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2 M. RAÏSSOULI, M. RAMEZANI

1. I NTRODUCTION AND BASIC NOTIONS

Let
(
E, ‖.‖

)
be a real or complex normed space (Banach if necessary). We denote byE∗ the

topological dual ofE and by〈., .〉 the duality bracket betweenE andE∗ i.e. x∗(x) = 〈x, x∗〉
for x ∈ E andx∗ ∈ E∗. E∗ is (always) a Banach space for the so-called dual norm‖.‖∗ defined
by

∀x∗ ∈ E∗ ‖x∗‖∗ = sup
x 6=0

|〈x, x∗〉|
‖x‖

= sup
‖x‖≤1

|〈x, x∗〉| = sup
‖x‖=1

|〈x, x∗〉|.

To avoid any confusion, elements ofE will be denoted byx, y, z and those ofE∗ by x∗, y∗, z∗.
Except explicit mention,E∗ is endowed with the weak∗ topology.

Throughout this paper, we use the notation:

R := (−∞,∞), R̃ := (−∞,∞] = R ∪ {∞}, R = [−∞,∞] = R ∪ {−∞,∞}.
A map defined fromE into R will be called a functional and denoted by a small letter asf, g.
We denote byRE

the set of all functionals defined fromE into R. By functional map we
understand a mapΦ : RE −→ RF

(F being another normed space), i.e.Φ is a map whose
variable is a functional. Here, we extend the structure ofR to R by setting, for allt ∈ R,

−∞ < t < ∞, −∞+ t = −∞, ∞+ t = ∞, −∞+∞ = ∞−∞ = ∞.

We also defined the so-called point-wise order onRE
defined by,f ≤ g if and only if f(x) ≤

g(x) for all x ∈ E. We say thatΦ is point-wise increasing (resp. decreasing) if:

f ≤ g =⇒ Φ(f) ≤ (≥)Φ(g)

andΦ is called point-wise convex (resp. concave) if:

Φ
(
(1− t)f + tg

)
≤ (≥)(1− t)Φ(f) + tΦ(g)

for all real numbert ∈ (0, 1).
The following remark worth to be mentioned.

Remark 1.1. Throughout this paper, the involved functionals can take infinite values. Accord-
ing to the previous definitions, the two equalitiesf = g andf − g = 0 (resp. f ≤ g and
f − g ≤ 0) are not always equivalent.

N.B. For the sake of simplicity for the reader, we restrict ourselves in what follows to the case
thatE is a real normed (Banach) space. The version related to the complex case can be stated
in a similar manner.

2. BACKGROUND M ATERIAL

In this section, we recall some definitions and properties about convex analysis that will be
needed throughout this paper.

The Fenchel conjugate off ∈ RE
is f ∗ ∈ RE∗

defined by

(2.1) ∀x∗ ∈ E∗ f ∗(x∗) = sup
x∈E

(
〈x, x∗〉 − f(x)

)
.

The mapf 7−→ f ∗ is then a functional map, defined fromRE
into RE∗

, so-called the Fenchel
duality map. It is well known that such functional map is point-wise decreasing and convex.
Furthermore,f ∗ is always convex and l.s.c, even iff is not. ByΓ0(E) we denote the convex
cone of all convex, lower semi-continuous (l.s.c in short) and proper functionals defined from
E into R̃ (f is proper means thatf does not take the value−∞ and is not identically equal
to ∞). With this, f ∗ ∈ Γ0(E

∗) wheneverf is proper. For eacht > 0, we can easily see that

AJMAA, Vol. 13, No. 1, Art. 19, pp. 1-9, 2016 AJMAA

http://ajmaa.org


DIRECTIONAL DERIVATIVE OF FENCHEL DUALITY MAP 3

(tf)∗(x∗) = tf∗(x∗/t) for all x∗ ∈ E∗. If we definef ∗∗ : E −→ R by f ∗∗ := (f ∗)∗ then,
f = f ∗∗ if and only if f ∈ Γ0(E). We always havef ∗∗ ≤ f andf ∗∗∗ = f ∗.

The notationdom f refers to the domain off defined by

dom f = {x ∈ E, f(x) < ∞},
and∂f(x) stands for the sub-differential off atx ∈ dom f defined through

x∗ ∈ ∂f(x) ⇐⇒ ∀z ∈ E f(z) ≥ f(x) + 〈z − x, x∗〉.
It is well known that∂f(x) is (possibly empty) closed and convex subset ofE∗. Further, we
have

(2.2) x∗ ∈ ∂f(x) ⇐⇒ f(x) + f ∗(x∗) = 〈x, x∗〉,
and iff ∈ Γ0(E), x∗ ∈ ∂f(x) if and only if x ∈ ∂f ∗(x∗).

The directional derivative off in the directionh ∈ E atx ∈ dom f is defined by, [5]

df(x, h) := lim
t↓0

f(x + th)− f(x)

t
,

provided this limit exists inR. If f is convex then such limit exists i.e.df(x, h) always exists
in R. If moreover, the maph 7−→ df(x, h), for fixedx ∈ dom f , is linear continuous then we
say thatf is G-differentiable atx and we write

(2.3) df(x, h) = ∇f(x)(h),

where∇f(x) denotes the so-called G-gradient off atx. If f is convex and G-differentiable at
x then∂f(x) = {∇f(x)}.

Finally, letf, g ∈ R̃E. The inf-convolution off andg is defined through

(2.4) ∀x ∈ E f�g(x) := inf
y∈E

(
f(y) + g(x− y)

)
.

It is well known that the binary law� is commutative, associative and always satisfies(f�g)∗ =
f ∗ + g∗. Under convenient assumption, the relationship(f + g)∗ = f ∗�g∗ holds. For in-
stance, such equality is satisfied providedf, g ∈ Γ0(E) and int(dom f) ∩ dom g 6= ∅,
whereint(dom f) denotes the topological interior ofdom f . For other condition ensuring
(f + g)∗ = f ∗�g∗, see [1] for instance.

3. SOME NEEDED L EMMAS

In what follows, ifE is a (real) Hilbert space then we identifyE∗ with E via Riesz-Frechet
representation theorem. In this case, the bracket duality〈., .〉 is identified with the inner product
of E. We denote byB+∗(E) the set of all self-adjoint positive invertible operators acting onE.

The two following lemmas, which will be needed later, may be stated.

Lemma 3.1. Let E be a real Hilbert space andT ∈ B+∗(E). Let f be the real function
generating byT , i.e.

∀x ∈ E f(x) = fT (x) :=
1

2
〈Tx, x〉,

(
f = fT , in short

)
.

Then the following assertions hold true:
(a) fT is convex if and only ifT is (self-adjoint) positive. If moreoverT ∈ B+∗(E) then
(fT )∗ = fT−1.
(b) df(x, h) = 〈h, Tx〉 for all x, h ∈ E and so∂f(x) = {Tx} for everyx ∈ E.
(c) If g = fS, whereS ∈ B+∗(E), thenf�g = fT//S, where

T//S :=
(
T−1 + S−1

)−1
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4 M. RAÏSSOULI, M. RAMEZANI

is the so-called parallel sum ofT andS.

Proof. It is not hard to establish it as an exercise. See also [2, 4], for instance.

Lemma 3.2. LetE be a normed space andp > 1 be a real number. We set

∀x ∈ E f(x) =
1

p
‖x‖p.

Then the following assertions hold:
(a) For all x∗ ∈ E∗ we have

f ∗(x∗) =
1

p∗
‖x∗‖p∗

∗ ,

wherep∗ denotes the conjugate ofp defined by1/p + 1/p∗ = 1.
(b) If moreoverE is a (real) Hilbert space thenf is G-differentiable at everyx ∈ E for p ≥ 2,
at eachx 6= 0 for p < 2, with

∇f(x)(h) = ‖x‖p−2〈h, x〉.

Proof. For (a), see [3]. For (b), it is a simple exercise which we leave to the reader.

4. POINT -W ISE DIRECTIONAL DERIVATIVE OF f 7−→ f ∗

We start this section by stating the following definition.

Definition 4.1. Let f, g ∈ RE
. Forx∗ ∈ E∗, we set

[f, g]∗(x
∗) := lim

t↓0

(f + tg)∗(x∗)− f ∗(x∗)

t
,

provided this limit exists inR. In this case,[f, g]∗ is the point-wise directional derivative of the
Fenchel duality map in the directiong atf .

The following result asserts the existence of[f, g]∗ when convenient assumptions onf andg
are added.

Theorem 4.1. Let f : E −→ R be such thatf ∗ is proper andg : E −→ R̃. Then, for all
x∗ ∈ dom f ∗, [f, g]∗(x

∗) exists inR, with

(4.1) [f, g]∗(x
∗) = inf

t>0

(f + tg)∗(x∗)− f ∗(x∗)

t
.

To prove this theorem, we need the following lemma.

Lemma 4.2. Letf, g be as in Theorem 4.1. Then, for allx∗ ∈ dom f ∗, the map

(4.2) (0,∞) 3 t 7−→ (f + tg)∗(x∗)− f ∗(x∗)

t
is monotone increasing, i.e.

t1 ≥ t2 > 0 =⇒ (f + t1g)∗(x∗)− f ∗(x∗)

t1
≥ (f + t2g)∗(x∗)− f ∗(x∗)

t2
.

Proof. Let t1 ≥ t2 > 0. Sincedom f = E then we can write, for allx∗ ∈ E∗,

(f + t2g)∗(x∗)− f ∗(x∗) =
(t2

t1

(
f + t1g

)
+

(
1− t2

t1

)
f
)∗

(x∗)− f ∗(x∗).

This, with the fact that the mapf 7−→ f ∗ is point-wise convex and0 < t2/t1 ≤ 1, yields

(f + t2g)∗(x∗)− f ∗(x∗) ≤ t2
t1

(
f + t1g

)∗
(x∗) +

(
1− t2

t1

)
f ∗(x∗)− f ∗(x∗).
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We then deduce, after simple manipulation, that

(f + t2g)∗(x∗)− f ∗(x∗)

t2
≤ (f + t1g)∗(x∗)− f ∗(x∗)

t1
,

provided thatx∗ ∈ dom f ∗. The desired result is obtained.

Since the map (4.2) is monotone increasing then

inf
t>0

(f + tg)∗(x∗)− f ∗(x∗)

t

always exists inR, for all x∗ ∈ dom f∗, and so

lim
t↓0

(f + tg)∗(x∗)− f ∗(x∗)

t
= inf

t>0

(f + tg)∗(x∗)− f ∗(x∗)

t
,

from which Theorem 4.1 follows.
The following corollary is immediate from the equality (4.1).

Corollary 4.3. Letf, g be as in Theorem 4.1. Then the inequality

(4.3) [f, g]∗(x
∗) ≤ (f + g)∗(x∗)− f ∗(x∗)

holds for allx∗ ∈ dom f ∗.

Theorem 4.4.Letf, g : E −→ R with f ∗ is proper. Then for allx∗ ∈ dom f∗ we have

(4.4) f ∗(x∗)− (f − g)∗(x∗) ≤ [f, g]∗(x
∗).

Proof. The following identity

f =
1

1 + t
(f + tg) +

t

1 + t
(f − g)

is obviously satisfied for allt > 0 and all f, g with dom g = E. Again by virtue of the
point-wise convexity off 7−→ f ∗, we deduce for allx∗ ∈ E∗

f ∗(x∗) ≤ 1

1 + t
(f + tg)∗(x∗) +

t

1 + t
(f − g)∗(x∗).

It follows that
f ∗(x∗) + tf∗(x∗) ≤ (f + tg)∗(x∗) + t(f − g)∗(x∗),

or equivalently, withx∗ ∈ dom f ∗,

tf∗(x∗)− t(f − g)∗(x∗) ≤ (f + tg)∗(x∗)− f ∗(x∗),

or again

f ∗(x∗)− (f − g)∗(x∗) ≤ (f + tg)∗(x∗)− f ∗(x∗)

t
.

We then deduce the desired inequality by lettingt ↓ 0 point-wisely. The proof is so complete.

We end this section by stating a result summarizing the elementary properties of the binary
functional map(f, g) 7−→ [f, g]∗.

Proposition 4.5. Letf, g be as in Theorem 4.1 andλ > 0 be a real number. Then the following
assertions hold:
(a) [f, λg]∗ = λ[f, g]∗.
(b) [f, g1 + g2]∗ ≤ [f, g1]∗ + [f, g2]∗ (g1 andg2 are asg).
(c) The functional mapg 7−→ [f, g]∗, for fixedf , is point-wisely convex.
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6 M. RAÏSSOULI, M. RAMEZANI

(d) [λf, g]∗ = 1
λ
[f, g]∗.λ, where we set(f.λ)(x) = λf(x/λ).

(e) If E is a real Hilbert space then

[fT , fS]∗ = −fT−1ST−1 ,

whereT ∈ B+∗(E) andS is a self-adjoint operator ofE.

Proof. The first three statements follow from the fact that the directional derivative is sub-linear
in its second component. The proof of (d) and (e) is simple and therefore omitted here.

5. I MPROVED BOUNDS FOR [f, g]∗

Inequalities (4.3) and (4.4) are not the best possible and we will give in this section some
improvements of them. We begin by stating the following result.

Theorem 5.1.Letf, g be as in Theorem 4.1. Then the inequality

(5.1) [f, g]∗(x
∗) ≥ −g(x)

holds for allx ∈ E such that∂f(x) 6= ∅ andx∗ ∈ ∂f(x). Further, inequality (5.1) refines (4.4).

Proof. By (2.1) we can write, for allx ∈ E andx∗ ∈ E∗,

(5.2) (f + tg)∗(x∗)− f ∗(x∗) ≥ 〈x∗, x〉 − f(x)− tg(x)− f ∗(x∗).

Let x ∈ E be such that∂f(x) 6= ∅. If we takex∗ ∈ ∂f(x) then〈x∗, x〉 = f(x) + f ∗(x∗), by
(2.2). Substituting this in (5.2), with the conditiondom f = E, the desired inequality follows
after a simple manipulation.

We now prove that (5.1) is a refinement of (4.4). Indeed, forx∗ ∈ ∂f(x), (2.1) yields

(f − g)∗(x∗) ≥ 〈x∗, x〉 − f(x) + g(x) = 〈x∗, x〉 − f(x)− f ∗(x∗) + f ∗(x∗) + g(x).

If x∗ ∈ ∂f(x) then again (2.2) implies that〈x∗, x〉 − f(x) − f ∗(x∗) = 0 and so the desired
result follows, so completes the proof.

Corollary 5.2. Let f, g be as in Theorem 4.1. Assume that furtherf ∈ Γ0(E). Then the
inequality

(5.3) − inf
x∈∂f∗(x∗)

g(x) ≤ [f, g]∗(x
∗)

holds for allx∗ ∈ dom f ∗.

Proof. Sincef ∈ Γ0(E) then the conditionx∗ ∈ ∂f(x) is equivalent tox ∈ ∂f ∗(x∗). We can
then say that (5.1) holds for allx ∈ ∂f ∗(x∗), wheneverx∗ ∈ dom f∗ is given. With this, (5.1)
means that the real mapx 7−→ −g(x) is upper bounded by[f, g]∗(x

∗) on the set∂f ∗(x∗). It
follows that

sup
x∈∂f∗(x∗)

(
− g(x)

)
≤ [f, g]∗(x

∗),

from which (5.3) follows, so completing the proof.

Now, a question arises from the above: Is (5.3) the best possible? That is, do existf, g ∈ R̃E

for which (5.3) remains an equality? The following example answers affirmatively this latter
question.

Example 5.1. Assume thatE is a real Hilbert space. With the notation of Lemma 3.1, let us
takef = fT andg = fS, whereT ∈ B+∗(E) andS is self-adjoint. It is easy to see that (detail
is simple and therefore omitted here)

− inf
x∈∂f∗(x∗)

g(x) = −g
(
T−1x∗

)
= −fT−1ST−1(x∗),

which, with Proposition 4.5,(e), implies that (5.3) is an equality.
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Now, we state a result that gives a point-wise upper bound of[f, g]∗.

Theorem 5.3. Let f, g be as in Theorem 4.1. Assume that furtherf, g ∈ Γ0(E). Then the
inequality

(5.4) [f, g]∗(x
∗) ≤ inf

z∗∈E∗

(
g∗(z∗) + df ∗(x∗,−z∗)

)
holds for allx∗ ∈ dom f ∗. Further, (5.4) refines (4.3).

Proof. By our assumption, (2.4) yields

(f + tg)∗(x∗) =
(
f ∗�tg∗

( .

t

))∗∗
(x∗) ≤

(
f ∗�tg∗

( .

t

))
(x∗) = inf

y∗∈E∗

(
f ∗(y∗) + tg∗

(x∗ − y∗

t

))
.

It follows that the inequality

(f + tg)∗(x∗) ≤ f ∗(y∗) + tg∗
(x∗ − y∗

t

)
holds for allx∗ ∈ dom f∗, y∗ ∈ E∗ andt > 0. Settingx∗ − y∗ = tz∗ we then obtain

(f + tg)∗(x∗)− f ∗(x∗) ≤ f ∗(x∗ − tz∗)− f ∗(x∗) + tg∗(z∗).

Dividing by t > 0 and letting thent ↓ 0 we then have

[f, g]∗(x
∗) ≤ g∗(z∗) + df ∗(x∗,−z∗)

for all x∗, z∗ ∈ E∗. This means that the mapz∗ 7−→ g∗(z∗) + df ∗(x∗,−z∗), for fixedx∗ ∈ E∗,
is lower bounded by[f, g]∗(x

∗). The inequality (5.4) follows.
We now establish that (5.4) refines (4.3). In fact, sincef ∗ is convex then

df ∗(x∗,−z∗) = lim
t↓0

f ∗(x∗ − tz∗)− f ∗(x∗)

t

= inf
t>0

f ∗(x∗ − tz∗)− f ∗(x∗)

t
≤ f ∗(x∗ − z∗)− f ∗(x∗).

It follows that

inf
z∗∈E∗

(
g∗(z∗) + df ∗(x∗,−z∗)

)
≤ inf

z∗∈E∗

(
g∗(z∗) + f ∗(x∗ − z∗)

)
− f ∗(x∗).

Now, if we write

inf
z∗∈E∗

(
g∗(z∗) + f ∗(x∗ − z∗)

)
= g∗�f ∗(x∗) = f ∗�g∗(x∗) = (f + g)∗(x∗),

we then deduce the desired refinement, so completes the proof.

As for Example 5.1, the following one shows that inequality (5.4) is the best possible.

Example 5.2. Let E, f, g be as in the previous example. With Lemma 3.1, we have for all
x∗, z∗ ∈ E

df ∗(x∗,−z∗) = −〈T−1x∗, z∗〉 and g∗(z∗) = fS−1(z∗) =
1

2
〈S−1z∗, z∗〉.

The second side of (5.4) becomes

− sup
z∗∈E

(
〈T−1x∗, z∗〉 − 1

2
〈S−1z∗, z∗〉

)
= −

(
fS−1

)∗(
T−1x∗

)
= −fS

(
T−1x∗

)
= −1

2
〈ST−1x∗, T−1x∗〉 = −1

2
〈T−1ST−1x∗, x∗〉 = −fT−1ST−1(x∗),

and so (5.4) is here an equality.
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We can also deduce from this example, as well as from the previous one, that the functional
results presented here contain those related to positive bounded linear operators.

We now state the following corollary which summarizes the previous results.

Corollary 5.4. Letf, g be as in Theorem 5.3. Then the following double inequality

(5.5) − inf
x∈∂f∗(x∗)

g(x) ≤ [f, g]∗(x
∗) ≤ inf

z∗∈E∗

(
g∗(z∗) + df ∗(x∗,−z∗)

)
holds for allx∗ ∈ dom f ∗. Further (5.5) gives the best possible point-wise bounds of[f, g]∗.

Proof. It is sufficient to combine Corollary 5.2 and Theorem 5.3, together with Example 5.1
and Example 5.2.

We end this paper by stating the following corollary which, under convenient hypothesis,
gives an explicit form of[f, g]∗.

Corollary 5.5. LetE be a real Hilbert space and letf, g be as in Theorem 5.3. Assume thatf ∗

is G-differentiable atx∗ ∈ E. Then we have

(5.6) [f, g]∗(x
∗) = −g

(
∇f ∗(x∗)

)
.

Proof. If f ∗ is G-differentiable atx∗ then

df ∗(x∗,−z∗) = −∇f ∗(x∗)(z∗) = −〈∇̃f ∗(x∗), z∗〉,

where∇̃f ∗(x∗) denotes the representant of∇f ∗(x∗) guaranteed by Riesz-Frechet theorem. If

we identify∇f ∗(x∗) and∇̃f ∗(x∗) via such representation, the right side of (5.5) becomes

inf
z∗∈E∗

(
g∗(z∗) + df ∗(x∗,−z∗)

)
= inf

z∗∈E

(
g∗(z∗)− 〈∇f ∗(x∗), z∗〉

= − sup
z∗∈E

(
〈∇f ∗(x∗), z∗〉 − g∗(z∗)

)
= −g∗∗

(
∇f ∗(x∗)

)
= −g

(
∇f ∗(x∗)

)
,

sinceg ∈ Γ0(E). Again,f ∗ is G-differentiable atx∗ implies

∂f ∗(x∗) = {∇f ∗(x∗)}

and so the left side of (5.5) is equal to−g(∇f ∗(x∗)). The desired result follows, so completes
the proof.

Remark 5.1. Under the hypotheses of the previous corollary, (5.6) is equivalent to

(f + tg)∗(x∗) = f ∗(x∗)− tg
(
∇f ∗(x∗)

)
+ t εt(f, g)(x∗),

whereεt(f, g)(x∗) tends to0 ast ↓ 0. This gives an expansion approximating (point-wisely)
(f + tg)∗ at order1 in t.

Finally, we state the following examples.

Example 5.3. Let E be a real Hilbert space andT ∈ B+∗(E). Let us takef = fT and
g = 1

p
‖.‖p with p > 1. Following Lemma 3.1 we have∇f ∗(x∗) = T−1x∗ and so (5.6) gives

∀x∗ ∈ E
[
fT ,

1

p
‖.‖p

]
∗
(x∗) = −1

p
‖T−1x∗‖p.
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Example 5.4.LetE be a real Hilbert space and letf, g be given by

∀x ∈ E f(x) =
1

p
‖x‖p, g(x) =

1

q
‖x‖q,

wherep, q > 1. Hypotheses of Theorem 5.3 are here satisfied. According to Lemma 3.2, (5.6)
yields (after a simple manipulation)

∀x∗ ∈ E
[1

p
‖.‖p,

1

q
‖.‖q

]
∗
(x∗) = −1

q
‖x∗‖q(p∗−1).

Example 5.5.With the same notation as in the previous examples, we left to the reader the task
for checking that

∀x∗ ∈ E
[1

p
‖.‖p, fS

]
∗
(x∗) = −‖x∗‖2p−4fS(x∗),

whereS is a self-adjoint operator ofE.
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