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ABSTRACT. In this paper we investigate the saturation of norm convergence issues for regular
matrix transform means in case of Walsh-Paley system.

The main result is the observation of equality∥∥σT
n (f)− f

∥∥
p

= o(an),

wherean sequence of positive numbers tends to zero and there exists constantc, for which
t1,n ≥ can for everyn ∈ P.
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2 I. BLAHOTA

1. DEFINITIONS AND NOTATIONS

Let P be the set of positive natural numbers andN := P ∪ {0}. Denote the discrete cyclic
group of order2 by Z2. The group operation is the modulo2 addition. Let every subset be
open. The normalized Haar measureµ on Z2 is given byµ({0}) = µ({1}) = 1/2. That

is, the measure of a singleton is1/2. G :=
∞
×

k=0
Z2 andG is called the dyadic group. The

elements of the dyadic groupG are the sequences0, 1. That is,x = (x0, x1, ..., xk, ...) with
xk ∈ {0, 1} (k ∈ N). The group operation onG is the coordinate-wise addition (modulo2,
denoted by+), the normalized Haar measureµ is the product measure, and the topology is the
product topology. For an other topology on the dyadic group see e.g. [9]. The dyadic intervals
are defined in the usual way

I0(x) := G, In(x) := {y ∈ G : y = (x0, ..., xn−1, yn, yn+1...)}
for x ∈ G, n ∈ P. They form a base for the neighbourhoods ofG.

Let Lp(G) with 1 ≤ p < ∞ denote the usual Lebesgue spaces onG (with the corresponding
norm|.|p).

Next, we define the modulus of continuity inLp(G), 1 ≤ p < ∞, of a functionf ∈ Lp(G)
by

ωp(f, δ) := sup
|t|<δ

‖f(. + t)− f(.)‖p, δ > 0,

with the notation

|x| :=
∞∑

k=0

xk

2k+1
for all x ∈ G.

The Lipschitz classes inLp(G) (for all α > 0) are defined as

Lip(α, p, G) := {f ∈ Lp(G) : ωp(f, δ) = O(δα) asδ → 0}.
We now introduce some concepts of Walsh-Fourier analysis. The Rademacher functions are

defined as
rn(x) := (−1)xn (x ∈ G, n ∈ N).

The sequence of the Walsh-Paley functions is the product system of the Rademacher functions.
Namely, every natural numbern can be uniquely expressed in the base2 number system in the
form

n =
∞∑

k=0

nk2
k, nk ∈ {0, 1} (k ∈ N),

where only a finite number ofnk is nonzero. Denote the order ofn ∈ P by |n| := max{k ∈ N :
nk 6= 0}. It means2|n| ≤ n < 2|n|+1. The Walsh-Paley functions arew0 := 1 and forn ∈ P

wn(x) :=
∞∏

k=0

rnk
k (x) = (−1)

P|n|
k=0 nkxk .

It is known [18] that the Walsh-Paley system{wn, n ∈ N} is the character system of(G, +).
The jth Fourier-coefficient, thekth rectangular partial sum of the Fourier series, the Fejér

mean, and thenth Dirichlet kernel are defined by

f̂(j) :=

∫
G

fwjdµ, Sk(f) :=
k−1∑
j=0

f̂(j)wj, σn(f) :=
1

n

n∑
k=1

Sk(f),

Dn :=
n−1∑
k=0

wk, D0 := 0.
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Let {qk : k ∈ N} be a sequence of nonnegative numbers. Thenth Nörlund mean is defined by

tn(f) :=
1

Qn

n∑
k=1

qn−kSk(f ; x),

whereQn :=
∑n−1

k=0 qk (n ∈ P). It is always assumed thatq0 > 0 and

lim
n→∞

Qn = ∞.

In this case, the summability method generated by{qn, n ∈ N} is regular (see [35]) if and only
if

lim
n→∞

qn−1

Qn

= 0.

Let T := (tk,n)∞k,n=0 be a doubly infinite matrix of real numbers. It is always supposed that
matrixT is upper triangular. It means, that lettk,n := 0, if n < k. Let us define thenth matrix
transform mean (or linear mean) determined by the matrixT

σT
n (f) :=

n∑
k=1

tk,nSk(f),

where{tk,n : 1 ≤ k ≤ n, k ∈ P} be a finite sequence of non-negative numbers for eachn ∈ P.
Thenth matrix transform kernel is defined by

KT
n :=

n∑
k=1

tk,nDk.

It is easily seen that

σT
n (f ; x) =

∫
G

f(u)KT
n (u + x)dµ(u),

wherex, u ∈ G. This equality (and its analogous versions for special means) shows us the need
to observe kernel functions.

2. H ISTORICAL OVERVIEW

Matrix transform means are common generalizations of several well-known summation meth-
ods. It follows from simple consideration that Fejér (or the(C, 1)), Cesàro (or the(C, α)), Riesz,
Nörlund and weighted means are special cases of the matrix transform summation method in-
troduced above.

For matrix transform means for the trigonometric system see e.g. results of Chandra [10] and
Leindler [22], for the Walsh system, see paper of Blyumin [8].

In the classical book by Schipp, Wade, Simon and Pál [28], on p. 191. we read inequality

‖σ2s(f)− f‖X ≤ ωX

(
f ; 2−s

)
+

s−1∑
k=0

2k−sωX

(
f ; 2−k

)
,(2.1)

whereσ is the Fejér mean operator,X is a homogeneous Banach space (for example, an arbi-
trary Lp(G) space with1 ≤ p < ∞ and the space of continuous functionsC) andωX is the
modulus of continuity for functions inX, using norm ofX.

Móricz and Siddiqi observed this result [25] using the Walsh-Nörlund summation method,
and Móricz and Rhoades [24] using the Walsh weighted mean method. Móricz and Siddiqi
[25], and later Móricz and Rhoades [24] in these papers proved their generalized results in an
analogous form to inequality (2.1).

As special cases, Móricz and Siddiqi obtained the earlier results of Yano [34], Jastrebova
[20] and Skvortsov [29] on the rate of the approximation by Walsh-Cesàro means. A common
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generalization of the two results of Móricz and Siddiqi [25] and Móricz and Rhoades [24] was
given by Nagy and the author in the paper [4].

In 2008, Fridli, Manchanda and Siddiqi generalized Móricz and Siddiqi’s result to homoge-
neous Banach spaces and dyadic Hardy spaces [12]. These results were generalized by Nagy,
Salim and the author in [5].

Recently, Baramidze, Gát, Goginava, Nagy, Memić, Persson, Salim, Tephnadze, Wall and the
author presented some results on the Nörlund and matrix transform means [1, 2, 5, 7, 17, 23].
See also [31, 33].

We mention that Iofina and Volosivets obtained similar results on Vilenkin systems (which
are generalizations of the Walsh-Paley system) with similar assumptions and different methods
(independently form technics of Móricz, Rhoades, Siddiqi, Fridli and others) for the matrix
transform means in [19].

For Marcinkiewicz means and other two-dimensional results on Walsh-Paley system, see e.g.
[3, 6, 26, 27], ford-dimensional ones see [13, 14, 15, 16, 30, 32].

In their paper [25] Móricz and Siddiqi proved the following, among other things. Let{qk :
k ∈ P} be a nondecreasing sequence non-negative numbers such that conditionnqn/Qn = O(1)
is satisfied. Iff ∈ Lip(α, p, G) andα > 1, then

‖tn(f)− f‖p = O

(
1

n

)
.

After that they formulated the problem: "How can one characterize those functionsf ∈ Lp such
that

‖σn(f)− f‖p = O

(
1

n

)
for some1 ≤ p ≤ ∞?" The answer was given by Fridli [11]. Fridli [11] and Joó [21] also
discussed inequality in their works

(2.2) ‖σn(f)− f‖p = o

(
1

n

)
.

In this paper we deal with the generalization of inequality (2.2) to matrix transform means.

3. RESULTS

Lemma 3.1. Let f ∈ Lp(G), where1 < p < ∞. For everyn ∈ P, {tk,n : 1 ≤ k ≤ n} be a
finite sequence of non-negative numbers such that

n∑
k=1

tk,n = 1(3.1)

is satisfied. Then for anyj, n ∈ P∣∣∣f̂j

∣∣∣ j∑
k=1

tk,n ≤
∥∥σT

n (f)− f
∥∥

p
.

Proof. Since

σT
n (f) =

n∑
k=1

tk,nSk(f) =
n∑

k=1

tk,n

k−1∑
i=0

f̂iwi

andf =
∑∞

s=0 f̂sws a.e. for∀f ∈ Lp(G), where1 < p < ∞, we get for anyj ∈ P, that∣∣∣∣∫
G

(
σT

n (f)− f
)
wjdµ

∣∣∣∣ =

∣∣∣∣∣
∫

G

(
n∑

k=1

tk,n

k−1∑
i=0

f̂iwi −
∞∑

s=0

f̂sws

)
wjdµ

∣∣∣∣∣ =: (∗).
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If j < n, then

(∗) =

∣∣∣∣∣
n∑

k=j+1

tk,nf̂j − f̂j

∣∣∣∣∣ =
∣∣∣f̂j

∣∣∣ j∑
k=1

tk,n,

if j ≥ n, then

(∗) =
∣∣∣−f̂j

∣∣∣ =
∣∣∣f̂j

∣∣∣ ,
because of orthonormality of Walsh-Paley system and of Condition (3.1).

If 1/p + 1/q = 1, then Hölder’s inequality yields∣∣∣∣∫
G

(
σT

n (f)− f
)
wjdµ

∣∣∣∣ ≤∥∥σT
n (f)− f

∥∥
p
‖wj‖q

=
∥∥σT

n (f)− f
∥∥

p
,

so Lemma 3.1 is proved.

Remark 3.1. We mention that assumption of (3.1) is natural, because many well-known (see
e.g. Fejér, Cesàro, Nörlund, weighted, Riesz) means satisfy it, and this equality is part of the
regularity conditions [35, page 74.]

Corollary 3.2. Let f ∈ Lp(G), where1 < p < ∞. For everyn ∈ P, {tk,n : 1 ≤ k ≤ n} be a
finite sequence of non-negative numbers such that

n∑
k=1

tk,n = 1(3.2)

is satisfied. Ifn ≤ j, then ∣∣∣f̂j

∣∣∣ ≤ ∥∥σT
n (f)− f

∥∥
p
,

specially, ∣∣∣f̂n

∣∣∣ ≤ ∥∥σT
n (f)− f

∥∥
p
.

Proof. Sincetk,n = 0 if n < k, using Lemma 3.1 and Condition (3.2) we obtain the statement
of Corollary 3.2 immediately.

Remark 3.2. The Riemann-Lebesgue Lemma says, that iff ∈ L1(G), thenf̂n → 0 ([28], page
24), so Corollary 3.2 does not contradict our expectations with respect to norm convergence.

Remark 3.3. It is known, that Walsh-Fejér mean (as a special case of matrix transform means)
tends to everyf ∈ L1(G) functions in norm, so Corollary 3.2 implies the Riemann-Lebesgue
Lemma.

Lemma 3.3. For everyn ∈ P, {tk,n : 1 ≤ k ≤ n} be a finite sequence of non-negative numbers
such that

n∑
k=1

tk,n = 1(3.3)

is satisfied. Iff is a constant function, then

σT
n (f) = f

for everyn ∈ P.
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Proof. Using the simple fact, that∫
G

wi(t)dµ(t) =

{
1, if i = 0,

0, otherwise,

assumingf(x) := f (∀x ∈ G) is a constant function, using Condition (3.3) we get, that

σT
n (f ; x) =

n∑
k=1

tk,n

k−1∑
i=0

(∫
G

fwi(t)dµ(t)

)
wi(x)

=f

n∑
k=1

tk,n = f,

so we are ready.

Theorem 3.4. Let f ∈ Lp(G), where1 < p < ∞. For everyn ∈ P, {tk,n : 1 ≤ k ≤ n} be a
finite sequence of non-negative numbers such that

n∑
k=1

tk,n = 1

is satisfied. Letan any sequence of positive numbers tends to zero. If there exists0 < c absolute
constant, that

(3.4) t1,n ≥ can,

for ∀n ∈ P, then ∥∥σT
n (f)− f

∥∥
p

= o(an)

holds if and only iff is a constant function.

Proof. Let f is a constant function. This part is implied by Lemma 3.3.
On the other hand, if ∥∥σT

n (f)− f
∥∥

p
= o(an),

then Lemma 3.1 yields

0 ≤ 1

an

∣∣∣f̂j

∣∣∣ j∑
k=1

tk,n ≤
1

an

∥∥σT
n (f)− f

∥∥
p
→ 0,

so
1

an

∣∣∣f̂j

∣∣∣ j∑
k=1

tk,n → 0,

asn →∞. But based on Condition (3.4) we get for∀j ∈ P, that

1

an

∣∣∣f̂j

∣∣∣ j∑
k=1

tk,n ≥
1

an

∣∣∣f̂j

∣∣∣ t1,n

≥ 1

an

∣∣∣f̂j

∣∣∣ can = c
∣∣∣f̂j

∣∣∣ ≥ 0.

Summarising our results,
lim

n→∞
f̂j = 0

∀j ∈ P. It means, that onlŷf0 can be differ from0, but f̂j = 0 for ∀j ∈ P. In this case
f(x) = f̂0w0(x) = f̂0, hencef is a constant function.
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Corollary 3.5. Let f ∈ Lp(G), where1 < p < ∞. If sequence of non-negative numbers
{tk,n : 1 ≤ k ≤ n} is non-increasing for every fixedn ∈ P such that

n∑
k=1

tk,n = 1(3.5)

is satisfied. Then ∥∥σT
n (f)− f

∥∥
p

= o

(
1

n

)
holds if and only iff is a constant function.

Proof. The "if" case is trivial based on Lemma 3.3.
If sequence{tk,n : 1 ≤ k ≤ n} is non-increasing for every fixedn ∈ P, using condition (3.5)

we get

t1,n ≥
1

n
,

so choosingan = 1/n andc = 1 in Theorem 3.5 we are ready.
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[23] N. MEMIĆ, L.-E. PERSSON and G. TEPHNADZE, A note on the maximal operators of Vilenkin-
Nörlund means with non-increasing coefficients,Studia Sci. Math. Hungar., 53 (4) (2016), pp.
545–556.

[24] F. MÓRICZ and B. E. RHOADES, Approximation by weighted means of Walsh-Fourier series,Int.
J. Math. Sci., 19 (1) (1996), pp. 1–8.

[25] F. MÓRICZ and A. SIDDIQI, Approximation by Nörlund means of Walsh-Fourier series,J. Ap-
prox. Theory, 70 (1992), pp. 375–389.

[26] K. NAGY, Approximation by Nörlund means of quadratical partial sums of double Walsh-Fourier
series,Anal. Math., 36 (4) (2010), pp. 299-319.

[27] K. NAGY, Approximation by Nörlund means of double Walsh-Fourier series for Lipschitz func-
tions,Math. Inequal. Appl., 15 (2) (2012), pp. 301–322.

[28] F. SCHIPP, W. R. WADE, P. SIMON and J. PÁL,Walsh Series. An Introduction to Dyadic Har-
monic Analysis, Adam Hilger, Bristol-New York, 1990.

[29] V. A. SKVORTSOV, Certain estimates of approximation of functions by Cesàro means of Walsh-
Fourier series,Mat. Zametki, 29 (1981), pp. 539–547 (in Russian).

[30] F. WEISZ, Maximal estimates for the(C,α) means ofd-dimensional Walsh-Fourier series,Proc.
Amer. Math. Soc., 128(8) (1999), pp. 2337–2345.

[31] F. WEISZ,Θ-summation and Hardy spaces,J. Approx. Theory, 107(2000), pp. 121–142.

[32] F. WEISZ, Several dimensionalΘ-summability and Hardy spaces,Math. Nachr., 230 (2001), pp.
159–180.

[33] F. WEISZ,Θ-summability of Fourier series,Acta Math. Hungar., 103(1-2) (2004), pp. 139–175.

[34] SH. YANO, On approximation by Walsh functions,Proc. Amer. Math. Soc., 2 (1951), pp. 962–967.

[35] A. ZYGMUND, Trigonometric series, 3rd edition, Vol. 1 & 2 and combined, Cambridge Univ.
Press, 2015.

AJMAA, Vol. 22 (2025), No. 1, Art. 4, 8 pp. AJMAA

https://ajmaa.org

	1. Definitions and notations
	2. Historical overview
	3. Results
	References

