

The Australian Journal of Mathematical Analysis and Applications

http://ajmaa.org

Volume 7, Issue 2, Article 21, pp. 1-11, 2011

ASYMPTOTIC INEQUALITIES FOR THE MAXIMUM MODULUS OF THE DERIVATIVE OF A POLYNOMIAL

CLÉMENT FRAPPIER

Received 19 June, 2010; accepted 16 August, 2010; published 4 May, 2011.

DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL, ÉCOLE POLYTECHNIQUE DE MONTRÉAL, C.P. 6079, SUCC. CENTRE-VILLE, MONTRÉAL (QUÉBEC), H3C 3A7, CANADA clement.frappier@polymtl.ca

ABSTRACT. Let $p(z) = \sum_{j=0}^{n} a_j z^j$ be an algebraic polynomial of degree $\leq n$, and let $||p|| = \max\{|p(z)| \colon |z| = 1\}$. We study the asymptotic behavior of the best possible constant $\varphi_{n,k}(R)$, for k = 0 and k = 1, in the inequality $||p'(Rz)|| + \varphi_{n,k}(R)|a_k| \leq nR^{n-1}||p||, R \to \infty$.

Key words and phrases: Bernstein's inequality, Asymptotic, Unit circle, Convolution method.

1991 Mathematics Subject Classification. 30A10, 30C10.

ISSN (electronic): 1449-5910

^{© 2011} Austral Internet Publishing. All rights reserved.

1. INTRODUCTION AND STATEMENTS OF THE RESULTS

We denote by \mathcal{P}_n the class of all polynomials p, of degree $\leq n$, with complex coefficients:

(1.1)
$$p(z) = \sum_{j=0}^{n} a_j z^j$$

Let $||p|| := \max_{|z|=1} |p(z)|$. The classical Bernstein's inequality [3, p. 508]

$$(1.2) ||p'|| \le n||p||$$

admits several extensions and refinements. It is known that the best possible constant $c_{n,0}$ in the inequality

(1.3)
$$||p'|| + c_{n,0}|a_0| \le n||p||$$

is ([1, p. 70]; [3, p. 518]) $c_{1,0} = 1$ and $c_{n,0} = \frac{2n}{n+2}$ for $n \ge 2$. By "best possible" we mean that, for every $\varepsilon > 0$, there exists a polynomial $p_{\varepsilon}(z) = \sum_{j=0}^{n} a_j(\varepsilon) z^j$ such that

$$\|p_{\varepsilon}'\| + (c_{n,0} + \varepsilon)|a_0(\varepsilon)| > n \|p_{\varepsilon}\|.$$

A similar meaning holds for the other best possible constants appearing in this paper.

The best possible constant $c_{n,1}$ in the inequality

(1.4)
$$||p'|| + c_{n,1}|a_1| \le n||p||$$

is [1, p. 77] $c_{1,1} = 0$, $c_{2,1} = \sqrt{2} - 1$, $c_{3,1} = \frac{1}{\sqrt{2}}$ and $c_{n,1} = \frac{2n}{n+4} \left(\sqrt{\frac{2(n+2)}{n}} - 1 \right)$ for $n \ge 4$. Another classical inequality is ([4], [3, p. 405])

(1.5)
$$||p(Rz)|| \le R^n ||p||, \quad R \ge 1$$

A direct consequence of (1.2) and (1.5) is

(1.6)
$$||p'(Rz)|| \le nR^{n-1}||p||, \quad R \ge 1.$$

It is natural to ask for the best possible constants $\varphi_{n,0}(R)$ and $\varphi_{n,1}(R)$, $R \ge 1$, in the inequalities

(1.7)
$$||p'(Rz)|| + \varphi_{n,0}(R)|a_0| \le nR^{n-1}||p|$$

and

(1.8)
$$||p'(Rz)|| + \varphi_{n,1}(R)|a_1| \le nR^{n-1}||p||.$$

We have $\varphi_{n,0}(1) = c_{n,0}$ and $\varphi_{n,1}(1) = c_{n,1}$. As we shall see, the exact values of $\varphi_{n,0}(R)$ and $\varphi_{n,1}(R)$ are not easy to find in explicit form. The aim of this paper is to prove the following asymptotic results.

Theorem 1.1. Let $\varphi_{n,0}(R)$ be the best possible constant in the inequality (1.7). We have, for $n \geq 3$,

(1.9)
$$\lim_{R \to \infty} \frac{\varphi_{n,0}(R) - nR^{n-1}}{R^{n-3}} = \frac{-(n-1)^2}{n}$$

Theorem 1.2. Let $\varphi_{n,1}(R)$ be the best possible constant in the inequality (1.8). We have, for $n \ge 5$,

(1.10)
$$\lim_{R \to \infty} \frac{\varphi_{n,1}(R) - nR^{n-1}}{R^{n-2}} = -(n-1).$$

We also give some explicit values for $\varphi_{n,0}(R)$.

2. THE METHOD OF CONVOLUTION

The preceding theorems will be proved with the so called method of convolution [3, Chapter 12]. We give some details for the sake of completeness.

The Hadamard product of two analytic functions

$$f(z) = \sum_{j=0}^{\infty} a_j z^j, \quad g(z) = \sum_{j=0}^{\infty} b_j z^j \qquad (|z| \le K)$$

is the function

$$(f * g)(z) = \sum_{j=0}^{\infty} a_j b_j z^j \qquad (|z| \le K).$$

Let \mathcal{B}_n be the class of polynomials Q in \mathcal{P}_n such that

$$||Q * p|| \le ||p||$$
 for every $p \in \mathcal{P}_n$.

We have

$$Q \in \mathcal{B}_n \iff \widetilde{Q} \in \mathcal{B}_n,$$

where $\widetilde{Q}(z) := z^n \overline{p(\frac{1}{\overline{z}})}$.

Let us denote by $\mathcal{B}_n^{\tilde{0}}$ the subclass of \mathcal{B}_n consisting of polynomials R in \mathcal{B}_n for which R(0) = 1.

Lemma 2.1. [3, p. 414] The polynomial $R(z) = \sum_{j=0}^{n} b_j z^j$, where $b_0 = 1$, belongs to \mathcal{B}_n^0 if and only if the matrix

$$M(b_0, b_1, \dots, b_n) := \begin{pmatrix} b_0 & b_1 & \dots & b_{n-1} & b_n \\ \bar{b}_1 & b_0 & \dots & b_{n-2} & b_{n-1} \\ \vdots & \vdots & & \vdots & \vdots \\ \bar{b}_{n-1} & \bar{b}_{n-2} & \dots & b_0 & b_1 \\ \bar{b}_n & \bar{b}_{n-1} & \dots & \bar{b}_1 & b_0 \end{pmatrix}$$

is positive semi-definite.

The definiteness of the matrix $M(b_0, b_1, \ldots, b_n)$ is studied with the following well-known result.

Lemma 2.2. [2, p. 274] The hermitian matrix

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}, \quad a_{ij} = \bar{a}_{ji},$$

is positive definite if and only if its leading principal minors are all positive.

3. **PROOF OF THEOREM 1.1**

We observe that

$$\frac{1}{nR^{n-1}}(\|zp'(Rz)\| + \varphi_{n,0}(R)|a_0|) = \sup_{|\alpha| < \varphi_{n,0}(R)} \frac{1}{nR^{n-1}} \|\bar{\alpha}a_0 + zp'(Rz)\| = \sup_{|\alpha| < \varphi_{n,0}(R)} \|Q_\alpha * p\|,$$

where

$$Q_{\alpha}(z) = \frac{\bar{\alpha}}{nR^{n-1}} + \sum_{j=1}^{n} \frac{jz^{j}}{nR^{n-j}}$$

and

$$R_{\alpha}(z) := \widetilde{Q}_{\alpha}(z) = \sum_{j=0}^{n-1} \frac{(n-j)z^{j}}{nR^{j}} + \frac{\alpha z^{n}}{nR^{n-1}}.$$

That leads us to study the definiteness of the matrix

$$M\left(n, \frac{n-1}{R}, \frac{n-2}{R^2}, \dots, \frac{1}{R^{n-1}}, \frac{\alpha}{R^{n-1}}\right).$$

Since the inequality (1.6) is known to be valid, we can assert, in view of Lemmas 2.1 and 2.2, that all its leading principal minors of order $k, 1 \le k \le n$, are non-negative. The leading principal minor of order (n + 1),

(3.1)
$$D_{n+1}(\alpha) := \det\left(M\left(n, \frac{n-1}{R}, \frac{n-2}{R^2}, \dots, \frac{1}{R^{n-1}}, \frac{\alpha}{R^{n-1}}\right)\right),$$

can be written in the form

(3.2)
$$D_{n+1}(\alpha) = A + B\alpha + B\bar{\alpha} + C|\alpha|^2,$$

where $A = D_{n+1}(0)$, C is a determinant of order (n-1), and B is the determinant of order n

$$(3.3) B = \frac{(-1)^n}{R^{n-1}} \begin{vmatrix} \frac{(n-1)}{R} & n & \frac{(n-1)}{R} & \dots & \frac{3}{R^{n-3}} & \frac{2}{R^{n-2}} \\ \frac{(n-2)}{R^2} & \frac{(n-1)}{R} & n & \dots & \frac{4}{R^{n-4}} & \frac{3}{R^{n-3}} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{2}{R^{n-2}} & \frac{3}{R^{n-3}} & \frac{4}{R^{n-4}} & \dots & \frac{(n-1)}{R} & n \\ 0 & \frac{1}{R^{n-1}} & \frac{2}{R^{n-2}} & \dots & \frac{(n-2)}{R^2} & \frac{(n-1)}{R} \end{vmatrix}$$

The decomposition (3.2) is easily obtained by using the linearity property of determinants. We also can replace α by u, $\bar{\alpha}$ by v in (3.1) and expand the resulting function (polynomial) of u and v as a Taylor's expansion about u = 0, v = 0.

Let $\alpha = ae^{it}$, $a = |\alpha|$, so that

(3.4)
$$D_{n+1}(\alpha) = A + 2B\cos(t)a + Ca^2 =: f_R(a, t).$$

We will show that the minimum value of $f_R(a, t)$, as a function of t, is attained for $t = \pi$. In order to do that, we evaluate the determinant B by performing the following operations:

(i) multiply all the elements by \mathbb{R}^n ;

(ii) $L_i - RL_{i+1}$, $1 \le i \le n-1$ (where L_i is the *i*-th line);

(iii) $L_i - RL_{i+1}$, $1 \le i \le n-2$ (where L_i also denotes the new *i*-th line). We readily obtain

(3.5)
$$B = \frac{\left((n+1)R^2 - (n-1)\right)^{n-2}}{R^{4n-5}}, \quad n \ge 2.$$

Hence, the minimum value of $f_R(a, t)$ is

(3.6)
$$f_R(a,\pi) = A - 2Ba + Ca^2$$
.

From (3.6) and the lemmas of Section 2, we see that $\varphi_{n,0}(R)$, $R \ge 1$, is the least positive root a = a(R) of the equation

$$(3.7) A - 2Ba + Ca^2 = 0.$$

It is not difficult to find some values of $\varphi_{n,0}(R)$ with (3.7). We have $\varphi_{1,0}(R) = 1$, $\varphi_{2,0}(R) = \frac{2R^2 - 1}{R}$, $\varphi_{3,0}(R) = \frac{9R^4 + 6R^3 - 4R^2 - 4R - 1}{R(3R + 2)}$, However, these values become rapidly complicated; for example,

$$\varphi_{7,0}(R) = 2401R^{14} + 2058R^{13} - 5292R^{12} - 4592R^{11} + 3837R^{10} + 3340R^9 - 944R^8 - 832R^7 - 13R^6 + 106R^5 + 92R^4 - 56R^3 - 49R^2 343R^8 + 294R^7 - 504R^6 - 440R^5 + 178R^4 + 154R^3 - 4R^2 + 8R + 7$$

We study their asymptotic behavior as $R \to \infty$. The above discussion shows that the asymptotic value of the least positive root a = a(R) of the equation $f_R(a, \pi) = 0$ needs to be examined. Let

(3.8)
$$a = nR^{n-1} + bR^{n-3},$$

so that

(3.9)
$$f_R(a,\pi) = \begin{vmatrix} n & \frac{(n-1)}{R} & \frac{(n-2)}{R^2} & \dots & \frac{1}{R^{n-1}} & -n - \frac{b}{R^2} \\ \frac{(n-1)}{R} & n & \frac{(n-1)}{R} & \dots & \frac{2}{R^{n-2}} & \frac{1}{R^{n-1}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{1}{R^{n-1}} & \frac{2}{R^{n-2}} & \frac{3}{R^{n-3}} & \dots & n & \frac{(n-1)}{R} \\ -n - \frac{b}{R^2} & \frac{1}{R^{n-1}} & \frac{2}{R^{n-2}} & \dots & \frac{(n-1)}{R} & n \end{vmatrix}$$

On $f_R(a, \pi)$ we perform the operations

- (i) $R(C_{n+1} + C_1)$ (where C_j is the *j*-th column);
- (ii) $R(L_1 + L_{n+1})$.

We obtain

$$(3.10) \quad R^{2}f_{R}(a,\pi) = \begin{vmatrix} \frac{-b}{R} & (n-1) + \frac{1}{R^{n-2}} & \frac{(n-2)}{R} + \frac{2}{R^{n-3}} & \dots & (n-1) + \frac{1}{R^{n-2}} & -2b \\ \frac{(n-1)}{R} & n & \frac{(n-1)}{R} & \dots & \frac{2}{R^{n-2}} & (n-1) + \frac{1}{R^{n-2}} \\ \frac{(n-2)}{R^{2}} & \frac{(n-1)}{R} & n & \dots & \frac{3}{R^{n-3}} & \frac{(n-2)}{R} + \frac{2}{R^{n-3}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{1}{R^{n-1}} & \frac{2}{R^{n-2}} & \frac{3}{R^{n-3}} & \dots & n & (n-1) + \frac{1}{R^{n-2}} \\ -n - \frac{b}{R^{2}} & \frac{1}{R^{n-1}} & \frac{2}{R^{n-2}} & \dots & \frac{(n-1)}{R} & -\frac{b}{R} \end{vmatrix},$$

whence

$$(3.11) \qquad \lim_{R \to \infty} R^2 f_R(a, \pi) = \begin{vmatrix} 0 & (n-1) & 0 & \dots & (n-1) & -2b \\ 0 & n & 0 & \dots & 0 & (n-1) \\ 0 & 0 & n & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & n & (n-1) \\ -n & 0 & 0 & \dots & 0 & 0 \\ \end{vmatrix}$$
$$= n^{n-2} \begin{vmatrix} (n-1) & (n-1) & -2b \\ n & 0 & (n-1) \\ 0 & n & (n-1) \end{vmatrix}$$
$$= -2n^{n-1} ((n-1)^2 + nb),$$

with $(n-1)^2 + nb = 0$ for $b = \frac{-(n-1)^2}{n}$. By Hurwitz' theorem, the roots b(R) of $R^2 f_R(a, \pi) = 0$ (see (3.7) and (3.8)) tend, as $R \to \infty$, towards the root b of $\lim_{R\to\infty} R^2 f_R(a, \pi)$. We thus have

(3.12)
$$\lim_{R \to \infty} \frac{a(R) - nR^{n-1}}{R^{n-3}} = -\frac{(n-1)^2}{n},$$

which is equivalent to (1.9).

4. PROOF OF THEOREM 1.2

We have

$$\frac{1}{nR^{n-1}}(\|zp'(Rz)\|+\varphi_{n,1}(R)|a_1|=\sup_{|\alpha|<\varphi_{n,1}(R)}\|Q_{\alpha}*p\|,$$

where

$$Q_{\alpha}(z) = \frac{(1+\bar{\alpha})z}{nR^{n-1}} + \sum_{j=2}^{n} \frac{jz^{j}}{nR^{n-j}}$$

and

$$R_{\alpha}(z) := \widetilde{Q}_{\alpha}(z) = \sum_{j=0}^{n-1} \frac{(n-j)z^j}{nR^j} + \frac{\alpha z^{n-1}}{nR^{n-1}}.$$

In this manner, we study the definiteness of the matrix

$$M\left(n, \frac{(n-1)}{R}, \frac{(n-2)}{R^2}, \dots, \frac{2}{R^{n-2}}, \frac{(1+\alpha)}{R^{n-1}}, 0\right).$$

The lemmas of Section 2 and (1.6) show that its leading principal minors of order $k, 1 \le k < n$ are non-negative. Its leading principal minors of order n and (n + 1) depend on the parameter α .

As in (3.2), the leading principal minor of order n can be written in the form (we use the same letters to simplify the notation)

(4.1)
$$A + 2B\cos(t)a + Ca^2 =: f_R(a, t),$$

where $\alpha = ae^{it}$, $a = |\alpha|$, and where A is a determinant of order n, C is a determinant of order (n-2) and

(4.2)
$$B = \frac{(-1)^{n+1}}{R^{n-1}} \begin{vmatrix} \frac{(n-1)}{R} & n & \frac{(n-1)}{R} & \dots & \frac{4}{R^{n-4}} & \frac{3}{R^{n-3}} \\ \frac{(n-2)}{R^2} & \frac{(n-1)}{R} & n & \dots & \frac{5}{R^{n-5}} & \frac{4}{R^{n-4}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{2}{R^{n-2}} & \frac{3}{R^{n-3}} & \frac{4}{R^{n-4}} & \dots & \frac{(n-1)}{R} & n \\ \frac{1}{R^{n-1}} & \frac{2}{R^{n-2}} & \frac{3}{R^{n-3}} & \dots & \frac{(n-2)}{R^2} & \frac{(n-1)}{R} \end{vmatrix} \end{vmatrix}$$

We evaluate B by performing the following operations:

- (i) multiply all the elements by R^n ;
- (ii) $L_i RL_{i+1}, 1 \le i \le n-2;$
- (iii) $L_i RL_{i+1}, 1 \le i \le n-3.$

We find that

(4.3)
$$B = \frac{1}{R^{4n-8}} \left((n+1)R^2 - (n-1) \right)^{n-3}, \quad n \ge 3.$$

Hence, the minimum value of $f_R(a, t)$ (in (4.1)), as a function of t, is

(4.4)
$$f_R(a,\pi) = A - 2Ba + Ca^2 = \det\left(M\left(\frac{(n-1)}{R}, \frac{(n-2)}{R^2}, \dots, \frac{2}{R^{n-2}}, \frac{(1-a)}{R^{n-1}}\right)\right).$$

We now examine the leading principal minor of order (n + 1),

(4.5)
$$E_{n+1}(\alpha) := \det \left(M\left(n, \frac{(n-1)}{R}, \frac{(n-2)}{R^2}, \dots, \frac{2}{R^{n-2}}, \frac{(1+\alpha)}{R^{n-1}}, 0 \right) \right).$$

Using the property of linearity of determinant (in rows and columns), or an appropriate Taylor's expansion, we see that $E_{n+1}(\alpha)$ can be written in the form

(4.6)
$$E_{n+1}(\alpha) = A + B\alpha + B\bar{\alpha} + C\alpha^2 + C(\bar{\alpha})^2 + D|\alpha|^2 + E\alpha|\alpha|^2 + E\bar{\alpha}|\alpha|^2 + F|\alpha|^4$$

where $A = E_{n+1}(0)$,

$$(4.7) B = \frac{2(-1)^{n+1}}{R^{n-1}} \begin{vmatrix} \frac{(n-1)}{R} & n & \frac{(n-1)}{R} & \cdots & \frac{4}{R^{n-4}} & \frac{3}{R^{n-3}} & \frac{1}{R^{n-1}} \\ \frac{(n-2)}{R^2} & \frac{(n-1)}{R} & n & \cdots & \frac{5}{R^{n-5}} & \frac{4}{R^{n-4}} & \frac{2}{R^{n-2}} \\ \frac{(n-3)}{R^3} & \frac{(n-2)}{R^2} & \frac{(n-1)}{R} & \cdots & \frac{6}{R^{n-6}} & \frac{5}{R^{n-5}} & \frac{3}{R^{n-3}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{1}{R^{n-1}} & \frac{2}{R^{n-2}} & \frac{3}{R^{n-3}} & \cdots & \frac{(n-2)}{R^2} & \frac{(n-1)}{R} & \frac{(n-1)}{R} \\ 0 & \frac{1}{R^{n-1}} & \frac{2}{R^{n-2}} & \cdots & \frac{(n-3)}{R^3} & \frac{(n-2)}{R^2} & n \end{vmatrix}$$

(4.8)
$$C = \frac{1}{R^{2n-2}} \begin{vmatrix} \frac{(n-2)}{R^2} & \frac{(n-1)}{R} & n & \dots & \frac{5}{R^{n-5}} & \frac{4}{R^{n-4}} \\ \frac{(n-3)}{R^3} & \frac{(n-2)}{R^2} & \frac{(n-1)}{R} & \dots & \frac{6}{R^{n-6}} & \frac{5}{R^{n-5}} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{1}{R^{n-1}} & \frac{2}{R^{n-2}} & \frac{3}{R^{n-3}} & \dots & \frac{(n-2)}{R^2} & \frac{(n-1)}{R} \\ 0 & \frac{1}{R^{n-1}} & \frac{2}{R^{n-2}} & \dots & \frac{(n-3)}{R^3} & \frac{(n-2)}{R^2} \end{vmatrix}$$

D is a determinant of order (n-1),

(4.9)
$$E = \frac{2(-1)^{n-1}}{R^{3n-3}} \begin{vmatrix} \frac{(n-1)}{R} & n & \frac{(n-1)}{R} & \dots & \frac{5}{R^{n-5}} & \frac{4}{R^{n-4}} \\ \frac{(n-2)}{R^2} & \frac{(n-1)}{R} & n & \dots & \frac{6}{R^{n-6}} & \frac{5}{R^{n-5}} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{3}{R^{n-3}} & \frac{4}{R^{n-4}} & \frac{5}{R^{n-5}} & \dots & \frac{(n-1)}{R} & n \\ \frac{1}{R^{n-1}} & \frac{2}{R^{n-2}} & \frac{3}{R^{n-3}} & \dots & \frac{(n-3)}{R^3} & \frac{(n-2)}{R^2} \end{vmatrix}$$

and F is a determinant of order (n-2).

On the determinant B (in (4.7)), of order n, we perform the following operations:

- (i) multiply all the elements by R^n ;
- (ii) $L_i RL_{i+1}, 1 \le i \le n-1;$
- (iii) $L_i RL_{i+1}, 1 \le i \le n-2.$

We obtain, for $n \ge 3$,

(4.10)
$$B = \frac{2(R^2 - 1)}{R^{4n - 4}} \left((n+1)R^2 - (n-1) \right)^{n-3} \left(nR^2 - (n-2) \right)$$

On the determinant C (in (4.8)), of order (n-1), we perform the operations

- (i) $L_i RL_{i+1}$, for i = n 3 and i = n 2;
- (ii) RL_{n-2} .

We obtain a determinant where L_{n-2} and L_{n-3} are two identical lines. We thus have C = 0. We evaluate E (in (4.9)), a determinant of order (n-2), with the following operations:

- (i) multiply all the elements by R^n ;
- (ii) $L_i RL_{i+1}, 1 \le i \le n 4;$
- (iii) $L_{n-3} R^2 L_{n-2}$;
- (iv) factor the number 2 from L_{n-3} ;

(v)
$$L_i - RL_{i+1}, 1 \le i \le n-4$$
.
We obtain, for $n \ge 4$,

(4.11)
$$E = -\frac{4}{R^{6n-12}} ((n+1)R^2 - (n-1))^{n-4}.$$

Hence the coefficient of cos(t) in (see (4.6))

(4.12)
$$g_R(a,t) := E_{n+1}(ae^{it}) = A + 2Ba\cos(t) + Da^2 + 2Ea^3\cos(t) + Fa^4$$

is equal, for $n \ge 4$, to

$$(4.13) \quad 2Ba + 2Ea^{3} = -\frac{8a}{R^{6n-12}} \left((n+1)R^{2} - (n-1) \right)^{n-4} \left(a^{2} - \frac{n(n+1)}{2}R^{2n-2} + \frac{(3n+2)(n-1)}{2}R^{2n-4} - \frac{n(3n-5)}{2}R^{2n-6} + \frac{(n-1)(n-2)}{2}R^{2n-8} \right)$$

Observe that

$$\lim_{R \to \infty} E_{n+1}(\alpha R^{n-1}) = \begin{vmatrix} n & 0 & 0 & \dots & 0 & ae^{it} & 0 \\ 0 & n & 0 & \dots & 0 & 0 & ae^{it} \\ 0 & 0 & n & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & n & 0 & 0 \\ ae^{-it} & 0 & 0 & \dots & 0 & n & 0 \\ 0 & ae^{-it} & 0 & \dots & 0 & 0 & n \end{vmatrix} = n^{n-3}(a^2 - n^2)^2,$$

which implies that $a(R) \sim nR^{n-1}$, $R \to \infty$, where a(R) is a positive root of the equation $g_R(a,t) = 0$. It follows from (4.13) that the coefficient of $\cos(t)$ in $g_R(a,t)$ is negative if R is large enough. The minimum value of $g_R(a,t)$, as a function of t, is thus attained for t = 0 if R is large enough. That value is

(4.14)
$$g_R(a,0) = \det\left(M\left(n, \frac{(n-1)}{R}, \frac{(n-2)}{R^2}, \dots, \frac{2}{R^{n-2}}, \frac{(1+a)}{R^{n-1}}, 0\right)\right).$$

It remains to examine and compare the least positive roots of $f_R(a, \pi)$ and $g_R(a, 0)$, as $R \to \infty$. Let

$$(4.15) a = nR^{n-1} + bR^{n-2},$$

so that

$$(4.16) f_R(a,\pi) = \begin{vmatrix} n & \frac{(n-1)}{R} & \frac{(n-2)}{R^2} & \dots & \frac{2}{R^{n-2}} & \frac{1}{R^{n-1}} - n - \frac{b}{R} \\ \frac{(n-1)}{R} & n & \frac{(n-1)}{R} & \dots & \frac{3}{R^{n-3}} & \frac{2}{R^{n-2}} \\ \frac{(n-2)}{R^2} & \frac{(n-1)}{R} & n & \dots & \frac{4}{R^{n-4}} & \frac{3}{R^{n-3}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{2}{R^{n-2}} & \frac{3}{R^{n-3}} & \frac{4}{R^{n-4}} & \dots & n & \frac{(n-1)}{R} \\ \frac{1}{R^{n-1}} - n - \frac{b}{R} & \frac{2}{R^{n-2}} & \frac{3}{R^{n-3}} & \dots & \frac{(n-1)}{R} & n \end{vmatrix}$$

10

(4.17) $g_R(a, 0)$

$$= \begin{vmatrix} n & \frac{(n-1)}{R} & \frac{(n-2)}{R^2} & \dots & \frac{2}{R^{n-2}} & \frac{1}{R^{n-1}} + n + \frac{b}{R} & 0 \\ \frac{(n-1)}{R} & n & \frac{(n-1)}{R} & \dots & \frac{3}{R^{n-3}} & \frac{2}{R^{n-2}} & \frac{1}{R^{n-1}} + n + \frac{b}{R} \\ \frac{(n-2)}{R^2} & \frac{(n-1)}{R} & n & \dots & \frac{4}{R^{n-4}} & \frac{3}{R^{n-3}} & \frac{2}{R^{n-2}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{1}{R^{n-1}} + n + \frac{b}{R} & \frac{2}{R^{n-2}} & \frac{3}{R^{n-3}} & \dots & \frac{(n-1)}{R} & n & \frac{(n-1)}{R} \\ 0 & \frac{1}{R^{n-1}} + n + \frac{b}{R} & \frac{2}{R^{n-2}} & \dots & \frac{(n-2)}{R^2} & \frac{(n-1)}{R} & n \end{vmatrix} .$$

We perform the operation $R(C_n + C_1)$ on $f_R(a, \pi)$. Afterwards, we see that

(4.18)
$$\lim_{R \to \infty} R f_R(a, \pi) = -2n^{n-1}b,$$

which implies, in view of (4.15), that

(4.19)
$$\lim_{R \to \infty} \frac{a_1(R) - nR^{n-1}}{R^{n-2}} = 0,$$

where $a_1(R)$ is a positive root of the equation $Rf_R(a, \pi) = 0$.

Finally, we perform the operations

- (i) $R(C_{n+1} C_2)$;
- (ii) $R(C_n C_1)$

on the determinant $g_R(a, 0)$. We get

(4.20)
$$\lim_{R \to \infty} R^2 g_R(a,0) = n^{n-3} \begin{vmatrix} n & 0 & b & -(n-1) \\ 0 & n & -(n-1) & b \\ n & 0 & -b & (n-1) \\ 0 & n & (n-1) & -b \end{vmatrix} = 4n^{n-1}(b+n-1)(b-n+1),$$

which implies that

(4.21)
$$\lim_{R \to \infty} \frac{a_2(R) - nR^{n-1}}{R^{n-2}} = (n-1) \quad \text{or} \quad -(n-1),$$

where $a_2(R)$ is a positive root of the equation $R^2g_R(a,0) = 0$. From the lemmas of Section 2, and from (4.19), (4.21), we conclude that

(4.22)
$$\lim_{R \to \infty} \frac{\varphi_{n,1}(R) - nR^{n-1}}{R^{n-2}} = -(n-1).$$

5. **OPEN PROBLEMS**

Empirical computations indicate that the asymptotic result of Theorem 1.1 can be written in a more precise form. The Taylor's expansion of $\varphi_{n,0}(R)$, as a function of R, about the point at infinity, seems to be

(5.1)
$$\varphi_{n,0}(R) = nR^{n-1} - \frac{(n-1)^2}{n}R^{n-3} - \frac{1}{n^3}R^{n-5} - \frac{2(n^2+1)}{n^5}R^{n-7} - \frac{(n^2+1)(3n^2+5)}{n^7}R^{n-9} - \frac{2(n^2+1)(2n^4+8n^2+7)}{n^9}R^{n-11} + \cdots$$

for $n \ge 11$ (for $n \ge 9$ if we stop with the term in \mathbb{R}^{n-9}, \ldots).

Similarly, we should have the following improvement of (1.10):

(5.2)
$$\varphi_{n,1}(R) = nR^{n-1} - (n-1)R^{n-2} - \frac{(n-1)^2}{2n}R^{n-3} + \frac{(n-1)(n-2)}{n}R^{n-4} + \dots$$

for $n \ge 6$ (for $n \ge 5$ if we stop with the term in \mathbb{R}^{n-3}, \ldots).

Also, it would be interesting to determine the asymptotic behavior of the best possible constant $\varphi_{n,k}(R), R \to \infty, k = 2, 3, \ldots$, in the inequality

(5.3)
$$||zp'(Rz)|| + \varphi_{n,k}(R)|a_k| \le nR^{n-1}||p||.$$

REFERENCES

- [1] C. FRAPPIER, Q.I. RAHMAN AND ST. RUSCHEWEYH, New inequalities for polynomials, *Trans. Amer. Math. Soc.*, **288**, no. 1, (1985), pp. 69–99.
- [2] F.R. GANTMACHER, The Theory of Matrices, vol. 1, AMS Chelsea Publ., New York 1959.
- [3] Q.I. RAHMAN AND G. SCHMEISSER, *Analytic Theory of Polynomials*, Oxford Science Publ., Clarendon Press, Oxford 2002.
- [4] M. RIESZ, Über einen Satz des Herrn Serge Bernstein, Acta Math., 40, (1916), pp. 337–347.