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2 ANTHONY SOFO

1. I NTRODUCTION AND PRELIMINARIES

In this paper we will develop identities, closed form representations of alternating cubic har-
monic numbers and reciprocal binomial coefficients, including integral representations, of the
form:

(1.1) Ω (k, p) =
∞∑

n =1

(−1)n+1 H3
n

np

(
n+ k
k

) ,
for p = 0, 1 andk ∈ N0. Here, thenth harmonic number

(1.2) Hn =
n∑

r=1

1

r
= γ + ψ (n+ 1) =

∫ 1

0

1− tn

1− t
dt, H0 := 0

and as usual,γ denotes the Euler-Mascheroni constant andψ(z) is the Psi (or Digamma) func-
tion defined by

ψ(z) :=
d

dz
{log Γ(z)} =

Γ′(z)

Γ(z)
or log Γ(z) =

∫ z

1

ψ(t) dt.

For sums of harmonic numbers with positive terms [10], [27], [28] and [29] have given many
results, including sums of the form

∞∑
n =1

H3
n

np

(
n+ k
k

) .
Other results are given by [5] and [17]. LetR andC denote, respectively the sets of real and
complex numbers and letN := {1, 2, 3, · · · } be the set of positive integers, andN0 := N∪{0} .
A generalized binomial coefficient

(
λ
µ

)
(λ, µ ∈ C) is defined, in terms of the familiar gamma

function, by (
λ

µ

)
:=

Γ (λ+ 1)

Γ (µ+ 1) Γ (λ− µ+ 1)
, λ, µ ∈ C.

The Pochhammer symbol(λ)ν (λ, ν ∈ C) is also defined in terms of the gamma function, by

(λ)ν :=
Γ(λ+ ν)

Γ(λ)
=

 1 (ν = 0; λ ∈ C \ {0})

λ(λ+ 1) · · · (λ+ n− 1) (ν = n ∈ N; λ ∈ C),
.

A generalized harmonic numberH(m)
n of orderm is defined, for positive integersn andm, as

follows:

H(m)
n :=

n∑
r=1

1

rm
, m, n ∈ N and H

(m)
0 := 0, m ∈ N.

In the case ofnon-integervalues ofn such as (for example) a valueρ ∈ R, the generalized
harmonic numbersH(m+1)

ρ may be defined, in terms of the polygamma functions

ψ(n)(z) :=
dn

dzn
{ψ(z)} =

dn+1

dzn+1
{log Γ(z)}, n ∈ N0,

by

(1.3) H(m+1)
ρ = ζ (m+ 1) +

(−1)m

m!
ψ(m) (ρ+ 1) , H

(m+1)
0 = 0

(ρ ∈ R \ {−1,−2,−3, · · · } ; m ∈ N) ,
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whereζ (z) is the Riemann zeta function. The evaluation of the polygamma functionψ(α)
(

r
a

)
at rational values of the argument can be explicitly done via a formula as given by Kölbig [7], or
Choi and Cvijovic [2] in terms of the polylogarithmic or other special functions. Some specific
values are listed in the books[15], [21] and [22]. The polylogarithm or de-Jonquière function
Lip (z), is defined as,

Lip (z) :=
∞∑

n =1

zn

np
, p ∈ C when |z| < 1; < (p) > 1 when |z| = 1.

Some results for sums of alternating and non-alternating harmonic numbers may be seen in the
works of [3], [4], [12], [13], [14], [16], [17], [18], [19], [20], [23], [24], [26] and references
therein. Some explicit, and closely related results may also be seen in the well presented papers
[9] and [25].

The following lemma will be useful in the development of the main theorems.

Lemma 1.1. Let r be a positive integer andp ∈ N. Then:

(1.4) F (p, r) =
r∑

j =1

(−1)j

jp
=

1

2p

(
H

(p)

[ r
2 ]

+H
(p)

[ r−1
2 ]

)
−H

(p)

2[ r+1
2 ]−1

where[x] is the integer part ofx, and whenp = 1,

(1.5) F (1, r) =
r∑

j =1

(−1)j

j
= H[ r

2 ]
−Hr.

For p = 2,

(1.6) F (2, r) =
r∑

j =1

(−1)j

j2
=

1

4

(
H

(2)

[ r
2 ]
−H

(2)

[ r+1
2 ]− 1

2

)
− 1

2
ζ (2) .

Proof. The proof is given in the paper [11].

Lemma 1.2. The following identity holds,

(1.7) X (0) =
∞∑

n =1

(−1)n+1H3
n

n
=

5

8
ζ (4) +

3

4
ζ (2) ln2 2− 1

4
ln4 2− 9

8
ζ (3) ln 2,

=

∫ 1

0

log (1− x)
(
log2 (1 + x) + Li2 (−x)

)
x (1 + x)

dx,(1.8)

whereLip (·) is the polylogarithm function.

Proof. Consider

V (j, t) =
∞∑

n =1

tn

n

(
n+ j
j

)(1.9)

=
∞∑

n =1

tn Γ (n) Γ (j + 1)

Γ (n+ j + 1)
=

∞∑
n =1

tn B (n, j + 1) ,
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4 ANTHONY SOFO

whereΓ (·) is the gamma function andB (·, ·) is the beta function. Now

V (j, t) =

∫ 1

0

(1− x)j

x

∞∑
n =1

(tx)n dx = t

∫ 1

0

(1− x)j

1− tx
dx,

and differentiatingp times with respect toj and then lettingj → 0 with t = −1, results in

V (0,−1)(p) =

∫ 1

0

logp (1− x)

1 + x
dx = (−1)p p!Lip+1

(
1

2

)
.

Forp = 3

(1.10) V (0,−1)(3) = −6Li4

(
1

2

)
From (1.9) we also have

V (0,−1)(p) =
∞∑

n =1

(−1)n σn

n

where

σn = lim
j→0

[
dp

djp

((
n+ j
j

)−1
)]

,

whenp = 3,

(1.11) V (0,−1)(3) =
∞∑

n =1

(−1)n+1 φn

n
= 6Li4

(
1

2

)
andφn = H3

n + 3HnH
(2)
n + 2H

(3)
n . From the paper [8], we have the results

∞∑
n =1

(−1)n+1H
(3)
n

n
=

19

16
ζ (4)− 3

4
ζ (3) ln 2,

∞∑
n =1

(−1)n+1HnH
(2)
n

n
= 2Li4

(
1

2

)
− ζ (4)− 4ζ (2) ln2 2

+
1

4
ln4 2 +

7

8
ζ (3) ln 2,

and substituting into (1.11) we have the result (1.7). The representation of the integral (1.8) is
obtained in the following way. From [11], we can express, forp ∈ N

(−1)p H
p
n

np
=

∫ 1

0

· · ·
∫ 1

0

(∏p

j=1
xj

)n−1 ∏p

j=1
ln (1− xj) dxj

where
∫ 1

0
· · ·
∫ 1

0
is ap- fold integration procedure, forp = 3,

− H3
n

n3
=

∫ 1

0

∫ 1

0

∫ 1

0

(x1x2x3)
n ln (1− x1) ln (1− x2) ln (1− x3)

x1x2x3

dx1dx2dx3.

(1.12)
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Now,

∞∑
n =1

(−1)n+1 H3
n

n
= −

∫ 1

0

∫ 1

0

∫ 1

0

ln (1− x) ln (1− y) ln (1− z)

×
∞∑

n =1

n2 (−xyz)n−1 dxdydz

= −
∫ 1

0

∫ 1

0

∫ 1

0

ln (1− x) ln (1− y) ln (1− z) (1− xyz)

(1 + xyz)2 dxdydz

=

∫ 1

0

∫ 1

0

ln (1− x) ln (1− y) (1− ln (1 + xy))

(1 + xy)2 dxdy

=

∫ 1

0

ln (1− x)

x (1 + x)

(
ln2 (1 + x)

2
− Li2

(
x

1 + x

))
dx

and applying Landen’s identity

Li2

(
x

1 + x

)
= − ln2 (1 + x)

2
− Li2 (−x)

we obtain (1.8). By association we conclude∫ 1

0

log (1− x)
(
log2 (1 + x) + Li2 (−x)

)
x (1 + x)

dx =
5

8
ζ (4) +

3

4
ζ (2) ln2 2

−1

4
ln4 2− 9

8
ζ (3) ln 2

= X (0) =
∞∑

n =1

(−1)n+1H3
n

n
.

An alternate manipulation of (1.7) leads to the following result and adds to the results on
cubic sums some of which are published in [10].

Lemma 1.3.∑
n≥1

H3
2n

2n (2n− 1)
=

5

8
ζ (4) +

67

16
ζ (3) + 2ζ (2) +

3

4
ζ (2) ln2 2− 3

2
ζ (2) ln 2

−9

8
ζ (3) ln 2 + ln 2− 1

4
ln4 2 + ln3 2− 3

2
ln2 2.

(1.13)

Proof. By re-arrangement

X (0) =
∞∑

n =1

((
H2n − 1

2n

)3
2n− 1

− H3
2n

2n

)

=
∑
n≥1

H3
2n − 3H2

2n

2n (2n− 1)
+
∑
n≥1

3H2n

4n2 (2n− 1)
−
∑
n≥1

1

8n3 (2n− 1)
.
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6 ANTHONY SOFO

Hence ∑
n≥1

H3
2n − 3H2

2n

2n (2n− 1)
=

5

8
ζ (4) +

3

4
ζ (2) ln2 2− 1

4
ln4 2− 9

8
ζ (3) ln 2

+ ln 2 +
33

16
ζ (3)− 3

2
ζ (2) +

3

2
ln2 2

−1

8
ζ (3)− 3 ln 2− 1

4
ζ (2) .

Now we can evaluate∑
n≥1

H2
2n

2n (2n− 1)
=

5

4
ζ (2) + ln 2− ln2 2− 1

2
ζ (2) ln 2 +

1

3
ln3 2 +

3

4
ζ (3) ,

therefore (1.13) follows.

Lemma 1.4. The following identity holds,

X (1) =
∞∑

n =1

(−1)n+1H3
n

n+ 1

= − 5

16
ζ (4)− 3

4
ζ (2) ln2 2 +

1

4
ln4 2 +

9

8
ζ (3) ln 2

(1.14)

= −X (0) +
5

16
ζ (4) ,

=
5

16
ζ (4)−

∫ 1

0

log (1− x)
(
log2 (1 + x) + Li2 (−x)

)
x (1 + x)

dx.(1.15)

Proof. ConsiderX (1) and by a change of summation index

X (1) =
∞∑

n =1

(−1)nH3
n−1

n
= −

∞∑
n =1

(−1)n+1

n

(
Hn −

1

n

)3

= −
∞∑

n =1

(−1)n+1H3
n

n
− 3

∞∑
n =1

(−1)n+1HnHn−1

n2
+

∞∑
n =1

(−1)n+1

n4
.

Using lemma 1.2

X (1) = −X (0)− 9

16
ζ (4) +

7

8
ζ (4)

and (1.14) follows. The integral identity (1.15) follows directly from (1.8). We can also note
that a similar calculation as that of lemma 1.3, yields the identity∑

n≥1

(
H3

2n

2n (2n+ 1)
+

3H2nH2n−1

4n2 (2n− 1)

)
= −X (0) +

3

8
ζ (4)

+
9

4
ζ (2)− 3

2
ln2 2− 3

2
ζ (2) ln 2 + ln3 2 +

69

16
ζ (3) .
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Remark 1.1. It may be noticed from lemma 1.2 and lemma 1.4 that

X (0) +X (1) =
5

16
ζ (4)

in which case manipulating the integral identities we obtain

(1.16) ζ (4) = −8

3

∫ 1

0

log (1− x) log2 (1 + x)

x
dx.

Further extraction fromX (0) andX (1) gives us the results∫ 1

0

log (1− x) log2 (1 + x)

1 + x
dx = 2ζ (3) ln 2 + 2Li4

(
1

2

)
+

1

3
ln4 2

−2ζ (4)− ζ (2) ln2 2,(1.17)

∫ 1

0

log (1− x)Li2 (−x)
x (1 + x)

dx =
7

8
ζ (3) ln 2 + 2Li4

(
1

2

)
+

1

12
ln4 2

(1.18)

−ζ (4)− 1

4
ζ (2) ln2 2

and ∫ 1

0

log (1− x)Li2 (−x)
x

dx = −7

4
ζ (3) ln 2− 2Li4

(
1

2

)
− 1

12
ln4 2

+
11

4
ζ (4) +

1

2
ζ (2) ln2 2

=
∞∑

n =1

(−1)n+1Hn

n3
.

The integrals (1.16), (1.17) and (1.18) cannot be analytically evaluated by "Mathematica".
There are many integral representations of powers of Pi, for example

π = 4

∫ 1

0

√
1− x2dx, (−1)p p!ζ (p+ 1) =

∫ 1

0

logp (1− x)

x
dx.

Guillera and Sondow [6] gave

π2 = 8

∫ 1

0

∫ 1

0

dydx

1− x2y2
, π3 = −16

∫ 1

0

∫ 1

0

lnxy dydx

1 + x2y2
,

and amongst many other results [1] obtained the intriguing representation (after some manipu-
lation)

ln
(π

2

)
=

∞∑
n =1

(−1)n+1 ln

(
1 +

1

n

)
,

however the author believes (1.16) is a new representation.
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Lemma 1.5. Let r ≥ 2 be a positive integer, defining

(1.19) S (r) :=
∞∑

n =1

(−1)n+1Hn

n+ r

thenS (r) has the recurrence relation

S (r) + S (r − 1) =
1

r − 1
(1 + (−1)r) ln 2− (−1)r+1

r − 1
F (1, r − 1)

with representation

S (r) = (−1)r+1 S (1) + (−1)r

(
2Hr−1 −H

[ r−1
2 ]

)
ln 2

+ (−1)r
r−1∑
j =1

1

j

(
H[ j

2 ]
−Hj

)
,

(1.20)

whereS (0) = 1
2

(
ζ (2)− ln2 2

)
, S (1) = 1

2
ln2 2 andF (1, r − 1) is given by (1.5).

Proof. The proof is detailed in [11].

Lemma 1.6. For a positive integerr ≥ 2, we define

T (r) :=
∞∑

n =1

(−1)n+1H2
n

n+ r

thenT (r) has the recurrence relation

T (r) + T (r − 1) = −2Sr−1

r − 1
+

ζ (2)

2 (r − 1)
− ln2 2

r − 1
+

ln 2

(r − 1)2

− 1

2 (r − 1)2

(
H r−1

2
−H r−2

2

)
,

with representation

T (r) = (−1)r+1 T (1) + (−1)r+1 1

2
F (1, r − 1) ζ (2)(1.21)

+ (−1)r F (1, r − 1) ln2 2 + (−1)r+1 F (2, r − 1) ln 2

+ (−1)r
r−1∑
j =1

(−1)j

j

(
2S (j) +

H j
2
−H j−1

2

2j

)
,

with T (0) = 3
4
ζ (3)+ 1

3
ln3 2− 1

2
ζ (2) ln 2, T (1) = 1

2
ζ (2) ln 2− 1

3
ln3 2− 1

4
ζ (3), S (j) is given

by (1.19) andF (·, r − 1) is given by (1.4).

Proof. The proof is detailed in [11].
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Lemma 1.7. Let r ∈ N\ {1}, then

Y (r − 1) = 3
∞∑

n =1

(−1)n+1HnHn−1

n (n+ r − 1)

=
3

(r − 1)

(
1

8
ζ (3) +

1

3
ln3 2− 1

2
ζ (2) ln 2− T (r − 1)

)
+

3

2 (r − 1)2

(
ζ (2)− ln2 2− 2S (r − 1)

)
,(1.22)

whereS (r − 1) is given by (1.19) andT (r − 1) is given by (1.21). Forr = 1 we have

(1.23) Y (0) = 3
∞∑

n =1

(−1)n+1HnHn−1

n2
= − 9

16
ζ (4) .

Proof. Consider

Y (r − 1) = 3
∞∑

n =1

(−1)n+1HnHn−1

n (n+ r − 1)

=
3

r − 1

∞∑
n =1

(−1)n+1Hn

(
Hn −

1

n

)(
1

n
− 1

n+ r − 1

)

=
3

r − 1

∞∑
n =1

(−1)n+1

(
H2

n

n
− Hn

n2
− H2

n

n+ r − 1
+

Hn

n (n+ r − 1)

)

=
3

r − 1

(
3

4
ζ (3) +

1

3
ln3 2− 1

2
ζ (2) ln 2− 5

8
ζ (3)− T (r − 1)

)

+
3

r − 1

∞∑
n =1

(−1)n+1 Hn

r − 1

(
1

n
− 1

n+ r − 1

)

=
3

r − 1

(
3

4
ζ (3) +

1

3
ln3 2− 1

2
ζ (2) ln 2− 5

8
ζ (3)− T (r − 1)

)

+
3

(r − 1)2

(
1

2
ζ (2)− 1

2
ln2 2− S (r − 1)

)
and (1.22) follows. For the caser = 1, we have

Y (0) = 3
∞∑

n =1

(−1)n+1HnHn−1

n2
= 3

∞∑
n =1

(−1)n+1Hn

(
Hn − 1

n

)
n2

= 3
∞∑

n =1

(−1)n+1

(
H2

n

n2
− Hn

n3

)
and (1.23) follows.
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Lemma 1.8. Let r ∈ N, then

X (r) =
∞∑

n =1

(−1)n+1H3
n

n+ r

then

X (r) = − (−1)r X (1) + 3 (−1)1+r

(
3ζ (3)

8
+

ln3 2

3
− ζ (2) ln 2

2

)
F (1, r − 1)

+
(−1)r+1

2

(
2ζ (2)− 3 ln2 2

)
F (2, r − 1) + (−1)1+r ln 2F (3, r − 1)

+ (−1)1+r
r−1∑
j=1

(−1)j

(
1

2j3

(
H j−1

2
−H j

2

)
− 3

j

(
T (j) +

S (j)

j

))
(1.24)

whereX (0) is given by (1.8),X (1) is given by (1.14),S (j) is given by (1.20),T (j) is given
by (1.21) andF (·, r − 1) is given by (1.4).

Proof. Consider

X (r) =
∞∑

n =1

(−1)n+1H3
n

n+ r

and by a change of summation index

X (r) =
∞∑

n =2

(−1)nH3
n−1

n+ r − 1
= −X (r − 1) + 3

∞∑
n =1

(−1)n+1HnHn−1

n (n+ r − 1)

+
∞∑

n =1

(−1)n+1

n3 (n+ r − 1)
.

Now using lemma 1.5, 1.6 and 1.7

X (r) = −X (r − 1) + 3Y (r − 1) +
3ζ (3)

4 (r − 1)
− ζ (2)

2 (r − 1)2 +
ln 2

(r − 1)3

+
1

2 (r − 1)3

(
H r−2

2
−H r−1

2

)
,

hence we have the recurrence relation

X (r) +X (r − 1) =
3

r − 1

(
3

8
ζ (3) +

1

3
ln3 2− 1

2
ζ (2) ln 2

)
− 3T (r − 1)

r − 1

+
1

2 (r − 1)2

(
2ζ (2)− 3 ln2 2

)
+

ln 2

(r − 1)3

−3S (r − 1)

(r − 1)2 +
1

2 (r − 1)3

(
H r−2

2
−H r−1

2

)
for r ≥ 2. The recurrence relation is solved by the subsequent reduction of theX (r) , X (r − 1) ,
..., X (1) terms and using lemma 1.1, finally arriving at the relation (1.24).

The next few theorems relate the main results of this investigation, namely the closed form
and integral representation of (1.1).
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2. CLOSED FORM AND I NTEGRAL I DENTITIES

We now prove the following theorems.

Theorem 2.1.Letk ≥ 1 be real positive integer, then from (1.1) withp = 0 we have

Ω (k, 0) =
∞∑

n =1

(−1)n+1 H3
n(

n+ k
k

) =
k∑

r =1

(−1)r+1 r

(
k
r

)
X (r)(2.1)

=

∫ 1

0

∫ 1

0

∫ 1

0

ln (1− x) ln (1− y) ln (1− z)

1 + k
4F3

[
2, 2, 2, 2

1, 1, 2 + k

∣∣∣∣∣− xyz

]
dxdydz

whereX (r) is given by (1.24).

Proof. Consider the expansion

Ω (k, 0) =
∞∑

n =1

(−1)n+1 H3
n(

n+ k
k

) =
∞∑

n =1

(−1)n+1 k! H3
n

(n+ 1)1+k

=
∞∑

n =1

(−1)n+1 k! H3
n

k∑
r =1

Φr

n+ r

where

Φr = lim
n→−r


n+ r

k∏
r=1

n+ r

 =
(−1)r+1 r

k!

(
k

r

)
,

hence

Ω (k, 0) =
k∑

r =1

(−1)r+1 r

(
k

r

) ∞∑
n =1

(−1)n+1 H3
n

n+ r

=
k∑

r =1

(−1)r+1 r

(
k

r

)
X (r) ,

and using lemma 1.8, gives

(2.2) Ω (k, 0) =
k∑

r =1

(−1)r+1 r

(
k

r

)
X (r) ,

hence (2.1) follows. For the integral representation we employ the same technique as lemma
1.2.

The other case ofΩ (k, 1) , can be evaluated in a similar fashion. We list the result in the next
theorem.
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Theorem 2.2.Under the assumptions of Theorem 2.1, we have,

Ω (k, 1) =
∞∑

n =1

(−1)n+1 H3
n

n

(
n+ k
k

)

=

∫ 1

0

∫ 1

0

∫ 1

0

ln (1− x) ln (1− y) ln (1− z)

1 + k
3F2

[
2, 2, 2

1, 2 + k

∣∣∣∣∣− xyz

]
dxdydz,

(2.3) = X (0)−
k∑

r =1

(−1)r+1

(
k
r

)
X (r) .

Proof. The proof follows directly from theorem 2.1 and using the same technique.

Example 2.1.Some illustrative examples follow.

Ω (3, 0) =
∞∑

n =1

(−1)n+1 H3
n(

n+ 3
3

) =
255

16
− 21

2
ζ (2)− 261

16
ζ (3)− 15

4
ζ (4)

+27ζ (2) ln 2 + 36 ln2 2− 18 ln3 (2)− 63

2
ln 2

−9ζ (2) ln2 2 + 3 ln4 2 +
27

2
ζ (3) ln 2,

Ω (4, 1) =
∞∑

n =1

(−1)n+1 H3
n

n

(
n+ 4

4

) = −32575

1296
+

499

36
ζ (2) +

325

16
ζ (3) +

85

16
ζ (4)

−34ζ (2) ln 2− 151

3
ln2 2 +

68

3
ln3 (2) +

10636

216
ln 2

+12ζ (2) ln2 2− 4 ln4 2− 18ζ (3) ln 2.

Remark 2.1. Following a similar argument as that of Lemma 1.3, we note first from (2.3), with
k = 2

∞∑
n =1

(−1)n+1 H3
n

n (n+ 1) (n+ 2)
=

25

32
ζ (4)− 1

2
+

1

2
ζ (2) +

15

16
ζ (3) + ln 2

−3

2
ζ (2) ln 2− 3

2
ln2 2− 1

2
ln4 2 + ln3 2 +

3

2
ζ (2) ln2 2− 9

4
ζ (3) ln 2.

Also
∞∑

n =1

H3
n

n (n+ 1) (n+ 2)
= 5ζ (4)− 2ζ (3)− ζ (2)− 1

2
,

and hence,
∞∑

n =1

H3
2n−1

n (2n− 1) (2n+ 1)
=

185

32
ζ (4)− 1− 1

2
ζ (2)− 17

16
ζ (3) + ln 2
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−3

2
ζ (2) ln 2− 3

2
ln2 2− 1

2
ln4 2 + ln3 2 +

3

2
ζ (2) ln2 2− 9

4
ζ (3) ln 2.

In the following remark we list, without proof, an extension of the results related to Lemma
1.2.

Remark 2.2. Let φn = H3
n + 3HnH

(2)
n + 2H

(3)
n , then

∞∑
n =1

(−1)n+1 φn

n (n+ 1)
=

3

2
ζ (2) ln2 2− 21

4
ζ (3) ln 2 + 6Li4

(
1

2

)

−1

4
ln4 2 +

15

8
ζ (4) .

∫ 1

0

log3 (1− x) log (1 + x)

x2
dx =

3

2
ζ (2) ln2 2− 21

4
ζ (3) ln 2 + 6Li4

(
1

2

)
−1

4
ln4 2− 33

8
ζ (4) .

∞∑
n =1

(−1)n+1 φn

n+ 1
=

∫ 1

0

log3 (1− x)

1 + x

(
log (1 + x)

x
− 1

1 + x

)
dx

=
21

4
ζ (3) ln 2− 3

2
ζ (2) ln2 2 +

1

4
ln4 2− 15

8
ζ (4) .
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