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ABSTRACT. In this short note we prove a conjecture, related to a logarithmically completely
monotonic function, presented inl[5]. Then, we extend by proving a more generalized theo-
rem. At the end we pose an open problem on a logarithmically completely monotonic function
involving ¢-Digamma function.
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2 VALMIR KRASNIQI, ARMEND SH. SHABANI

1. INTRODUCTION

Recall from [13, Chapter XIl1],[[1]7, Chapter 1] arid [18, Chapter V] that a funcfies said
to be completely monotonic on an intervaif f has derivatives of all orders dnand satisfies
(1.1) 0 < (=1)"f"(z) < o0

for z € I andn > 0. The celebrated Bernstein-Widder’s Theorem (5eé [17, p. 3, Theorem 1.4]
or [18, p. 161, Theorem 12b]) characterizes that a necessary and sufficient conditign that
should be completely monotonic for< x < oo is that

(1.2) fla) = [ e date)

wherea(t) is non-decreasing and the integral converge$farz < co. This expresses that a
completely monotonic functioifi on [0, oo) is a Laplace transform of the measure

It is common knowledge that the classical Euler’s gamma fundtiar) may be defined for
x> 0hy

(1.3) [(x) = /000 t" e tdt.

The logarithmic derivative of (x), denoted by)(z) = FF/((;)), is called psi function or digamma
function.
An alternative definition of the gamma functibitz) is

(1.4) I(z) = lim Tp(z),
where
B plp” _ P’

for x > 0 andp € N. See[[3, p. 250]. The-analogue of the psi function(x) is defined as the
logarithmic derivative of thé’, function, that is,

(1.6) ) = (o) = {25

The functiony,, has the following properties (see [9, p. 374, Lemma 5] and [11, p. 29, Lemma 2.3]).
(1) It has the following representations

1.7 =1 S LI 1 loem? e td
. - - .
(1.7) Y,(z) =Inp 2 5% np /0 T €

(2) Itis increasing orf0, co) andy;, is completely monotonic ofD, oo).
In [2, pp. 374-375, Theorem 1], it was proved that the function
(1.8) Oa(z) = 2°[Inz — ()]

is completely monotonic of), oo) if and only if o« < 1.

For the history, backgrounds, applications and alternative proofs of this conclusion, please
refer to [4], [14, p. 8, Section 1.6.6] and closely-related references therein.

A positive function f is said to belogarithmically completely monotoni®] on an open
interval I, if f satisfies

(1.9) (=1)"[In f(z)]™ >0,(x € I,n=1,2,...).
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If the inequality [(1.2) is strict, theffi is said to bestrictly logarithmically completely monotonic

Let C' and L denote the set of completely monotonic functions and the set of logarithmically
completely monotonic functions, respectively. The relationship between completely monotonic
functions and logarithmically completely monotonic functions can be presented [P}y .

2. MAIN RESULTS

In [5] has been posed the following conjecture.

Conjecture 2.1. The function

(2.1) q(t) == () —logt)—y
is logarithmically completely monotonic @f, o).
Proof. One easily finds that
(2.2) logq(t) = —t- (logt —(t))logt —~ - logt

Leth(t) = —v-logt,g(t) = —logt; f(t) =t (logt—1(t)). Alzer [2] proved that the function
f(t) =t-(logt—1(t)) is strictly completely monotonic of), o). The functiong)(t) = —logt
andh(t) = —v - logt are also strictly completely monotonic 0o, co).
We complete the proof by recalling the results from/ [18].
1) The product of two completely monotone functions is completely monotonic function.
2) A non-negative finite linear combination of completely monotone functions is completely
monotonic functiong

We extend the previous result to the following theorem.
Theorem 2.2. The function
(23) gp(t) o= ¢ OB
is logarithmically completely monotonic @f, co).

Proof. One easily finds that

(2.4) log q,(t) = —t(logt — ¢, (t)) logt — - logt

Leth(t) = —v-logt, g(t) = —logt; fo(t) =t - (log % — Y, (t))-

Krasnigi and Qi [[10] proved that the functiofy(t) = t - (log =25 +p +1 — 1,(t)) is strictly
completely monotonic o0, co). The functiong(t) = —logt andh(t) = —v - logt are also

strictly completely monotonic o0, co).
By refering the same results from [18] as in previous proof, we complete the mroof.

Remark 2.1. Lettingp — oo in Theorenj 2.2 , we obtain Conjectire]2.1.

At the end we pose the following open problem:
Problem 1. Let (t) be¢-Digamma function. Find the family of functiofi§&) such that
(2.5) q(t) := ¢+ (e -log0)—

is logarithmically completely monotonic @f, o).
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