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2 ADEL SADDI

1. I NTRODUCTION

Throughout this paperH denotes a complex Hilbert space with inner product〈.|.〉 and norm
||.||. L(H) stands the Banach algebra of all bounded linear operators onH. I = IH being the
identity operator and ifV ⊂ H is a closed subspace,PV is the orthogonal projection ontoV .
For T ∈ L(H) its range is denoted byR(T ), its null space byN(T ), its adjoint byT ∗ and its
spectrum byσ(T ). The numerical range ofT is a subset of the set of complex numbersC and
it is defined by

W (T ) = {〈Tx|x〉, x ∈ H, ||x|| = 1}
The spectral radius and the numerical radius and the minimum modulus ofT will be denoted
respectively byr(T ) andw(T ) andγ(T ). They are defined asr(T ) = sup{|λ|, λ ∈ σ(T )}
andw(T ) = sup{|λ|, λ ∈ W (T )} andγ(T ) = inf{‖Tx‖, x ∈ N(T )⊥ and ‖x‖ = 1}. It is
well known thatγ(T ) > 0 if and only if R(T ) is closed and thatw(T ) is a norm on the Banach
algebraL(H) (for more detail about the concept of numerical radius, see for example [4],[9]).
Moreover forT ∈ L(H), we have

(1.1) w(T ) ≤ ||T || ≤ 2w(T ),

and that for a normal operatorT ([3]), one has

(1.2) r(T ) = w(T ) = ||T ||
L(H)+ is the cone of positive operators, i.e.

L(H)+ = {A ∈ L(H) : 〈Ax|x〉 ≥ 0, ∀ x ∈ H }.
Any positive operatorA ∈ L(H)+ defines a positive semi-definite sesquilinear form

〈 | 〉A : H×H −→ C, 〈x|y〉A = 〈Ax|y〉.

By ‖.‖A we denote the seminorm induced by〈 | 〉A, i.e.,‖x‖A = 〈x|x〉
1
2
A. Note that‖x‖A = 0 if

and only ifx ∈ N(A). Then‖.‖A is a norm onH if and only if A is an injective operator, and
the semi-normed space(L(H), ‖.‖A) is complete if and only ifR(A) is closed. Moreover〈 | 〉A
induces a seminorm on the subspace{T ∈ L(H)/ ∃ c > 0, ‖Tx‖A ≤ c‖x‖A, ∀ x ∈ H}. For
this subspace of operators it holds

‖T‖A = sup
x∈R(A),x 6=0

‖Tx‖A

‖x‖A

< ∞.

Moreover
‖T‖A = sup{|〈Tx|y〉A|; x, y ∈ H and ‖x‖A ≤ 1, ‖y‖A ≤ 1 }.

For x, y ∈ H, we say thatx andy areA-orthogonal if〈x|y〉A = 0. Note that this definition
is a natural extension of the usual notion of orthogonality which represents theI-orthogonality
case. For a setS ⊂ H, its A-orthogonal subspaceS⊥A is given by

S⊥A = {x ∈ H; 〈x|y〉A = 0, ∀ y ∈ S}.
Note thatS⊥A = (AS)⊥ = A−1(S⊥) and sinceA(A−1(S) = S ∩ R(A), then (S⊥A)⊥A =(
S⊥∩R(A)

)⊥
. The concept ofA-spectral radius,A-numerical radius andA-minimum modulus

of an operator are a natural generalization of the spectral radius, the numerical radius and the
minimum modulus respectively. In the next, we give the following definition.

Definition 1.1. Let T ∈ L(H). The A-spectral radius, theA-numerical radius and theA-
minimum modulus ofT are denoted respectivelyrA(T ), wA(T ) andγA(T ) and they are defined
as

rA(T ) = lim sup
n→+∞

||T n||
1
n
A
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A-NORMAL OPERATORSIN SEMI HILBERTIAN SPACES 3

wA(T ) = sup{|〈Tx|x〉A|; x ∈ H, ||x||A = 1}
and

γA(T ) = inf{‖Tx‖A; x ∈ N(A
1
2 T )⊥A and‖x‖A = 1}.

For anyT, S ∈ L(H), the following properties are immediate:

(1) wA(T ) ≥ 0 andwA(T ) = 0 if and only if AT = 0.
(2) wA(λT ) = |λ|wA(T ) for anyλ ∈ C.
(3) wA(T + S) ≤ wA(T ) + wA(S).
(4) ∀ x ∈ H, |〈Tx|x〉A| ≤ wA(T )||x||2A ≤ ‖T‖A||x||2A and ‖Tx‖A ≥ γA(T )dA(x, N(A

1
2 T ))

wheredA(x, V ) = inf{‖x− y‖A; y ∈ V } for anyV ⊂ H.

Note thatwA(.) is a seminorm onL(H) and it is a norm ifA is injective. MoreoverwA(T ) ≤
||T ||A for anyT ∈ L(H). The following theorem due to Douglas will be used (see [5] for its
proof).

Theorem 1.1.LetT, S ∈ L(H). The following conditions are equivalent.

(1) R(S) ⊂ R(T ).
(2) There exists a positive numberλ such thatSS∗ ≤ λTT ∗.
(3) There existsW ∈ L(H) such thatTW = S.

From now on,A denotes a positive operator onH (i.e. A ∈ L(H)+).

Definition 1.2. LetT ∈ L(H), an operatorW ∈ L(H) is called anA-adjoint ofT if

〈Tu|v〉A = 〈u|Wv〉A for every u, v ∈ H,

or equivalently

AW = T ∗A;

T is calledA-selfadjoint ifAT = T ∗A and it is calledA-positive ifAT is positive.

By Douglas Theorem, an operatorT ∈ L(H) admits anA-adjoint if and only ifR(T ∗A) ⊂
R(A) and if W is anA-adjoint of T andAZ = 0 for someZ ∈ L(H) thenW + Z is also
anA-adjoint ofT . Hence neither the existence nor the uniqueness of anA-adjoint operator is
guaranteed. In fact an operatorT ∈ L(H) may admit none, one or manyA-adjoints.
From now on,LA(H) denotes the set of allT ∈ L(H) which admit anA-adjoint, i.e.

LA(H) = { T ∈ L(H) : R(T ∗A) ⊂ R(A) }.

LA(H) is a subalgebra ofL(H) which is neither closed nor dense inL(H).
On the other hand the set of allA-bounded operators inL(H) (i.e. with respect the seminorm
‖.‖A) is

L
A

1
2
(H) = { T ∈ L(H) : T ∗R(A

1
2 ) ⊂ R(A

1
2 ) } = { T ∈ L(H) : R(A

1
2 T ∗A

1
2 ) ⊂ R(A) }.

Note thatLA(H) ⊂ L
A

1
2
(H), which shows that ifT admits anA-adjoint then it isA- bounded.

Section 2, contains some inequalities giving upper bounds of the difference between the A-
norm and A-numerical radius of an A-bounded operator in semi-Hilbertian spaces and under
appropriate conditions. In section 3, we introduce the notion ofA-normal operators, we prove a
characterization involving theA-norm, ||.||A, we give some properties onA-normal operators,
then we establish new operator norm inequalities. Our inequalities generalize the well known
properties for normal operators.
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4 ADEL SADDI

2. I NEQUALITIES INVOLVING A-NUMERICAL RADIUS

If T ∈ L(H) with R(T ∗A) ⊂ R(A), thenT , admits anA-adjoint operator, Moreover there
exists a distinguishedA-adjoint operator ofT , namely, the reduced solution of the equation
AX = T ∗A, i.e. T ] = A†T ∗A, whereT † is the Moore-Penrose inverse ofT . TheA-adjoint
operatorT ] verifies

AT ] = T ∗A, R(T ]) ⊆ R(A) and N(T ]) = N(T ∗A).

In the next we add without proof some important properties ofT ] (for more details we refer the
reader to [1] and [2]).

Theorem 2.1.LetT ∈ LA(H). Then

(1) If AT = TA thenT ] = PT ∗.
(2) T ]T andTT ] areA-selfadjoint andA-positive.
(3) ‖T‖2

A = ‖T ]‖2
A = ‖T ]T‖ = ‖TT ]‖ = wA(T ]T ) = wA(TT ]).

(4) ‖S‖A = ‖T ]‖A for everyS ∈ L(H) which is anA-adjoint ofT.
(5) If S ∈ LA(H) thenST ∈ LA(H), (ST )] = T ]S] and‖TS‖A = ‖ST‖A.
(6) T ] ∈ LA(H), (T ])] = PTP and((T ])])] = T ].
(7) ‖T ]‖ ≤ ‖S‖ for everyS ∈ L(H) which is anA-adjoint ofT. Nevertheless,T ] is not in

general the uniqueA-adjoint ofT that realizes the minimal norm.

Lemma 2.1. Let T ∈ LA(H). If M is an invariant subspace forT andT ], thenM⊥A is also
invariant forT andT ].

Proof. Letx ∈ M⊥A, andy ∈ M , then〈Tx|y〉A = 〈x|T ]y〉A = 0, sinceT ]y ∈ M . Thus
Tx ∈ M⊥A, soT (M⊥A) ⊂ M⊥A. Similarly, we show thatT ](M⊥A) ⊂ M⊥A.

In the following, we establish various inequalities between the operator seminorm||.||A and
theA-numerical radiuswA(.) of operators in semi-Hibertian spaces.

Theorem 2.2.LetT ∈ LA(H), λ ∈ C andα ≥ 0 are such that||T − λI||A ≤ α. Then

(2.1) (0 ≤) |λ|(||T ||A − wA(T )) ≤ α2

2

Moreover, if|λ| > α then

(2.2)

√
1− α2

|λ|2
||T ||A ≤ wA(T ) ≤ ||T ||A

Proof. Since||T − λI||A ≤ α then forx ∈ H with ||x||A = 1, we have||Tx − λx||A ≤ α, or
equivalently||Tx− λx||2A ≤ α2, which implies that

||Tx||2A + |λ|2 ≤ 2Re(λ〈Tx|x〉A) + α2 ≤ 2|λ||〈Tx|x〉A|+ α2

By taking the supremum overx ∈ H, ||x||A = 1, it follows

(2.3) 2|λ|||T ||A ≤ ||T ||2A + |λ|2 ≤ 2|λ|wA(T ) + α2

Hence the desired inequality (2.1) is obtained.
Now if |λ| > α, on dividing with|λ|2 in (2.3) we obtain

||T ||2A
|λ|2

+ 1 ≤ 2
wA(T )

|λ|
+

α2

|λ|2
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then by using an elementary inequality, we deduce

2

√
1− α2

|λ|2
||T ||A
|λ|

≤ ||T ||2A
|λ|2

+ 1− α2

|λ|2
≤ 2

wA(T )

|λ|
from which the inequality (2.2) is easily holds.

Remark 2.1. Note that forT ∈ LA(H), λ ∈ C and |λ| > α ≥ 0 such that||T − λI||A ≤ α,
(1.1) and(2.2) lead a refinement and improve(1.1) and they provide the following inequalities

wA(T ) ≤ ||T ||A ≤

√
|λ|2

|λ|2 − α2
wA(T ) ≤ 2wA(T ), if

α

|λ|
≤
√

3

2

Using the fact that forx, y, z ∈ H, one has

Re〈y − x|x− z〉A ≥ 0 ⇔ ||x− y + z

2
||A ≤

1

2
||y − z||A

and by applying Theorem 2.2, (2.1), the following corollary is immediately deduced.

Corollary 2.3. Let T ∈ LA(H), λ, µ ∈ C, λ 6= µ. If Re〈λx − Tx|Tx + µx〉A ≥ 0, for all
x ∈ H then

(2.4) (0 ≤) ||T ||A − wA(T ) ≤ 1

4

|λ + µ|2

|λ− µ|
Remark 2.2. Note that in the literature, the conditionRe〈λx − Tx|Tx + µx〉A ≥ 0, x ∈ H
means that the operator

(2.5) (T ] + µI)A(λI − T ) is accretive.

On squaring (2.2) and replacingλ by λ−α
2

, α by |λ+α|
2

, the following corollary follows

Corollary 2.4. LetT ∈ LA(H), λ, µ ∈ C, with Re(λµ) ≤ 0. If T verifies(2.5), then

(2.6) (0 ≤) ||T ||2A − wA(T )2 ≤ |λ + µ

λ− µ
|2||T ||2A.

and
2
√
−Re(λµ)

|λ− µ|
||T ||A ≤ wA(T )

in particular if we chooseλ = −µ > 0, we get

(2.7) ||T ||A = wA(T ).

3. A-NORMAL OPERATORS

In the following we introduce the notion ofA-normal operators.

Definition 3.1. An operatorT ∈ LA(H) is called anA-normal operator ifT ]T = TT ].

A-normal operators may be regarded as a generalization of normal and self-adjoint operators
in which T ] = T ∗. This last property is realized in particular ifA = I or if T andA commute
andA has a dense range [1].
The identity operator and the orthogonal projection onR(A) areA-normal. Moreover, ifT is
anA-normal then{TS, T + S/ TS = ST, S = S]} is a set ofA-normal operators.
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6 ADEL SADDI

Another characterization is thatT ∈ LA(H) is anA-normal operator if and only if there are
A-selfadjoint operatorsB, C ∈ LA(H) such thatBC = CB andT = B + iC, (i2 = −1).

From now on, to simplify notation, we writeP instead ofPR(A). An important property of
A-normal operators that will be used frequently in the sequel is the following:

Theorem 3.1.A necessary and sufficient condition for an operatorT ∈ LA(H) to beA-normal
is thatR(TT ]) ⊂ R(A) and||Tx||A = ||T ]x||A for every vectorx ∈ H.

Proof. Suppose thatT is A-normal. It is easily to see thatR(TT ]) = R(T ]T ) ⊂ R(A).
Moreover, using the fact thatTT ] is A-selfadjoint, then forx ∈ H, we obtain,

T ]T = TT ] ⇒ 〈T ]Tx|x〉A = 〈TT ]x|x〉A
⇔ 〈AT ]Tx|x〉 = 〈ATT ]x|x〉
⇔ 〈T ∗ATx|x〉 = 〈(TT ])∗Ax|x〉
⇔ 〈ATx|Tx〉 = 〈T ∗Ax|T ]x〉
⇔ ||Tx||A = ||T ]x||A

Conversely, if||Tx||A = ||T ]x||A, thenA(T ]T−TT ]) = 0, if moreoverR(TT ]) ⊂ R(A), so, it
follows R(T ]T−TT ]) ⊂ R(A) = N(A)⊥ and henceT ]T−TT ] = 0, which finishes the proof.

In the next we give some properties onA-normal operators.

Corollary 3.2. For T ∈ LA(H), the following properties hold

(1) If T is A-selfadjoint operator then||T ||A = wA(T ).
(2) If T is A-normal operator thenT n is also for alln ≥ 1 and||T ||A = rA(T ).
(3) Suppose thatN(A) is an invariant subspace forT andλ, µ ∈ C. If T is A-normal, then

(a) T − λI andT ] areA-normal.
(b) Tx = λx yieldsT ]x = λPx.
(c) M = {x ∈ H/Tx = λx} andM⊥A are invariant forT andT ].
(d) Tx = λx andTy = µy, λ 6= µ yieldx⊥Ay (i.e. 〈x|y〉A = 0).

Proof.

(1) It is clear that sup
||x||A=||y||A=1

|〈Tx|y〉A| ≤ ||T ||A. In the other hand, if we choosez =

Tx
||Tx||A

, we obtain

||Tx||A = 〈Tx|z〉A| ≤ sup
||x||A=||y||A=1

|〈Tx|y〉A|

Moreover, without loss of generality we can supposex, y 6= 0 and that〈Tx|y〉A > 0,
then one has

〈T (x + y)|x + y〉A = 〈Tx|x〉A + 〈Tx|y〉A + 〈y|T ]x〉A + 〈Ty|y〉A

and

〈T (x− y)|x− y〉A = 〈Tx|x〉A − 〈Tx|y〉A − 〈y|T ]x〉A + 〈Ty|y〉A
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If T is A-selfadjoint then, by parallelogram law

|〈Tx|y〉A| =
1

2
|〈Tx|y〉A + 〈T ]x|y〉A| =

1

2
|〈T (x + y)|x + y〉A − 〈T (x− y)|x− y〉A|

≤ wA(T )

2
(||x + y||2A + ||x− y||2A)

≤ wA(T )(||x||2A + ||y||2A)

If we replacex by
√

αx andy by y√
α
, whereα = ||y||A

||x||A
, we get

|〈Tx|y〉A| = |〈Tx|y〉A + 〈T ]x|y〉A|

≤ wA(T )

2
(||x||2A + ||y||2A)

= wA(T )||x||A||y||A
which implies,wA(T ) ≤ ||T ||A and thus,

||T ||A = sup{|〈Tx|y〉A|; ||x||A = ||y||A = 1} = wA(T )

(2) Let n ≥ 1, if T is A-normal operator then,T andT ] commute, consequentlyT n and
(T ])n commute. ThusT n is A-normal.
Let x ∈ H, we have

||T ]Tx||2A = 〈T ]Tx|T ]Tx〉A = 〈T 2x|T 2x〉A = ||T 2x||2A
||Tx||2A = 〈Tx|Tx〉A = 〈T ]Tx|x〉A

SinceT ]T is A-selfadjoint then by taking the supremum on||x||A = 1 and applying 1.
we get

||T ||2A = sup
||x||A=1

||Tx||2A = sup
||x||A=1

〈T ]Tx|x〉A

= ||T ]T ||A = sup
||x||A=1

||T ]Tx||A

= sup
||x||A=1

||T 2x||A = ||T 2||A

Moreover for alln ≥ 1 we have

||T nx||2A = 〈T nx|T nx〉A = 〈T ]T nx|T n−1x〉A ≤ ||T ]T nx||A.||T n−1x||A
which implies

||T n||2A ≤ ||T n+1||A.||T n−1||A
Assume that||T ||A > 0 then ||T n||A > 0 for all n ≥ 1 ( for ||T ||A = 0 the desired
property is evident) and setαn = ||T n+1||A

||T n||A
, n ≥ 1. It is clear that(αn)n is an increasing

sequence, then it satisfies

||T n+1||A
||T n||A

= αn ≥ α1 =
||T 2||A
||T ||A

=
||T ||2A
||T ||A

= ||T ||A.

By an induction argument, it follows||T n||A = ||T ||nA, for all n ≥ 1.

ThusrA(T ) = ||T n||
1
n
A = ||T ||A and the proof is achieved .

(3) (a) Note first that sinceN(A) is invariant forT , thenTP = PT andAP = PA = A.
Let nowλ ∈ C, we have(T − λI)(T − λI)] = (T − λI)(T ] − λP ) = TT ] −
λT ] − λT ] − TλP + |λ|2P = T ]T − λT ] − λPT + |λ|2P = (T − λI)](T − λI),
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8 ADEL SADDI

then(T − λI) is A-normal.
For allx ∈ H, we have also

||(T ])]x||2A = 〈(T ])]x|(T ])]x〉A
= 〈PTPx|PTPx〉A
= 〈TPx|TPx〉A
= ||TPx||2A
= ||Tx||2A = ||T ]x||2A

It clear thatR(T ](T ])]) ⊂ R(A), so from Theorem 3.1, it follows thatT ] is A-
normal.

(b) Using (a),

||
√

A(T ] − λP )x|| = ||(T ] − λP )x||A
= ||(T − λI)]x||A
= ||(T − λI)x||A = 0

or R(T ] − λP ) ⊂ R(A) = N(A)⊥, thenT ]x = λPx
(c) LetM = {x ∈ H/Tx = λx}. It is clear thatT (M) ⊂ M . Moreover ifx ∈ M and

y = T ]x, thenTy = TT ]x = T ]Tx = λT ]x = λy yieldsy = Tx ∈ M . HenceM
is invariant for bothT andT ]. Using Lemma 2.1 the desired result follows.

(d) Suppose thatTx = λx, Ty = µy with 0 6= λ 6= µ,
〈x|y〉A = λ−1〈Tx|y〉A = λ−1〈x|T ]y〉A = λ−1µ〈x|Py〉A = λ−1µ〈x|y〉A,
then〈x|y〉A = 0. If λ = 0 we permute betweenλ andµ and the proof achieved.

Question: If T is A-normal, is it true that||T ||A = wA(T )?

Note that in the Cauchy-Schwarz inequality i.e.

(3.1) |〈u|v〉| ≤ ||u|| ||v||, u, v ∈ H

if, we chooseu =
√

Ax andv =
√

Ay we obtain more general formula

(3.2) |〈x|y〉A| ≤ ||x||A ||y||A, x, y ∈ H
Moreover, for the choicesTx instead ofx andT ]x instead ofy with x ∈ H, then one gets the
following simple inequality for theA-normal operatorT :

(3.3) |〈T 2x|x〉A| ≤ ||Tx||2A, x ∈ H
Note that the inequality (3.3) implies in particular that

wA(T 2) ≤ ||T ||2A.

Note also that the inequality (3.3) becomes an equality ifT is anA-selfadjoint operator. This
property does not remain true forA-normal operators. Indeed if consider the operatorsH =

C2, A =

(
a 0
0 a

)
∈ L(H)+, T =

(
r r
−r r

)
∈ L(H) for somea > 0 andr 6= 0. It is

easy to check thatT admitsA-adjoint operators and by direct computation, we see thatT is an
A-normal operator and that (3.3) is a real inequality.

It is then naturel to discuss some estimations of the quantity||Tx||2A−|〈T 2x|x〉A| for A-normal
operators and give a measure of the closeness of the two terms involved in (3.3).
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Motivated by this problem, we will study in this section some inequalities ofA-normal oper-
ators in semi-Hilbertian spaces by employing some known results for vectors in inner product
spaces.
We start with the following result.

Theorem 3.3.LetT ∈ LA(H) be anA-normal operator, then the inequalities

(3.4) |〈Tx|x〉A|2 ≤
1

2
(||Tx||2A + |〈T 2x|x〉A|) ≤ ||Tx||2A

hold for all x ∈ H, ||x||A = 1. The constant1
2

is the best possible in(3.4).

Proof. The second inequality in (3.4) hold immediately from (3.3). For the first one we use the
inequality, which is a consequence of the inequalities (2.3) in [6].

(3.5) |〈a|e〉A 〈e|b〉A| ≤
1

2
(||a||A ||b||A + |〈a|b〉A|)

provideda, b, e are vectors inH and||e||A = 1.
If we choosee = x, ||x||A = 1, a = Tx, andb = T ]x, then we obtain

(3.6) |〈Tx|x〉A 〈x|T ]x〉A| ≤
1

2
(||Tx||A ||T ]x||A + |〈Tx|T ]x〉A|)

for all x ∈ H and||x||A = 1.
SinceT is A-normal, then||Tx||A = ||T ]x||A and the desired inequality follows from (3.6).
If we suppose now, thatT = I is the identity operator, then both the two inequalities in (3.4)
become equalities, this means that1

2
is the best possible constant in (3.4).

The following result is obviously deduced from Theorem 3.3.

Corollary 3.4. If T ∈ LA(H) is anA-normal operator, then

(3.7) wA(T )2 ≤ 1

2
(||T ||2A + wA(T 2)) ≤ ||T ||2A.

The following result provides an upper bound for the nonnegative quantity

||Tx||2A − |〈T 2x|x〉A|, x ∈ H

Theorem 3.5.LetT ∈ LA(H) be anA-normal operator andλ ∈ C, then

(3.8) 0 ≤ ||Tx||2A − |〈T 2x|x〉A| ≤
2

1 + |λ|2
||Tx− λT ]x||2A

for anyx ∈ H.

Proof. Forλ = 0, the inequality in (3.8) is obvious. Forλ 6= 0, we use the Dunkl-Williams
inequality [8],

||a|| ||b|| − |〈a|b〉|
||a|| ||b||

≤ 2||a− b||2

(||a||+ ||b||)2
, a, b ∈ H\{0}

which shows that

(3.9)
||a||A ||b||A − |〈a|b〉A|

||a||A ||b||A
≤ 2||a− b||2A

(||a||A + ||b||A)2
, a, b /∈ N(A)

Now, taking into account thatT is an A-normal operator, we choose in (3.9)a = Tx and
b = λT ]x, λ 6= 0, x /∈ N(A

1
2 T ), so from Theorem 3.1, one gets

||Tx||2A − |〈Tx|T ]x〉A|
||Tx||2A

≤ 2||Tx− λT ]x||2A
(1 + |λ|2)2||Tx||2A
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which immediately implies (3.8).
Since forA-normal operatorsN(A

1
2 T ) = N(A

1
2 T ]) then, the inequality (3.8) holds also for

x ∈ N(A
1
2 T ) and so the proof is achieved.

Corollary 3.6. If T ∈ LA(H) is anA-normal operator, then

wA(T )2 − wA(T 2) ≤ 1

2
(||T ||2A − wA(T 2)) ≤ 1

1 + |λ|2
||T − λT ]||2A.

for all λ ∈ C

The next technic result generalizes Lemma 2.1, [6].

Lemma 3.1. Leta, b /∈ N(A) and0 < ε ≤ 1
2
, such that

0 ≤ 1− ε−
√

1− 2ε ≤ ||a||A
||b||A

≤ 1− ε +
√

1− 2ε.

Then

(3.10) 0 ≤ ||a||A ||b||A −Re〈a|b〉A ≤ ε||a− b||2A.

Using Lemma 3.1, the following similar result may be stated

Theorem 3.7.LetT ∈ LA(H) be anA-normal operator,λ ∈ C and0 < ε ≤ 1
2

such that

0 ≤ 1− ε−
√

1− 2ε ≤ |λ| ≤ 1− ε +
√

1− 2ε.

Then

(3.11) 0 ≤ ||Tx||2A − |〈T 2x|x〉A| ≤
ε

|λ|
||Tx− λT ]x||2A

for anyx ∈ H

Proof. By choosinga = λT ]x andb = Tx, x /∈ N(A
1
2 T ) in Lemma 3.1, we have

0 ≤ ||λT ]x||A ||Tx||A −Re〈λT ]x|Tx〉A ≤ ε||λT ]x− Tx||2A.

or 0 ≤ ||Tx||2A − |〈T 2x|x〉A|, ||Tx||A = ||T ]x|| andRe〈λT ]x|Tx〉A ≤ |λ||〈T 2x|x〉A|, T being
anA-normal operator, then (3.11) holds for anyx /∈ N(A

1
2 T ).

SinceN(A
1
2 T ]) = N(A

1
2 T ), then forx ∈ N(A

1
2 T ) it is clear that the inequality (3.11) is

checked. Therefore, (3.11) holds for anyx ∈ H.

The following corollary may be stated

Corollary 3.8. LetT ∈ LA(H) be anA-normal operator,λ ∈ C and0 < ε ≤ 1
2

such that

0 ≤ 1− ε−
√

1− 2ε ≤ |λ| ≤ 1− ε +
√

1− 2ε.

Then

(3.12) 0 ≤ ||T ||2A − wA(T 2) ≤ ε

|λ|
||T − λT ]||2A

Theorem 3.9.LetT ∈ LA(H) be anA-normal operator andλ ∈ C \ {0}. Then

(3.13) 0 ≤ ||T ||4A − wA(T 2)2 ≤ 1

|λ|2
||T ||2A||T − λT ]||2A
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Proof. We use the following inequality obtained by Dragomir (see [7],(2.10)).

(3.14) 0 ≤ ||a||2||b||2 − |〈a|b〉|2 ≤ 1

|λ|2
||a||2||a− λb||2

provideda, b ∈ H andλ ∈ C \ {0}.
Immediately on choosinga =

√
ATx andb =

√
AT ]x, one gets,

0 ≤ ||Tx||2A||T ]x||2A − |〈Tx|T ]x〉A|2 ≤
1

|λ|2
||Tx||2A||Tx− λT ]x||2A

providedx ∈ H andλ ∈ C \ {0}.
SinceT is anA-normal operator, we obtain

0 ≤ ||Tx||4A − |〈T 2x|x〉A|2 ≤
1

|λ|2
||Tx||2A||Tx− λT ]x||2A.

Hence the desired result (3.13) is obtained by taking the supremum onx ∈ H with ||x||A = 1.
The following Lemma was proved by Mitrinović, Pěcaríc and Fink in ([10], p544).

Lemma 3.2. Leta, b ∈ H,

(1) If p ∈ (1, 2), then

(3.15) (||a||+ ||b||)p+ | ||a|| − ||b|| |p≤ ||a + b||p + ||a− b||p

(2) If p ≥ 2, then

(3.16) 2(||a||p + ||b||p) ≤ ||a + b||p + ||a− b||p

By choosing in Lemma 3.2a = λ
√

ATx andb = µ
√

AT ]x, for λ, µ ∈ C, x ∈ H, then
taking the supremum overx ∈ H, ||x||A = 1, we obtain the next result involving the seminorm
||.||A.

Theorem 3.10.LetT ∈ LA(H) be anA-normal operator andλ, µ ∈ C. Then

(1) If p ∈ (1, 2), then

(3.17) [(|λ|+ |µ|)p+ | |λ| − |µ| |p]||T ||pA ≤ ||λT + µT ]||pA + ||λT − µT ]||pA.

(2) If p ≥ 2, then

(3.18) 2(|λ|p + |µ|p)||T ||pA ≤ ||λT + µT ]||pA + ||λT − µT ]||pA.

Remark 3.1. In general, forT ∈ LA(H),λ, µ ∈ C andp ≥ 2, we have

(3.19) wA

( |λ|2T ]T + |µ|2TT ]

2

) p
2 ≤ 1

4

(
||λT + µT ]||pA + ||λT − µT ]||pA

)
.
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