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2 CLEMENT FRAPPIER

1. INTRODUCTION AND STATEMENTS OF THE RESULTS

We denote byP, the class of all polynomialg, of degree< n, with complex coefficients:
(1.1) p(z) = Zajzj.
7=0

Let||p|| := max Ip(2)|. The classical Bernstein’s inequality [3, p. 508]

2|

(1.2) ']l < nllp|

admits several extensions and refinements. It is known that the best possible constatite
inequality

(1.3) 1Pl + enolaol < nllpll
is ([1, p. 70]; [3, p. 518])10 = 1 andc,, o = n2—j2 for n > 2. By “best possible” we mean that,

for everye > 0, there exists a polynomial (z) = Y a;(¢)z? such that
7=0

DI + (eno + €)lao(e)] > nlpe|l-

A similar meaning holds for the other best possible constants appearing in this paper.
The best possible constant; in the inequality

(1.4) 1Pl + enlar| < nllpll

is [1, p. 77]C171 =0, Co1 = \/§ — 1, C3,1 = % andcn,l = n2_J:L4( 2(nn+2) — 1) for n > 4.
Another classical inequality is ([4],[3, p. 405])

(1.5) Ip(R2)|| < B*[]pll, R=>1.

A direct consequence df (1.2) and (1.5) is

(1.6) Ip'(R2)Il < nR"Hlpll, R=>1.

Itis natural to ask for the best possible constants( ) ande,, , (R), R > 1, inthe inequalities
1.7) IP"(R2)I + @, 0(R)|ao] < nR"|p|

and

(1.8) l"(R2)]| + @1 (R)las| < nR"H|p]|.

We havey,, ((1) = cno andy,, (1) = c,1. As we shall see, the exact valuesygf, () and
¢,1(R) are not easy to find in explicit form. The aim of this paper is to prove the following
asymptotic results.

Theorem 1.1.Let, () be the best possible constant in the inequ@). We have, for
n >3,

. SOn,o(R) —nR*! —(n — 1)2
(1.9) I%I_I)I;O T3 = - :
Theorem 1.2.Lety, ,(RR) be the best possible constant in the inequ@). We have, for
n > 95,

(1.10) fi PralF) =0

R—o00 R”fz - _(n N 1)

We also give some explicit values for, ,(R).
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2. THE METHOD OF CONVOLUTION

The preceding theorems will be proved with the so called method of convolution [3, Chapter
12]. We give some details for the sake of completeness.
The Hadamard product of two analytic functions

F =30 g&)=3 b7 (<K

is the function

oo

(fx9)(2) =D ajbz? (2] < K),

j=0
Let 5, be the class of polynomial3 in P, such that

|Q =p| <|p| foreverype P,.

We have
QeB, < QecB,,

whereQ(z) := z"@.
Let us denote by the subclass d8,, consisting of polynomial& in 5,, for which R(0) = 1.

Lemma 2.1. [3, p. 414]The polynomialR(z) = znj b;z7, whereb, = 1, belongs taB? if and
j=0

only if the matrix

bo b b1 by
by bo bp—o bp_1
M (b, by, ... by) ==
b1 bys bo b
by bn_1 . by b
is positive semi-definite.
The definiteness of the matrik/ (by, by, .. ., b,) is studied with the following well-known

result.

Lemma 2.2. [2, p. 274]The hermitian matrix

ay;y a2 ... Qip
21 A922 ... Q9p

o Qij = Qi
Ap1 Qp2 ... QApp

is positive definite if and only if its leading principal minors are all positive.
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3. PROOF OF THEOREM [1.1

We observe that

1 1
— ([l20' (R2)|| + ¢, 0(R)|ao]) =  sup ——llaag+2p'(R2)|| =  sup |[|Qa *pl,
nRr—1 lal<@n o(R) nir—1 la| <y, o(R)
where
Ve
QO‘( an 1 Zan 7
and

n—1 N
~ (n—j)z az"
Ro(z) = Qa(z) = E , nRi + nRr—1"
i=0

That leads us to study the definiteness of the matrix

n—1 n—2 1 «a
M(na R R2 5ttty Rn—1> Rnfl)-

Since the inequality (1]6) is known to be valid, we can assert, in view of Lernmjas 2[1 &and 2.2,
that all its leading principal minors of ordér, 1 < k < n, are non-negative. The leading
principal minor of ordefn + 1),

(3.) Do (@) i det (M(n T R—>>
can be written in the form
(3.2) Dy1(a) = A+ Ba + Ba + Claf?,
whereA = D,,,1(0), C'is a determinant of ordérn — 1), andB is the determinant of order
el N i
e
(3.3) B= (};1_):
e L
0 o g2 ... &2 2D

The decompositiorj (3.2) is easily obtained by using the linearity property of determinants. We
also can replace by u, & by v in (3.) and expand the resulting function (polynomialyaind
v as a Taylor's expansion about= 0, v = 0.

Leta = ac”, a = |al, so that

(3.4) Dpi1(a) = A+ 2Bcos(t)a + Ca® =: fr(a,t).
We will show that the minimum value ofz(a, t), as a function ot, is attained for = 7. In
order to do that, we evaluate the determinBrity performing the following operations:

(i) multiply all the elements byr";
(i) L, — RL;11,1 <i<n—1(wherelL, is thei-th line);
(i) L; — RL;11,1 <i<n-—2(whereL; also denotes the neisth line).
We readily obtain
((n +1)R? — (n — 1))n_2

(3.5) B= s , n>2
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Hence, the minimum value ¢fz(a, t) is
(3.6) fr(a, ) = A —2Ba+ Ca?.

From ) and the lemmas of Sect@n 2, we see¢ha(R), R > 1, is the least positive root
a = a(R) of the equation

(3.7) A —2Ba+ Ca®> = 0.

It is not difficult to find some values af,, ,(R) with (3.7). We havep, o(R) = 1, @, (R) =

2 2 1 4 3 _ 4 2 _ 4R — 1 .
RT, ©30(R) = IR T OR i R , ... However, these values become rapidly

R(BR+2)
complicated; for example,

¢r0(R) = 2401R™ + 2058R" — 5292R'* — 4592 R™
+ 3837R' + 3340R° — 944R® — 832R" — 13RS
+ 106 R® + 92R* — 56 R® — 49R?

343R% + 294R" — 504R% — 440R® + 178 R*
+154R? —4R*> 4+ 8R+ 7

We study their asymptotic behavior Bs— oo. The above discussion shows that the asymptotic
value of the least positive roat= a(R) of the equationfr(a, 7) = 0 needs to be examined.
Let

(3.8) a=nR""+bR"3,
so that
S . R e
(n—1) (n—1) 2 1
R n R 2 R T
(39) fR(a'a 7T) =
pe e s o on o
-n % Rnl—l Rn2—2 (n;zl) n

On fr(a, ) we perform the operations

(i) R(Chy1+ Cy) (whereC; is thej-th column);
(i) R(Ly+ Lypy1).
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We obtain

(3.10) R’ fp(a,m)

e (I B e e R TR (e ) I R —2b
("};1) n —(";1) . —RE,Q (n—1)+ —Rnl,g
Rnl—l Rn2—2 Rr?—:i n (n - 1) + Rn1—2
b 1 2 (n—1) b
N R R 1 B2 R R
whence
0 (n—1) 0 ... (n—1) —=2b
0 n 0 0 (n—1)
0 n 0 0
(3.11) Bl{im R*frla,7) =
0 0 0 n (n—1)
—-n 0 0 0 0

with (n —1)2 +nb = 0forb = —

By Hurwitz’ theorem, the rootb;(R) of R2fR(a ™) = 0 (see[(3.7) and (3/8)) tend, &— o,
towards the roob of I%m R%fr(a, ). We thus have

(3.12) i OB R (1)

R—oo Rn—3 n

which is equivalent td (1]9).

4. PROOF OF THEOREM [1.2

We have

1
Rn_1<!|zp’<Rz>H +@ni(R)ar] =  sup  [|Qa *pl,
n lal<g, 1 (R)

where

(1+a) G2
Qalz) = “nRn1l Z nRnr—J
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and
n—1 TL o ] Zn—l
R, :
(Z Z nR] nRr— 1
7=0
In this manner, we study the definiteness of the matrix
M(na (nj_gl)a (HR;22) 3t #a %jz__—al)v 0)

The lemmas of Section 2 ar{d (IL..6) show that its leading principal minors of brdet k£ < n
are non-negative. Its leading principal minors of ordemd(n + 1) depend on the parameter
.

As in (3.2), the leading principal minor of ordercan be written in the form (we use the
same letters to simplify the notation)

4.1) A+ 2Bcos(t)a + Ca* =: fr(a,t),

wherea = ae', a = |al, and whered is a determinant of order, C is a determinant of order
(n—2)and

(n—1) (n—1) 4 3
I3 n R -+- TFn—4 T[n-3
(n—2) (n—1) 5 4
R2 R n Rn—5 Rn-a
(_1>n+1
2 3 4 (n—1)
Rn—2 Rn—3 Rn—4 R n
1 2 3 (n—2) (n—1)
Rn—l Rn—2 Rn—S LR R2 R

We evaluateB by performing the following operations:

(i) multiply all the elements by?";

We find that

(4.3) B = ﬁ((n +1)R?* — (n — 1))"‘3, n>3.

Hence, the minimum value gfz(a, t) (in (4.)), as a function of, is

(4.4)  fr(a,m) = A—2Ba+ Ca® = det (M (% R g;‘?)) .

We now examine the leading principal minor of order+ 1),

(4.5) B (@) == det (M(n @l B2 L 2, B2 0>)

Using the property of linearity of determinant (in rows and columns), or an appropriate Taylor’s
expansion, we see that, ;;(«) can be written in the form

(4.6) FE,.i(a)=A+ Ba+ Ba+ Ca*+C(a)? + D|a]* + Ealal® + Ealal® + Flal*
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whereA = E,,,1(0),

(n—1) (n—1) 4 3 1
R n R Rn—4 Rn—3 Rn—1
(nR_Qz) (n]_%l) n R’ELS Rf—zl R71272
(n=3) (m=-2) (-1 6 5 3
2(_1)n+1 e R2 R e Rn—6 =5 3
4.7) B = — i 7
1 2 3 (n—=2) (=1 (n-1)
Rn—1 Rn—2 Rn—3 R2 R R
O Rnl—l R"272 % (Tl];;) n
(nR—22) (n}—%l) n R,?,5 Rf,4
(n=3) (=2) (-1 6 5
R3 R2 R Rn—6  Rn—b
1
(4.8) ¢ = W : : : : : )
1 2 3 (n=2) (n—1)
Rnfl Rn72 Rn73 R2 R
0 1 2 (n=3) (n—=2)
Rn—1 Rn—2 R3 R2
D is a determinant of orddrn — 1),
(n—1) (n—1) 5 4
R n R Rn—5 R4
(n=2) (n-1) 6 5
) R2 R n <+ Rn=6 V=
2(-=1)"
(4.9) B= 2
RE—S R”i{‘l Rn575 e (”_]_%1) n
1 2 3 (n—3) (n—2)
Rn—1 Rn—2 Rn—3 e R3 R2

andF is a determinant of ordén — 2).
On the determinanB (in (4.7)), of ordem, we perform the following operations:
(i) multiply all the elements byR";
We obtain, forn > 3,
2(R? -1 n—3
%((n +1)R*— (n—1))" "(nR* — (n—2)).
On the determinant' (in (4.8)), of order(n — 1), we perform the operations
(|) L,L — RLi+1, fori =n — 3 andi =n — 2,
(i) RL, ».
We obtain a determinant wherlg,_, andL,,_; are two identical lines. We thus hagé= 0.
We evaluate? (in (4.9)), a determinant of ordén — 2), with the following operations:
(i) multiply all the elements byr";
(iil) Ln 3 — R*Ly_o;
(iv) factor the number 2 frond,,_s;

(4.10) B=
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(V) Li—RLH_l,]. <i<n-—4.
We obtain, forn > 4,

4 n—4
Hence the coefficient afos(t) in (see[(4.5))
(4.12) gr(a,t) := Eny1(ae) = A+ 2Bacos(t) + Da® + 2Ea® cos(t) + Fa*

is equal, form > 4, to

(4.13) 2Ba + 2Ed®

8a 2 n-af o nm+1) o o Bn+2)(n—1) 4, 4
=~ o2 (n+1)R*— (n—1)) (a B — R+ 5 R
. n(3n — 5)R2n—6 + (n—1)(n—2) R2n-8 )
2 2
Observe that
n 0 0 .0 ae® 0
n 0 0 0 ae?
0 n 0O O 0
lim BB = & 1 Do = e )
0 0 0O ... n 0 0
ac™™ 0 0 ... 0 n 0
0 a ™™ 0 ... 0 0 n

which implies thata(R) ~ nR"™!, R — oo, wherea(R) is a positive root of the equation
gr(a,t) = 0. It follows from (4.13) that the coefficient abs(t) in gr(a,t) is negative ifR is
large enough. The minimum value @f(a, t), as a function ot, is thus attained for = 0 if R

is large enough. That value is

(4.14) gr(a,0) = det (M(n D D 2, S o>>

It remains to examine and compare the least positive roofg @f, 7) andgg(a,0), asR —
co. Let

(4.15) a=nR"'+bR"?
so that
n ("}_21) ("};22) e RE,Q —Rnl,l -—n— %
(n—1) (n—1) 3 2
R n R Rn73 Rn—?
(nR_QQ) (nl_%l) n o R4—4 R3—3
(4.16) fr(a,7) =
Rn2—2 R'E*?’ R;l—zl n (n]_al)
Rnl—l n— % Rn272 R3—3 (n;zl) n
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n B L g et 0
(nj_gl) n (n];l) R'r?fii Rn272 Rnlfl +n+ %
o (nR_22) (ngl) n R;{Al R7§73 an—Q
Rnlfl +n+ % R"2*2 R3*3 cee (n}—gl) n (n}_gl)
0 A tnt+d 2 ... B2 e1) n
We perform the operatioR(C,, + C4) on fr(a, 7). Afterwards, we see that
(4.18) I%im Rfr(a,m) = —2n""'b,
which implies, in view of[(4.1p), that
. ay(R)—nR"!
(4.19) P}l_rgo = =0,

wherea, (R) is a positive root of the equatiaR fz(a, ) = 0.
Finally, we perform the operations
() R(Cn1— Co);
(i) R(C\, —Ch)
on the determinanjz(a, 0). We get

n 0 b —(n—1)
. ns3l0 n —(n—1 b n—
(4.20) ngrolo R?gr(a,0) =n""? n 0 (—b ) (n—1) | = 4n" b+n—1)(b—n+1),
0 n (n—1) —b
which implies that
. ax(R) —nR"1
(4.21) lim 2 = =(n—-1) or —(n—1),

wherea,(R) is a positive root of the equatiafi’gr(a,0) = 0. From the lemmas of Section 2,

and from [4.1P),[(4.21), we conclude that
R) — Rnfl
(4.22) fim £t =1

R—o0 RTL—2

=—(n—1).

5. OPEN PROBLEMS

Empirical computations indicate that the asymptotic result of Theprem 1.1 can be written in
a more precise form. The Taylor's expansiongf,(2), as a function of?, about the point at
infinity, seems to be

n—1)

2Rn—3 o 1

2(n% +1)

61) po(R) =nit — " B TR
B (n? + 1)753712 +5) R _ 2(n” + 1)(223 +8n%+17) R L.

for n > 11 (for n > 9 if we stop with the term iR, .. .).
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Similarly, we should have the following improvement of (1.10):
(=1 s (1= 1)(n—2
2n n
for n > 6 (for n > 5 if we stop with the term ink" 3, .. .).

Also, it would be interesting to determine the asymptotlc behavior of the best possible con-
stantp, (R), R — oo, k = 2,3,..., in the inequality

(5.3) 120" (R2)| + @ s (R)|ar] < nR"pll.

(52)  ¢ui(R) =nR" —(n—1)R"? - )
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