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ABSTRACT. In this short note we prove a conjecture, related to a logarithmically completely
monotonic function, presented in [5]. Then, we extend by proving a more generalized theo-
rem. At the end we pose an open problem on a logarithmically completely monotonic function
involving q-Digamma function.
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1. I NTRODUCTION

Recall from [13, Chapter XIII], [17, Chapter 1] and [18, Chapter IV] that a functionf is said
to be completely monotonic on an intervalI if f has derivatives of all orders onI and satisfies

(1.1) 0 ≤ (−1)nf (n)(x) <∞

for x ∈ I andn ≥ 0. The celebrated Bernstein-Widder’s Theorem (see [17, p. 3, Theorem 1.4]
or [18, p. 161, Theorem 12b]) characterizes that a necessary and sufficient condition thatf
should be completely monotonic for0 < x <∞ is that

(1.2) f(x) =

∫ ∞

0

e−xtdα(t),

whereα(t) is non-decreasing and the integral converges for0 < x < ∞. This expresses that a
completely monotonic functionf on [0,∞) is a Laplace transform of the measureα.

It is common knowledge that the classical Euler’s gamma functionΓ(x) may be defined for
x > 0 by

(1.3) Γ(x) =

∫ ∞

0

tx−1e−tdt.

The logarithmic derivative ofΓ(x), denoted byψ(x) = Γ′(x)
Γ(x)

, is called psi function or digamma
function.

An alternative definition of the gamma functionΓ(x) is

(1.4) Γ(x) = lim
p→∞

Γp(x),

where

(1.5) Γp(x) =
p!px

x(x+ 1) · · · (x+ p)
=

px

x(1 + x/1) · · · (1 + x/p)

for x > 0 andp ∈ N. See [3, p. 250]. Thep-analogue of the psi functionψ(x) is defined as the
logarithmic derivative of theΓp function, that is,

(1.6) ψp(x) =
d

dx
ln Γp(x) =

Γ′p(x)

Γp(x)
.

The functionψp has the following properties (see [9, p. 374, Lemma 5] and [11, p. 29, Lemma 2.3]).

(1) It has the following representations

(1.7) ψp(x) = ln p−
p∑

k=0

1

x+ k
= ln p−

∫ ∞

0

1− e−(p+1)t

1− e−t
e−xtdt.

(2) It is increasing on(0,∞) andψ′p is completely monotonic on(0,∞).

In [2, pp. 374–375, Theorem 1], it was proved that the function

(1.8) θα(x) = xα[lnx− ψ(x)]

is completely monotonic on(0,∞) if and only if α ≤ 1.
For the history, backgrounds, applications and alternative proofs of this conclusion, please

refer to [4], [14, p. 8, Section 1.6.6] and closely-related references therein.
A positive functionf is said to belogarithmically completely monotonic[9] on an open

intervalI, if f satisfies

(1.9) (−1)n[ln f(x)](n) ≥ 0, (x ∈ I, n = 1, 2, . . .).
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If the inequality (1.2) is strict, thenf is said to bestrictly logarithmically completely monotonic.
Let C andL denote the set of completely monotonic functions and the set of logarithmically
completely monotonic functions, respectively. The relationship between completely monotonic
functions and logarithmically completely monotonic functions can be presented [9] byL ⊂ C.

2. M AIN RESULTS

In [5] has been posed the following conjecture.

Conjecture 2.1. The function

(2.1) q(t) := tt(ψ(t)−log t)−γ

is logarithmically completely monotonic on(0,∞).

Proof. One easily finds that

(2.2) log q(t) = −t · (log t− ψ(t)) log t− γ · log t

Leth(t) = −γ · log t, g(t) = − log t; f(t) = t · (log t−ψ(t)). Alzer [2] proved that the function
f(t) = t·(log t−ψ(t)) is strictly completely monotonic on(0,∞). The functionsg(t) = − log t
andh(t) = −γ · log t are also strictly completely monotonic on(0,∞).

We complete the proof by recalling the results from [18].
1) The product of two completely monotone functions is completely monotonic function.
2) A non-negative finite linear combination of completely monotone functions is completely

monotonic function.

We extend the previous result to the following theorem.

Theorem 2.2.The function

(2.3) qp(t) := tt·(ψp(t)−log pt
t+p+1

)−γ

is logarithmically completely monotonic on(0,∞).

Proof. One easily finds that

(2.4) log qp(t) = −t(log t− ψp(t)) log t− γ · log t

Let h(t) = −γ · log t, g(t) = − log t; fp(t) = t · (log pt

t+ p+ 1
− ψp(t)).

Krasniqi and Qi [10] proved that the functionfp(t) = t · (log pt
t+p+1

− ψp(t)) is strictly
completely monotonic on(0,∞). The functionsg(t) = − log t andh(t) = −γ · log t are also
strictly completely monotonic on(0,∞).

By refering the same results from [18] as in previous proof, we complete the proof.

Remark 2.1. Lettingp→∞ in Theorem 2.2 , we obtain Conjecture 2.1.

At the end we pose the following open problem:

Problem 1. Letψq(t) beq-Digamma function. Find the family of functionsθ(t) such that

(2.5) q(t) := tt·(ψq(t)−log θ(t))−γ

is logarithmically completely monotonic on(0,∞).
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