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2 ADEL SADDI

1. INTRODUCTION

Throughout this papet, denotes a complex Hilbert space with inner produict and norm
||.||. L(H) stands the Banach algebra of all bounded linear operatot$. dn= I;; being the
identity operator and it/ C H is a closed subspacgy is the orthogonal projection onia.
ForT € L(H) its range is denoted bi(7"), its null space byV(T), its adjoint by7™ and its
spectrum by (7). The numerical range df is a subset of the set of complex numb&rand
it is defined by

W(T) = {{Tz|z), = € H, [|=]| =1}
The spectral radius and the numerical radius and the minimum modulliswvif be denoted
respectively by-(7') andw(7T') and~(T"). They are defined agT") = sup{|A|, A € o(T)}
andw(T) = sup{|\|, A € W(T)} andy(T) = inf{||Tz||, x € N(T)* and ||z|| = 1}. Itis
well known thaty(7") > 0 if and only if R(7") is closed and that(7") is a norm on the Banach
algebral(H) (for more detail about the concept of numerical radius, see for examiple [4],[9]).
Moreover forT" € L(H), we have

(1.1) w(T) < ||T] < 2w(T),
and that for a normal operat@r ([3]), one has
(1.2) r(T) = w(T) = ||T]

L(H)™" is the cone of positive operators, i.e.
LH)T={Ae L(H): (Az|z) >0, Vz eH }.
Any positive operatod € L(H)* defines a positive semi-definite sesquilinear form
([Na:HxH—C, (zly)a = (Azly).

By ||.||l4 we denote the seminorm induced py) 4, i.e., ||z]|a = (x|z)?. Note that||z|| 4 = 0 if
and only ifx € N(A). Then||.|| 4 is a norm orH if and only if A is an injective operator, and
the semi-normed spa¢€(H), ||.||.4) is complete if and only if?( A) is closed. Moreovef | ) 4
induces a seminorm on the subspééec £L(H)/ 3¢ > 0, || Tx||a < ¢|z|a, V 2z € H}. For
this subspace of operators it holds

| Tx| 4

IT]a=sup
veRM.ez0 1Z]la
Moreover
T4 = sup{[(Tz|y)al; .,y € Hand [lz]la <1, [ylla <1}
Forz, y € H, we say thatr andy are A-orthogonal if(xz|y)4 = 0. Note that this definition
is a natural extension of the usual notion of orthogonality which representsdtteogonality
case. For a sef C 'H, its A-orthogonal subspacg"4 is given by

St4 ={r e H; (zly)a=0, Vye S}
Note thatSt4 = (AS)t = A7!(S+) and sinceA(A~1(S) = SN R(A), then(Sta)ta =
(SL ﬂR(A))L. The concept ofA-spectral radius4d-numerical radius and-minimum modulus

of an operator are a natural generalization of the spectral radius, the numerical radius and the
minimum modulus respectively. In the next, we give the following definition.

Definition 1.1. Let 7" € L(H). The A-spectral radius, thed-numerical radius and thel-
minimum modulus df are denoted respectiveiy(T"), wa(7T') and~y ,(7") and they are defined
as

ra(T) = limsup ||T"||%

n—-+0o00
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wa(T) = sup{|{T'z[z)al; € H, [|z[|la =1}
and
v u(T) = inf{||Tz|[4; x € N(A2T)*4 and||z||4 = 1}.

ForanyT, S € L(H), the following properties are immediate:

(1) wa(T) > 0 andw4(T) = 0if and only if AT = 0.

(2) wa(AT) = |AMwa(T) forany A € C.

(3) wA(T + S) < UJA<T) + wA(S).

@) VzeH, (Ta|z)al < wa(T)l|x|l3 < |T|allz(lZ and [Tw]|a = y4(T)da(z, N(AT))

whered(z,V) = inf{||x — y||a; y € V} foranyV C H.

Note thatw,(.) is @ seminorm orC(H) and it is a norm ifA is injective. Moreoverw,(7) <
||T||a foranyT € L(H). The following theorem due to Douglas will be used (see [5] for its
proof).

Theorem 1.1.LetT, S € L(H). The following conditions are equivalent.

(1) R(S) C R(T).
(2) There exists a positive numbgisuch thatSs* < ATT™.
(3) There exist$V € L(H) such thatl'W = S.

From now on,A denotes a positive operator &fi(i.e. A € L(H)™T).
Definition 1.2. LetT € L(H), an operatoriV € L(H) is called anA-adjoint of " if
(Tulv) 4 = (u|Wwv) 4 forevery u,v € H,

or equivalently
AW =T*A;
T is called A-selfadjoint if AT = T* A and it is calledA-positive if AT is positive.

By Douglas Theorem, an operatbre £(H) admits anA-adjoint if and only if R(7T*A) C
R(A) and if W is an A-adjoint of T and AZ = 0 for someZ € L(H) thenWV + Z is also
an A-adjoint of 7". Hence neither the existence nor the uniqueness of-adjoint operator is
guaranteed. In fact an operafbre £(H) may admit none, one or man+adjoints.

From now on,C 4 (H) denotes the set of dll € £(H) which admit anA-adjoint, i.e.

La(H)={T¢€L(H): RT*A) C R(A)}.

L4(H) is a subalgebra of (H) which is neither closed nor densefit’H).
On the other hand the set of altbounded operators i6(H) (i.e. with respect the seminorm

I1[.4) is
L y(H)={T€L(H): T"R(A?) C R(A?) } = {T € L(H): R(A*T"A%) C R(A) }.

Note thatC,(H) C £ ,; (H), which shows that if" admits and-adjoint then it isA- bounded.
Section 2, contains some inequalities giving upper bounds of the difference between the A-
norm and A-numerical radius of an A-bounded operator in semi-Hilbertian spaces and under
appropriate conditions. In section 3, we introduce the notiaA-abrmal operators, we prove a
characterization involving thd-norm,||.|| 4, we give some properties ofi-normal operators,

then we establish new operator norm inequalities. Our inequalities generalize the well known
properties for normal operators.
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2. INEQUALITIES INVOLVING A-NUMERICAL RADIUS

If e L(H) with R(T*A) C R(A), thenT, admits anA-adjoint operator, Moreover there
exists a distinguishedi-adjoint operator ofl’, namely, the reduced solution of the equation
AX =T*A,i.e. T = A'T*A, whereT" is the Moore-Penrose inverse Bf The A-adjoint
operatorl™* verifies

AT* =T*A, R(T*) C R(A) and N(T%) = N(T*A).
In the next we add without proof some important properties‘offor more details we refer the
reader tol[1] and ]2]).
Theorem 2.1.LetT € L4(H). Then

(1) If AT = TAthenT* = PT*

(2) T*T andTT* are A-selfadjoint andA-positive.

@) [T]13 = IT¥13 = IITT| = | TT¥| = wa(T*T) = w,(TT%).

(4) ||Slla = ||T* 4 for everyS e L£(H) which is anA-adjoint of ",

(5) If S € L4(H) thenST € L4(H), (ST)! = T¢S* and | T'S||4 = [|ST]| 4.

(6) T* € L4(H), (TH)! = PTP and((T*)H)t = T*.

(7) [IT?|| < ||S]| for everyS € L(H) which is anA-adjoint of . Nevertheless[™ is not in
general the uniquel-adjoint of 7" that realizes the minimal norm.

Lemma 2.1. LetT € L4(H). If M is an invariant subspace fd&F and 7%, then M4 is also
invariant for 7" and T*.

Proof. Letr € M4, andy € M, then(Txz|y)a = (x|T*y)4 = 0, sinceT*y € M. Thus
Tz € M*4,soT(M+t4) C M+4. Similarly, we show thaf*(M+4) c M1,

In the following, we establish various inequalities between the operator semjhgrmand
the A-numerical radiusv,(.) of operators in semi-Hibertian spaces.

Theorem 2.2.LetT € L4(H), A € Canda > 0 are such that|T' — AI||4 < a. Then

@) 0<) NIl - wa(T) < &
Moreover, if|A\| > « then
a2

(2.2) 1 - WHTHA < wa(T) < ||T|a
Proof. Sincd|T — A||4 < athen forx € H with ||z||4 = 1, we have||Tz — A\z||4 < «, Or
equivalently|| Tz — A\x||% < o2, which implies that

| T|| + [\ < 2Re(\(Tzla)a) + o < 2|A[[(T]) a] + o
By taking the supremum overc H, ||z||4 = 1, it follows
(2.3) 2Tl < [IT1 + A < 2\ wa(T) + o

Hence the desired inequalify (R.1) is obtained.
Now if || > «, on dividing with|A|? in (2.3) we obtain
TN yualT) | o

1< -
BYEE N PYRR YE
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then by using an elementary inequality, we deduce

o |[T)[a _ [ITN% o? wa(T)
- < Fl-o<2
RYGPY A2 A2 RY

from which the inequality[ (2]2) is easily holds.

24/1

Remark 2.1. Note that forl’ € L4(H), A € Cand|\| > « > 0 such that||T — \||4 < «,
(1.1) and(2.2)) lead a refinement and improvyié. 1)) and they provide the following inequalities

L L.«
wa(T) < |71 < | [ goall) < 20a(T), i 5 <

Using the fact that fox, i, = € ‘H, one has

|5

y+z
2
and by applying Theoren 2.2, (2.1), the following corollary is immediately deduced.

Corollary 2.3. LetT € Lo(H),\,pu € C, X\ # p. If Re(\x — Tz|Tx + px), > 0, for all
r € H then

Re(y —z|lx —2)4 > 0 < ||z —

1
|4 < §Hy—2’HA

LA+ pf?
2.4 0< T4 — T < - ————

Remark 2.2. Note that in the literature, the conditioRe(\x — Tx|Tz + px)a > 0, v € H
means that the operator
(2.5) (T* + @I)A(M — T) is accretive

On squaringZ) and replacingoy A‘T"‘ a by '“‘“‘, the following corollary follows

2
Corollary 2.4. LetT € L4(H), \, p € C, with Re(Az) < 0. If T verifies(2.5)), then
A+

(2.6) (0<) T = wa(T)? < |m|2||TII,24-
and
AT < ()
in particular if we choose\ = —pu > 0, we get
(2.7) T[4 = wa(T).

3. A-NORMAL OPERATORS
In the following we introduce the notion of-normal operators.
Definition 3.1. An operatorT” € £ (H) is called anA-normal operator if[*T = TT*.

A-normal operators may be regarded as a generalization of normal and self-adjoint operators
in whichT* = T*. This last property is realized in particulardf = I or if 7 and A commute
and A has a dense range [1].
The identity operator and the orthogonal projectionm are A-normal. Moreover, ifl" is
anA-normal then{T'S, T + S/ T'S = ST, S = S*} is a set ofAd-normal operators.
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Another characterization is thdt € £4(H) is an A-normal operator if and only if there are
A-selfadjoint operator®, C € £4(H) such thatBC' = CB andT = B +iC, (i* = —1).

From now on, to simplify notation, we writ€ instead of Pz 5. An important property of
A-normal operators that will be used frequently in the sequel is the following:

Theorem 3.1. A necessary and sufficient condition for an operafos £ 4(H) to be A-normal
isthat R(TT*) C R(A) and||Tx||4 = ||T*z|| 4 for every vector: € H.

Proof. Suppose thaf is A-normal. It is easily to see thak(TT*) = R(T*T) C R(A).
Moreover, using the fact that7* is A-selfadjoint, then for: € H, we obtain,

T'T =TT* = (T*Tx|x)s = (TT z|x) 4
& (AT*Tx|z) = (ATT z|x)
& (T*ATz|z) = (TT*)* Ax|z)
& (ATz|Tz) = (T* Az|T )
& |[Tz|la=||T%||a

Conversely, if | Tx||a = ||T*z|| 4, thenA(T*T —TT*) = 0, if moreoverR(TT*) C R(A), so, it
follows R(T*T —TT*) C R(A) = N(A)* and henc&™*T —TT* = 0, which finishes the proof.

In the next we give some properties danormal operators.

Corollary 3.2. For T' € L 4(H), the following properties hold

(1) If T'is A-selfadjoint operator thef\T'|| 4 = wa(T).
(2) If T'is A-normal operator ther’™ is also for alln > 1 and||T||4 = ra(T).
(3) Suppose thav(A) is an invariant subspace far and A, . € C. If T'is A-normal, then
(a) T — M\ andT* are A-normal.
(b) Tz = \z yieldsT#z = \Pz.
(€) M = {x € H/Tx = Az} and M4 are invariant forT and T*.
(d) Tx = Az andTy = py, X\ # pyieldz L 4y (i.e. (x]y)a = 0).

Proof.

(1) Itis clear that sup  [(Tz|y)a| < ||T||a. In the other hand, if we choose =
llzlla=Ilylla=1

HTxH , we obtain

I Tz|[a = (Tz|z)al < sup  [(Tz|y)al

2]l a=lylla=1

Moreover, without loss of generality we can suppesg # 0 and that(T'z|y)4 > 0,
then one has

(T(x+y)lz+y)a = (Tz|z)a + (Txly)a + YT z)a + (Tyly) a

and

(T(x = y)lw —y)a = (Txlz)a — (Taly)a — YT x)a + (Tyly)a
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If T'is A-selfadjoint then, by parallelogram law

[(Tzy)al = 1!<T%’|y>A+<Tﬂw!y>! = 1!<T(x +y)lr+y)a —(T(x —y)lz —y)a

2
(T)

IA

(Il +yll3 + [lz = yl2)

< wA( )21+ [lyll%)

If we replacer by \/az andy by -~ ~=» Whereo = HyHA we get

(Txly)al = [(Tzly)a+ (T'xly)al

AT 1ol + ol )

= wa(T)[|z[|allylla
which implies,w4(T) < ||T|| 4 and thus,
T4 = sup{[{Tz|y)al; [lz][a = llylla = 1} = wa(T)

(2) Letn > 1, if T is A-normal operator theri’ and7* commute, consequentl§y® and
(T*)» commute. Thug™ is A-normal.
Letx € 'H, we have

|1 T*Tw|[} = {T*T2|T*Ta) 4 = (T2 |Tx) 4 = || T2][%

<

|Tx|[} = (Tx|Tw) g = (T*Tx|a) 4
SinceT*T is A-selfadjoint then by taking the supremum {n||, = 1 and applying 1.

we get
T3 = sup |[Tz||} = sup (T"Tz|z)s
[|z]|a=1 [lz]]a=1
= |[T*T||a= sup |[T*Tz||a
[lz]]a=1

= sup |74 = [IT7|a

[lz]] a=1
Moreover for alln > 1 we have
17| = (T"x|T"w) 4 = (T*T"2| T ) 4 < || TFT" ]| ]| T |4
which implies
1T < 17" a 17" |
Assume that|T'||4 > 0 then||T"||4 > 0foralln > 1 (for ||T||4 = 0 the desired

property is evident) and set, = “CIFT:||!A, n > 1. Itis clear that «, ), is anincreasing
sequence, then it satisfies

Tn+1 T2 T 2

|| - HA:OénZOq:H ||A:|| ||A:HTHA

1774 M4 (|71

By an induction argument, it follows7™ || 4 = ||T||4, for all n > 1.
1

Thusra(T) = ||T™||4 = ||T||a and the proof is achieved .
(3) (a) Note first that sincé/(A) is invariant forT', thenT P = PT andAP = PA = A.
Let now\ € C, we have(T — MXI)(T — X )? = (T — MX)(T* — A\P) = TT* —
NT# — NT% — TAP + |A\?P = T*T — XT* — APT + |\|?P = (T — AX)¥(T — \I),
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then(T" — A1) is A-normal.
For allz € 'H, we have also

THals = (Tl (T
= (PTPx|PTPx),
— (TPz|TPz),
= |ITPz|}
= |ITally = IT%|I%

It clear thatR(T*(T*)*) c R(A), so from Theorem 3.1, it follows that* is A-
normal.
(b) Using (a),
[VA(T* = AP)z|| = [|(T* = AP)z||a
= |[(T' = M)z
= [[(T'=Alzl[a =0
or R(T* — \P) C R(A) = N(A)*, thenT*z = \Px
(c) LetM = {x € H/Tx = Az}. Itis clearthafl'(M) C M. Moreover ifx € M and
y = Tz, thenTy = TT 'z = T*Tx = \T*x = \y yieldsy = Tz € M. HenceM
is invariant for bothl" and7*. Using Lemma 2.1 the desired result follows.
(d) Suppose thét'x = Az, Ty = py with 0 # X # p,
(@ly)a = AN Taly)a = X2 T ) a = AN ula|Py)a = X udely) a,
then(z|y)a = 0. If A = 0 we permute betweek andx and the proof achieved.

Question: If T'is A-normal, is it true that|T'|| 4 = wa(T)?

Note that in the Cauchy-Schwarz inequality i.e.
(3.1) [(ulo)| < [lul[ [Jv]], w,veH
if, we chooseu = v/ Az andv = v/ Ay we obtain more general formula

(3.2) [(zly)al <Ilzlla llylla, z,y € H

Moreover, for the choice®z instead ofr andT*z instead ofy with = € H, then one gets the
following simple inequality for thed-normal operatof’”:

(3.3) [(T*x|x)al < [|T2[[}, z €M
Note that the inequality (3.3) implies in particular that
wa(T?) < |IT1[3-
Note also that the inequality (3.3) becomes an equalify i§ an A-selfadjoint operator. This
property does not remain true fek-normal operators. Indeed if consider the operat@rs-

C? A= 8 ) ¢ cr)t, T=( " ") e L(H) forsomea > 0andr # 0. ltis

easy to check thaf admits A-adjoint operators and by direct computation, we seethatan
A-normal operator and that (3.3) is a real inequality.

It is then naturel to discuss some estimations of the qualfifity||% — |(7x|x) 4| for A-normal
operators and give a measure of the closeness of the two terms involyed in (3.3).
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Motivated by this problem, we will study in this section some inequalitied-oformal oper-

ators in semi-Hilbertian spaces by employing some known results for vectors in inner product
spaces.

We start with the following result.

Theorem 3.3.LetT € L4(H) be anA-normal operator, then the inequalities
1

(3.4) (Ta|z)al® < S(IT2][4 + (T z|2) a]) < [|T|[3

hold for all = € H, [|z[|4 = 1. The constan} is the best possible if8.4).

Proof. The second inequality in (3.4) hold immediately frgm](3.3). For the first one we use the
inequality, which is a consequence of the inequalities (2.3)/in [6].

(3.5) [{ale) a {e]b)a] < %(HGHA [1b]]4 + [{a]b) a])

provideda, b, e are vectors irt{ and||e||4 = 1.
If we choosee = z, ||z]|4 = 1, a = Tz, andb = T*z, then we obtain

(3.6) [(Tlz)a (o] TP2) a] < S (1Tl [T 2] + (T2|T*2) )

N | —

forall z € H and||z||4 = 1.
SinceT is A-normal, then||Tz||4 = ||T*z||4 and the desired inequality follows frorh (B.6).
If we suppose now, that' = I is the identity operator, then both the two inequalitieq in|(3.4)
become equalities, this means tléas the best possible constant 3.4).

The following result is obviously deduced from Theorjem 3.3.

Corollary 3.4. If T € L4(H) is an A-normal operator, then
1
3.7) wa(T)* < S(ITI +wa(T%) < [T
The following result provides an upper bound for the nonnegative quantity
1T2|[3 — {T*2|z)al, z € H
Theorem 3.5.LetT € L4(H) be anA-normal operator and\ € C, then

(3.8) 0 < ||IT2|3 — {T*z]2)a| <

2
——||Tz — \T*x||?

foranyx € H.

Proof. For\ = 0, the inequality in[(3.8) is obvious. For # 0, we use the Dunkl-Williams
inequality [8],
[lal| oIl = Kalb)| _ 2[|la — b|]*

Tl = (o “° €70

which shows that
llalla [1blla = [{alb)al _  2[la = bl[%
[lalla [[b]]4 ~ (llalla +1bl].4)*
Now, taking into account thaf’ is an A-normal operator, we choose in (B.8®)= 7'z and
b= AT*z, A+ 0, ¢ N(A2T), so from Theorerh 31, one gets
|Tx|[% — [(Tx|T?x)al _ 2[|Tx — AT*x|[%
1T T (AP

(3.9) a,b ¢ N(A)
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which immediately implieq (3]8).
Since for A-normal operatorsV(A:2T) = N(A:zT*) then, the inequalit8) holds also for
z € N(A2T) and so the proof is achieved.

Corollary 3.6. If T' € L4(H) is an A-normal operator, then

17— AT*|J3.

wa(T)? = wa(T) < 571 ~ walT®) < 157

forall A € C
The next technic result generalizes Lemma 2.1, [6].

Lemma 3.1. Leta,b ¢ N(A) and0 < e < 1, such that

0<l-c—VI—-2e< |||‘Z|‘||A <l-e+V1-2.
A

Then
(3.10) 0 < [lall.a [[b]l4 — Re(alb)a < ella — bI[.
Using Lemma 31, the following similar result may be stated
Theorem 3.7.LetT € L,(H) be anA-normal operator\ € C and0 < e < £ such that
0<1—e—VI—-2<[\<1—e+V1—2e.
Then
g

(3.11) 0 < ||T2|} — {T*z]2)a| < WIITx — A%z}

foranyxz € H
Proof. By choosing. = \T*z andb = Tz, = ¢ N(AzT) in Lemmd 3.1, we have
0 < [|INT*2||4 ||Tx||4 — Re(\NT*z|Tx) 4 < e||[ANT*2 — T2||4.

or0 < ||Tx||3 — {T?z|x) al, ||Tx||4 = ||T*x|| and Re(\T*z|Tz) 4 < |N[(T?x|x) 4|, T being
an A-normal operator, ther\élll) holds for any? N(AzT).

Since N(A2T*¥) = N(A:zT), then forz € N(A2T) it is clear that the inequality (3.11) is
checked. Thereford, (3.]11) holds for any H.

The following corollary may be stated

Corollary 3.8. LetT € L4(H) be anA-normal operator) € C and0 < ¢ <  such that

0<l-e—VI-22<|N<1—e+V1—2e.

Then

(312) 0 < IITIf = walT?) < 1T = AT

Theorem 3.9.LetT € L4(H) be anA-normal operator andh € C \ {0}. Then
1

(3.13) 0 < ||T1[4 = wa(T*)* < S lITIANT = AT

— AP
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Proof. We use the following inequality obtained by Dragomir (§ee [7],(2.10)).
1
(3.14) 0 < [lal *[[B]]* = [{alb)[* < W\Iallglla — Ab|[*
provideda,b € H and\ € C\ {0}.
Immediately on choosing = v ATz andb = v/ AT*z, one gets,
1

0 < ([Tl TP|% — (T2l TPa)al* < RE

||| T2 — AT

providedz € H and\ € C\ {0}.
SinceT is an A-normal operator, we obtain

1
|A?
Hence the desired res 13) is obtained by taking the supremunecH with ||z||4 = 1.

The following Lemma was proved by MitrinayiPeari¢ and Fink in ([10], p544).

0 < |73 — (T*xle)al* < | Tl Al T2 — AT [

Lemma 3.2. Leta,b € H,
(1) If p € (1,2), then

(3.15) (lall +[1o[)P+ T lall = [[o[| "< [la + b][" + |la — b[|”
(2) If p > 2, then
(3.16) 2(/[al[” + 1[b][") < [la + 0[|” + [la — b][”

By choosing in Lemm 3|2 = \VATz andb = u/ATHz, for \,u € C, = € M, then
taking the supremum overc H, ||z||4 = 1, we obtain the next result involving the seminorm
[I-1]a-

Theorem 3.10.LetT" € L4(H) be anA-normal operator and\, i € C. Then
(1) If p € (1,2), then

(3:27)  [(IA[+ 1)+ [ I = Lul PINTIE < NI+ pT|[ + |INT — uT¥| [
(2) If p > 2, then
(3.18) 2(A[7 + [T < AT + pT#| [ + [INT — ][

Remark 3.1. In general, forT" € L4(H),\, p € Candp > 2, we have
(|/\|2TﬁT+ |p?TT*

(3.19) .

£ 1
)" < 3 (INT + T + 1IN — T 1).

REFERENCES

[1] M. LAURA ARIAS, GUSTAVO CORACH and M. CELESTE GONZALEZ, Partial isometries in
semi-Hilbertian spacesgjnear Algebra and its Applicationg28(2008), pp. 1460-1475.

[2] M. LAURA ARIAS, GUSTAVO CORACH and M. CELESTE GONZALEZ, Metric properties of
projections in semi-Hilbertian spacdsitegral Equations and Operator Theqr@2 (2008), pp.
11-28.

[3] S.J. BERNAU, The spectral theorem for normal operatdré,ondon Math. Sac40 (1965), pp.
478-486.

[4] R. BOULDIN, Numerical range for certain classes of operatBrec. Amer. Math. Soc34 (1972),
pp. 203-206.

AIJMAA Vol. 9, No. 1, Art. 5, pp. 1-12, 2012 AJMAA


http://ajmaa.org

12 ADEL SADDI

[5] R.G. DOUGLAS, On majorization, factorization, and range inclusion of operators on Hilbert space,
Proc. Amer. Math. So¢l7 (1966), pp. 413-415.

[6] S.S. DRAGOMIR, Some Inequalities for Normal Operators in Hilbert Spakets, Mathematica
Vietnamica Volume 31, Number 3, 2006, pp. 291-300.

[7] S. S. DRAGOMIR and M. S. MOSLEHIAN, Some inequalities fax, 5)-normal operators in
Hilbert spaceskacta Universitatis (N$), Ser. Math. Inform Vol. 23 (2008), pp. 39-47.

[8] C. F. DUNKL and K. S. WILLIAMS, A simple norm inequalityAmer. Math. Monthly 71 (1)
(1964), pp. 43-44.

[9] K. E. GUSTAFSON and D.K.M. RAONumerical RangeSpringer-Verlag, New York, 1997.

[10] D.S. MITRINOVIC, J.E. PEARIC and A.M. FINK, Classical and New Inequalities in Analysis
Kluwer Academic Publishers, Dordrecht, 1993.

[11] JOSEPH G. STAMPFLI, Hyponormal operatdpscific Journal of Mathemati¢§olume12, Num-
ber 4 (1962), pp. 1453-1458.

AIJMAA Vol. 9, No. 1, Art. 5, pp. 1-12, 2012 AJMAA


http://ajmaa.org

	1. Introduction 
	2. Inequalities involving A-Numerical Radius 
	3. A-normal operators 
	References

