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ABSTRACT. In this paper, we give the boundedness of gradient solutions result forp-Laplacian
systems only in the singular case. The Lebesgue space for initial data belong to guarantee the
local boundedness of gradient solutions.

Key words and phrases:Boundedness of gradient;p-Laplacian systems; Singular case.

2010Mathematics Subject Classification.Primary 35K67, 35K55. Secondary 35D30.

ISSN (electronic): 1449-5910

c© 2022 Austral Internet Publishing. All rights reserved.

This paper partially supported by the doctoral grant No. 44/UN10.F09/PN/2020 at Mathematics and Natural Sciences Faculty, Universitas

Brawijaya.

https://ajmaa.org/
mailto: <co_math.ub.ac.id>
mailto: <khrnisa@student.ub.ac.id>
mailto: <rbagus@ub.ac.id
https://www.ams.org/msc/


2 C. KARIM . ET AL .

1. I NTRODUCTION

In this paper, we give the p-Laplacian type equation

(1.1)

{
∂tu− div(|Du|p−2Du) = 0 di (0, T )× Ω

u(0, x) = u0(x) on ∂p(0, T )× Ω
,

whereΩ is a bounded domain inRm, m ≥ 2, with smooth boundary∂Ω, 2m
m+2

< p < 2, u :
(0, T )×Ω → Rn, andu = (ui), i = 1, 2, ..., n be a vectorial function on parabolic cylindersQ.

In 2017, a weak solution of (1.1) is constructed by using a varitional (like) method as in [8]
and [11] was construct a weak solution of (1.1) for singular case by using Galerkin method.
The Hölder regularity for parabolic systems (1.1) , where u is real valued and scalar case, goes
back to the fundamental work of DiBenedetto and Friedman, see [1, 2, 3, 4].

Moreover, [13] was studied the local boundedness for u is a vectorial case, the technique used
resembles the classical approach going back to Campanato, to prove local Schauder estimates.
Then the kind of regularity enjoyed by the solutions of the comparison problems is inherited
by the original solution by mean of a delicate comparison technique. This is indeed the crucial
technical point. While in the normal elliptic case this is done on a sequence of standard shrink-
ing balls, in the parabolic case, this must be done in a very careful way. Namely, the so-called
intrinsic geometry must be used. This notion, introduced and deeply studied by DiBenendetto
in the 80s, prescribes that the cylinders used are stretched in the time direction by a factor that
depends on the solution itself. This allows to rebalance the inohomogeneity of the equation
considered, see [12, 6, 7].

However, the local Hölder regularity of weak solutions of (1.1) was studied by [10] for De-
generate parabolic type only. The emphasis here is the boundedness of gradient of weak solution
of (1.1) only for singular case, as continuity from our pevious paper (see [9]), in which the in-
trinsic geometry ( [5, 2, 3] ) changes its type.

We consider the definition of weak solution as below.

Definition 1.1. A functionu is a weak solution of (1.1), if and only ifu ∈ L∞(0, T ; L2(Ω, Rn))
∩Lp(0, T ; W 1,p(Ω, Rn)) and satisfies

(1.2)
∫

(0,T )XΩ

∂tu ϕ + |Du|p−2Du ·Dϕ dz = 0,

for all ϕ ∈ Lp(0, T ; W 1,p
0 (Ω, Rn) with ∂tϕ ∈ L2(Q, Rn) andT > 0.

Our main theorem is the following:

Theorem 1.1. If u is a weak solution of(1.1) and 2m
m+2

< p < 2, then there existC1 > 0 and

C2 > 0 such that for allQ(ρ2, λ
p−2
2 ρ)(zo) ⊂ Q, σ = 2τ

1+τ
and0 < τ < 1

2

(1.3) sup
Q((σρ)2,λ

p−2
2 σρ))

|Du| ≤ C1 λ
m(p−2)

p(m+2)−2m

( ∫
−

Q(ρ2,λ
p−2
2 ρ)

|Du|p dz

) 2
p(m+2)−2m

+ C2λ,

holds, whereC1 depends onm, p, σ andC2 is arbitary constant.

2. RESULTS

Let u is a weak solution of (1.1) inQ(ρ2, λ
p−2
2 ρ)(zo) ⊂ Q, and set the intrinsic geometry for

2m
m+2

< p < 2,
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t = t0 + ρ2s, x = x0 + λ
p−2
2 ρy, z̃ = (s, y),(2.1)

v(s, y) =
u(t0 + ρ2s, x0 + λ

p−2
2 ρy)

λ
p
2 ρ

, 0 ≤ ρ < 1,(2.2)

hence the equation (1.1) inQ(ρ2, λ
p−2
2 ρ)(zo), can be written to the equation inQ(1, 1)(0, 0):

(2.3) ∂tv − div(|Dv|p−2Dv) = 0.

Next, we will proof of ourTheorem 1.1
Proof. Set our intrinsic geometry as in (2.1) and (2.2) then the equation (1.1) inQ(ρ2, λ

p−2
2 ρ)(zo),

(1.1) can be reduced to equation (2.3) inQ(1, 1)(0, 0) such that

(2.4) sup
Q(σ2,σ)

|Dv| ≤ C

( ∫
−

Q(1,1)
|Dv|p dz

) 2
p(m+2)−2m

+ C.

Let take the testing functionϕ = vηpξ, whereη is a linear cutoff function, such thatη = 1
in B(r), supp(Dη) ⊂ B(1) and0 ≤ ∂tξ ≤ C

ρ2−r2 . By using the reverse Poincaré’s inequality
Lemma and the Sobolev inequality, we have the following reverse Hölder inequality,

∫
Q(r)

|Dv|
α+p

2
+m+2

2m
(α+2) dz ≤

∫ 0

−r2

(∫
B(r)

|Dv|
m+2
2m

(α+2) 2m
m+2 dx

)m+2
2m

×(∫
B(r)

(|Dv|
α+p

2 )
2m

m−2 dx

)m−2
2m

dt

≤ sup
−r<t<0

(∫
B(r)

|Dv|(α+2) dx

)m+2
2m

×

∫ 0

−r2

(∫
B(r)

(|Dv|
α+p

2 )
2m

m−2 dx

)m−2
2m

(2.5)

We let

αk =
p(m + 2)− 2m

2
(1 +

1

m
)k − p(m + 2)− 2m

2
+ p− 2; θ = 1 +

1

m
;

Rk = σ +
1− σ

2k
; R0 = 1.

Chooser = ρ
2

and make iteration onk = 0, 1, 2, ..., we have
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(
1

|Q(Rk+1)|

∫
Q(Rk+1)

|Dv|αk+1+2 dz + 1

) 1

θk+1

≤C
|Q(Rk)|

1

θk

|Q(Rk+1)|
1

θk+1

(αk + 2)
3

θk

(Rk −Rk+1)
2

θk

×
(

1

|Q(Rk)|

∫
Q(Rk)

|Dv|αk+2 dz + 1

) 1

θk

...

≤
∞∏
i=0

C
|Q(Ri)|

1

θi

|Q(Ri+1)|
1

θi+1

(αi + 2)
3

θi

(Ri −Ri+1)
2

θi

×
(

1

|Q(R0)|

∫
Q(R0)

|Dv|α0+2 dz + 1

) 1
θ0

.(2.6)

In fact, we have

αi =
p(m + 2)− 2m

2
(1 +

1

m
)i − p(m + 2)− 2m

2
+ p− 2; θ = 1 +

1

m
;

Ri = σ +
1− σ

2i
; R0 = 1,

The constant in (2.6) can be evaluated as

C(m, p, σ) =
∞∏
i=0

C
|Q(Ri)|

1

θi

|Q(Ri+1)|
1

θi+1

(αi + 2)
3

θi

(Ri −Ri+1)
2

θi

≤
∞∏
i=0

(C1)
P∞

i=1
1

θi

(
1 +

1

m

)P∞
i=1

3i

θi

(2)
P∞

i=1
2i

θi

(
σ +

1− σ

2i

)m+2

θi
(

σ +
1− σ

2i+1

)−m+2

θi+1

=(C1)
m+2

(
1 +

1

m

)3c̃

(2)2c̃(1)m+2,(2.7)

whereC1 = C28(1− σ)−2 and

lim
i→∞

(i + 1)

θi+1

/ i

θi =
1

θ
< 1.

Thus for alli it holds that

(2.8)

( ∫
−

Q(Ri)
|Dv|αi+2dz

) 1

θi

≤ C
∫
−

Q(R0)
|Dv|p dz + C.

In fact, we use

lim
i→∞

αi + 2

θi =
p(m + 2)− 2m

2
.

From this estimate, we conclude that for any2m
m+2

< p < 2

(2.9) sup
Q(σ2,σ)

|Dv| ≤ C

( ∫
−

Q(1)
|Dv|pdz

) 2
p(m+2)−2

+ C.

If we use scaling in (2.2) then (2.9) becomes to (1.3).
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