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1. INTRODUCTION

Singular integral operators on the weightel(R) spaces are studied in_ [10]. In_[10], the
authors have proved that far< p < oo and if the non-negative functiom(x) satisfiesA,
condition then the singular integral operators are boundefi’diR). Forp = 1, it has been
proved that ifw(z) satisfiesd; condition, then the singular integral operators satisfy weak type
(1,1) inequality with respect to the weighted measure. The detailed proof of the same can also
be seen in[6]. In[8], the authors have studied the singular operators on sequence&&@aces
and their corresponding ergodic versions.

In this paper, we prove strong type, weak type inequalities of singular operators on weighted
(? (Z) spaces. Using these results we prove strong type, weak type inequalities of maximal
singular operator of Calderon-Zygmund type on variable sequence spag@s.

These results are achieved using Calderon-Zygmund decomposition for sequences, properties of
A, weights, reverse blder inequality and Rubio de Francia extrapolation. We also prove strong
type, weak type inequalities of maximal ergodic singular operator& X, 3, 1) spaces,
where( X, B, 1) is a probability space equipped with an invertible measure preserving transfor-
mationU. We use Calderdon-Coifman-Weiss transference principle to achieve these results.

In [4] the characterization of those positive functiangknown as ergodici, weights) for
which the maximal ergodic singular operator associated with an invertible measure preserving
transformation on a probability space is boundedZg1i.X, 53, 1) is given. In their proof the
ergodic analogue of Calderén-Zygmund decomposition and the concept of ergodic rectangles
are used. Using the same concept of ergodic rectangles, we prove tHatfgr < oo, if
the maximal ergodic Hilbert transform is bounded B\ X, B, 1), thenw € A,(X). In [4],
the authors have given direct proof of this result without using the corresponding results on
weighted sequence spaces. In this paper we use the corresponding ré8(i oo prove this
result.

2. DEFINITIONS AND NOTATION

Throughout this thesig, denotes the set of all integers aAd denotes the set of all positive
integers. For a given intervdlin Z (we always mean finite interval of integers)/| always
denotes the cardinality df For each positive integer N, consider collection of disjoint intervals
of cardinality2”,

{IN,j}jeZ = {[(] - 1)2N + 17 e 7j2N}}j€Z :
The set of intervals which are of the forfy ; whereN € Z, andj € Z are
called dyadic intervals. For fixedf, I,y ; are disjoint.
Given a dyadic interval = {[(j — 1)2" +1,... ,j2N]}j€Z and a positive integein, we
define
2L1 = [(j —2)2V +1,...,52V]
ALT =[(j —4)2Y +1,...,52]
2RI =[(j —1)2¥ +1,...,(j +1)2%]
ARI =[(j — 12V +1,...,(j + 3)2"]

3 =2L1 U2RI
51 =4LI U4RI
Fork =2,3,4,... andK € Z,, letI(0,2"K) denotes the interval
[—2F 1K 2P K 41, —1,0,1,2, ..., 28 K — 1, 2R K.
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For a given sequencfu(n) : n € Z} and an intervall;, a(/;) = Zkelj a(k). For a se-

quence{p(n) : n € Z,p(n) > 1}, definep_ = inf {p(n) : n € Z} ,p, = sup{p(n) : n € Z}.
Throughout this paper, we assume < co and1l < p_ < p(n) < p. < oo, n € Z. We denote
set of all such sequencés(n) : n € Z} by S.

Maximal Operators. Let{a(n):n € Z} be a sequence. We define the following three types
of Hardy-Littlewood maximal operators as follows:

Definition 2.1. If I, isthe interva —r, —r +1,...,0,1,2,...,r — 1,r}, define centered Hardy-
Littlewood maximal operator

M/
a(m) r>0 2T+1 Z’

We define Hardy-Littlewood maximal operator as foIIows

Ma(m) = sup — 1] Z\a

mel

where the supremum is taken over all intervals contalmng

Definition 2.2. We define dyadic Hardy-LittIewood maximal operator as follows:

Mga(m) = sup — 7] Z|a

mel 11 ker
where supremum is taken over all dyadic intervals containing

Given a sequencgu(n) : n € Z} and an interval, leta; denote average diu(n) : n € Z}
on!. Let,a; = ﬁ Y mes a(m). Define the sharp maximal operatf* as follows

where the supremum is taken over all mtervhtsontamlngm. We say that sequence
{a(n) : n € Z} has bounded mean oscillation if the sequehtéa is bounded. The space of
sequences with this property is denoted by BMD(

We define a norm in BMQ¥) by |[a||, = ||M#al| . The space BM(¥) is studied in[[9].

Norm in Variable Sequence Spaces.

Definition 2.3. Given a bounded sequenfg(n) : n € Z} which takes values ifl, co), define
°0)(7Z) to be set of all sequencéa(n) : n € Z} such that for some > 0,

Z(w)p(k) < 00

keZ
We define modular functional for variable sequences spaces associated-\wih

@) =Y la(k)®

k€EZ

Further for a given sequende(k) : k € Z} in °0)(Z), we define
. a
lall, = inf {)\ >0 py00(5) < 1}

all o ) is @ norm ine?)(Z) [7].
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Weights.

Definition 2.4. For afixedp, 1 < p < oo, we say that a non-negative sequeficén) : n € Z}
belongs to classl, if there is a constar® such that, for all interval$ in Z, we have

(1wt (o o) <

kel kel

Infimum of all such constants'is calledA, constant.
We say tha{w(m) : m € Z} belongs to clasd, if there a constant C such that, for all intervals

IinZ,
7 2 w8 < Cum

for all m € I. Infimum of all such constants is calledA; constant.
Letl < p < oo and{w(n):n € Z} € A,(Z). We say that a sequenge(n) : n € Z} is in

r(Z) if
Z!& )Pw(n) < oo.

nel

We define norm irf? (Z) by

lallg ) = (Z !@(/f)l”w(/f)y.

kEZ

For a subset of Z, w(A) denotesy _, _ , w(k).
For a given sequencku(n) : n € Z} € (2 (Z), the weighted weak type (p,p) inequality for a
non-negative weight sequen¢e(n) : n € Z} is as follows:

w({m € Z: Ma(m) > \}) < ; > la(m)Pw(m)

meZ

Definition 2.5. Let (X, B, ;) be a probability space and an invertible measure preserving
transformation on X. Suppode< p < co andw : X — R be a non-negative integrable func-
tion. The functionw is said to satisfy ergodid,, condition,

N>1

1 N N p—1
€SSSUPex Sup<2N+1 Z w(U"2) )(2N+1 Z ) < C.
k=—N -N

The functionw is said to satisfy ergodid; condition,

1
€8SSUPLex SUP

N
Ukz) < Cw(U™
P ON 1 X_:Nw( r) < Cw(U™r)

form=—-N,—-N+1,...,N.
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3. RELATIONS BETWEEN MAXIMAL OPERATORS

In the following lemmas, we give relations between maximal operators. For the proofs of
the following lemmas, refei [1]. These relations will be used when we prove the weighted
inequalities for maximal ergodic operators.

Lemma 3.1. Given a sequencfu(m) : m € Z}, the following relation holds:
M'a(m) < Ma(m) < 3M'a(m)
Lemma 3.2.If a= {a(k) : k € Z} is a non-negative sequence wite ¢, then
{m € Z : M'a(m) > 4\}| < 3|{m € Z : Mya(m) > \}|
In the following lemma, we see that in the norm of BMO)Epace, we can replace the average

ay of {a(n) : n € Z} by a constant. The proof is similar to the proof in continuous version
[6]. The second inequality follows froma| — [b]| < |a| — |b].

Lemma 3.3. Consider a non-negative sequerge= {a(k) : k € Z} in BMO(Z). Then the
following are valid.

1 Pt
L. -HaH*fésuglnf-—ﬁaOn)—-blS lall,

z ||
2. M*(la])(i) < M*a(i),i € Z

4. WEIGHTED CLASSICAL RESULTS FOR MAXIMAL OPERATORS

Let 1 < p < oo. In this section, for a given sequente(n) : n € Z} in (2 (Z), we prove
weighted weak type (p,p) inequality with respect to the weight seqqerieg : n € Z} € A,
which is stated in Theoreph]2].

The proof of the following theorem is similar to the proof of corresponding result in contin-
uous version [6]. We state here without proof.

Theorem 4.1.Let{a(n) : n € Z} be a non-negative sequence and
{w(n):neZ} € A,,1 < p < oo be a non-negative weight sequence. Léie an interval
such thata(m) > 0 for somem € I. Then,

(1)
@1[A)) w(I) <W) < Y la(m)Pw(m
mel
(2) Given afinite seb C I,
@118) w(D) (%’) < Cu(S)

4.1]A] follows from Holder’s inequality and thel,, condition.[4.1] B] follows by takinga =
Xs iIn{.1[A].
Theorem4.2.Assumgw(n) : n € Z} € A,. Given anon-negative sequenegn) : n € Z} €
?(Z), for 1 < p < oo, the weighted weak(p,p) inequality holds:

w({m € Z: Ma(m) > \}) <—Z|a )[Pw(m
mez

For the proof of Theorerd[2], refer [3].
Theorem4.3.1f w € A4,,1 < p < oo, then)M is bounded or? (Z).
The proof follows from Theorerd][2] and Marcinkiewicz interpolation theorem.
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5. PROPERTIES OF Ap WEIGHTS

We state the properties df, weights for sequences without proofs. The proofs are similar to
the proofs of corresponding results in the continuous version.

Property 1. A, C A,,1 <p <q.
Property 2. w € A, if and only ifw!™"" € A,

Letw(m) € A,,m € I. Proof follows by noting4,, condition forw!'=?". For the converse
A, condition can be verified.

Property 3. wo,w; € Ay = wow;' P € A,.

Here, we state reverseslder inequality for weighted sequences. For continuous version of
these proofs, refer to [[6].

Property 4. [Reverse Hlder Inequality] Letw € A,,1 < p < co. Then, there exists constants
cande > 0, depending only op and theA,, constants ofv, such that for any interval,

(ﬁzw(m>l+e> < 2wl

mel mel
Property 5. A, = Uz, A4, 1 < p < o0.
Property 6. If w € A,,1 < p < oo, then there exists > 0 such thatw'™ € A,

Property 7. If w € A,,1 < p < oo, then there exist§ > 0 such that given a interval | and
Scl,
w(S) (|S!)5
— <ol =
w([) 1]
6. CALDERON-ZYGMUND DECOMPOSTION FOR SEQUENCES

For the proof of Theorerg[I], we refer [2].

Theorem 6.1.Let0 < a < 1. Take a real numbep such thatl < p < i (If & = 0 then
1 <p< ). Let{a(n) :n € Z} € (?(Z). Then
there exists a sequence of disjoint interv@l$} such that

(i) < e t|1 = “Ja(k)| < 2t,Vj € Z.
kel!
(i) Vn €Ul |a(n| <t.

(i1d) If t; > t9, then each[;lis subinterval of somé” Vj,m e Z.

7. WEIGHTED GOOD LAMBDA ESTIMATE

Lemma 7.1. Let{a(n) : n € Z} be a non-negative sequence/f(Z). Letw € A,,1 < p, <
p < oo. If {a(n) : n € Z} is such thatMa € (#°(Z), then

> [Maa(m)Pw(m) < C Y| M*a(m)[Pw(m)

meZ meZ

where M, is the dyadic maximal operator antd # is the sharp maximal operator, whenever,
the left hand side is finite.

AIMAA Vol. 21(2024), No. 2, Art. 3, 24 pp. AIMAA


https://ajmaa.org

MAXIMAL SINGULAR OPERATORSON VARIABLE EXPONENT SEQUENCE SPACES 7

Proof. In order to prove Lemm@[1], first we prove the good-inequality, which is as follows:
For some) > 0,

w({m € Z: Mga(m) > 2)\, M*a(m) < yA}) < Cy’w({z € Z: Maa(m) > A\})

Since{m € Z : Mga(m) > A} can be decomposed into disjoint dyadic cubes, it is enough to
show that for each such interval

w({m € I: Mga(m) > 2\, M*a(m) < yA}) < Cy w(I)
The above inequality can be proved using the same argument as in Lemma|4.6]/from [1] and
property[7] . Now we prove Lemm@[.I]

Consider, for any positive integéf
N
Iy = / pN T Hw{n € Z : Mya(k) > \}|d\
0

Sincea € P° implies Mya € (P, Iy is finite,

N
Iy = / pX U {n € Z - Mya(k) > A}|dA
0

z

_ 2p/2 pN M {0 € Z - Maa(k) > 27} [d\ =
0

z

< 2”/ i PN Hw {n € Z : Maa(k) > 2X\, M¥a(k) < yA}dA+
Jo
2p/2 PN Hw {n € Z: Mga(k) > 2X, M*a(k) > yA}|dA
"
< 2p/ ’ pNPTION w{n € 7 : Mya(k) > A}dA+
0

N

2”/2 PN Mw{n € Z: M*a(k) > yA}|dA
0

N
< 2PCH° / pXNlw{n € Z - Mga(k) > A}d\  +
0
N

2p/2 pNHw{n € Z: M*a(k) > yA}|dA
0

It follows that

N

(1—2°Cy)Iy < 21’/ ’ pN " Hw {n € Z : M*a(k) > yA}|dA
0

Now take(1 — 2°C+°) = L. Then,

N

. N

§IN < 2?/2 PN Hw {n € Z : M¥*a(k) > yA}|dA
0

N
20 (=
< = [ pN T {n e Z: MEa(k) > M}]dA
7 Jo
Now, takeN — oo, we get
Z Mga(m)Pw(m) < C Z M#a(m) w(m)

mEeZ mEZ
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8. CALDERON-ZYGMUND SINGULAR OPERATOR

In this section, we study Calderdn-Zygmund singular operator on Weigﬁﬁé(c%) spaces.
This operator orf?(Z) spaces is studied ihl[8].

Definition 8.1. A sequencd ¢(n)} is said to be a singular kernel if there exist constahtand
Cy > 0 such that

If = {¢(n)} is asingular kernel anflu(n) : n € Z} € (P(Z),1 < p < oo, define
(S1): N é(n) converges ad — oc.
(S2): 0(0) = 0andjo(n)| < .n # 0

(S3): |p(n+1) —o¢(n)| < & =, n#0.

Tya(n) = (¢xa)(n) = > d(n—
keZ
Since S2 implies that € ¢" for all 1 < r < oo, the above convolution is defined.
The operatofl; defined above is called discrete singular operator.
The maximal singular operator corresponding to this singular operator is defined as

If ¢ is a singular kernel and we Iét be the linear extension af to R, then K is locally
integrable and satisfies:

(K1)
/ K(x) dx convergesas— 0
e<|z|<=
(K2)
C
K ()] < Tl
(K3)
K@)~ Ko~ ) < D forla] > 21y

The functionk (x) which satisfieg K'1), (K2), (K3) is known as Calderon-Zygmund singu-
lar kernel onR. The principal value integral

Tk f(z) = lim K(z —y)f(y)dy
e>0 |{L’—y|>e
and the maximal singular integral operator
Tk f(z) = sup| K(z —y)f(y)dyl

>0 J|z—y|>e
satisfy strong type (p,p) and weak type (1,1) inequalitiés [8].
The proof of following theorem can be found in [8]. The following theorem states that the
discrete maximal singular operator and discrete singular operator are boundg@.pri <
p < oo and they satisfy weak(1,1) inequality. For proof, we refef o [8].

AIMAA Vol. 21(2024), No. 2, Art. 3, 24 pp. AIMAA
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Theorem 8.1([8]). Let¢p = {¢(n)} be a singular kernel. Then there exists constant> 0
such that

(1) F1 <p <oo,|Tsall, < Cpllall,,Va € P(Z).

2) [{n : [Tha(n)| > A} < S |lall, , Va € (1(Z) and A > 0.

Theorem 8.2([8]). Let ¢ be a singular kernel and < p < oco. Then there exists a constant
C, > 0 such that (i)

||T¢’§aHp <GCpllall, Vael(Z), if 1<p<oo
(ii)
C
{j €Z: Tia(j) > \}| < 71 lall, YA>0 and ac((Z)
Now, we prove the strong type and weak type inequalities for the discrete singular operator
T, on EEZ,(')(Z) spaces. For this we require the following lemmas.

Lemma 8.3. Let ¢ be a singular kernel. Given an interval | which contains integers m,n, then
forr ¢ 51,

[¢(m — 1) = ¢(n —7r)| <

Proof. If m > n, then

[p(n — 1) = ¢(m — )]
<l|p(n—r)—¢pn—r+1)+o¢n—r+1)—¢p(n—r+2)---+
+on—r+m-—-n—1)—o¢(n—r+m—n)|
<lp(n—r)=dn—r+|+|on—r+1)—d(n—r+2)[--+
+lp(n—r+m—n—1)—¢(n—r+m—n)

C C C

- |n—7“\2+|n—7’—|—1|2+“.+\m—r—1\2

~ n—r?
<C 1]
T n—r?

By the same argument, if > m, then

C|I
om 1) = 60 = 1)| <
Also
m =l = (m =)+ (1 =) = o = rl ~ pm | = }n—r| ~ |1

Sincer € Z\ 51, we haveln—7| > 2|I|. Hence for- € Z\51. [m—r| > |n—r| 1251 > Il
i.e L < —2_. Therefore, in this case alsgy(m — ) — ¢(n — r)| < -2

lm—r| — |n—r|" (n—r)2"

Lemma 8.4. If T}, is a singular operator, then for each> 1, there exists a constait; > 0
such that

s

M (Tya(m) < €.l m)

for each integern € Z.
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Proof. Fix s > 1. Given an integern and an interval which containsn, by Lemmgp.3] , it
is enough to find a constahtsuch that

1t o[ Tsaln) ] < CAM(af)(m)?

nel
Decompose = a; + a2, Wherea; = ax;;, as = a — a;. Now leth = Tya(m), then
1 1 1
T > ITsa(n) — b < Il > |Thar(n)| + T > |ITsas(n) — Tyas(m)]

nel nel nel
Sinces > 1, Ty is bounded orf*(Z). Therefore,

To deal witha,, we require the estimate from Lemrig&]].
Now, we estimate the second term as follows.

ﬁ S Tas(n) — Tyaa(m)

1
S22p)) (6t =) = 80m =) Jatr)
< X loln =) = 6(m = r)atr)
nel reZ\51
<on > ¥ i)

nel reZ\51

1 = I
oYy Y )

nel k=1 2F|I|<|n—r|<2k+1|1|

1 =~ |/
DI TS DN

nel k=1 [n—r|<2k+1|1|

1 =1
SOy 2 lal)

nel k=1 |n—r|<2k+1 ]
1 = 2
SCoD D g 2o ()l
| ‘ nel k=1 ‘ ’ |n—r|<2k+1| ]|

AJMAA Vol. 21(2024), No. 2, Art. 3, 24 pp. AIMAA
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1
s

= C'Ma(m) < CM(|af*)(m)
The last inequality follows by using dder’s inequality.n

11

Theorem 8.5.1f T}, is a singular operator, then forany € A,,1 < p < oo, Ty is bounded on

(7).

Proof. Let w € A,. SinceA, = U,.,A4,, we can finds such thatp > s > 1 andw &
Ar. Consider a sequende(n) : n € Z} such thatu(n) = 0 outside the interval—R, —R +

1,...,R].
Therefore,

> [ Tsa(m)|Pw(m)

meZ

<) [Md {Tw(m)pr(m) Lemmal7.1|

mEZ

<C) [M# [T¢a(m)pr(m) Theorem|8.4]

meZ

EAS]

<O % [Matm))] wm

meZ

<O la(m)Pw(m)

mEZ

In the second step, we use [Lemma]7.1](Weighted Good -Lambda estimate) provided

5 [pttatmy] wim

meZ
is finite. To show this it is enough to show th&j: € ¢ (Z).

We have to prove
p
E (Tw(m)) w(m) < oo.

MEZ
To show that this is finite, we split this sum as

5 (Tuatm)) i)

m<2R
and »
Z (Tw(m)) w(m).
m>2R
The former sum ,
Z (T¢a(m)) w(m) < 0o
m<2R

AJMAA Vol. 21(2024), No. 2, Art. 3, 24 pp.
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is trivial as shown below.

Forim| < 2R,
(A4) Tya(m)| <C Y a(n)| |m€ o < C lal|, 4R < co.
In|<2R,m#n
For|m| > 2R,
ja(n)] lallo
Tualm)l = atwom = <€ 37 R < O

Further,7(0,2R) c 1(0,2*"R) andw(I(0,2R)) is a constant independent of. Also, since
w € A,, by Lemmg@], there existg < p such thatv € A,. Then by Lemma{ 1]

‘2k+1R’
2R|

w(I(0,2"1R)) < Cw(I(0, 2R))( )q < Cw(I(0,2R))(2"M)? < C(w, R)2%

So,

> MatmpPutmy <03 ¥

|m|>2R k=1 2k R<|m|<2k+1R

<CY @R Y wim)
k=1 |m|<2k+1R

<CY» (2"R)*C(w, R)2*
k=1

0o o] 1 k
=C(w,R)Y 2" =C(w,R)) (QM) < 00
k=1 =1

k

Combining both results;a € ¢ (Z).
1

Theorem 8.6.Let T, be a Calderon-Zygmund operator and letc A,. Then for any
{a(n):n e Z} € (L (Z),

w({m € Z: [Tya(m)| > A}) < %Z\a(m)\w(m)

meZ

Proof. Perform Calderén-Zygmund decomposition (Theofem[6.1]) of sequierieg : n € Z}
at height\ and obtain disjoint dyadic interva{d; } which satisfy
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whereQ) = U;[;

= bi(m)

Jj=1

i) = (o) = 7 29y

where

Write

w({m € Z: |Tya(m)| > A})
< w({m € Z:|Tpg(m)| > %}) +w({m €Z:|Tb(m)| > %})

To estimate the first term, note thate A; impliesw € A,.
Further sincél; is bounded orf? (Z), it follows that

w({m €Z: |Tpg(m)| > %})
< —Z|T¢9

<o ;:Zlg
= 5 (X lotm) o) + Z|g<m>\2w<m>)

Now,

> lgtm)Pw(m)

meQe

< ST Jgtm)lw(m) < A Y falm)lw(m

mee mefe

Notew € A, implies 2 III ) < Cw(m) VYm e I.Soon,

> lg(m)Pw(m) < 42" w(m)

meN meQ

1 o) (35 wem)

kel; mel;

((

.((m;"‘ 1) (v )
=4Aj((k§'a ')( k>))

>(%

=4\

=4\
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<4CA Z la(m)|w(m)

meZ
From above estimates we get
A
wfm e 2 [Tog(m)] > 5 1) < Slatm)lu(m)
Consider,
A A
w({m €Z:Tb(m) > 5}) < w(U;31;) —I—w({m € Z\ U;31; - |Tb(m)| > 5})

For the second estimate, by Lemfha|

w(U;31;) <OZ <(JZ
CZ 5 (e )

kel;
s 2 (i)
C
< 5 (;W(’C )
< S S ek k)
ke
< &S ek k)

Now letc; be center of ;. Then, sincé; has zero average an.

w({m € Z\U;31; : |Tyb(m)| > %})

< E%’3[‘|T¢b<m>rw<m>

_ §m\2 13 ot = )

< \Z 'Z;¢ m)w(m)

<SS I 6t m) oy — ) (m(m)

meZ\U;3I; j n€l;
If m € Z\ U;31; andn € I; then|m —n| > |[;| Vj. So, it follows thatV; € Z, from
Lemmds.3| [o(m — n) - 6(c; - m)| < Ol
It follows that,
w({m € Z\ U;31; : |Tb(m)| > \})

AJMAA Vol. 21(2024), No. 2, Art. 3, 24 pp. AIMAA
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SPIPO I (el
c L ot Vb
e3P (re )
3> 3> SIS DI (L ) [0
J n€lj s=0 28|I;|<|m—n|<25+1|]}]| | |
< %ZZZ wrE 2 wlmlb)

j nelj s=0 29| I | <|m—n| <2511

< %Z S oot § > Sl

i nEI]- 7 ’ﬂEIj

< S amlun) + S lgmlun)

nez nez
C
< 3 Z|a(n) w(n
MEZ
Combining both estimates fdt, g, 7,0, we get desired resulp.
Now, we prove the weak and strong type inequalities for the maximal singular op&jator
operator on®2 (Z) spaces. Here, we use transference method to transfer the corresponding

results orR.
The following lemma, whose proof is obvious, is used in the proof of The@€n[

Lemma 8.7. Supposqw(n) : n € Z} is a sequence irl,(Z),1 < p < co. Put
w@%:’wﬁ if we€lj—gityl JE€
0 otherwise

If we A,(Z), thenw’ € A,(R),1 <p < oo.
If w e Al (Z), thenuw’ € Al(R)

Theorem 8.8.1f T}, is a singular kernel operator, then far< p < oo, T is bounded on?, (Z)
if w e A, andT} is weak (1,1) with respect to if w € A;.

Proof. Let K (z) be the linear extension ef. Also for a given sequencgi(n) : n € Z}, we
define a functiory (z) = 3, ., a(m)x,, (z) wherel,, = (m — 3, m + 1).

The following inequality which gives the relation between the maximal singular operator on
Z and the maximal singular integral operatorl®ms proved in[[8].

(A5) Tha(m) < C(Tgf(x) +Sf(z)), =€l

AIMAA Vol. 21(2024), No. 2, Art. 3, 24 pp. AIMAA
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where
|f(v)]
S =
fz) /Iﬂf—y|>§ (z — y)zdy
= |f(y)]
_ d
kzolk>z y|>2k-1 (‘r_y)z y
= 4
= d
<> /| iy
< CMf(x)
Now,
pp — P (2)d
112, = [ 1f@Pu(e)ds
1
_ Z/ la(m)[Pw(m)dz = Z—m( JPw(m) = 3 allg,
MmEZ meZ
and

101, = (1, g )’

Therefore, using Lemmna[7]

[Tl = (S rzatmPuim)

<é€z Im|T¢fa m)|Pw(m)dz
(207;Z / [Tk )+ Sf(x )rw'(x)dx>;

< (2¢ [ | + 550w <x>d:c);
(20 / [ @)+ Mf( )Fw’(m)dm);

< QC(HTI*(fHLi,(R) + ”MfHLif(R)>
< C|fll

w’(R)

= Cllall,,

where we used’s; is of strong type (p,p) od? (R) andSf(z) is also of strong type (p,p) on
L7, (R). Refer [8]. It follows thatl’; is strong type (p,p) o, (Z).

Now, we shall prove the weak type (1,1) inequality.

From [A5], we have

{meZ:Tja(m)> A}

AJMAA Vol. 21(2024), No. 2, Art. 3, 24 pp. AIMAA
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9{$€fmrT§f(x)>%}u{xel : Sf(x) > ;C}

Q{xGIm:T[*ff(x)>%}U{xé]m:Mf(x)>%}

Therefore, the weighted analogue would give for each/,,,
lw({m € Z: Tja(m) > \})]
A A
< T : —
< u{e € s Tif @) > 25 Pl + ot m e 2307w > 5
Hence, T is of weak type (1,1) and/ is also of weak type (1,1) oh! (Z). Refer [8]. This
givesT} is weak type (1,1) od, (Z).

Now, we want to prove that if’; is bounded orf?,(Z),1 < p < oo, thenw € A,(Z) when
T is maximal Hilbert transforni * whose kernel is given by

1 jf
wwz{g Lt

The methodology used in our proof is given In [5]. Observe thatifer p < oo, if H* is
bounded orf? (Z) then H is bounded on? (Z),

Theorem 8.9.1f for 1 < p < oo and any positive sequene(n) : n € Z}

Z|Ha ) [Pw(m <C’Z|a )Pw(m) V{a(n):n € Z}

meZ meZ
thenw satisfies the discretd, condition which is as follows

() () 50

mel mel

for any intervall in Z.

Proof. LetI; = [m,m+1,...n] be any interval irZ. Consider doubling intervdl, and relabel
it as
Iy=[mm+1,...n,n+1,n+2,...2n —m+ 1]
so thatl, = I; U I,, where
L=n+1n+2...2n—m+1]
Take a non-negative sequeniegn) : n € Z} supported in/;. Observe that

Ham)| =3 ) = 3

TLEI1 nely

So, form € I, we get
1 1
Halm) = 5 (17 0l )xu(m) e b

Now, using boundedness é&f on (2 (Z) i.e,

Z|Ha )|[Pw(m <CZ|a )[Pw(m

MmEZ meZ

AIMAA Vol. 21 (2024), No. 2, Art. 3, 24 pp. AIMAA
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Since support ofa(n) : n € Z} is in I, we have,

o) (50 E(Gr o).

nel melz meZ nel
< ZXI ) Ha(m)[Pw(m <C’Z]a )[Pw(m C’Z]a )[Pw(m
meZ meZ mely

It follows that

(A7) (ﬁZa(n))p(Zwm) <C S [a(m)Puim

nely mela mel

Takea(n) =1 Vn € Zin and by interchangingd; and/,, we have the following two
inequalities.

(A8) Zw(m)SC’Zwm
melz mely
(A9) > wim) <C 7w
mel; melz

Likewise, takeu(n) = w(n)p%ll Vn € Zin to get

(Zw(m))(LZwmpﬁ) <C’Z le
mels 1] mel mel

So,

1 1\ P!
Z w(m)) (— Z w(m)z’l) <C
(mefz ‘[1‘ mely
Therefore,

(1 7o) (g & o)

mel; mel
C 1 SAC
< (— Z w(m)) (— Z w(m)z’l) <C
|Il| mels |Il| mely
It follows thatw € A,(Z). 1

9. MAXIMAL SINGULAR OPERATOR ON VARIABLE SEQUENCE SPACES (*()(Z)

In this section, we prove weak type, and strong type inequalities for the maximal singular
operator on’?) (7Z) spaces] < p < oo, using Rubio de Francia extrapolation method given in

[7].
Lemma 9.1. Givenp(-) such that)/ is bounded or?")(Z), for eachh € (*()(Z), define

Rh(m) i M*h(m)
k=0 2kHMH];3(£p(~)

()
Where fork > 1 M’“ M o...M whereo denotes composition operator actikgimes and

(a) For allm € Z, |h(m)| < Rh(m)
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(b) Ris bounded of¥")(Z) and|| Rh|| i) < 2|l
() Rh € Ay and[Rh]a, < 2[[M| g (z),, Where[|4, denotes constant of; weight.

Proof of (a) is obvious.The proof of (b) and (c) are same as in the cadRe Bbr the corre-
sponding results oR, refer [7].

Lemma 9.2. Given, a sequena@= {a(n)}, andp(-) € S then for alls, .- < s < o0,

lal*ll,cy = NallZ

This follows at once from the definition ¢f)(Z) norm. For details refef[7].

Theorem 9.3. Given a sequencgu(n) : n € Z}, suppose(-) € S such thatp > 1. LetT}
be a maximal singular operator.
Then,

(s

aHep(-)(Z) <C HaHép(~)(z)

If p_ =1, then for allt > 0

< ¢ ||aHep<»>(Z)

Htx{n T3>} | gy

Proof. We will prove strong type inequality whqn > 1.
Takepy such thatl < py < p_ < py < oco. Here we use&Rh € A;(Z) and henceRh €
A,(Z),1 < p < oo and the boundedness Bf on (7, (Z).

Therefore by Lemm@[2]
” (T5a) ’ep()(z = H(Tga)”OHZ%(Z)
- Sup > ITialk) k)|
el kEZ

hel 707 @A gy =1
« @)

< S e RAGH)
Q !
hed 70 (z), ] o0y =) keZ
¢ P0 ) (z)
< sup Z\a )[P° Rh(k)
N/
nee 53 ), ooy =t
70 @)
<C sup Hal™ 1 o2z I1BR] ooy
p(),’ %0 (2)
het 70 @) JInll Ly =1
¢ P07 (z)
=C sup Hallze) iz BRI oy
20y %0 (2)
het' 70 @Il L =1
50 (2
< QCHaHm) (z)

Now we are going to prove type weak type (1,1) inequality stated in the theorem.
Let A= {m e Z:|Tja(m)| > t}. Then,

t «
H( X{mEZ:|T¢a(m)\>t}) ()
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< , sup Z |tX{meZ|T$a(m)\>t}(k>||h(k)|
hetrO @) |Ill iy =1 kez

= sup Z txa(k)Rh(k)
her O @)1l .y ) =1 ke

= sup tRh(A)
hg@p<.>/(z),||h\|[p(_),(Z):l

C

= sup t— ) la(k)|Rh(k)
hetr ) @)1kl oy =1 kez

< sup C > _la(k)|Rh(k)
hetr O @) 1Al .1, ): kez

=C |a(k)|Rh(k

kEZ
<C ||a||gp<»>(z) ||Rh||ep<~>’(2)
< 2C[all,

10. MAXIMAL ERGODIC SINGULAR OPERATOR

Let (X, B, 1) be a probability space arid an invertible measure preserving transformation
on X. We define the truncated maximal ergodic singular operator and maximal ergodic singular
operator as follows:

Tng = sup |Zf k)|

1<n<N

) =sup| Y f(UFz)p(k)]

" k=—n

Now, we prove the strong type, weak type inequalities for the maximal ergodic singular
operator on weighted? (X, 3, ;1) spaces.

Theorem 10.1.Let (X, B, 1) be a probability space antl’ an invertible measure preserving
transformation onX. If w is an ergodicA, weight,1 < p < oo, then the maximal ergodic
singular operator

satisfies

(1)
|71

L2.(X) <G HfHLfU(X) if 1<p<oo

whereC,, is independent aN.
(2) If w € Ay, then

C
w(z)dp(x — x)|w(x)du(x
/{xem Ly P8 £ 5 [ Fulito)

where(; is independent oiv.
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Proof. Fix N > 0 and take a functiorf € L? (X).

It is enough to prove thai”;w satisfies (1) and (2) with constants not depending\ori_et
A > 0 and put

lﬁz{xeX:ﬁhJ@N>A}
For x lying outside a: null set and a positive integér, define sequences

Cmm:{fw%@ if [k|<L+N

0 otherwise

wa (k) = w(U *z) if |k|<L+N
* )0 otherwise

Therefore,

wifo e X s Tt @) > 0h) = [ wle)dnte) = 55 [ Vul@duta)

< 5 | Fnd@Punte)

2L+1 S~
1 1 L
= N 2L + 1/ Z |75 Nz (m) [Py (m)dp(x)
m=—L
1 1 s X
= N2L+1 /s Z T v az(m)[Pw, (m)du(x)
1 1 i
= UMN2L 41 D lap(m) Py (m)dp(z)
1 1 (L+N)
RSy 1/ > Jae(m)Pw,(m)du(z)
X m=—(L+N)
1 1 (L+N)
B F2L+1/ > U Pw(U ") dp(x)
X in=—(L+N)
C 1 (L+N)
S NaL+1 > /|f(U_mw)lpw(U ™) dp(z)
m=—(L+N) VX
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(L+N)

c 1

—— P
e _ZL+N/\f )P () du(z)
c 1

<_ p
o 2L N) + D
C

< 71

by choosingL appropriately. Conclusiofil) of the theorem now follows by using the
Marcinkiewicz interpolation theoreng.

Now, we prove the converse of the above theorem v@g{a with singular kernel as

1o
¢<k>={g 7o

The singular operator associated with this particular singular kernel is known as the maximal
ergodic Hilbert transform and is denoted By. Here, we further assume that the associated
measure preserving transformation is ergodic.

Definition 10.1 (Ergodic Rectangle)Let £ be a subset o with positive measure and let
K > 1besuchthal’'ENU'E = ¢ if i # jand—K < i,j < K. Then the set
R=UE [ U'Fis called ergodic rectangle of lengi’ + 1 with baseF.

For the proof of following lemma, refer[4].

Lemma 10.2.Let (X, B, ) be a probability spacd/ an ergodic invertible measure preserving
transformation onX and K a positive integer.
(1) If F C X is a set of positive measure then there exists a subsét F' of positive
measure such thatf is base of an ergodic rectangle of leng¢tR” + 1.
(2) There exists a countable fami{y,} of bases of ergodic rectangles of lengtR + 1

Theorem 10.3.Let (X, B, 1) be a probability space, U an invertible ergodic measure preserv-
ing transformation onX. If H* f is bounded ori?, (X ) for somel < p < oo, thenw € Ap(X).

Proof. For the given functions on X, for a.ex € X define the sequenae, (k) = w(U *z).
We shall prove that

esssupnex ([ Sl ) (1 St ) <

kel kel

This will prove thatw € A,(X). In order to prove this, we shall prove that the maximal Hilbert
transform/A* is bounded orf?, (Z) and

[H*alle 7y < Cpllalle

where(), is independent af. In order to prove the above inequality, take a sequence
{a(n) :n e Z} € % (Z).

Let R = U?._,,U*F be an ergodic rectangle of lengtli + 1 with baseE. Let F' be any
measurable subset @. ThenF is also base of an ergodic rectangle of length+ 1. Let
R =, ,U*F. Define functionf andw as follows.
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) F — < k<
f(U_kx) _ a(k) if ‘x € and— J <k<J
0 otherwise

Then as shown in [3]
1125 ey = Nl g,z 1(F)
It is easy to observe thatferJ < m < J andz € F
Hyf(U™x) = Hja(m)
Now,

Cliflge = [ 138 Putadn)

R,'Hj () Pu)dp()
J

=2 /U kp\ﬁjﬂx)!pw(x)du(x)

k=—J
_y / 5 F(U ) Pw(U ) dpu(x)
k=—J

Z / (S a(k)Pw, (k) du (o)
/F S | 50(00) P (B)du(z)

k=—J

So from the above estimates
J
1 *
5 | S (P, (B)du(a) < C lal,
k=—J

SinceF was an arbitrary subset &f, we get

Z [ Ha(k)[Pw.(k) < Cllallg )

k=—J

a.ex € E. SinceU is ergodic, X can be written as countable union of bases of ergodic
rectangles of lengthhJ + 1. Therefore for a.e € X,

Z |Hja(k)[Pw, (k) < C ||aHzﬁ,I(Z)

k=—J
SinceC is independent of, a.ex € X,

Y H a(k)[Pw, (k) < Cllallg,

keZ

It follows that the sequencéw,(n) : n € Z} as defined byw, (k) = w(U*z) belongs to
A,(Z) a.ex € X andA, weight constant fotv, is independent of so thatw € A,(X). §
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Remark 10.1. Using the boundedness of maximal ergodic singular operator and Rubio de
Francia method, we can prove that the maximal ergodic singular operator is bounded on vari-
able LP")(X, B, ;1) spaces. But Rubio de Francia method assumes maximal ergodic operator is
bounded on the variable”") (X, B, i1) spaces. With this assumption we can prove the bound-
edness of maximal ergodic singular operator to varidhle (X, B, 1) spaces.
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