a finite domain and whose derivatives belongs to L_{p} spaces. New inequalities concerning the Laplace transform, as well as estimates of the difference between the two Laplace transforms are presented and used to obtain two associated numerical rules and error bounds of their remainders.
Paper's Title:
ANormal Operators In Semi Hilbertian Spaces
Author(s):
A. Saddi
Department of Mathematics,
College of Education for Girls in Sarat Ebeidah 61914, Abha,
King Khalid University
Saudi Arabia
adel.saddi@fsg.rnu.tn
Abstract:
In this paper we study some properties and inequalities of Anormal operators in semiHilbertian spaces by employing some known results for vectors in inner product spaces. We generalize also most of the inequalities of (α,β)normal operators discussed in Hilbert spaces [7].
Paper's Title:
On Opial's Inequality for Functions of nIndependent Variables
Author(s):
S. A. A. ElMarouf and S. A. ALOufi
Department of Mathematics,
Faculty of Science,
Minoufiya University,
Shebin ElKoom,
Egypt
Department of Mathematics,
Faculty of Science, Taibah University,
Madenahmonwarah,
Kingdom of Saudia Arabia
Abstract:
In this paper, we introduce Opial inequalities for functions of nindependent variables. Also, we discuss some different forms of Opial inequality containing functions of n independent variables and their partial derivatives with respect to independent variables.
Paper's Title:
Equivalence of the Nonsmooth Nonlinear Complementarity Problems to Unconstrained Minimization
Author(s):
M. A. Tawhid and J. L. Goffin
Department of Mathematics and Statistics,
School of Advanced Technologies and Mathematics,
Thompson Rivers University,
900 McGill Road, PO Box 3010, Kamloops, BC V2C 5N3
Canada
Alexandria University and Egypt Japan University of Science and Technology,
AlexandriaEgypt
mtawhid@tru.ca
Faculty of Management, McGill University,
1001 Sherbrooke Street West, Montreal, Quebec, H3A 1G5
Canada.
JeanLouis.Goffin@McGill.ca
Abstract:
This paper deals with nonsmooth nonlinear complementarity problem, where the underlying functions are nonsmooth which admit the Hdifferentiability but not necessarily locally Lipschitzian or directionally differentiable. We consider a reformulation of the nonlinear complementarity problem as an unconstrained minimization problem. We describe Hdifferentials of the associated penalized FischerBurmeister and Kanzow and Kleinmichel merit functions. We show how, under appropriate P_{0}, semimonotone (E_{0}), P, positive definite, and strictly semimonotone (E) conditions on an Hdifferential of f, finding local/global minimum of a merit function (or a `stationary point' of a merit function) leads to a solution of the given nonlinear complementarity problem. Our results not only give new results but also unify/extend various similar results proved for C^{1}.
Paper's Title:
Fejértype Inequalities
Author(s):
Nicuşor Minculete and FlaviaCorina Mitroi
"Dimitrie Cantemir" University,
107 Bisericii Române Street, Braşov, 500068,
România
minculeten@yahoo.com
University of Craiova, Department of Mathematics,
Street A. I. Cuza
13, Craiova, RO200585,
Romania
fcmitroi@yahoo.com
Abstract:
The aim of this paper is to present some new Fejértype results for convex functions. Improvements of Young's inequality (the arithmeticgeometric mean inequality) and other applications to special means are pointed as well.
Paper's Title:
Positive Solutions to a System of Boundary Value Problems for HigherDimensional Dynamic Equations on Time Scales
Author(s):
I. Y. Karaca
Department of Mathematics,
Ege University,
35100 Bornova, Izmir,
Turkey
URL:
http://ege.edu.tr
Abstract:
In this paper, we consider the system of boundary value problems for higherdimensional dynamic equations on time scales. We establish criteria for the existence of at least one or two positive solutions. We shall also obtain criteria which lead to nonexistence of positive solutions. Examples applying our results are also given.
Paper's Title:
Multilinear Fractional Integral Operators on Herz Spaces
Author(s):
Yasuo KomoriFuruya
School of High Technology and Human Welfare,
Tokai University,
317 Nishino Numazu Shizuoka, 4100395
Japan
Abstract:
We prove the boundedness of the multilinear fractional integral operators of Kenig and Stein type on Herz spaces. We also show that our results are optimal.
Paper's Title:
New Inequalities of Mill's Ratio and Application to The Inverse Qfunction Approximation
Author(s):
Pingyi Fan
Department of Electronic Engineering,
Tsinghua University, Beijing,
China
Abstract:
In this paper, we investigate the Mill's ratio estimation problem and get two new inequalities. Compared to the well known results obtained by Gordon, they becomes tighter. Furthermore, we also discuss the inverse Qfunction approximation problem and present some useful results on the inverse solution. Numerical results confirm the validness of our theoretical analysis. In addition, we also present a conjecture on the bounds of inverse solution on Qfunction.
Paper's Title:
A Nonhomogeneous Subdiffusion Heat Equation
Author(s):
JoelArturo RodriguezCeballos, AnaMagnolia Marin, RubenDario Ortiz
Instituto Tecnológico de Morelia,
Morelia, Michoacan,
Mexico
Email: joel@ifm.umich.mx
Universidad de Cartagena,
Campus San Pablo,
Cartagena de Indias, Bolivar,
Colombia
Email: amarinr@unicartagena.edu.co
Email: joel@ifm.umich.mx
Abstract:
In this paper we consider a nonhomogeneous subdiffusion heat equation of fractional order with Dirichlet boundary conditions.
Paper's Title:
On Some Constructive Method of Rational Approximation
Author(s):
Vasiliy A. Prokhorov
Department of Mathematics and Statistics
University of South Alabama
Mobile, Alabama 366880002,
USA.
Email:
prokhoro@southalabama.edu
URL:
http://www.southalabama.edu/mathstat/people/prokhorov.shtml
Abstract:
We study a constructive method of rational approximation of analytic functions based on ideas of the theory of Hankel operators. Some properties of the corresponding Hankel operator are investigated. We also consider questions related to the convergence of rational approximants. Analogues of Montessus de Ballore's and Gonchars's theorems on the convergence of rows of Padé approximants are proved.
Paper's Title:
Credibility Based Fuzzy Entropy Measure
Author(s):
G. Yari, M. Rahimi, B. Moomivand and P. Kumar
Department of Mathematics,
Iran University
of Science and Technology,
Tehran,
Iran.
Email:
Yari@iust.ac.ir
Email:
Mt_Rahimi@iust.ac.ir
URL:
http://www.iust.ac.ir/find.php?item=30.11101.20484.en
URL:
http://webpages.iust.ac.ir/mt_rahimi/en.html
Qarzolhasaneh
Mehr Iran Bank, Tehran,
Iran.
Email:
B.moomivand@qmb.ir
Department of Mathematics and Statistics,
University of Northern British Columbia,
Prince George, BC,
Canada.
Email:
Pranesh.Kumar@unbc.ca
Abstract:
Fuzzy entropy is the entropy of a fuzzy variable, loosely representing the information of uncertainty. This paper, first examines both previous membership and credibility based entropy measures in fuzzy environment, and then suggests an extended credibility based measure which satisfies mostly in Du Luca and Termini axioms. Furthermore, using credibility and the proposed measure, the relative entropy is defined to measure uncertainty between fuzzy numbers. Finally we provide some properties of this Credibility based fuzzy entropy measure and to clarify, give some examples.
Paper's Title:
New Implicit KirkType Schemes for General Class of QuasiContractive Operators in Generalized Convex Metric Spaces
Author(s):
K. Rauf, O. T. Wahab and A. Ali
Department of Mathematics,
University of Ilorin, Ilorin,
Nigeria.
Email: krauf@unilorin.edu.ng
Department of Statistics and Mathematical
Sciences,
Kwara State University, Malete,
Nigeria.
Department of Mathematics,
Mirpur University of Science and Technology, Mirpur,
Pakistan.
Abstract:
In this paper, we introduce some new implicit Kirktype iterative schemes in generalized convex metric spaces in order to approximate fixed points for general class of quasicontractive type operators. The strong convergence, Tstability, equivalency, data dependence and convergence rate of these results were explored. The iterative schemes are faster and better, in term of speed of convergence, than their corresponding results in the literature. These results also improve and generalize several existing iterative schemes in the literature and they provide analogues of the corresponding results of other spaces, namely: normed spaces, CAT(0) spaces and so on.
Paper's Title:
Existence of Positive Solutions for Nonlinear Fractional Differential Equations with Multipoint Boundary Conditions
Author(s):
N. Adjeroud
Khenchela University, Department of
Mathematics,
Khenchela, 40000,
Algeria.
Email: adjnac@gmail.com
Abstract:
This paper is devoted to the existence results of positive solutions for a nonlinear fractional differential equations with multipoint boundary conditions. By means of the Schauder fixed point theorem, some results on the existence are obtained.
Paper's Title:
Mapped Chebyshev Spectral Methods for Solving Second Kind Integral Equations on the Real Line
Author(s):
Ahmed Guechi and Azedine Rahmoune
Department of Mathematics, University of Bordj Bou Arréridj,
El Anasser, 34030, BBA,
Algeria.
Email: a.guechi2017@gmail.com
Email: a.rahmoune@univbba.dz
Abstract:
In this paper we investigate the utility of mappings to solve numerically an important class of integral equations on the real line. The main idea is to map the infinite interval to a finite one and use Chebyshev spectralcollocation method to solve the mapped integral equation in the finite interval. Numerical examples are presented to illustrate the accuracy of the method.
Paper's Title:
Local Boundedness of Weak Solutions for Singular Parabolic Systems of pLaplacian Type
Author(s):
Corina Karim, Marjono
Department of Mathematics,
Universitas Brawijaya,
Indonesia.
Email: co_mathub@ub.ac.id,
marjono@ub.ac.id
Abstract:
We study the local boundedness of weak solutions for evolutional pLaplacian systems in the singular case. The initial data is belonging to Lebesgue space L^{∞} (0,T;W^{(1,p)} (Ω,R^{n} )). We use intrinsic scaling method to treat the boundedness of weak solutions. The main result is to make the local boundedness of weak solution for the systems wellworked in the intrinsic scaling.
Paper's Title:
A Note on Taylor Expansions Without the Differentiability Assumption
Author(s):
Moawia Alghalith
Economics Dept.,
University of the West Indies,
St Augustine,
Trinidad and Tobago.
Email: malghalith@gmail.com
Abstract:
We introduce new Taylor expansions when the function is not differentiable.
Paper's Title:
Some Inequalities of the HermiteHadamard Type for kFractional Conformable Integrals
Author(s):
C.J. Huang, G. Rahman, K. S. Nisar, A. Ghaffar and F. Qi
Department of Mathematics, Ganzhou Teachers College,
Ganzhou 341000, Jiangxi,
China.
Email:
hcj73jx@126.com ,
huangcj1973@qq.com
Department of Mathematics, Shaheed Benazir
Bhutto University,
Sheringal, Upper Dir, Khyber Pakhtoonkhwa,
Pakistan.
Email: gauhar55uom@gmail.com
Department of Mathematics, College of Arts
and Science at Wadi Aldawaser, 11991,
Prince Sattam Bin Abdulaziz University, Riyadh Region,
Kingdom of Saudi Arabia.
Email: n.sooppy@psau.edu.sa,
ksnisar1@gmail.com
Department of Mathematical Science,
Balochistan University of Information Technology,
Engineering and Management Sciences, Quetta,
Pakistan.
Email: abdulghaffar.jaffar@gmail.com
School of Mathematical Sciences, Tianjin
Polytechnic University,
Tianjin 300387,
China; Institute of Mathematics,
Henan Polytechnic University, Jiaozuo 454010, Henan,
China.
Email: qifeng618@gmail.com,
qifeng618@qq.com
Abstract:
In the paper, the authors deal with generalized kfractional conformable integrals, establish some inequalities of the HermiteHadamard type for generalized kfractional conformable integrals for convex functions, and generalize known inequalities of the HermiteHadamard type for conformable fractional integrals.
Paper's Title:
Formulation of Approximate Mathematical Model for Incoming Water to Some Dams on Tigris and Euphrates Rivers Using Spline Function
Author(s):
Nadia M. J. Ibrahem, Heba A. Abd AlRazak, and Muna M. Mustafa
Mathematics Department,
College of Sciences for Women,
University of Baghdad, Baghdad,
Iraq.
Email:
Nadiamj_math@csw.uobaghdad.edu.iq
Abstract:
In this paper, we formulate three mathematical models using spline functions, such as linear, quadratic and cubic functions to approximate the mathematical model for incoming water to some dams. We will implement this model on dams of both rivers; dams on the Tigris are Mosul and Amara while dams on the Euphrates are Hadetha and AlHindya.
Paper's Title:
Weyl's theorem for class Q and k  quasi class Q Operators
Author(s):
S. Parvatham and D. Senthilkumar
Department of Mathematics and Humanities,
Sri Ramakrishna Institute of Technology, Coimbatore10, Tamilnadu,
India.
Email: parvathasathish@gmail.com
Post Graduate and Research Department of
Mathematics,
Govt. Arts College, Coimbatore641018, Tamilnadu,
India.
Email: senthilsenkumhari@gmail.com
Abstract:
In this paper, we give some properties of class Q operators. It is proved that every class Q operators satisfies Weyl's theorem under the condition that T^{2} is isometry. Also we proved that every k quasi class Q operators is Polaroid and the spectral mapping theorem holds for this class of operator. It will be proved that single valued extension property, Weyl and generalized Weyl's theorem holds for every k quasi class Q operators.
Paper's Title:
An Efficient Modification of Differential Transform Method for Solving Integral and Integrodifferential Equations
Author(s):
S. AlAhmad, Ibrahim Mohammed Sulaiman^{*}, and M. Mamat
Faculty of Informatics and Computing,
Universiti Sultan Zainal Abidin,
Terengganu, Besut Campus, 22200,
Malaysia.
Email: Alahmad.shadi@yahoo.com,
^{*}sulaimanib@unisza.edu.my,
must@unisza.edu.my
Abstract:
In this paper, classes of integral and integrodifferential equations are solved using a modified differential transform method. This proposed technique is based on differential transform method (DTM), Laplace transform (LT) procedure and Pad\'{e} approximants (PA). The proposed method which gives a good approximation for the true solution in a large region is referred to modified differential transform method (MDTM). An algorithm was developed to illustrate the flow of the proposed method. Some numerical problems are presented to check the applicability of the proposed scheme and the obtained results from the computations are compared with other existing methods to illustrates its efficiency. Numerical results have shown that the proposed MDTM method is promising compared to other existing methods for solving integral and integrodifferential equations.
Paper's Title:
Antiderivatives and Integrals Involving Incomplete Beta Functions with Applications
Author(s):
R. AlAhmad^{1,2} and H. Almefleh^{1}
Mathematics Department,
Yarmouk University,
Irbid 21163,
Jordan.
Email: rami_thenat@yu.edu.jo
Faculty of Engineering,
Higher Colleges of Technology,
Ras Alkhaimah,
UAE.
Abstract:
In this paper, we prove that incomplete beta functions are antiderivatives of several products and powers of trigonometric functions, we give formulas for antiderivatives for products and powers of trigonometric functions in term of incomplete beta functions, and we evaluate integrals involving trigonometric functions using incomplete beta functions. Also, we extend some properties of the beta functions to the incomplete beta functions. As an application for the above results, we find the moments for certain probability distributions.
Paper's Title:
HermiteHadamard Type Inequalities for MNConvex Functions
Author(s):
Sever S. Dragomir^{1,2}
^{1}Mathematics,
College of Engineering
& Science
Victoria University, PO Box 14428
Melbourne City, MC 8001,
Australia
Email: sever.dragomir@vu.edu.au
^{2}DSTNRF Centre of Excellence in the Mathematical and Statistical Sciences,
School of Computer Science & Applied Mathematics,
University of the Witwatersrand,
Private Bag 3, Johannesburg 2050,
South Africa
URL:
https://rgmia.org/dragomir
Abstract:
The present work endeavours to briefly present some of the fundamental results connected to the HermiteHadamard inequality for special classes of convex functions such as AG, AH, GA, GG, GH, HA, HG and HH convex functions in which the author have been involved during the last five years. For simplicity, we call these classes of functions such as MNconvex functions, where M and N stand for any of the Arithmetic (A), Geometric (G) or Harmonic (H) weighted means of positive real numbers. The survey is intended for use by both researchers in various fields of Approximation Theory and Mathematical Inequalities, domains which have grown exponentially in the last decade, as well as by postgraduate students and scientists applying inequalities in their specific areas.
Paper's Title:
A New Relaxed bmetric Type and Fixed Point Results
Author(s):
P. Singh, V. Singh and Thokozani Cyprian Martin Jele
Department of Mathematics,
University of KwaZuluNatal,
Private Bag X54001, Durban,
South Africa.
Email: singhp@ukzn.ac.za,
singhv@ukzn.ac.za,
thokozani.jele@nwu.ac.za
Abstract:
The purpose of this paper is to introduce a new relaxed α, β bmetric type by relaxing the triangle inequality. We investigate the effect that this generalization has on fixed point theorems.
Paper's Title:
Inequalities Relating to the Gamma Function
Author(s):
ChaoPing Chen and Feng Qi
Department of Applied Mathematics and Informatics,
Research Institute of Applied Mathematics,
Henan Polytechnic University, Jiaozuo
City, Henan 454000, China
chenchaoping@hpu.edu.cn
Department of Applied Mathematics and Informatics,
Research Institute of Applied Mathematics,
Henan Polytechnic University, Jiaozuo
City, Henan 454000, China
qifeng@hpu.edu.cn,
fengqi618@member.ams.org
Url:
http://rgmia.vu.edu.au/qi.html,
http://dami.hpu.edu.cn/qifeng.html
Abstract:
For _{}, we have
_{ }.
For_{},
_{ },
And equality occurs for x=1.
Paper's Title:
An Application of Quasi Power Increasing Sequences
Author(s):
Hüseyín Bor
Department of Mathematics, Erciyes University, 38039 Kayseri,
Turkey
bor@erciyes.edu.tr
Url:
Http://math.erciyes.edu.tr/Hbor.htm
Abstract:
In this paper a result of Bor [2] has been proved under weaker conditions by using a quasi power increasing sequence instead of an almost increasing sequence.
Paper's Title:
Generalized FugledePutnam Theorem and Orthogonality
Author(s):
A. Bachir and A. Sagres
Department of
Mathematics, Faculty of Science, King Khaled
University, Abha, P.O. Box 9004 Kingdom Saudi Arabia
bachir_ahmed@hotmail.com
sagres@hotmail.com
Abstract:
An asymmetric FugledePutnam’s theorem for dominant operators and phyponormal operators is proved, as a consequence of this result, we obtain that the range of the generalized derivation induced by the above classes of operators is orthogonal to its kernel.
Paper's Title:
Ellipses of Maximal Area and of Minimal Eccentricity Inscribed in a Convex Quadrilateral
Author(s):
Alan Horwitz
Penn State University,
25 Yearsley Mill Rd., Media, Pa 19063
alh4@psu.edu
Url: www.math.psu.edu/horwitz
Abstract:
Let Đ be a convex quadrilateral in the plane and let M1 and M2 be the midpoints of the diagonals of Đ. It is well–known that if E is an ellipse inscribed in Đ, then the center of E must lie on Z, the open line segment connecting M1 and M2 . We use a theorem of Marden relating the foci of an ellipse tangent to the lines thru the sides of a triangle and the zeros of a partial fraction expansion to prove the converse: If P lies on Z, then there is a unique ellipse with center P inscribed in Đ. This completely characterizes the locus of centers of ellipses inscribed in Đ. We also show that there is a unique ellipse of maximal area inscribed in Đ. Finally, we prove our most signifigant results: There is a unique ellipse of minimal eccentricity inscribed in Đ.
Paper's Title:
Weak Solution for Hyperbolic Equations with a NonLocal Condition
Author(s):
Lazhar Bougoffa
King Khalid
University, Faculty of Science, Department of Mathematics,
P.O.Box 9004, Abha, Saudi Arabia
abogafah@kku.edu.sa
Abstract:
In this paper, we study hyperbolic equations with a nonlocal condition. We prove the existence and uniqueness of weak solutions, using energy inequality and the density of the range of the operator generated by the problem.
Paper's Title:
Refinement Inequalities Among Symmetric Divergence Measures
Author(s):
Inder Jeet Taneja
Departamento de Matemática,
Universidade Federal de Santa Catarina, 88.040900
Florianópolis, Sc, Brazil
taneja@mtm.ufsc.br
URL: http://www.mtm.ufsc.br/~taneja
Abstract:
There are three classical divergence measures in the literature on information theory and statistics, namely, JeffryesKullbackLeiber’s Jdivergence, SibsonBurbeaRao’s Jensen Shannon divegernce and Taneja’s arithemtic  geometric mean divergence. These bear an interesting relationship among each other and are based on logarithmic expressions. The divergence measures like Hellinger discrimination, symmetric χ^{2}−divergence, and triangular discrimination are not based on logarithmic expressions. These six divergence measures are symmetric with respect to probability distributions. In this paper some interesting inequalities among these symmetric divergence measures are studied. Refinements of these inequalities are also given. Some inequalities due to Dragomir et al. [6] are also improved.
Paper's Title:
Note on the Rank of Birkhoff Interpolation
Author(s):
J. RubióMassegú
Applied Mathematics III, Universitat Politčcnica de Catalunya,
Colom 1, 08222, Terrassa,
Spain
josep.rubio@upc.edu
Abstract:
The relationship between a variant of the rank of a univariate Birkhoff interpolation problem, called normal rank, and other numbers of interest associated to the interpolation problem is studied.
Paper's Title:
On Positive Entire Solutions of Second Order Quasilinear Elliptic Equations
Author(s):
Zuodong Yang and Honghui Yin
Institute of Mathematics, School of Mathematics and Computer Science,
Nanjing Normal University, Jiangsu Nanjing 210097,
China;
zdyang_jin@263.net
Department of Mathematics, Huaiyin Teachers College,
Jiangsu Huaian 223001,
China;
School of Mathematics and Computer Sciences,
Nanjing Normal University, Jiangsu Nanjing 210097,
China.
yin_hh@sina.com
Abstract:
In this paper, our main purpose is to establish the existence theorem of positive entire solutions of second order quasilinear elliptic equations under new conditions. The main results of the present paper are new and extend the previously known results.
Paper's Title:
A Wallis Type Inequality and a Double Inequality for Probability Integral
Author(s):
Jian Cao, DaWei Niu and Feng Qi
School of Mathematics and Informatics,
Henan Polytechnic University, Jiaozuo City,
Henan Province, 454010,
China
21caojian@163.com
School of Mathematics and Informatics,
Henan Polytechnic University, Jiaozuo City,
Henan Province, 454010,
China
nnddww@tom.com
Research Institute of Mathematical Inequality Theory,
Henan Polytechnic University, Jiaozuo City,
Henan Province, 454010,
China
qifeng@hpu.edu.cn
fengqi618@member.ams.org
qifeng618@hotmail.com
qifeng618@msn.com
qifeng618@qq.com
URL: http://rgmia.vu.edu.au/qi.html
Abstract:
In this short note, a Wallis type inequality with the best upper and lower bounds is established. As an application, a double inequality for the probability integral is found.
Paper's Title:
Weighted Generalization of the Trapezoidal Rule via Fink Identity
Author(s):
S. Kovač, J. Pečarić and A. Vukelić
Faculty of Geotechnical Engineering, University of Zagreb,
Hallerova aleja 7, 42000 Varaždin,
Croatia.
sanja.kovac@gtfvz.hr
Faculty of Textile Technology, University of Zagreb,
Pierottijeva 6, 10000 Zagreb,
Croatia.
pecaric@hazu.hr
Faculty of Food Technology and Biotechnology, Mathematics department, University of Zagreb,
Pierottijeva 6, 10000 Zagreb,
Croatia.
avukelic@pbf.hr
Abstract:
The weighted Fink identity is given and used to obtain generalized weighted trapezoidal formula for ntime differentiable functions. Also, an error estimate is obtained for this formula.
Paper's Title:
A New Step Size Rule in Noor's Method for Solving General Variational Inequalities
Author(s):
Abdellah Bnouhachem
School of Management Science and Engineering, Nanjing University,
Nanjing, 210093
P.R. China.
babedallah@yahoo.com
Abstract:
In this paper, we propose a new step size rule in Noor's method for solving general variational inequalities. Under suitable conditions, we prove that the new method is globally convergent. Preliminary numerical experiments are included to illustrate the advantage and efficiency of the proposed method.
Paper's Title:
Generalized Quasilinearization Method for the Forced Düffing Equation
Author(s):
Ramzi S. N. Alsaedi
Department of Mathematics, King Abdul Aziz University,
Jeddah P.O. Box 80203,
Saudi Arabia.
ramzialsaedi@yahoo.co.uk
Abstract:
A generalized quasilinearization method for the periodic problem related to the forced D\"{u}ffing equation is developed and a sequence of approximate solutions converging monotonically and quadratically to the solution of the given problem is presented.
Paper's Title:
Two Classes of Completely Monotonic Functions Involving Gamma and Polygamma Functions
Author(s):
BaiNi Guo, XiaoAi Li and Feng Qi
School of Mathematics and Informatics,
Henan Polytechnic University,
Jiaozuo City, Henan Province, 454010,
China.
bai.ni.guo@gmail.com
College of Mathematics and Information Science,
Henan Normal University, Xinxiang City,
Henan Province, 453007,
China.
lxa.hnsd@163.com
Research Institute of Mathematical Inequality Theory,
Henan Polytechnic University, Jiaozuo City,
Henan Province, 454010,
China
qifeng618@gmail.com
qifeng618@hotmail.com
qifeng618@qq.com
URLhttp://rgmia.vu.edu.au/qi.html
Abstract:
The function
is logarithmically completely monotonic in (0,∞) if and only if c≥1
and its reciprocal is logarithmically completely monotonic in (0,∞) if and only if
c≤0. The function
is completely monotonic in (0,∞) if and only if c≥1 and its
negative is completely monotonic in (0,∞) if and only if c≤0.
Paper's Title:
An Approximation of Jordan Decomposable Functions for a Lipschitz Function
Author(s):
Ibraheem Alolyan
Mathematics Department,
College of Science, King Saud University
P.O.Box: 2455, Riyadh 11451,
Saudi Arabia
ialolyan05@yahoo.com
Abstract:
The well known Jordan decomposition theorem gives the useful characterization that any function of bounded variation can be written as the difference of two increasing functions. Functions which can be expressed in this way can be used to formulate an exclusion test for the recent Cellular Exclusion Algorithms for numerically computing all zero points or the global minima of functions in a given cellular domain [2,8,9]. In this paper we give an algorithm to approximate such increasing functions when only the values of the function of bounded variation can be computed. For this purpose, we are led to introduce the idea of εincreasing functions. It is shown that for any Lipschitz continuous function, we can find two εincreasing functions such that the Lipschitz function can be written as the difference of these functions.
Paper's Title:
Generalized Stieltjes Transform and its Fractional Integrals for Integrable Boehmian
Author(s):
Deshna Loonker and P. K. Banerji
Department Of Mathematics, Faculty Of Science,
J. N. V. University Jodhpur,
342 005,
India
deshnap@yahoo.com
banerjipk@yahoo.com
Abstract:
This paper investigates generalized Stieltjes transform for integrable Boehmian and further, generalized Stieltjes transform of fractional integrals are defined for integrable Boehmian.
Paper's Title:
Positive Solutions for Systems of Threepoint Nonlinear Boundary Value Problems
Author(s):
J. Henderson and S. K. Ntouyas
Department of Mathematics, Baylor University
Waco, Texas
767987328 USA.
Johnny_Henderson@baylor.edu
URL: http://www3.baylor.edu/~Johnny_Henderson
Department of Mathematics, University of Ioannina
451 10 Ioannina,
Greece.
sntouyas@cc.uoi.gr
URL: http://www.math.uoi.gr/~sntouyas
Abstract:
Values of λ are determined for which there exist positive solutions of the system of threepoint boundary value problems, u''(t)+ λa(t)f(v(t))=0, v''(t)+λb(t)g(u(t))=0, for 0 < t <1, and satisfying, u(0) = 0, u(1)=α u(η), v(0) = 0, v(1)=α v(η). A GuoKrasnosel'skii fixed point theorem is applied.
Paper's Title:
Some Generalized Difference Sequence Spaces Defined by Orlicz Functions
Author(s):
Ramzi S. N. Alsaedi and Ahmad H. A. Bataineh
Department of Mathematics, King Abdul Aziz University,
Jeddah P.O.Box 80203,
Saudia Arabia
ramzialsaedi@yahoo.co.uk
Department of Mathematics, Al alBayt University,
Mafraq 25113,
Jordan
ahabf2003@yahoo.ca
Abstract:
In this paper, we define the sequence spaces: [V,M,p,u,Δ ],[V,M,p,u,Δ]_{0} and [V,M,p,u,Δ]_{∞}, where for any sequence x=(x_{n}), the difference sequence Δx is given by Δx=(Δx_{n}) = (x_{n}x_{n1}) . We also study some properties and theorems of these spaces. These are generalizations of those defined and studied by Savas and Savas and some others before.
Paper's Title:
Reverses of the CBS Integral Inequality in Hilbert Spaces and Related Results
Author(s):
I. Brnetić, S. S. Dragomir, R. Hoxha and J. Pečarić
Department of Applied Mathematics, Faculty of Electrical
Engineering and Computing,
University of Zagreb, Unska 3, 10 000 Zagreb,
Croatia
andrea@zpm.fer.hr
School of Computer Science & Mathematics, Victoria University
Po Box 14428, Melbourne Vic 8001
Australia
sever.dragomir@vu.edu.au
URL:http://rgmia.vu.edu.au/dragomir
Faculty of Applied Technical Sciences, University of Prishtina,
Mother
Theresa 5, 38 000 Prishtina
Kosova
razimhoxha@yahoo.com
Faculty of Textile Technology, University of Zagreb,
Pierottijeva 6, 10000
Zagreb,
Croatia
pecaric@hazu.hr
Abstract:
There are many known reverses of the CauchyBunyakovskySchwarz (CBS) inequality in the literature. We obtain here a general integral inequality comprising some of those results and also provide other related inequalities. The discrete case, which is of interest in its own turn, is also analysed.
Paper's Title:
A Method for Solving Systems of Nonlinear Equations
Author(s):
J. Shokri
Department of Mathematics, Urmia University,
P. O. Box 165, Urmia,
Iran
j.shokri@urmia.ac.ir
Abstract:
In this paper, we suggest and analyze a new twostep iterative method for solving nonlinear equation systems using the combination of midpoint quadrature rule and Trapezoidal quadrature rule. We prove that this method has quadratic convergence. Several examples are given to illustrate the efficiency of the proposed method.
Paper's Title:
A Double Inequality for Divided Differences and Some Identities of the Psi and Polygamma Functions
Author(s):
B. N. Guo and F. Qi
School of
Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan
Province, 454010, China
bai.ni.guo@gmail.com,
bai.ni.guo@hotmail.com
School of
Research Institute of Mathematical Inequality Theory, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China
qifeng618@gmail.com,
qifeng618@hotmail.com,
qifeng618@qq.com
URL:http://qifeng618.spaces.live.com
Abstract:
In this short note, from the logarithmically completely monotonic property of the function ^{ }, a double inequality for the divided differences and some identities of the psi and polygamma functions are presented.
Paper's Title:
Linearly Transformable Minimal Surfaces
Author(s):
Harold R. Parks and Walter B. Woods
Department of Mathematics,
Oregon State University,
Corvallis, Oregon 973314605,
USA
parks@math.oregonstate.edu
URL: http://www.math.oregonstate.edu/people/view/parks/
Abstract:
We give a complete description of a nonplanar minimal surface in R^{3} with the surprising property that the surface remains minimal after mapping by a linear transformation that dilates by three distinct factors in three orthogonal directions. The surface is defined in closed form using Jacobi elliptic functions.
Paper's Title:
Stability of Almost Multiplicative Functionals
Author(s):
Norio Niwa, Hirokazu Oka, Takeshi Miura and SinEi Takahasi
Faculty of Engineering, Osaka ElectroCommunication University,
Neyagawa 5728530,
Japan
Faculty of Engineering, Ibaraki University,
Hitachi 3168511,
Japan
Department of Applied Mathematics and Physics, Graduate School of
Science and Engineering,
Yamagata University,
Yonezawa 9928510
Japan
oka@mx.ibaraki.ac.jp
miura@yz.yamagatau.ac.jp
sinei@emperor.yz.yamagatau.ac.jp
Abstract:
Let δ and p be nonnegative real numbers. Let be the real or complex number field and a normed algebra over . If a mapping satisfies
then we show that φ is multiplicative or for all If, in addition, φ satisfies
for some p≠1, then by using HyersUlamRassias stability of additive Cauchy equation, we show that φ is a ring homomorphism or for all In other words, φ is a ring homomorphism, or an approximately zero mapping. The results of this paper are inspired by Th.M. Rassias' stability theorem.
Paper's Title:
A Coincidence Theorem for Two Kakutani Maps
Author(s):
Mircea Balaj
Department of Mathematics,
University of Oradea,
410087, Oradea,
Romania.
mbalaj@uoradea.ro
Abstract:
In this paper we prove the following theorem: Let X be a nonempty compact convex set in a locally convex Hausdorff topological vector space, D be the set of its extremal points and F,T: X―◦X two Kakutani maps; if for each nonempty finite subset A of D and for any x ∈ coA, F (x) ∩ coA ≠ Ř, then F and T have a coincidence point. The proof of this theorem is given first in the case when X is a simplex, then when X is a polytope and finally in the general case. Several reformulations of this result are given in the last part of the paper.
Paper's Title:
On a Class of Uniformly Convex Functions Defined by Convolution with Fixed Coefficient
Author(s):
T. N. Shanmugam, S. Sivasubramanian, and G. Murugusundaramoorthy
Department of Mathematics,
College of Engineering,
Anna University,
Chennai  600 025,
India.
drtns2001@yahoo.com
Department of Mathematics,
University College of Engineering,
Tindivanam
Anna UniversityChennai,
Saram604 703,
India.
sivasaisastha@rediffmail.com
School of Sciences and Humanities,
VIT University, Vellore632 014,
India.
gmsmoorthy@yahoo.com
Abstract:
We define a new subclass of uniformly convex functions with negative and fixed second coefficients defined by convolution. The main object of this paper is to obtain coefficient estimates distortion bounds, closure theorems and extreme points for functions belong to this new class . The results are generalized to families with fixed finitely many coefficients.
Paper's Title:
The Superstability of the Pexider Type Trigonometric Functional Equation
Author(s):
Gwang Hui Kim and Young Whan Lee
Department of Mathematics, Kangnam
University Yongin, Gyeonggi, 446702, Korea.
ghkim@kangnam.ac.kr
Department of Computer and Information Security
Daejeon University, Daejeon 300716, Korea.
ywlee@dju.ac.kr
Abstract:
The aim of this paper is to investigate the stability
problem for
the Pexider type (hyperbolic) trigonometric functional equation
f(x+y)+f(x+σy)=λg(x)h(y) under the conditions :
f(x+y)+f(x+σy) λg(x)h(y)≤φ(x),
φ(y), and min {φ(x), φ (y)}.
As a consequence, we have generalized the results of stability for
the cosine(d'Alembert), sine, and the Wilson functional equations by J.
Baker, P. Găvruta, R. Badora and R. Ger, Pl.~Kannappan, and G.
H. Kim
Paper's Title:
On the Inequality
Author(s):
A. Coronel and F. Huancas
Departamento de Ciencias Básicas,
Facultad de Ciencias, Universidad del BíoBío, Casilla 447,
Campus Fernando May, Chillán, Chile.
acoronel@roble.fdomay.ubiobio.cl
Departamento Académico de Matemática,
Facultad de Ciencias Físicas y Matemáticas,
Universidad Nacional Pedro Ruiz Gallo, Juan XIII s/n,
Lambayeque, Perú
Abstract:
In this paper we give a complete proof of for all positive real numbers a, b and c. Furthermore, we present another way to prove the statement for
Paper's Title:
Ellipses Inscribed in Parallelograms
Author(s):
A. Horwitz
Penn State University,
25 Yearsley Mill Rd.
Media, PA 19063
U. S. A.
alh4@psu.edu
Abstract:
We prove that there exists a unique ellipse of minimal eccentricity, E_{I}, inscribed in a parallelogram, Đ. We also prove that the smallest nonnegative angle between equal conjugate diameters of $E_{I} equals the smallest nonnegative angle between the diagonals of Đ. We also prove that if E_{M} is the unique ellipse inscribed in a rectangle, R, which is tangent at the midpoints of the sides of R, then E_{M} is the unique ellipse of minimal eccentricity, maximal area, and maximal arc length inscribed in R. Let Đ be any convex quadrilateral. In previous papers, the author proved that there is a unique ellipse of minimal eccentricity, E_{I}, inscribed in Đ, and a unique ellipse, E_{O}, of minimal eccentricity circumscribed about Đ. We defined Đ to be bielliptic if E_{I }and E_{O} have the same eccentricity. In this paper we show that a parallelogram, Đ, is bielliptic if and only if the square of the length of one of the diagonals of Đ equals twice the square of the length of one of the sides of Đ .
Paper's Title:
On the Boundedness of Hardy's Averaging Operators
Author(s):
DahChin Luor
Department of Applied Mathematics,
IShou University, Dashu District,
Kaohsiung City 84001,
Taiwan, R.O.C.
dclour@isu.edu.tw
Abstract:
In this paper we establish scales of sufficient conditions for the boundedness of Hardy's averaging operators on weighted Lebesgue spaces. The estimations of the operator norms are also obtained. Included in particular are the ErdélyiKober operators.
Paper's Title:
Further Bounds for Two Mappings Related to the HermiteHadamard Inequality
Author(s):
S. S. Dragomir^{1,2} and I. Gomm^{1}
^{1}Mathematics, School of Engineering & Science,
Victoria University,
PO Box 14428,
Melbourne City, MC 8001,
Australia.
^{2}School of Computational & Applied Mathematics,
University of
the Witwatersrand,
Private Bag 3, Johannesburg 2050,
South Africa.
sever.dragomir@vu.edu.au
ian.gomm@vu.edu.au
URL: http://rgmia.org/dragomir
Abstract:
Some new results concerning two mappings associated to the celebrated HermiteHadamard integral inequality for twice differentiable functions with applications for special means are given.
Paper's Title:
C^{*}algebras Associated Noncommutative Circle and Their Ktheory
Author(s):
Saleh Omran
Taif University,
Faculty of Science,
Taif,
KSA
South Valley University,
Faculty of Science,
Math. Dep.
Qena,
Egypt
Abstract:
In this article we investigate the universal C^{*}algebras associated to certain 1  dimensional simplicial flag complexes which describe the noncommutative circle. We denote it by S_{1}^{nc}. We examine the Ktheory of this algebra and the subalgebras S_{1}^{nc}/I_{k}, I_{k} . Where I_{k}, for each k, is the ideal in S_{1}^{nc} generated by all products of generators h_{s} containing at least k+1 pairwise different generators. Moreover we prove that such algebra divided by the ideal I_{2} is commutative.
Paper's Title:
Some Applications of Fejér's Inequality for Convex Functions (I)
Author(s):
S.S. Dragomir^{1,2} and I. Gomm^{1}
^{1}Mathematics, School of
Engineering & Science
Victoria University, PO Box 14428
Melbourne City, MC 8001,
Australia.
URL: http://rgmia.org/dragomir
^{2}School of Computational &
Applied Mathematics,
University of the Witwatersrand,
Private Bag 3, Johannesburg 2050,
South Africa.
Abstract:
Some applications of Fejér's inequality for convex functions are explored. Upper and lower bounds for the weighted integral
under various assumptions for f with applications to the trapezoidal quadrature rule are given. Some inequalities for special means are also provided
Paper's Title:
Some Properties of the MarshallOlkin and Generalized CuadrasAugé Families of Copulas
Author(s):
Edward Dobrowolski and Pranesh Kumar
Department of Mathematics and Statistics
University of Northern British Columbia
Prince George, BC,
Canada, V2N 4Z9
Email: Pranesh.Kumar@unbc.ca
Abstract:
We investigate some properties of the families of two parameter MarshallOlkin and Generalized CuadrasAugé copulas. Some new results are proved for copula parameters, dependence measure and mutual information. A numerical application is discussed.
Paper's Title:
Sufficient Conditions for Certain Types of Functions to be Parabolic Starlike
Author(s):
A. Gangadharan and S. Chinthamani
Department of Mathematics,
Easwari Engineering College,
Ramapuram, Chennai  89,
India.
Research Scholar,
Anna University,
Chennai
Email: ganga.megalai@gmail.com
Email: chinvicky@rediffmail.com
Abstract:
In this paper sufficient conditions are determined for functions of the form and certain other types of functions to be parabolic starlike.
Paper's Title:
On the Biharmonic Equation with Nonlinear Boundary Integral Conditions
Author(s):
R. Hamdouche and H. Saker
L.M.A. Department of Mathematics, Faculty
of Sciences,
University of Badji Mokhtar,
P.O.Box 12. Annaba 23000,
Algeria.
Email: h_saker@yahoo.fr,
hmdch.rahma16@gmail.com
Abstract:
In the present work, we deal with the biharmonic problems in a bounded domain in the plane with the nonlinear boundary integral conditions. After applying the Boundary integral method, a system of nonlinear boundary integral equations is obtained. The result show that when the nonlinearity satisfies some conditions lead the existence and uniqueness of the solution.
Paper's Title:
On the HyersUlam Stability of Homomorphisms and Lie Derivations
Author(s):
Javad Izadi and Bahmann Yousefi
Department of Mathematics, Payame Noor
University,
P.O. Box: 193953697, Tehran,
Iran.
Email: javadie2003@yahoo.com,
b_yousefi@pnu.ac.ir
Abstract:
Let A be a Lie Banach^{*}algebra. For each elements (a, b) and (c, d) in A^{2}:= A * A, by definitions
(a, b) (c, d)= (ac, bd),
(a, b)= a+ b,
(a, b)^{*}= (a^{*}, b^{*}),
A^{2} can be considered as a Banach^{*}algebra. This Banach^{*}algebra is called a Lie Banach^{*}algebra whenever it is equipped with the following definitions of Lie product:
for all a, b, c, d in A. Also, if A is a Lie Banach^{*}algebra, then D: A^{2}→A^{2} satisfying
D ([ (a, b), (c, d)])= [ D (a, b), (c, d)]+ [(a, b), D (c, d)]
for all $a, b, c, d∈A, is a Lie derivation on A^{2}. Furthermore, if A is a Lie Banach^{*}algebra, then D is called a Lie^{*} derivation on A^{2} whenever D is a Lie derivation with D (a, b)^{*}= D (a^{*}, b^{*}) for all a, b∈A. In this paper, we investigate the HyersUlam stability of Lie Banach^{*}algebra homomorphisms and Lie^{* }derivations on the Banach^{*}algebra A^{2}.
Paper's Title:
Hyponormal and KQuasiHyponormal Operators On SemiHilbertian Spaces
Author(s):
Ould Ahmed Mahmoud Sid Ahmed and Abdelkader Benali
Mathematics Department,
College of Science,
Aljouf University,
Aljouf 2014,
Saudi Arabia.
Email:
sididahmed@ju.edu.sa
Mathematics Department, Faculty of
Science,
Hassiba Benbouali, University of Chlef,
B.P. 151 Hay Essalem, Chlef 02000,
Algeria.
Email:
benali4848@gmail.com
Abstract:
Let H be a Hilbert space and let A be a positive bounded operator on H. The semiinner product < uv>_{A}:=<Auv>, u,v ∈ H induces a seminorm  ._{A} on H. This makes H into a semiHilbertian space. In this paper we introduce the notions of hyponormalities and kquasihyponormalities for operators on semi Hilbertian space (H,._{A}), based on the works that studied normal, isometry, unitary and partial isometries operators in these spaces. Also, we generalize some results which are already known for hyponormal and quasihyponormal operators. An operator T ∈ B_{A} (H) is said to be (A, k)quasihyponormal if
Paper's Title:
The boundedness of BesselRiesz operators on generalized Morrey spaces
Author(s):
Mochammad Idris, Hendra Gunawan and Eridani
Department of Mathematics,
Bandung Institute of Technology,
Bandung 40132,
Indonesia.
Email:
mochidris@students.itb.ac.id
Department of Mathematics,
Bandung Institute of Technology,
Bandung 40132,
Indonesia.
Email: hgunawan@math.itb.ac.id
URL:
http://personal.fmipa.itb.ac.id/hgunawan/
Department of Mathematics,
Airlangga University,
Surabaya 60115,
Indonesia.
Email: eridani.dinadewi@gmail.com
Abstract:
In this paper, we prove the boundedness of BesselRiesz operators on generalized Morrey spaces. The proof uses the usual dyadic decomposition, a Hedbergtype inequality for the operators, and the boundedness of HardyLittlewood maximal operator. Our results reveal that the norm of the operators is dominated by the norm of the kernels.
Paper's Title:
Robust Error Analysis of Solutions to Nonlinear Volterra Integral Equation in L^{p} Spaces
Author(s):
Hamid Baghani, Javad FarokhiOstad and Omid Baghani
Department of Mathematics, Faculty of
Mathematics,
University of Sistan and Baluchestan, P.O. Box 98135674, Zahedan,
Iran.
Email:
h.baghani@gmail.com
Department of Mathematics, Faculty of
Basic Sciences,
Birjand University of Technology, Birjand,
Iran.
Email: j.farrokhi@birjandut.ac.ir
Department of Mathematics and Computer
Sciences,
Hakim Sabzevari University, P.O. Box 397, Sabzevar,
Iran.
Email:
o.baghani@gmail.com
Abstract:
In this paper, we propose a novel strategy for proving an important inequality for a contraction integral equations. The obtained inequality allows us to express our iterative algorithm using a "for loop" rather than a "while loop". The main tool used in this paper is the fixed point theorem in the Lebesgue space. Also, a numerical example shows the efficiency and the accuracy of the proposed scheme.
Paper's Title:
On The RayleighLove Rod Accreting In Both Length And CrossSectional Area: Forced And Damped Vibrations
Author(s):
M.L.G. Lekalakala^{1}, M. Shatalov^{2}, I. Fedotov^{3}, S.V. Joubert^{4}
^{1}Department
of Mathematics, Vaal University of Technology, P.O. Box 1889, Secunda, 2302,
South Africa.
Email^{1}:
glen@vut.ac.za
^{2,3,4}Department of Mathematics and Statistics, Tshwane University of Technology, Pretoria, South Africa.
Abstract:
In this paper an elastic cylindrical rod that is subjected to forced and damped vibrations is considered. The rod is assumed to be isotropic. The applied external force of excitation is assumed to be harmonic, and the damping force is that of KelvinVoigt. The longitudinally vibrating rod is fixed at the left end and free at the other end. The rod is assumed to be accreting in length and crosssectional area as it vibrates. The problem arising and the dynamics of the vibrating rod are described and investigated within the RayleighLove theories of the rod. A partial differential equation describing the longitudinal displacement of the rod is formulated. The formulated partial differential equation, together with the corresponding boundary conditions as per the configuration of the rod, is solved numerically using the GalerkinKantorovich method. The frequency of vibration of the harmonic exciting force is kept constant in this investigation.
It is shown that in this periodically forced viscoelastic damped vibration, all the modes of vibration are subjected to the resonance behaviour within a proper time interval, depending on the length of the accreting rod.
Paper's Title:
The Dynamics of an Ebola Epidemic Model with Quarantine of Infectives
Author(s):
Eliab Horub Kweyunga
Department of Mathematics,
Kabale University,
P.O.Box 317, Kabale,
Uganda.
Email: hkweyunga@kab.ac.ug
Abstract:
The recurrent outbreaks of ebola in Africa present global health challenges. Ebola is a severe, very fatal disease with case fatality rates of up to 90%. In this paper, a theoretical deterministic model for ebola epidemic with quarantine of infectives is proposed and analyzed. The model exhibits two equilibria; the disease free and endemic equilibrium points. The basic reproduction number, R_{0}, which is the main threshold, is obtained and the stability of the equilibrium points established. Using parameter values drawn from the 2014 West Africa ebola outbreak, a numerical simulation of the model is carried out. It is found that the dynamics of the model are completely determined by R_{0} and that a quarantine success rate of at least 70% is sufficient to contain the disease outbreak.
Paper's Title:
Integrating Factors and First Integrals of a Class of Third Order Differential Equations
Author(s):
Mohammadkheer AlJararha
Department of Mathematics,
Yarmouk University,
Irbid 21163,
Jordan.
Email: mohammad.ja@yu.edu.jo
Abstract:
The principle of finding an integrating factor for a none exact differential equations is extended to a class of third order differential equations. If the third order equation is not exact, under certain conditions, an integrating factor exists which transforms it to an exact one. Hence, it can be reduced into a second order differential equation. In this paper, we give explicit forms for certain integrating factors of a class of the third order differential equations.
Paper's Title:
Closedness and Skew SelfAdjointness of Nadir's Operator
Author(s):
Mostefa Nadir and Abdellatif Smati
Department of Mathematics,
University of Msila 28000,
ALGERIA.
Email: mostefanadir@yahoo.fr
Email: smatilotfi@gmail.com
Abstract:
In this paper, we present some sufficient conditions which ensure the compactness, the normality, the positivity, the closedness and the skew selfadjointness of the unbounded Nadir's operator on a Hilbert space. We get also when the measurement of its adjointness is null and other related results are also established.
Paper's Title:
Fractional class of analytic functions Defined Using qDifferential Operator
Author(s):
K . R. Karthikeyan, Musthafa Ibrahim and S. Srinivasan
Department of Mathematics and
Statistics,
Caledonian College of Engineering, Muscat,
Sultanate of Oman.
Email: kr_karthikeyan1979@yahoo.com
College of Engineering,
University of Buraimi, Al Buraimi,
Sultanate of Oman.
Email: musthafa.ibrahim@gmail.com
Department of Mathematics, Presidency
College (Autonomous),
Chennai600005, Tamilnadu,
India.
Abstract:
We define a qdifferential fractional operator, which generalizes Salagean and Ruscheweyh differential operators. We introduce and study a new class of analytic functions involving qdifferential fractional operator. We also determine the necessary and sufficient conditions for functions to be in the class. Further, we obtain the coefficient estimates, extreme points, growth and distortion bounds.
Paper's Title:
On Closed Range C^{*}modular Operators
Author(s):
Javad FarokhiOstad and Ali Reza Janfada
Department of Mathematics,
Faculty of Mathematics and Statistics Sciences,
University of Birjand, Birjand,
Iran.
Email: j.farokhi@birjand.ac.ir
ajanfada@birjand.ac.ir
Abstract:
In this paper, for the class of the modular operators on Hilbert C^{*}modules, we give the conditions to closedness of their ranges. Also, the equivalence conditions for the closedness of the range of the modular projections on Hilbert C^{*}modules are discussed. Moreover, the mixed reverse order law for the MoorePenrose invertible modular operators are given.
Paper's Title:
Relations Between Differentiability And Onesided Differentiability
Author(s):
Q. D. Gjonbalaj, V. R. Hamiti and L. Gjoka
Department of Mathematics, Faculty of
Electrical and Computer Engineering,
University of Prishtina "Hasan Prishtina",
Prishtine 10000, Kosova.
Email: qefsere.gjonbalaj@unipr.edu
{Department of Mathematics, Faculty of
Electrical and Computer Engineering,
University of Prishtina "Hasan Prishtina",
Prishtine 10000, Kosova.
Email: valdete.rexhebeqaj@unipr.edu
Department of Mathematical Engineering,
Polytechnic University of Tirana, Tirana,
Albania
Email: luigjgjoka@ymail.com
Abstract:
In this paper, we attempt to approach to the problem of connection between differentiation and oneside differentiation in a more simple and explicit way than in existing math literature. By replacing the condition of differentiation with onesided differentiation, more precisely with righthand differentiation, we give the generalization of a theorem having to do with Lebesgue’s integration of derivative of a function. Next, based on this generalized result it is proven that if a continuous function has bounded righthand derivative, then this function is almost everywhere differentiable, which implies that the set of points where the function is not differentiable has measure zero.
Paper's Title:
The Influence of Fluid Pressure in Macromechanical Cochlear Model
Author(s):
F. E. Aboulkhouatem^{1}, F. Kouilily^{1}, N. Achtaich^{1}, N. Yousfi^{1} and M. El Khasmi^{2}
^{1}Department
of Mathematics and Computer Science, Faculty of Sciences
Ben M'sik, Hassan II University, Casablanca,
Morocco.
^{2}Department
of Biology, Faculty of Sciences
Ben M'sik, Hassan II University, Casablanca,
Morocco.
Email:
fatiaboulkhouatem@gemail.com
URL: http://www.fsb.univh2c.ma/
Abstract:
An increase of pressure in the structure of cochlea may cause a hearing loss. In this paper, we established the relationship between the fluid pressure and the amplitude of displacement of Basilar Membrane to clarify the mechanisms of hearing loss caused by increasing of this pressure. So, a mathematical cochlear model was formulated using finite difference method in order to explain and demonstrate this malfunction in passive model. Numerical simulations may be considered as helpful tools which may extend and complete the understanding of a cochlea dysfunction.
Paper's Title:
Some Convergence Results for JungckAm Iterative Process In Hyperbolic Spaces
Author(s):
Akindele Adebayo Mebawondu and Oluwatosin Temitope Mewomo
School of Mathematics, Statistics and Computer Science,
University of KwaZuluNatal, Durban,
South Africa.
Email:
216028272@stu.ukzn.ac.za,
mewomoo@ukzn.ac.za
Abstract:
In this paper, we introduce a new three steps iterative process called JungckAM iterative process and show that the proposed iterative process can be used to approximate fixed points of Jungckcontractive type mappings and JungckSuzuki type mappings. In addition, we establish some strong and Δconvergence results for the approximation of fixed points of JungckSuzuki type mappings in the frame work of uniformly convex hyperbolic space. Furthermore, we show that the newly proposed iterative process has a better rate of convergence compare to the JungckNoor, JungckSP, JungckCR and some existing iterative processes in the literature. Finally, stability, data dependency results for JungckAM iterative process is established and we present an analytical proof and numerical examples to validate our claim.
Paper's Title:
Applications of Von Neumann Algebras to Rigidity Problems of (2Step) Riemannian (Nil)Manifolds
Author(s):
Atefeh HasanZadeh and HamidReza Fanai
DFouman Faculty of Engineering,
College of Engineering, University of Tehran,
Iran.
Email: hasanzadeh.a@ut.ac.ir
Department of Mathematical Sciences,
Sharif University of Technology,
Iran
Email: fanai@sharif.edu
Abstract:
In this paper, basic notions of von Neumann algebra and its direct analogues in the realm of groupoids and measure spaces have been considered. By recovering the action of a locally compact Lie group from a crossed product of a von Neumann algebra, other proof of one of a geometric propositions of O'Neil and an extension of it has been proposed. Also, using the advanced exploration of nilmanifolds in measure spaces and their corresponding automorphisms (Lie algebraic derivations) a different proof of an analytic theorem of Gordon and Mao has been attained. These two propositions are of the most important ones for rigidity problems of Riemannian manifolds especially 2step nilmanifolds.
Paper's Title:
On Ruled Surfaces According to QuasiFrame in Euclidean 3Space
Author(s):
M. Khalifa Saad and R. A. AbdelBaky
Department of Mathematics, Faculty of
Science,
Islamic University of Madinah,
KSA.
Department of Mathematics, Faculty of Science,
Sohag University, Sohag,
EGYPT.
Email:
mohamed_khalifa77@science.sohag.edu.eg,
mohammed.khalifa@iu.edu.sa
Department of Mathematics, Faculty of
Science,
Assiut University, Assiut,
EGYPT.
Email: rbaky@live.com
Abstract:
This paper aims to study the skew ruled surfaces by using the quasiframe of Smarandache curves in the Euclidean 3space. Also, we reveal the relationship between SerretFrenet and quasiframes and give a parametric representation of a directional ruled surface using the quasiframe. Besides, some comparative examples are given and plotted which support our method and main results.
Paper's Title:
Solving NonAutonomous Nonlinear Systems of Ordinary Differential Equations Using MultiStage Differential Transform Method
Author(s):
K. A. Ahmad, Z. Zainuddin, F. A. Abdullah
School of Mathematical Sciences
Universiti Sains Malaysia
11800 USM Penang
Malaysia.
Email: abumohmmadkh@hotmail.com
zarita@usm.my
farahaini@usm.my
Abstract:
Differential equations are basic tools to describe a wide variety of phenomena in nature such as, electrostatics, physics, chemistry, economics, etc. In this paper, a technique is developed to solve nonlinear and linear systems of ordinary differential equations based on the standard Differential Transform Method (DTM) and Multistage Differential Transform Method (MsDTM). Comparative numerical results that we are obtained by MsDTM and RungeKutta method are proposed. The numerical results showed that the MsDTM gives more accurate approximation as compared to the RungeKutta numerical method for the solutions of nonlinear and linear systems of ordinary differential equations
Paper's Title:
Optimal Control Analysis of HIV/AIDS Epidemic Model with an Antiretroviral Treatment
Author(s):
U. Habibah and R. A. Sari
Mathematics Department and Reseach Group
of Biomathematics,
Faculty of Mathematics and Natural Science,
Brawijaya University, Jl. Veteran Malang 65145,
Indonesia.
Email: ummu_habibah@ub.ac.id
Abstract:
A mathematical model of HIV/AIDS is governed by a system of ordinary differential equations in the presence of an antiretroviral treatment (ARV). The theory of optimal control is applied to an epidemic model of HIV/AIDS which an ARV is used as a control strategy in order to prevent the spread of HIV/AIDS. The optimality system is derived by applying the Pontryagin's Minimum Principle. We analyze the boundedness and positivity of solutions, and an existence of the optimal control. Numerical simulations are conducted to obtain numerical solution of the optimally system.
Paper's Title:
Inequalities of Gamma Function Appearing in Generalizing Probability Sampling Design
Author(s):
Mohammadkheer M. AlJararha And Jehad M. AlJararha
Department of Mathematics,
Yarmouk University,
Irbid 21163,
Jordan.
Email: mohammad.ja@yu.edu.jo
Department of Statistics,
Yarmouk University,
Irbid 21163,
Jordan.
Email: jehad@yu.edu.jo
Abstract:
In this paper, we investigate the complete monotonicity of some functions involving gamma function. Using the monotonic properties of these functions, we derived some inequalities involving gamma and beta functions. Such inequalities can be used to generalize different probability distribution functions. Also, they can be used to generalize some statistical designs, e.g., the probability proportional to the size without replacement design.
Paper's Title:
Analytical and Numerical Solutions of the Inhomogenous Wave Equation
Author(s):
T. Matsuura and S. Saitoh
Department of Mechanical Engineering, Faculty of Engineering,
Gunma University, Kiryu 3768515, Japan
matsuura@me.gunmau.ac.jp
Department of Mathematics, Faculty of Engineering,
Gunma University, Kiryu 3768515, Japan
ssaitoh@math.sci.gunmau.ac.jp
Abstract:
In this paper, by a new concept and method we give approximate solutions of the inhomogenous wave equation on multidimensional spaces. Numerical experiments are conducted as well.
Paper's Title:
Norm Estimates for the Difference between Bochner’s Integral and the Convex Combination of Function’s Values
Author(s):
P. Cerone, Y.J. Cho, S.S. Dragomir, J.K. Kim, and S.S. Kim
School of
Computer Science and Mathematics,
Victoria University of Technology,
Po Box 14428, Mcmc 8001, Victoria, Australia.
pietro.cerone@vu.edu.au
URL:
http://rgmia.vu.edu.au/cerone/index.html
Department of
Mathematics Education, College of Education,
Gyeongsang National University, Chinju 660701, Korea
yjcho@nongae.gsnu.ac.kr
School of
Computer Science and Mathematics,
Victoria University of Technology,
Po Box 14428, Mcmc 8001, Victoria, Australia.
sever.dragomir@vu.edu.au
URL:
http://rgmia.vu.edu.au/SSDragomirWeb.html
Department of
Mathematics, Kyungnam University,
Masan,, Kyungnam 631701, Korea
jongkyuk@kyungnam.ac.kr
Department of
Mathematics, Dongeui University,
Pusan 614714, Korea
sskim@dongeui.ac.kr
Abstract:
Norm estimates are developed between the Bochner integral of a vectorvalued function in Banach spaces having the RadonNikodym property and the convex combination of function values taken on a division of the interval [a, b].
Paper's Title:
Positive Solution For Discrete ThreePoint Boundary Value Problems
Author(s):
WingSum Cheung And Jingli Ren
Department of Mathematics,
The University of Hong Kong,
Pokfulam, Hong Kong
wscheung@hku.hk
Institute of Systems Science,
Chinese Academy of Sciences,
Beijing 100080, P.R. China
renjl@mx.amss.ac.cn
Abstract:
This paper is concerned with the existence of positive solution to the discrete threepoint boundary value problem
_{
},
_{
}
where _{ }, and f is allowed to change sign. By constructing available operators, we shall apply the method of lower solution and the method of topology degree to obtain positive solution of the above problem for _{ } on a suitable interval. The associated Green’s function is first given.
Paper's Title:
Error estimates for aproximations of the Fourier transform of functions in Lp spaces
Author(s):
A. Aglic Aljinovic and J. Pecaric
Department of Applied Mathematics,
Faculty of Electrical Engineering and Computing,
University Of Zagreb, Unska 3, 10 000 Zagreb,
Croatia
andrea@zpm.fer.hr
Faculty of Textile Technology,
University of Zagreb, Pierottijeva 6, 10000 Zagreb,
Croatia
pecaric@hazu.hr
Abstract:
New inequalities concerning the Fourier transform are given. Estimates of the difference between two Fourier transforms and even bounds to the associated numerical quadrature formulae are provided as well.
Paper's Title:
New Proofs of the Grüss Inequality
Author(s):
A.Mc.D. Mercer and Peter R. Mercer
Dept. Mathematics and Statistics,
University of Guelph, Guelph, Ontario,
Canada.
amercer@reach.net
Dept. Mathematics,
S.U.N.Y. College at Buffalo, Buffalo, NY,
U.S.A.
mercerpr@math.buffalostate.edu
Abstract:
We present new proofs of the Grüss inequality in its original form and in its linear functional form.
Paper's Title:
Generalizations of two theorems on absolute summability methods
Author(s):
H.S. Özarslan and H.N. Öğdük
Department of Mathematics,
Erciyes University, 38039 Kayseri,
Turkey
seyhan@erciyes.edu.tr
nogduk@erciyes.edu.tr
URL:
http://fef.erciyes.edu.tr/math/hikmet.htm
Abstract:
In this paper two theorems on _{} summability methods, which generalize two theorems of Bor on _{} summability methods, have been proved.
Paper's Title:
New Coincidence and Fixed Point Theorems for Strictly Contractive Hybrid Maps
Author(s):
S. L. Singh and Amal M. Hashim
21, Govind Nagar, Rishikesh 249201,
Ua, India
vedicmri@sancharnet.in
Dept. of Math., College of Science,
Univ. of Basarah,
Iraq.
Abstract:
The purpose of this paper is to study the (EA)property and noncompatible maps of a hybrid pair of singlevalued and multivalued maps in fixed point considerations. Such maps have the remarkable property that they need not be continuous at their common fixed points. We use this property to obtain some coincidence and fixed point theorems for strictly contractive hybrid maps without using their continuity and completeness or compactness of the space.
Paper's Title:
Quantitative Estimates for Positive Linear Operators Obtained by Means of Piecewise Linear Functions
Author(s):
Vasile Mihesan
Technical University of ClujNapoca,
Department of Mathematics,
Str. C. Daicoviciu 15,
ClujNapoca,
Romania
Vasile.Mihesan@math.utcluj.ro
Abstract:
In this paper we obtain estimates for the remainder in approximating continuous functions by positive linear operators, using piecewise linear functions.
Paper's Title:
Classes of Meromorphic pvalent Parabolic Starlike Functions with Positive Coefficients
Author(s):
S. Sivaprasad Kumar, V. Ravichandran, and G. Murugusundaramoorthy
Department of Applied Mathematics
Delhi College of Engineering,
Delhi 110042, India
sivpk71@yahoo.com
School of Mathematical Sciences
Universiti Sains Malaysia
11800 USM Penang
Malaysia
vravi@cs.usm.my
URL: http://cs.usm.my/~vravi
Department of Mathematics
Vellore Institute of Technology (Deemed University)
Vellore 632 014, India
gmsmoorthy@yahoo.com
Abstract:
In the present paper, we consider two general subclasses of meromorphic pvalent starlike functions with positive coefficients and obtain a necessary and sufficient condition for functions to be in these classes. Also we obtain certain other related results as a consequences of our main results.
Paper's Title:
Boundedness for VectorValued Multilinear Singular Integral Operators on TriebelLizorkin Spaces
Author(s):
Liu Lanzhe
College of Mathematics
Changsha University of Science and Technology,
Changsha 410077,
P.R. of China.
lanzheliu@263.net
Abstract:
In this paper, the boundedness for some vectorvalued multilinear operators associated to certain fractional singular integral operators on TriebelLizorkin space are obtained. The operators include CalderónZygmund singular integral operator and fractional integral operator.
Paper's Title:
A relation between nuclear cones and full nuclear cones
Author(s):
G. Isac and A. B. Nemeth
Department of Mathematics,
Royal Military College of Canada,
P. O. Box 17000 STN Forces Kingston, Ontario,
Canada K7K 7B4.
isacg@rmc.ca
Faculty of Mathematics and Computer Science,
BabesBolyai University,
3400 ClujNapoca,
Romania.
nemab@math.ubbcluj.ro
Abstract:
The notion of nuclear cone in locally convex spaces corresponds to the notion of well based cone in normed spaces. Using the bipolar theorem from locally convex spaces it is proved that every closed nuclear cone is a full nuclear cone. Thus every closed nuclear cone can be associated to a mapping from a family of continuous seminorms in the space to the topological dual of the space. The relation with Pareto efficiency is discussed.
Paper's Title:
Parameter dependence of the solution of second order nonlinear ODE's via Perov's fixed point theorem
Author(s):
A. M. Bica, S. Muresan and G. Grebenisan
University of Oradea,
Str. Armatei Romane no.5, 410087,
Oradea, Romania.
smbica@yahoo.com
smuresan@uoradea.ro
grebe@uoradea.ro
Abstract:
Using the Perov's fixed point theorem, the smooth dependence by parameter of the solution of a two point boundary value problem corresponding to nonlinear second order ODE's is obtained.
Paper's Title:
Oscillations of First Order Linear Delay Difference Equations
Author(s):
G. E. Chatzarakis and I. P. Stavroulakis
Department of Mathematics, University of Ioannina,
451 10, Greece
ipstav@cc.uoi.gr
Abstract:
Consider the first order linear delay difference equation of the form _{} _{} where _{} is a sequence of nonnegative real numbers, k is a positive integer and _{} denotes the forward difference operator _{} New oscillation criteria are established when the wellknown oscillation conditions _{} and _{} are not satisfied. The results obtained essentially improve known results in the literature.
Paper's Title:
A Reverse of the Triangle Inequality in Inner Product Spaces and Applications for Polynomials
Author(s):
I. Brnetić, S. S. Dragomir, R. Hoxha and J. Pečarić
Department of Applied Mathematics, Faculty of Electrical
Engineering and Computing,
University of Zagreb, Unska 3, 10 000 Zagreb,
Croatia
andrea@zpm.fer.hr
School of Computer Science & Mathematics, Victoria University
Po Box 14428, Melbourne Vic 8001
Australia
sever.dragomir@vu.edu.au
URL:http://rgmia.vu.edu.au/dragomir
Faculty of Applied Technical Sciences, University of Prishtina,
Mother
Theresa 5, 38 000 Prishtina
Kosova
razimhoxha@yahoo.com
Faculty of Textile Technology, University of Zagreb,
Pierottijeva 6, 10000
Zagreb,
Croatia
pecaric@hazu.hr
Abstract:
A reverse of the triangle inequality in inner product spaces related to the celebrated DiazMetcalf inequality with applications for complex polynomials is given.
Paper's Title:
On Vector Variational Inequality Problem in Terms of Bifunctions
Author(s):
C. S. Lalitha and Monika Mehta
Department of Mathematics, Rajdhani College,
University of Delhi, Raja Garden,
Delhi 110015, India
cslalitha@rediffmail.com
Department of Mathematics, Satyawati College,
University Of Delhi, Ashok Vihar,
PhaseIII, Delhi 110052, India
mridul_in@yahoo.com
Abstract:
In this paper, we consider a generalized vector variational inequality problem expressed in terms of a bifunction and establish existence theorems for this problem by using the concepts of cone convexity and cone strong quasiconvexity and employing the celebrated Fan's Lemma. We also give two types of gap functions for this problem.
Paper's Title:
Algebraic Approach to the Fractional Derivatives
Author(s):
Kostadin Trenčevski and Živorad Tomovski
Institute of Mathematics,
St. Cyril and Methodius University,
P.O. Box 162, 1000 Skopje,
Macedonia
kostatre@iunona.pmf.ukim.edu.mk
tomovski@iunona.pmf.ukim.edu.mk
URL:http://www.pmf.ukim.edu.mk
Abstract:
In this paper we introduce an alternative definition of the fractional derivatives and also a characteristic class of so called ideal functions, which admit arbitrary fractional derivatives (also integrals). Further some ideal functions are found, which lead to representations of the Bernoulli and Euler numbers B_{k} and E_{k} for any real number k, via fractional derivatives of some functions at x=0.
Paper's Title:
A Stability of the Gtype Functional Equation
Author(s):
Gwang Hui Kim
Department of Mathematics, Kangnam University
Suwon 449702, Korea.
ghkim@kangnam.ac.kr
Abstract:
We will investigate the stability in the sense of Găvruţă for the Gtype functional equation f(φ(x))=Γ(x)f(x)+ψ(x) and the stability in the sense of Ger for the functional equation of the form f(φ(x))=Γ(x)f(x). As a consequence, we obtain a stability results for Gfunction equation.
Paper's Title:
Numerical Studies on Dynamical Systems Method for Solving Illposed Problems with Noise
Author(s):
N. H. Sweilam and A. M. Nagy
Mathematics Department, Faculty of Science,
Cairo University,
Giza, Egypt.
n_sweilam@yahoo.com
Mathematics Department, Faculty of Science,
Benha University,
Benha, Egypt.
abdelhameed_nagy@yahoo.com
Abstract:
In this paper, we apply the dynamical systems method proposed by A. G. RAMM, and the the variational regularization method to obtain numerical solution to some illposed problems with noise. The results obtained are compared to exact solutions. It is found that the dynamical systems method is preferable because it is easier to apply, highly stable, robust, and it always converges to the solution even for large size models.
Paper's Title:
Komatu Integral Transforms of Analytic Functions Subordinate to Convex Functions
Author(s):
T. N. Shanmugam and C. Ramachandran
Department of Mathematics, College of Engineering,
Anna University, Chennai600 025, Tamilnadu,
India
shan@annauniv.edu
Department of Mathematics, College of Engineering,
Anna University, Chennai600 025, Tamilnadu,
India
crjsp2004@yahoo.com
Abstract:
In this paper, we consider the class A of the functions f(z) of the form
which are analytic in an open disk
and study certain subclass of the class A, for which
has some property. Certain inclusion and the closure properties like convolution with convex univalent function etc. are studied.
Paper's Title:
Necessary and Sufficient Conditions for Uniform Convergence and Boundedness of a General Class of Sine Series
Author(s):
Laszlo Leindler
Bolyai Institute, University of Szeged,
Aradi Vértanúk tere 1,
H6720 Szeged,
Hungary.
leindler@math.uszeged.hu
Abstract:
For all we know theorems pertaining to sine series with coefficients from the class γGBVS give only sufficient conditions. Therefore we define a subclass of γGBVS in order to produce necessary and sufficient conditions for the uniform convergence and boundedness if the coefficients of the sine series belong to this subclass; and prove two theorems of this type.
Paper's Title:
On an Integral Inequality of the HardyType
Author(s):
C. O. Imoru and A. G. AdeagboSheikh
Department of Mathematics
Obafemi Awolowo University, IleIfe, Nigeria.
cimoru@oauife.edu.ng
asheikh@oauife.edu.ng
Abstract:
In this paper, we obtain an integral inequality which extends Shum's and Imoru's generalization of Hardy's Inequality. Our main tool is Imoru's adaptation of Jensen's Inequality for convex functions.
Paper's Title:
Oscillation and Boundedness of Solutions to First and Second Order Forced Dynamic Equations with Mixed Nonlinearities
Author(s):
Ravi P. Agarwal and Martin Bohner
Department of Mathematical Sciences, Florida Institute of Technology
Melbourne, FL 32901,
U.S.A.
bohner@mst.edu
URL:http://web.mst.edu/~bohner
Department of Economics and Finance, Missouri University of Science and Technology
Rolla, MO 65401,
U.S.A.
agarwal@fit.edu
Abstract:
Some oscillation and boundedness criteria for solutions to certain first and second order forced dynamic equations with mixed nonlinearities are established. The main tool in the proofs is an inequality due to Hardy, Littlewood and Pólya. The obtained results can be applied to differential equations, difference equations and qdifference equations. The results are illustrated with numerous examples.
Paper's Title:
The Invariant Subspace Problem for Linear Relations on Hilbert Spaces
Author(s):
Daniel GrixtiCheng
Department of Mathematics and Statistics,
The University of Melbourne,
Melbourne, VIC, 3010
Australia.
D.Grixti@ms.unimelb.edu.au
Abstract:
We consider the invariant subspace problem for linear relations on Hilbert spaces with the aim of promoting interest in the problem as viewed from the theory of linear relations. We present an equivalence between the single valued and multivalued invariant subspace problems and give some new theorems pertaining to the invariant subspace problem for linear relations on a Hilbert space.
Paper's Title:
On Stable Numerical Differentiation
Author(s):
N. S. Hoang and A. G. Ramm
Mathematics Department, Kansas State University
Manhattan, KS 665062602,
U. S. A.
nguyenhs@math.ksu.edu
ramm@math.ksu.edu
URL:http://math.ksu.edu/~ramm
Abstract:
Based on a regularized Volterra equation, two different approaches for numerical differentiation are considered. The first approach consists of solving a regularized Volterra equation while the second approach is based on solving a disretized version of the regularized Volterra equation. Numerical experiments show that these methods are efficient and compete favorably with the variational regularization method for stable calculating the derivatives of noisy functions.
Paper's Title:
The Bernoulli Inequality in Uniformly Complete falgebras with Identity
Author(s):
Adel Toumi and Mohamed Ali Toumi
Laboratoire de Physique des Liquides Critiques, Département de Physique, Faculté des Sciences de Bizerte,
7021, Zarzouna, Bizerte, TUNISIA
Adel.Toumi@fst.rnu.tn
Département de Mathématiques, Faculté des Sciences de Bizerte, 7021, Zarzouna,
Bizerte, TUNISIA
MohamedAli.Toumi@fsb.rnu.tn
Abstract:
The main purpose of this paper is to establish with a constructive proof the Bernoulli inequality: let A be a uniformly complete falgebra with e as unit element, let 1<p<∞, then
(e+a)^{p}≥e+pa
for all a∈A_{+}. As an application we prove the Hölder inequality for positive linear functionals on a uniformly complete falgebra with identity by using the Minkowski inequality.
Paper's Title:
Error Inequalities for Weighted Integration Formulae and Applications
Author(s):
Nenad Ujević and Ivan Lekić
Department of Mathematics
University of Split
Teslina 12/III, 21000 Split
CROATIA.
ujevic@pmfst.hr
ivalek@pmfst.hr
Abstract:
Weighted integration formulae are derived. Error inequalities for the weighted integration formulae are obtained. Applications to some special functions are also given.
Paper's Title:
The εSmall Ball Drop Property
Author(s):
C. Donnini and A. Martellotti
Dipartimento
di Statistica e Matematica per la Ricerca Economica,
Universitŕ degli Studi di Napoli "Parthenope",
Via Medina, 80133 Napoli,
Italy
chiara.donnini@uniarthenope.it
{Dipartimento di Matematica e Informatica,
Universitŕ degli Studi di Perugia,
Via Pascoli  06123 Perugia,
Italy.
amart@dipmat.unipg.it
URL:
www.dipmat.unipg.it/~amart/
Abstract:
We continue the investigation on classes of small sets in a Banach space that give alternative formulations of the Drop Property. The small sets here considered are the set having the small ball property, and we show that for sets having nonempty intrinsic core and whose affine hull contains a closed affine space of infinite dimension the Drop Property can be equivalently formulated in terms of the small ball property.
Paper's Title:
Stability of a Mixed Additive, Quadratic and Cubic Functional Equation In QuasiBanach Spaces
Author(s):
A. Najati and F. Moradlou
Department of Mathematics, Faculty of Sciences,
University of Mohaghegh Ardabili, Ardabil,
Iran
a.nejati@yahoo.com
Faculty of Mathematical Sciences,
University of Tabriz, Tabriz,
Iran
moradlou@tabrizu.ac.ir
Abstract:
In this paper we establish the general solution of a mixed additive, quadratic and cubic functional equation and investigate the HyersUlamRassias stability of this equation in quasiBanach spaces. The concept of HyersUlamRassias stability originated from Th. M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297300.
Paper's Title:
A Fixed Point Approach to
the Stability of the Equation
Author(s):
SoonMo Jung
Mathematics Section, College of Science and Technology
HongIk
University, 339701 Chochiwon
Republic of Korea.
smjung@hongik.ac.kr
Abstract:
We will apply a fixed point method for proving the HyersUlam stability of the functional equation .
Paper's Title:
Purely Unrectifiable Sets with Large Projections
Author(s):
Harold R. Parks
Department of Mathematics,
Oregon State University,
Corvallis, Oregon 973314605,
USA
parks@math.oregonstate.edu
URL: http://www.math.oregonstate.edu/people/view/parks/
Abstract:
For n≥2, we give a construction of a compact subset of that is dispersed enough that it is purely unrectifiable, but that nonetheless has an orthogonal projection that hits every point of an (n1)dimensional unit cube. Moreover, this subset has the additional surprising property that the orthogonal projection onto any straight line in is a set of positive 1dimensional Hausdorff measure.
Paper's Title:
HyersUlamRassias Stability of a Generalized Jensen Functional Equation
Author(s):
A. Charifi, B. Bouikhalene, E. Elqorachi and A. Redouani
Department of
Mathematics, Faculty of Sciences,
Ibn Tofail University,
Kenitra, Morocco
charifi2000@yahoo.fr
bbouikhalene@yahoo.fr
Department of
Mathematics, Faculty of Sciences,
Ibn Zohr University,
Agadir, Morocco
elqorachi@hotmail.com
Redouaniahmed@yahoo.fr
Abstract:
In this paper we obtain the HyersUlamRassias stability for the generalized Jensen's functional equation in abelian group (G,+). Furthermore we discuss the case where G is amenable and we give a note on the HyersUlamstability of the Kspherical (n × n)matrix functional equation.
Paper's Title:
Two Remarks on Commutators of Hardy Operator
Author(s):
Yasuo KomoriFuruya
School of High Technology for Human Welfare
Tokai University
317 Nishino Numazu, Shizuoka 4100395 Japan
komori@wing.ncc.utokai.ac.jp
Abstract:
Fu and Lu showed that
the commutator of multiplication operator by b and
the ndimensional Hardy operator
is bounded on L^{p} if b is in some CMO space.
We shall prove the converse of this theorem
and also prove that their result is optimal by giving a counterexample
Paper's Title:
Maximal Inequalities for Multidimensionally Indexed Demimartingales and the HájekRényi Inequality for Associated Random Variables
Author(s):
Tasos C. Christofides and Milto Hadjikyriakou
Department of Mathematics and Statistics
University of Cyprus
P.O.Box 20537, Nicosia 1678, Cyprus
tasos@ucy.ac.cy
miltwh@gmail.com
Abstract:
Demimartingales and demisubmartingales introduced by
Newman and
Wright (1982) generalize the notion of martingales and
submartingales respectively. In this paper we define
multidimensionally indexed demimartingales and demisubmartingales
and prove a maximal inequality for this general class of random
variables. As a corollary we obtain a HájekRényi inequality
for multidimensionally indexed associated random variables, the bound of which,
when reduced to the case of single index, is sharper than the bounds already
known in the literature.
Paper's Title:
The Best Upper Bound for Jensen's Inequality
Author(s):
Vasile Cirtoaje
Department of Automatic Control and Computers
University of Ploiesti
Romania.
Abstract:
In this paper we give the best upper bound for the weighted Jensen's discrete inequality applied to a convex function f defined on a closed interval I in the case when the bound depends on f, I and weights. In addition, we give a simpler expression of the upper bound, which is better than existing similar one.
Paper's Title:
A New Method for Comparing Closed Intervals
Author(s):
Ibraheem Alolyan
Department of Mathematics, College of Sciences,
King Saud University, P. O. Box 2455, Riyadh 11451,
Saudi Arabia
ialolyan@ksu.edu.sa
URL:http://faculty.ksu.edu.sa/ALolyan
Abstract:
The usual ordering ``≤" on R is a total ordering, that is, for any two real numbers in R, we can determine their order without difficulty. However, for any two closed intervals in R, there is not a natural ordering among the set of all closed intervals in R. Several methods have been developed to compare two intervals. In this paper, we define the μordering which is a new method for ordering closed intervals.
Paper's Title:
An L^{p} Inequality for `SelfReciprocal' Polynomials. II
Author(s):
M. A. Qazi
Department of Mathematics,
Tuskegee University,
Tuskegee, Alabama 36088
U.S.A.
Abstract:
The main result of this paper is a sharp integral mean inequality for the derivative of a `selfreciprocal' polynomial.
Paper's Title:
Bounds for Two Mappings Associated to the HermiteHadamard Inequality
Author(s):
S. S. Dragomir^{1,2} and I. Gomm^{1}
^{1}Mathematics, School of Engineering & Science,
Victoria University,
PO Box 14428,
Melbourne City, MC 8001,
Australia.
^{2}School of Computational & Applied Mathematics,
University of
the Witwatersrand,
Private Bag 3, Johannesburg 2050,
South Africa.
sever.dragomir@vu.edu.au
ian.gomm@vu.edu.au
URL: http://rgmia.org/dragomir
Abstract:
Some inequalities concerning two mappings associated to the celebrated HermiteHadamard integral inequality for convex function with applications for special means are given.
Paper's Title:
Some Inequalities Concerning Derivative and Maximum Modulus of Polynomials
Author(s):
N. K. Govil, A. Liman and W. M. Shah
Department of Mathematics & Statistics,
Auburn University, Auburn,
Alabama 368495310,
U.S.A
Department of Mathematics,
National Institute of Technology,
Srinagar, Kashmir,
India  190006
Department of Mathematics,
Kashmir University,
Srinagar, Kashmir,
India  190006
govilnk@auburn.edu
abliman22@yahoo.com
wmshah@rediffmail.com
Abstract:
In this paper, we prove some compact generalizations of some wellknown Bernstein type inequalities concerning the maximum modulus of a polynomial and its derivative in terms of maximum modulus of a polynomial on the unit circle. Besides, an inequality for selfinversive polynomials has also been obtained, which in particular gives some known inequalities for this class of polynomials. All the inequalities obtained are sharp.
Paper's Title:
On the Three Variable Reciprocity Theorem and Its Applications
Author(s):
D. D. Somashekara and D. Mamta
Department of Studies in Mathematics,
University of Mysore,
Manasagangotri, Mysore570 006
India
dsomashekara@yahoo.com
Department of Mathematics,
The National Institute of Engineering,
Mysore570 008,
India
mathsmamta@yahoo.com
Abstract:
In this paper we show how the three variable reciprocity theorem can be easily derived from the well known two variable reciprocity theorem of Ramanujan by parameter augmentation. Further we derive some qgamma, qbeta and etafunction identities from the three variable reciprocity theorem.
Paper's Title:
Harmonic Functions with Positive Real Part
Author(s):
Sďbel Yalçin
Uludag Universitesi,
Fen Edebiyat Fakultesi, Matematik Bolumu,
16059 Bursa,
Turkey
Abstract:
In this paper, the class of harmonic functions f=h+{g} with positive real part and normalized by f(ζ )=1, (ζ<1) is studied, where h and g are analytic in U={z:z<1}. Some properties of this class are searched. Sharp coefficient relations are given for functions in this class. On the other hand, the author make use of Alexander integral transforms of certain analytic functions (which are starlike with respect to f(ζ)) with a view to investigating the construction of sense preserving, univalent and close to convex harmonic functions.
Paper's Title:
Certain Coefficient Estimates for Biunivalent Sakaguchi Type Functions
Author(s):
B. Srutha Keerthi, S. Chinthamani
Department of Applied Mathematics,
Sri Venkateswara College of Engineering,
Sriperumbudur, Chennai  602105,
India
Abstract:
Estimates on the initial coefficients are obtained for normalized analytic functions f in the open unit disk with f and its inverse g = f^{1} satisfying the conditions that zf'(z) / f(z) and zg'(z) / g(z) are both subordinate to a starlike univalent function whose range is symmetric with respect to the real axis. Several related classes of functions are also considered, and connections to earlier known results are made.
Paper's Title:
Properties of Certain Multivalent Functions Involving Ruscheweyh Derivatives
Author(s):
NEng Xu and DingGong Yang
Department of Mathematics,
Changshu Institute of Technology,
Changshu, Jiangsu 215500,
China
Abstract:
Let A_{p}(p∈ N) be the class of functions which are analytic in the unit disk. By virtue of the Ruscheweyh derivatives we introduce the new subclasses C_{p}(n,α,β,λ,μ) of A_{p}. Subordination relations, inclusion relations, convolution properties and a sharp coefficient estimate are obtained. We also give a sufficient condition for a function to be in C_{p}(n,α,β,λ,μ)
Paper's Title:
Certain Compact Generalizations of WellKnown Polynomial Inequalities
Author(s):
N. A. Rather and Suhail Gulzar
Department of Mathematics,
University of Kashmir, Hazratbal Srinagar190006,
India.
Abstract:
In this paper, certain sharp compact generalizations of wellknown Bernstientype inequalities for polynomials, from which a variety of interesting results follow as special cases, are obtained.
Paper's Title:
Uniform Continuity and kConvexity
Author(s):
Adel Afif Abdelkarim
Mathematics Department, Faculty of Science,
J
erash University, Jerash
Jordan.
Abstract:
A closed arcwiseconnected subset A of R^{n} is called kconvex if for each positive number a and for all elements x and y in A there is a positive number b such that if the norm of xy is less than or equal to b then the length of the shortest curve l(x,y) in A is less than k times the norm of xy plus a. We show that a union of two non disjoint closed finite convex subsets need not be kconvex. Let f(x) be a uniformly continuous functions on a finite number of closed subsets A_{1},...,A_{n} of R^{n} such that the union of A_{j},...,A_{n},j=1,...,n1 is kconvex. We show that f is uniformly continuous on the union of the sets A_{i},i=1,...,n. We give counter examples if this condition is not satisfied. As a corollary we show that if f(x) is uniformly continuous on each of two closed convex sets A,B then f(x) is uniformly continuous on the union of A and B.
Paper's Title:
Application of Equivalence Method to Classify MongeAmpčre Equations of Elliptic Type
Author(s):
Moheddine Imsatfia
Email: imsatfia@math.jussieu.fr
Abstract:
In this paper, we apply Cartan's equivalence method to give a local classification of MongeAmpčre equations of elliptic type. Then we find a necessary and sufficient conditions such that a MongeAmpčre equation is either contactomorphic to the Laplace equation or to an EulerLagrange equation.
Paper's Title:
On the Regularization of Hammerstein's type Operator Equations
Author(s):
E. Prempeh, I. OwusuMensah and K. PiesieFrimpong
Department of Mathematics,
KNUST, Kumasi
Ghana.
Department of Science Education,
University of Education,
Winneba
Department of Mathematics,
Presbyterian University College, Abetifi,
Ghana
Email: isaacowusumensah@gmail.com
Email: eprempeh.cos@knust.edu.gh
Email: piesie74@yahoo.com
Abstract:
We have studied Regularization of Hammerstein's Type Operator Equations in general Banach Spaces. In this paper, the results have been employed to establish regularized solutions to Hammerstein's type operator equations in Hilbert spaces by looking at three cases of regularization.
Paper's Title:
Ostrowski Type Fractional Integral Inequalities for Generalized (s,m,φ)preinvex Functions
Author(s):
Artion Kashuri and Rozana Liko
University of Vlora "Ismail Qemali",
Faculty of Technical Science,
Department of Mathematics, 9400,
Albania.
Email:
artionkashuri@gmail.com
Email: rozanaliko86@gmail.com
Abstract:
In the present paper, the notion of generalized (s,m,φ)preinvex function is introduced and some new integral inequalities for the left hand side of GaussJacobi type quadrature formula involving generalized (s,m,φ)preinvex functions along with beta function are given. Moreover, some generalizations of Ostrowski type inequalities for generalized (s,m,φ)preinvex functions via RiemannLiouville fractional integrals are established.
Paper's Title:
HermiteHadamard Type Inequalities for kRiemann Liouville Fractional Integrals Via Two Kinds of Convexity
Author(s):
R. Hussain^{1}, A. Ali^{2}, G. Gulshan^{3}, A. Latif^{4} and K. Rauf^{5}
^{1,2,3,4}Department
of Mathematics,
Mirpur University of Science and Technology, Mirpur.
Pakistan.
Email^{1}:
rashida12@gmail.com
Email^{2}:
unigraz2009@yahoo.com
Email^{3}:
ghazalagulshan@yahoo.com
Email^{4}:
asialatif87@gmail.com
^{5}Department
of Mathematics,
University of Ilorin, Ilorin,
Nigeria.
Email^{5}:
krauf@unilorin.edu.ng
Abstract:
In this article, a fundamental integral identity including the first order derivative of a given function via kRiemannLiouville fractional integral is established. This is used to obtain further HermiteHadamard type inequalities involving leftsided and rightsided kRiemannLiouville fractional integrals for mconvex and (s,m)convex functions respectively.
Paper's Title:
A Generalization of Viete's Infinite Product and New Mean Iterations
Author(s):
Ryo Nishimura
Department of Frontier Materials
Nagoya Institute of Technology
Gokisocho, Showaku, Nagoya
Aichi, 4668555, Japan.
Email: rrnishimura@gmail.com
Abstract:
In this paper, we generalize Viéte's infinite product formula by use of Chebyshev polynomials. Furthermore, the infinite product formula for the lemniscate sine is also generalized. Finally, we obtain new mean iterations by use of these infinite product formulas.
Paper's Title:
A Note on Divergent Fourier Series and λPermutations
Author(s):
A. Castillo, J. Chavez and H. Kim
Tufts University,
Department of Mathematics,
Medford, MA 02155,
USA
Email: angel.castillo@tufts.edu
Texas Tech University,
Department of Mathematics and Statistics,
Lubbock, TX 79409,
USA
Email: josechavez5@my.unt.edu
University of MichiganDearborn,
Department of Mathematics and Statistics,
Dearborn, MI 48128,
USA.
Email: khyejin@umich.edu
Abstract:
We present a continuous function on [π,π] whose Fourier series diverges and it cannot be rearranged to converge by a λpermutation.
Paper's Title:
Generalized Weighted Trapezoid and Grüss Type Inequalities on Time Scales
Author(s):
Eze Raymond Nwaeze
Department of Mathematics,
Tuskegee University,
Tuskegee, AL 36088,
USA.
Email: enwaeze@mytu.tuskegee.edu
Abstract:
In this work, we obtain some new generalized weighted trapezoid and Grüss type inequalities on time scales for parameter functions. Our results give a broader generalization of the results due to Pachpatte in [14]. In addition, the continuous and discrete cases are also considered from which, other results are obtained.
Paper's Title:
A Note on Calderon Operator
Author(s):
Chunping Xie
Department of Mathematics,
Milwaukee School of Engineering,
1025 N. Broadway,
Milwaukee, Wisconsin 53202,
U. S. A.
Email: xie@msoe.edu
URL: http://www.msoe.edu/people/chunping.xie
Abstract:
We have shown that the Calderon operator is bounded on Morrey Spaces on R^{+}. Also under certain conditions on the weight, the Hardy operator, the adjoint Hardy operator, and therefore the Caldern operator are bounded on the weighted Morrey spaces.
Paper's Title:
Euler Series Solutions for Linear Integral Equations
Author(s):
Mostefa Nadir and Mustapha Dilmi
Department of Mathematics,
University of Msila 28000,
ALGERIA.
Email: mostefanadir@yahoo.fr
Email: dilmiistapha@yahoo.fr
Abstract:
In this work, we seek the approximate solution of linear integral equations by truncation Euler series approximation. After substituting the Euler expansions for the given functions of the equation and the unknown one, the equation reduces to a linear system, the solution of this latter gives the Euler coefficients and thereafter the solution of the equation. The convergence and the error analysis of this method are discussed. Finally, we compare our numerical results by others.
Paper's Title:
Coefficient Estimates for Certain Subclasses of Biunivalent Sakaguchi Type Functions by using Faber Polynomial
Author(s):
P. Murugabharathi, B. Srutha Keerthi
Mathematics Division,
School of Advanced Sciences,
VIT Chennai, Vandaloor, Kelambakkam Road,
Chennai  600 127, India.
Email: bharathi.muhi@gmail.com
Email: sruthilaya06@yahoo.co.in
Abstract:
In this work, considering a general subclass of biunivalent Sakaguchi type functions, we determine estimates for the general TaylorMaclaurin coefficients of the functions in these classes. For this purpose, we use the Faber polynomial expansions. In certain cases, our estimates improve some of those existing coefficient bounds.
Paper's Title:
BirkhoffJames orthogonality and Best Approximant in L_{1}(X)
Author(s):
Mecheri Hacene and Rebiai Belgacem
Department of Mathematics and
Informatics,
LAMIS laboratory, University of Tebessa,
Algeria.
Email: mecherih2000@yahoo.fr
Department of Mathematics and
Informatics,
LAMIS laboratory, University of Tebessa,
Algeria.
Email: brebiai@gmail.com
Abstract:
Let X be a complex Banach space and let (X,ρ) be a positive measure space. The BirkhoffJames orthogonality is a generalization of Hilbert space orthogonality to Banach spaces. We use this notion of orthogonality to establish a new characterization of BirkhoffJames orthogonality of bounded linear operators in L_{1}(X,ρ) also implies best approximation has been proved.
Paper's Title:
Invariant Subspaces Close to Almost Invariant Subspaces for Bounded Linear Operators
Author(s):
M. A. Farzaneh, A. Assadi and H. M. Mohammadinejad
Department of Mathematical and
Statistical Sciences,
University of Birjand,
PO Box 97175/615, Birjand,
Iran.
Email: farzaneh@birjand.ac.ir
Department of Mathematical and
Statistical Sciences,
University of Birjand,
PO Box 97175/615, Birjand,
Iran.
Email: assadiaman@birjand.ac.ir
Department of Mathematical and
Statistical Sciences,
University of Birjand,
PO Box 97175/615, Birjand,
Iran.
Email: hmohammadin@birjand.ac.ir
Abstract:
In this paper, we consider some features of almost invariant subspace notion. At first, we restate the notion of almost invariant subspace and obtain some results. Then we try to achieve an invariant subspace completely close to an almost invariant subspace. Also, we introduce the notion of "almost equivalent subspaces" to simply the subject related to almost invariant subspaces and apply it.
Paper's Title:
The Conservativeness of Girsanov Transformed for Symmetric Jumpdiffusion Process
Author(s):
Mila Kurniawaty and Marjono
Department of Mathematics,
Universitas Brawijaya,
Malang,
Indonesia.
Email: mila_n12@ub.ac.id,
marjono@ub.ac.id
Abstract:
We study about the Girsanov transformed for symmetric Markov processes with jumps associated with regular Dirichlet form. We prove the conservativeness of it by dividing the regular Dirichlet form into the "small jump" part and the "big jump" part.
Paper's Title:
A kind of Function Series and Its Applications
Author(s):
Yang Tianze
Mechanical Engineering,
Shandong University, Xinglongshan Campus,
Jinan, Shandong,
China.
Email: qdyangtianze@163.com
Abstract:
A kind of new function series is obtained in this paper. Their theorems and proofs are shown, and some applications are given. We give the expansion form of general integral and the series expansion form of function and the general expansion form of derivative. Using them in the mathematics,we get some unexpected result.
Paper's Title:
Hankel Operators on Copson's Spaces
Author(s):
Nicolae Popa
Institute of Mathematics of Romanian Academy,
P.O. BOX 1764
RO014700 Bucharest,
Romania.
Email: Nicolae.Popa@imar.ro, npopafoc@gmail.com
Abstract:
We give a characterization of boundedness of a Hankel matrix, generated by a pozitive decreasing sequence, acting on Copson's space cop(2).
Paper's Title:
On a New Class of Eulerian's Type Integrals Involving Generalized Hypergeometric Functions
Author(s):
Sungtae Jun, Insuk Kim and Arjun K. Rathie
General Education Institute,
Konkuk University, Chungju 380701,
Republic of Korea.
Department of Mathematics Education,
Wonkwang University, Iksan, 570749,
Republic of Korea.
Department of Mathematics,
Vedant College of Engineering and Technology (Rajasthan Technical University),
Bundi323021, Rajasthan,
India.
Email: sjun@kku.ac.kr, iki@wku.ac.kr, arjunkumarrathie@gmail.com
Abstract:
Very recently MasjedJamei and Koepf established interesting and useful generalizations of various classical summation theorems for the _{2}F_{1}, _{3}F_{2}, _{4}F_{3}, _{5}F_{4} and _{6}F_{5} generalized hypergeometric series. The main aim of this paper is to establish eleven Eulerian's type integrals involving generalized hypergeometric functions by employing these theorems. Several special cases have also been given.
Paper's Title:
An Analytical Solution of Perturbed Fisher's Equation Using Homotopy Perturbation Method (HPM), Regular Perturbation Method (RPM) and Adomian Decomposition Method (ADM)
Author(s):
Moussa Bagayogo, Youssouf Minoungou, Youssouf Pare
Departement de Mathematique,
Universite Ouaga I Pr Joseph KiZerbo,
Burkina Faso.
Email:
moussabagayogo94@gmail.com,
m.youl@yahoo.fr,
pareyoussouf@yahoo.fr.
Abstract:
In this paper, Homotopy Perturbation Method (HPM), Regular Pertubation Method (RPM) and Adomian decomposition Method (ADM) are applied to Fisher equation. Then, the solution yielding the given initial conditions is gained. Finally, the solutions obtained by each method are compared
Paper's Title:
Dynamical Analysis of HIV/AIDS Epidemic Model with Two Latent Stages, Vertical Transmission and Treatment
Author(s):
Nur Shofianah, Isnani Darti, Syaiful Anam
Mathematics Department,Faculty of
Mathematics and Natural Sciences.
University of Brawijaya,
Jl. Veteran, Malang 65145,
Indonesia.
Email:
nur_shofianah@ub.ac.id,
isnanidarti@ub.ac.id,
syaiful@ub.ac.id
Abstract:
We discuss about dynamical analysis of HIV/AIDS epidemic model with two latent stages, vertical transmission and treatment. In this model, the spreading of HIV occurs through both horizontal and vertical transmission. There is also treatment for individual who has been HIV infected. The latent stage is divided into slow and fast latent stage based on the immune condition which varies for each individual. Dynamical analysis result shows that the model has two equilibrium points: the diseasefree equilibrium point and the endemic equilibrium point. The existence and global stability of equilibrium points depend on the basic reproduction number R_{0}. When R_{0} <1, only the diseasefree equilibrium point exists. If R_{0} >1, there are two equilibrium points, which are the diseasefree equilibrium point and the endemic equilibrium point. Based on the result of stability analysis, the diseasefree equilibrium point is globally asymptotically stable if R_{0} <1, while if R_{0} > 1 and p=q, the endemic equilibrium point will be globally asymptotically stable. In the end, we show some numerical simulations to support the analytical result.
Paper's Title:
Action of Differential Operators On Chirpsconstruct On L^{∞}
Author(s):
Taoufik El Bouayachi and Naji Yebari
Laboratoire de Mathematiques et
applications,
Faculty of sciences and techniques, Tangier,
Morocco.
Email:
figo407@gmail.com,
yebarinaji@gmail.com
Abstract:
We will study in this work the action of differential operators on L∞ chirps and we will give a new definition of logarithmic chirp. Finally we will study the action of singular integral operators on chirps by wavelet characterization and Kernel method.
Paper's Title:
On an extension of Edwards's double integral with applications
Author(s):
I. Kim, S. Jun, Y. Vyas and A. K. Rathie
Department of Mathematics Education,
Wonkwang University,
Iksan, 570749,
Republic of Korea.
General Education Institute,
Konkuk University,
Chungju 380701,
Republic of Korea.
Department of Mathematics, School of
Engineering,
Sir Padampat Singhania University,
Bhatewar, Udaipur, 313601, Rajasthan State,
India.
Department of Mathematics,
Vedant College of Engineering and Technology,
(Rajasthan Technical University),
Bundi323021, Rajasthan,
India.
Email: iki@wku.ac.kr
sjun@kku.ac.kr
yashoverdhan.vyas@spsu.ac.in
arjunkumarrathie@gmail.com
Abstract:
The aim of this note is to provide an extension of the well known and useful Edwards's double integral. As an application, new class of twelve double integrals involving hypergeometric function have been evaluated in terms of gamma function. The results are established with the help of classical summation theorems for the series _{3}F_{2} due to Watson, Dixon and Whipple. Several new and interesting integrals have also been obtained from our main findings.
Paper's Title:
Solving Two Point Boundary Value Problems by Modified Sumudu Transform Homotopy Perturbation Method
Author(s):
Asem AL Nemrat and Zarita Zainuddin
School of Mathematical Sciences,
Universiti Sains Malaysia,
11800 Penang,
Malaysia.
Email: alnemrata@yahoo.com
zarita@usm.my
Abstract:
This paper considers a combined form of the Sumudu transform with the modified homotopy perturbation method (MHPM) to find approximate and analytical solutions for nonlinear two point boundary value problems. This method is called the modified Sumudu transform homotopy perturbation method (MSTHPM). The suggested technique avoids the roundoff errors and finds the solution without any restrictive assumptions or discretization. We will introduce an appropriate initial approximation and furthermore, the residual error will be canceled in some points of the interval (RECP). Only a first order approximation of MSTHPM will be required, as compared to STHPM, which needs more iterations for the same cases of study. After comparing figures between approximate, MSTHPM, STHPM and numerical solutions, it is found through the solutions we have obtained that they are highly accurate, indicating that the MSTHPM is very effective, simple and can be used to solve other types of nonlinear boundary value problems (BVPs).
Paper's Title:
The Concept of Convergence for 2Dimensional Subspaces Sequence in Normed Spaces
Author(s):
M. Manuharawati, D. N. Yunianti, M. Jakfar
Mathematics Department, Universitas
Negeri Surabaya,
Jalan Ketintang Gedung C8,
Surabaya 60321,
Indonesia.
Email: manuharawati@unesa.ac.id,
dwiyunianti@unesa.ac.id,
muhammadjakfar@unesa.ac.id
Abstract:
In this paper, we present a concept of convergence of sequence, especially, of 2dimensional subspaces of normed spaces. The properties of the concept are established. As consequences of our definition in an inner product space, we also obtain the continuity property of the angle between two 2dimensional subspaces of inner product spaces.
Paper's Title:
Accuracy of Implicit DIMSIMs with Extrapolation
Author(s):
A. J. Kadhim, A. Gorgey, N. Arbin and N. Razali
Mathematics Department, Faculty of
Science and Mathematics,
Sultan Idris Education University,
35900 Tanjong Malim, Perak,
Malaysia
Email: annie_gorgey@fsmt.upsi.edu.my
Unit of Fundamental Engineering Studies,
Faculty of Engineering, Built Environment,
The National University of Malaysia,
43600 Bangi,
Malaysia.
Abstract:
The main aim of this article is to present recent results concerning diagonal implicit multistage integration methods (DIMSIMs) with extrapolation in solving stiff problems. Implicit methods with extrapolation have been proven to be very useful in solving problems with stiff components. There are many articles written on extrapolation of RungeKutta methods however fewer articles on extrapolation were written for general linear methods. Passive extrapolation is more stable than active extrapolation as proven in many literature when solving stiff problems by the RungeKutta methods. This article takes the first step by investigating the performance of passive extrapolation for DIMSIMs type2 methods. In the variable stepsize and order codes, order2 and order3 DIMSIMs with extrapolation are investigated for Van der Pol and HIRES problems. Comparisons are made with ode23 solver and the numerical experiments showed that implicit DIMSIMs with extrapolation has greater accuracy than the method itself without extrapolation and ode23.
Paper's Title:
On The Degree of Approximation of Periodic Functions from Lipschitz and Those from Generalized Lipschitz Classes
Author(s):
Xhevat Z. Krasniqi
Faculty of Education,
University of Prishtina "Hasan Prishtina",
Avenue "Mother Theresa " no. 5, Prishtinë
10000,
Republic of Kosovo.
Email: xhevat.krasniqi@unipr.edu
Abstract:
In this paper we have introduced some new trigonometric polynomials. Using these polynomials, we have proved some theorems which determine the degree of approximation of periodic functions by a product of two special means of their Fourier series and the conjugate Fourier series. Many results proved previously by others are special case of ours.
Paper's Title:
On SubspaceSupercyclic Operators
Author(s):
Mansooreh Moosapoor
Assistant Professor,
Department of Mathematics,
Farhangian University, Tehran,
Iran.
Email: mosapor110@gmail.com
m.mosapour@cfu.ac.ir
Abstract:
In this paper, we prove that supercyclic operators are subspacesupercyclic and by this we give a positive answer to a question posed in ( L. Zhang, Z. H. Zhou, Notes about subspacesupercyclic operators, Ann. Funct. Anal., 6 (2015), pp. 6068). We give examples of subspacesupercyclic operators that are not subspacehypercyclic. We state that if T is an invertible supercyclic operator then T^{n} and T^{n} is subspacesupercyclic for any positive integer n. We give two subspacesupercyclicity criteria. Surprisingly, we show that subspacesupercyclic operators exist on finitedimensional spaces.
Paper's Title:
Some Properties of (co)homology of Lie Algebra
Author(s):
Alaa Hassan Noreldeen Mohamed, Hegagi Mohamed Ali, Samar Aboquota
Department of Mathematics,
Faculty of
Science,
Aswan University, Aswan,
Egypt.
Email: ala2222000@yahoo.com
hegagi_math@aswu.edu.eg
scientist_samar@yahoo.com
Abstract:
Lie algebra is one of the important types of algebras. Here, we studied lie algebra and discussed its properties. Moreover, we define the Dihedral homology of lie algebra and prove some relations among Hochschild, Cyclic and Dihedral homology of lie algebra. Finally, we prove the Mayervetories sequence on Dihedral homology of lie algebra and proved that .
Search and serve lasted 0 second(s).