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1. I NTRODUCTION

Singular integral operators on the weightedLp
w(R) spaces are studied in [10]. In [10], the

authors have proved that for1 < p < ∞ and if the non-negative functionw(x) satisfiesAp

condition then the singular integral operators are bounded onLp
w(R). For p = 1, it has been

proved that ifw(x) satisfiesA1 condition, then the singular integral operators satisfy weak type
(1,1) inequality with respect to the weighted measure. The detailed proof of the same can also
be seen in [6]. In [8], the authors have studied the singular operators on sequence spaces`p(Z)
and their corresponding ergodic versions.
In this paper, we prove strong type, weak type inequalities of singular operators on weighted
`p
w(Z) spaces. Using these results we prove strong type, weak type inequalities of maximal

singular operator of Calderón-Zygmund type on variable sequence spaces`p(·)(Z).
These results are achieved using Calderón-Zygmund decomposition for sequences, properties of
Ap weights, reverse Ḧolder inequality and Rubio de Francia extrapolation. We also prove strong
type, weak type inequalities of maximal ergodic singular operators onLp

w(X,B, µ) spaces,
where(X,B, µ) is a probability space equipped with an invertible measure preserving transfor-
mationU . We use Calderón-Coifman-Weiss transference principle to achieve these results.

In [4] the characterization of those positive functionsw (known as ergodicAp weights) for
which the maximal ergodic singular operator associated with an invertible measure preserving
transformation on a probability space is bounded onLp

w(X,B, µ) is given. In their proof the
ergodic analogue of Calderón-Zygmund decomposition and the concept of ergodic rectangles
are used. Using the same concept of ergodic rectangles, we prove that for1 < p < ∞, if
the maximal ergodic Hilbert transform is bounded onLp

w(X,B, µ), thenw ∈ Ap(X). In [4],
the authors have given direct proof of this result without using the corresponding results on
weighted sequence spaces. In this paper we use the corresponding result on`p

w(Z) to prove this
result.

2. DEFINITIONS AND NOTATION

Throughout this thesis,Z denotes the set of all integers andZ+ denotes the set of all positive
integers. For a given intervalI in Z (we always mean finite interval of integers) ,|I| always
denotes the cardinality ofI. For each positive integer N, consider collection of disjoint intervals
of cardinality2N ,

{IN,j}j∈Z =
{
[(j − 1)2N + 1, . . . , j2N ]

}
j∈Z .

The set of intervals which are of the formIN,j whereN ∈ Z+ andj ∈ Z are
called dyadic intervals. For fixedN , IN,j are disjoint.
Given a dyadic intervalI =

{
[(j − 1)2N + 1, . . . , j2N ]

}
j∈Z and a positive integerm, we

define

2LI = [(j − 2)2N + 1, . . . , j2N ]

4LI = [(j − 4)2N + 1, . . . , j2N ]

2RI = [(j − 1)2N + 1, . . . , (j + 1)2N ]

4RI = [(j − 1)2N + 1, . . . , (j + 3)2N ]

3I = 2LI ∪ 2RI

5I = 4LI ∪ 4RI

Fork = 2, 3, 4, . . . andK ∈ Z+, let I(0, 2kK) denotes the interval

[−2k−1K,−2k−1K + 1, . . . ,−1, 0, 1, 2, . . . , 2k−1K − 1, 2k−1K].
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MAXIMAL SINGULAR OPERATORSON VARIABLE EXPONENT SEQUENCESPACES 3

For a given sequence{a(n) : n ∈ Z} and an intervalIj, a(Ij) =
∑

k∈Ij
a(k). For a se-

quence{p(n) : n ∈ Z, p(n) ≥ 1}, definep− = inf {p(n) : n ∈ Z} , p+ = sup {p(n) : n ∈ Z}.
Throughout this paper, we assumep+ < ∞ and1 ≤ p− ≤ p(n) < p+ < ∞, n ∈ Z. We denote
set of all such sequences{p(n) : n ∈ Z} by S.

Maximal Operators. Let {a(n) : n ∈ Z} be a sequence. We define the following three types
of Hardy-Littlewood maximal operators as follows:

Definition 2.1. If Ir is the interval{−r,−r + 1, . . . , 0, 1, 2, . . . , r − 1, r}, define centered Hardy-
Littlewood maximal operator

M ′a(m) = sup
r>0

1

(2r + 1)

∑
n∈Ir

|a(m− n)|

We define Hardy-Littlewood maximal operator as follows

Ma(m) = sup
m∈I

1

|I|
∑
n∈I

|a(n)|

where the supremum is taken over all intervals containingm.

Definition 2.2. We define dyadic Hardy-Littlewood maximal operator as follows:

Mda(m) = sup
m∈I

1

|I|
∑
k∈I

|a(k)|

where supremum is taken over all dyadic intervals containingm.

Given a sequence{a(n) : n ∈ Z} and an intervalI, let aI denote average of{a(n) : n ∈ Z}
on I. Let,aI = 1

|I|
∑

m∈I a(m). Define the sharp maximal operatorM# as follows

M#a(m) = sup
m∈I

1

|I|
∑
n∈I

|a(n)− aI |

where the supremum is taken over all intervalsI containingm. We say that sequence
{a(n) : n ∈ Z} has bounded mean oscillation if the sequenceM#a is bounded. The space of
sequences with this property is denoted by BMO(Z).

We define a norm in BMO(Z) by ‖a‖? =
∥∥M#a

∥∥
∞. The space BMO(Z) is studied in [9].

Norm in Variable Sequence Spaces.

Definition 2.3. Given a bounded sequence{p(n) : n ∈ Z} which takes values in[1,∞), define
`p(·)(Z) to be set of all sequences{a(n) : n ∈ Z} such that for someλ > 0,∑

k∈Z

(
|a(k)|

λ
)p(k) < ∞.

We define modular functional for variable sequences spaces associated withp(·) as

ρp(·)(a) =
∑
k∈Z

|a(k)|p(k)

Further for a given sequence{a(k) : k ∈ Z} in `p(·)(Z), we define

‖a‖p(·) = inf
{

λ > 0 : ρp(·)(
a

λ
) ≤ 1

}
‖a‖`p(·)(Z) is a norm iǹ p(·)(Z) [7].
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Weights.

Definition 2.4. For a fixedp, 1 < p < ∞, we say that a non-negative sequence{w(n) : n ∈ Z}
belongs to classAp if there is a constantC such that, for all intervalsI in Z, we have(

1

|I|
∑
k∈I

w(k)

)(
1

|I|
∑
k∈I

w(k)−
1

p−1

)p−1

≤ C.

Infimum of all such constantsC is calledAp constant.
We say that{w(m) : m ∈ Z} belongs to classA1 if there a constant C such that, for all intervals
I in Z,

1

|I|
∑
k∈I

w(k) ≤ Cw(m)

for all m ∈ I. Infimum of all such constantsC is calledA1 constant.
Let 1 ≤ p < ∞ and{w(n) : n ∈ Z} ∈ Ap(Z). We say that a sequence{a(n) : n ∈ Z} is in
`p
w(Z) if ∑

n∈Z

|a(n)|pw(n) < ∞.

We define norm iǹp
w(Z) by

‖a‖`p
w(Z) =

(∑
k∈Z

|a(k)|pw(k)

) 1
p

.

For a subsetA of Z, w(A) denotes
∑

k∈A w(k).
For a given sequence{a(n) : n ∈ Z} ∈ `p

w(Z), the weighted weak type (p,p) inequality for a
non-negative weight sequence{w(n) : n ∈ Z} is as follows:

w({m ∈ Z : Ma(m) > λ}) ≤ C

λp

∑
m∈Z

|a(m)|pw(m)

Definition 2.5. Let (X, B, µ) be a probability space andU an invertible measure preserving
transformation on X. Suppose1 < p < ∞ andw : X → R be a non-negative integrable func-
tion. The functionw is said to satisfy ergodicAp condition,

esssupx∈X sup
N≥1

(
1

2N + 1

N∑
k=−N

w(Ukx)

)(
1

2N + 1

N∑
k=−N

w(Ukx)
−1
p−1

)p−1

≤ C.

The functionw is said to satisfy ergodicA1 condition,

esssupx∈X sup
N≥1

1

2N + 1

N∑
k=−N

w(Ukx) ≤ Cw(Umx)

for m = −N,−N + 1, . . . , N.
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3. RELATIONS BETWEEN M AXIMAL OPERATORS

In the following lemmas, we give relations between maximal operators. For the proofs of
the following lemmas, refer [1]. These relations will be used when we prove the weighted
inequalities for maximal ergodic operators.

Lemma 3.1. Given a sequence{a(m) : m ∈ Z}, the following relation holds:

M ′a(m) ≤ Ma(m) ≤ 3M ′a(m)

Lemma 3.2. If a = {a(k) : k ∈ Z} is a non-negative sequence witha ∈ `1, then

|{m ∈ Z : M ′a(m) > 4λ}| ≤ 3|{m ∈ Z : Mda(m) > λ}|
In the following lemma, we see that in the norm of BMO(Z) space, we can replace the average

aI of {a(n) : n ∈ Z} by a constantb. The proof is similar to the proof in continuous version
[6].The second inequality follows from||a| − |b|| ≤ |a| − |b|.
Lemma 3.3. Consider a non-negative sequencea = {a(k) : k ∈ Z} in BMO(Z). Then the
following are valid.

1.
1

2
‖a‖? ≤ sup

m∈I
inf
b∈Z

1

|I|
|a(m)− b| ≤ ‖a‖?

2. M#(|a|)(i) ≤ M#a(i), i ∈ Z

4. WEIGHTED CLASSICAL RESULTS FOR M AXIMAL OPERATORS

Let 1 ≤ p < ∞. In this section, for a given sequence{a(n) : n ∈ Z} in `p
w(Z), we prove

weighted weak type (p,p) inequality with respect to the weight sequence{w(n) : n ∈ Z} ∈ Ap

which is stated in Theorem[4.2].
The proof of the following theorem is similar to the proof of corresponding result in contin-

uous version [6]. We state here without proof.

Theorem 4.1.Let{a(n) : n ∈ Z} be a non-negative sequence and
{w(n) : n ∈ Z} ∈ Ap, 1 ≤ p < ∞ be a non-negative weight sequence. LetI be an interval
such thata(m) > 0 for somem ∈ I. Then,

(1)

(4.1[A]) w(I)

(
a(I)

|I|

)p

≤ C
∑
m∈I

|a(m)|pw(m)

(2) Given a finite setS ⊂ I ,

(4.1[B]) w(I)

(
|S|
|I|

)p

≤ Cw(S)

4.1[A] follows from Hölder’s inequality and theAp condition.4.1[B] follows by takinga =
χS in 4.1[A].

Theorem 4.2.Assume{w(n) : n ∈ Z} ∈ Ap. Given a non-negative sequence{a(n) : n ∈ Z} ∈
`p
w(Z), for 1 ≤ p < ∞, the weighted weak(p,p) inequality holds:

w({m ∈ Z : Ma(m) > λ}) ≤ C

λp

∑
m∈Z

|a(m)|pw(m)

For the proof of Theorem[4.2], refer [3].

Theorem 4.3. If w ∈ Ap, 1 < p < ∞, thenM is bounded oǹp
w(Z).

The proof follows from Theorem[4.2] and Marcinkiewicz interpolation theorem.
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5. PROPERTIES OF Ap WEIGHTS

We state the properties ofAp weights for sequences without proofs. The proofs are similar to
the proofs of corresponding results in the continuous version.

Property 1. Ap ⊂ Aq, 1 ≤ p < q.

Property 2. w ∈ Ap if and only ifw1−p′ ∈ Ap′

Let w(m) ∈ Ap, m ∈ I. Proof follows by notingAp′ condition forw1−p′. For the converse
Ap condition can be verified.

Property 3. w0, w1 ∈ A1 =⇒ w0w1
1−p ∈ Ap.

Here, we state reverse Ḧolder inequality for weighted sequences. For continuous version of
these proofs, refer to [6].

Property 4. [Reverse Ḧolder Inequality] Letw ∈ Ap, 1 ≤ p < ∞. Then , there exists constants
c andε > 0, depending only onp and theAp constants ofw, such that for any intervalI,(

1

|I|
∑
m∈I

w(m)1+ε

) 1
1+ε

≤ C

|I|
∑
m∈I

w(m)

Property 5. Ap = ∪q<pAq, 1 < p < ∞.

Property 6. If w ∈ Ap, 1 ≤ p < ∞, then there existsε > 0 such thatw1+ε ∈ Ap

Property 7. If w ∈ Ap, 1 ≤ p < ∞, then there existsδ > 0 such that given a interval I and
S ⊂ I,

w(S)

w(I)
≤ C

(
|S|
|I|

)δ

6. CALDERÓN -ZYGMUND DECOMPOSTION FOR SEQUENCES

For the proof of Theorem[6.1], we refer [2].

Theorem 6.1. Let 0 ≤ α < 1. Take a real numberp such that1 ≤ p < 1
α

(If α = 0 then
1 ≤ p < ∞). Let{a(n) : n ∈ Z} ∈ `p(Z). Then

there exists a sequence of disjoint intervals
{
I t
j

}
such that

(i) t <
1

|I t
j |1−α

∑
k∈It

j

|a(k)| ≤ 2t,∀j ∈ Z.

(ii) ∀n 6∈ ∪jI
t
j , |a(n| ≤ t.

(iii) If t1 > t2, then eachI t1
j is subinterval of someI t2

m ∀j,m∈ Z.

7. WEIGHTED GOOD L AMBDA ESTIMATE

Lemma 7.1. Let {a(n) : n ∈ Z} be a non-negative sequence in`p
w(Z). Letw ∈ Ap, 1 ≤ p0 ≤

p < ∞. If {a(n) : n ∈ Z} is such thatMda ∈ `p0
w (Z), then∑

m∈Z

|Mda(m)|pw(m) ≤ C
∑
m∈Z

|M#a(m)|pw(m)

whereMd is the dyadic maximal operator andM# is the sharp maximal operator, whenever,
the left hand side is finite.
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Proof. In order to prove Lemma[7.1], first we prove the good-λ inequality, which is as follows:
For someδ > 0,

w(
{
m ∈ Z : Mda(m) > 2λ, M#a(m) ≤ γλ

}
) ≤ Cγδw({x ∈ Z : Mda(m) > λ})

Since{m ∈ Z : Mda(m) > λ} can be decomposed into disjoint dyadic cubes, it is enough to
show that for each such intervalI,

w(
{
m ∈ I : Mda(m) > 2λ, M#a(m) ≤ γλ

}
) ≤ Cγδw(I)

The above inequality can be proved using the same argument as in Lemma[4.6] from [1] and
property[7] . Now we prove Lemma[7.1]
Consider, for any positive integerN

IN =

∫ N

0

pλp−1|w {n ∈ Z : Mda(k) > λ}|dλ

Sincea ∈ `p0 impliesMda ∈ `p0, IN is finite,

IN =

∫ N

0

pλp−1|w {n ∈ Z : Mda(k) > λ}|dλ

= 2p

∫ N
2

0

pλp−1|w {n ∈ Z : Mda(k) > 2λ}|dλ =

≤ 2p

∫ N
2

0

pλp−1|w
{
n ∈ Z : Mda(k) > 2λ, M#a(k) ≤ γλ

}
|dλ+

2p

∫ N
2

0

pλp−1|w
{
n ∈ Z : Mda(k) > 2λ, M#a(k) > γλ

}
|dλ

≤ 2p

∫ N
2

0

pλp−1Cγδw {n ∈ Z : Mda(k) > λ}dλ+

2p

∫ N
2

0

pλp−1|w
{
n ∈ Z : M#a(k) > γλ

}
|dλ

≤ 2pCγδ

∫ N

0

pλp−1w {n ∈ Z : Mda(k) > λ}dλ +

2p

∫ N
2

0

pλp−1|w
{
n ∈ Z : M#a(k) > γλ

}
|dλ

It follows that

(1− 2pCγδ)IN ≤ 2p

∫ N
2

0

pλp−1|w
{
n ∈ Z : M#a(k) > γλ

}
|dλ

Now take(1− 2pCγδ) = 1
2
. Then,

1

2
IN ≤ 2p

∫ N
2

0

pλp−1|w
{
n ∈ Z : M#a(k) > γλ

}
|dλ

≤ 2p

γp

∫ N
2

0

pλp−1|w
{
n ∈ Z : M#a(k) > λ

}
|dλ

Now, takeN →∞, we get∑
m∈Z

Mda(m)pw(m) ≤ C
∑
m∈Z

M#a(m)
p
w(m)
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8. CALDERÓN -ZYGMUND SINGULAR OPERATOR

In this section, we study Calderón-Zygmund singular operator on weighted`
p(·)
w (Z) spaces.

This operator oǹp(Z) spaces is studied in [8].

Definition 8.1. A sequence{φ(n)} is said to be a singular kernel if there exist constantsC1 and
C2 > 0 such that

If φ = {φ(n)} is a singular kernel and{a(n) : n ∈ Z} ∈ `p(Z), 1 ≤ p < ∞, define
(S1):

∑N
n=−N φ(n) converges asN →∞.

(S2): φ(0) = 0 and|φ(n)| ≤ C1

|n| , n 6= 0

(S3): |φ(n + 1)− φ(n)| ≤ C2

n2 , n 6= 0.

Tφa(n) = (φ ? a)(n) =
∑
k∈Z

φ(n− k)a(k)

Since S2 implies thatφ ∈ `r for all 1 < r ≤ ∞, the above convolution is defined.
The operatorTφ defined above is called discrete singular operator.
The maximal singular operator corresponding to this singular operator is defined as

T ?
φa(n) = sup

N
|

N∑
k=−N

φ(k)a(n− k)|

If φ is a singular kernel and we letK be the linear extension ofφ to R, thenK is locally
integrable and satisfies:

(K1) ∫
ε<|x|< 1

ε

K(x) dx converges asε → 0

(K2)

|K(x)| ≤ C

|x|
(K3)

|K(x)−K(x− y)| ≤ C|y|
x2

for|x| > 2|y|

The functionK(x) which satisfies(K1), (K2), (K3) is known as Calderón-Zygmund singu-
lar kernel onR. The principal value integral

TKf(x) = lim
ε>0

∫
|x−y|>ε

K(x− y)f(y)dy

and the maximal singular integral operator

T ?
Kf(x) = sup

ε>0
|
∫
|x−y|>ε

K(x− y)f(y)dy|

satisfy strong type (p,p) and weak type (1,1) inequalities [8].
The proof of following theorem can be found in [8]. The following theorem states that the

discrete maximal singular operator and discrete singular operator are bounded on`p(Z), 1 <
p < ∞ and they satisfy weak(1,1) inequality. For proof, we refer to [8].
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Theorem 8.1([8]). Let φ = {φ(n)} be a singular kernel. Then there exists constantCp > 0
such that

(1) If 1 < p < ∞, ‖Tφa‖p ≤ Cp ‖a‖p ,∀a ∈ `p(Z).

(2) |{n : |Tφa(n)| > λ}| ≤ C1

λ
‖a‖1 ,∀a ∈ `1(Z) andλ > 0.

Theorem 8.2([8]). Let φ be a singular kernel and1 ≤ p < ∞. Then there exists a constant
Cp > 0 such that (i) ∥∥T ?

φa
∥∥

p
≤ Cp ‖a‖p ∀a ∈ `p(Z), if 1 < p < ∞

(ii)

|
{
j ∈ Z : T ?

φa(j) > λ
}
| ≤ C1

λ
‖a‖1 ∀λ > 0 and a ∈ `1(Z)

Now, we prove the strong type and weak type inequalities for the discrete singular operator
Tφ on `

p(·)
w (Z) spaces. For this we require the following lemmas.

Lemma 8.3. Let φ be a singular kernel. Given an interval I which contains integers m,n, then
for r /∈ 5I,

|φ(m− r)− φ(n− r)| ≤ C|I|
|n− r|2

Proof. If m > n, then

|φ(n− r)− φ(m− r)|
≤ |φ(n− r)− φ(n− r + 1) + φ(n− r + 1)− φ(n− r + 2) · · ·+
+ φ(n− r + m− n− 1)− φ(n− r + m− n)|
≤ |φ(n− r)− φ(n− r + 1)|+ |φ(n− r + 1)− φ(n− r + 2)| · · ·+
+ |φ(n− r + m− n− 1)− φ(n− r + m− n)|

≤ C

|n− r|2
+

C

|n− r + 1|2
+ · · ·+ C

|m− r − 1|2

≤ C
|n−m|
|n− r|2

≤ C
|I|

|n− r|2

By the same argument, ifn > m, then

|φ(m− r)− φ(n− r)| ≤ C|I|
|m− r|2

Also
|m− r| = |(m− n) + (n− r)| ≥ |n− r| − |m− n| ≥ |n− r| − |I|

Sincer ∈ Z\5I, we have|n−r| ≥ 2|I|. Hence forr ∈ Z\5I. |m−r| ≥ |n−r|− |n−r|
2

≥ |n−r|
2

i.e 1
|m−r| ≤

2
|n−r| . Therefore, in this case also,|φ(m− r)− φ(n− r)| ≤ C|I|

(n−r)2
.

Lemma 8.4. If Tφ is a singular operator, then for eachs > 1, there exists a constantCs > 0
such that

M#(Tφa(m)) ≤ Cs

[
M(|a|s)(m)

] 1
s

for each integerm ∈ Z.
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Proof. Fix s > 1. Given an integerm and an intervalI which containsm, by Lemma[3.3] , it
is enough to find a constanth such that

1

|I|
∑
n∈I

|Tφa(n)− h| ≤ CM(|a|s)(m)
1
s

Decomposea = a1 + a2, wherea1 = aχ5I , a2 = a− a1. Now leth = Tφa(m), then

1

|I|
∑
n∈I

|Tφa(n)− h| ≤ 1

|I|
∑
n∈I

|Tφa1(n)|+ 1

|I|
∑
n∈I

|Tφa2(n)− Tφa2(m)|

Sinces > 1, Tφ is bounded oǹs(Z). Therefore,

1

|I|
∑
n∈I

|Tφa1(n)| ≤
(

1

|I|
∑
n∈I

|Tφa1(n)|s
) 1

s

≤ C

(
1

|I|
∑
n∈Z

|a1(n)|s
) 1

s

≤ C

(
5

|5I|
∑
n∈5I

|a(n)|s
) 1

s

≤ 5
1
s C

[
M(|a|s)(m)

] 1
s

To deal witha2, we require the estimate from Lemma[8.3].
Now, we estimate the second term as follows.

1

|I|
∑
n∈I

|Tφa2(n)− Tφa2(m)|

≤ 1

|I|
∑
n∈I

|
∑

r∈Z\5I

(
φ(n− r)− φ(m− r)

)
a(r)|

≤ 1

|I|
∑
n∈I

∑
r∈Z\5I

|φ(n− r)− φ(m− r)||a(r)|

≤ C
1

|I|
∑
n∈I

∑
r∈Z\5I

|I|
|n− r|2

|a(r)|

≤ C
1

|I|
∑
n∈I

∞∑
k=1

∑
2k|I|<|n−r|≤2k+1|I|

|I|
|n− r|2

|a(r)|

≤ C
1

|I|
∑
n∈I

∞∑
k=1

|I|
22k|I|2

∑
|n−r|≤2k+1|I|

|a(r)|

≤ C
1

|I|
∑
n∈I

∞∑
k=1

1

22k|I|
∑

|n−r|≤2k+1|I|

|a(r)|

≤ C
1

|I|
∑
n∈I

∞∑
k=1

2

2k2k+1|I|
∑

|n−r|≤2k+1|I|

|a(r)|
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≤ 2CMa(m)
1

|I|
∑
n∈I

∞∑
k=1

1

2k

≤ CMa(m)
1

|I|
∑
n∈I

1

= CMa(m) ≤ CM(|a|s)(m)
1
s

The last inequality follows by using Ḧolder’s inequality.

Theorem 8.5. If Tφ is a singular operator, then for anyw ∈ Ap, 1 < p < ∞, Tφ is bounded on
`p
w(Z).

Proof. Let w ∈ Ap. SinceAp = ∪q<pAq, we can finds such thatp > s > 1 and w ∈
A p

s
. Consider a sequence{a(n) : n ∈ Z} such thata(n) = 0 outside the interval[−R,−R +

1, . . . , R].
Therefore,∑

m∈Z

|Tφa(m)|pw(m)

≤
∑
m∈Z

[
Md

[
Tφa(m)

]]p

w(m) Lemma[7.1]

≤ C
∑
m∈Z

[
M#

[
Tφa(m)

]]p

w(m) Theorem[8.4]

≤ C
∑
m∈Z

[
M(|a(m)|s)

] p
s

w(m)

≤ C
∑
m∈Z

|a(m)|pw(m)

In the second step, we use [Lemma[7.1](Weighted Good -Lambda estimate) provided∑
m∈Z

[
Md(Tφa(m))

]p

w(m)

is finite. To show this it is enough to show thatTφa ∈ `p
w(Z).

We have to prove ∑
m∈Z

(
Tφa(m)

)p

w(m) < ∞.

To show that this is finite, we split this sum as∑
m≤2R

(
Tφa(m)

)p

w(m)

and ∑
m>2R

(
Tφa(m)

)p

w(m).

The former sum ∑
m≤2R

(
Tφa(m)

)p

w(m) < ∞
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is trivial as shown below.

For|m| ≤ 2R,

(A4) |Tφa(m)| ≤ C
∑

|n|≤2R,m6=n

|a(n)| C

|m− n|
≤ C ‖a‖∞ 4R < ∞.

For |m| > 2R,

|Tφa(m)| = |
∑
n∈Z

a(n)φ(m− n)| ≤ C
∑

|n|<R,m6=n

|a(n)|
|m− n|

≤ C
‖a‖∞
|m|

Further,I(0, 2R) ⊂ I(0, 2k+1R) andw(I(0, 2R)) is a constant independent ofm. Also, since
w ∈ Ap, by Lemma[6], there existsq < p such thatw ∈ Aq. Then by Lemma[4.1]

w(I(0, 2k+1R)) ≤ Cw(I(0, 2R))

(
|2k+1R|
|2R|

)q

≤ Cw(I(0, 2R))(2k)q ≤ C(w, R)2kq

So, ∑
|m|>2R

|Tφa(m)|pw(m) ≤ C
∞∑

k=1

∑
2kR<|m|≤2k+1R

w(m)

|m|p

≤ C
∞∑

k=1

(2kR)−p
∑

|m|≤2k+1R

w(m)

≤ C
∞∑

k=1

(2kR)−pC(w, R)2kq

= C(w, R)
∞∑

k=1

2k(q−p) = C(w,R)
∞∑

k=1

(
1

2p−q

)k

< ∞

Combining both results,Tφa ∈ `p
w(Z).

Theorem 8.6.LetTφ be a Calderón-Zygmund operator and letw ∈ A1. Then for any
{a(n) : n ∈ Z} ∈ `1

w(Z),

w({m ∈ Z : |Tφa(m)| > λ}) ≤ C

λ

∑
m∈Z

|a(m)|w(m)

Proof. Perform Calderón-Zygmund decomposition (Theorem[6.1]) of sequence{a(n) : n ∈ Z}
at heightλ and obtain disjoint dyadic intervals{Ij} which satisfy

λ ≤ 1

|Ij|
∑
m∈Ij

|a(m)| ≤ 2λ

Decomposea(m) = g(m) + b(m), m ∈ Z

g(m) =

{
a(m) if m /∈ Ω
1
|Ij |

∑
k∈Ij

a(k) if m ∈ Ij
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whereΩ = ∪jIj

b(m) =
∞∑

j=1

bj(m)

where

bj(m) =

(
a(m)− 1

|Ij|
∑
k∈Ij

a(k)

)
χIj

(m)

Write

w({m ∈ Z : |Tφa(m)| > λ})

≤ w(

{
m ∈ Z : |Tφg(m)| > λ

2

}
) + w(

{
m ∈ Z : |Tb(m)| > λ

2

}
)

To estimate the first term, note thatw ∈ A1 impliesw ∈ A2.
Further sinceTφ is bounded oǹ2

w(Z), it follows that

w(

{
m ∈ Z : |Tφg(m)| > λ

2

}
)

≤ 4

λ2

∑
m∈Z

|Tφg(m)|2w(m)

≤ C

λ2

∑
m∈Z

|g(m)|2w(m)

=
C

λ2

( ∑
m∈Ωc

|g(m)|2w(m) +
∑
m∈Ω

|g(m)|2w(m)

)
Now,

∑
m∈Ωc

|g(m)|2w(m)

≤ λ
∑
m∈Ωc

|g(m)|w(m) ≤ λ
∑
m∈Ωc

|a(m)|w(m)

Notew ∈ A1 implies w(I)
|I| ≤ Cw(m) ∀m ∈ I. So onΩ,∑

m∈Ω

|g(m)|2w(m) ≤ 4λ2
∑
m∈Ω

w(m)

= 4λ
∑

j

((
1

|Ij|
∑
k∈Ij

|a(k)|
)(∑

m∈Ij

w(m)

)

= 4λ
∑

j

((
1

|Ij|
∑
k∈Ij

|a(k)|
)(

w(k)|Ij|
)

= 4λ
∑

j

((∑
k∈Ij

|a(k)|
)(

w(k)

))

≤ 4Cλ
∑

j

(∑
m∈Ij

|a(m)|w(m)

)
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≤ 4Cλ
∑
m∈Z

|a(m)|w(m)

From above estimates we get

w(

{
m ∈ Z : |Tφg(m)| > λ

2

}
) ≤ C

λ
|a(m)|w(m)

Consider,

w(

{
m ∈ Z : Tb(m) >

λ

2

}
) ≤ w(∪j3Ij) + w(

{
m ∈ Z \ ∪j3Ij : |Tb(m)| > λ

2

}
)

For the second estimate, by Lemma[4.1]

w(∪j3Ij) ≤ C
∑

j

w(Ij) ≤ C
∑

j

w(Ij)

|Ij|
|Ij|

≤ C
∑

j

w(Ij)

|Ij|
C

λ

(∑
k∈Ij

|a(k)|
)

≤ C

λ

∑
j

(∑
k∈Ij

|a(k)|w(Ij)

|Ij|

)

≤ C

λ

(∑
k∈Ij

|a(k)|w(k)

)
≤ C

λ

∑
k∈Ω

|a(k)|w(k)

≤ C

λ

∑
k∈Z

|a(k)|w(k)

Now let cj be center ofIj. Then, sincebj has zero average onIj.

w(

{
m ∈ Z \ ∪j3Ij : |Tφb(m)| > λ

2

}
)

≤ C

λ

∑
m∈Z\∪j3Ij

|Tφb(m)|w(m)

=
C

λ

∑
m∈Z\∪j3Ij

|
∑
n∈Z

φ(m− n)bj(n)|w(m)

≤ C

λ

∑
m∈Z\∪j3Ij

|
∑

j

∑
n∈Ij

φ(m− n)bj(n)|w(m)

≤ C

λ

∑
m∈Z\∪j3Ij

|
∑

j

∑
n∈Ij

[φ(m− n)− φ(cj −m)]bj(n)|w(m)

If m ∈ Z \ ∪j3Ij andn ∈ Ij then |m − n| ≥ |Ij| ∀j. So, it follows that∀j ∈ Z, from
Lemma[8.3] |φ(m− n)− φ(cj −m)| ≤ C

|Ij |
|m−n|2 .

It follows that,

w({m ∈ Z \ ∪j3Ij : |Tb(m)| > λ})
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≤ C

λ

∑
m∈Z\3Ij

∑
j

∑
n∈Ij

(
C|Ij|

|m− n|2
w(m)

)
|bj(n)|

≤ C

λ

∑
j

∑
n∈Ij

∑
m∈Z\3Ij

(
|Ij|

|m− n|2
w(m)

)
|bj(n)|

≤ C

λ

∑
j

∑
n∈Ij

∞∑
s=0

∑
2s|Ij |<|m−n|≤2s+1|Ij |

(
|Ij|

|m− n|2
w(m)

)
|bj(n)|

≤ C

λ

∑
j

∑
n∈Ij

∞∑
s=0

Ij

22s|Ij|2
∑

2s|Ij |<|m−n|≤2s+1|Ij |

w(m)|bj(n)|

≤ C

λ

∑
j

∑
n∈Ij

Mw(n)|bj(n)|

≤ C

λ

∑
j

∑
n∈Ij

w(n)|bj(n)|

≤ C

λ

∑
j

∑
n∈Ij

(
|aj(n)|+ |gj(n)|

)
χIj

(n)w(n)

≤ C

λ

∑
j

∑
n∈Ij

|aj(n)|w(n) +
C

λ

∑
j

∑
n∈Ij

|gj(n)|w(n)

≤ C

λ

∑
n∈Z

|a(n)|w(n) +
C

λ

∑
n∈Z

|g(n)|w(n)

≤ C

λ

∑
m∈Z

|a(n)|w(n)

Combining both estimates forTφg, Tφb, we get desired result.

Now, we prove the weak and strong type inequalities for the maximal singular operatorT ?
φ

operator onlpw(Z) spaces. Here, we use transference method to transfer the corresponding
results onR.

The following lemma, whose proof is obvious, is used in the proof of Theorem[8.8]

Lemma 8.7. Suppose{w(n) : n ∈ Z} is a sequence inAp(Z), 1 ≤ p < ∞. Put

w′(x) =

{
w(j) if x ∈ [j − 1

4
, j + 1

4
], j ∈ Z

0 otherwise

If w ∈ Ap(Z), thenw′ ∈ Ap(R), 1 ≤ p < ∞.
If w ∈ A1(Z), thenw′ ∈ A1(R).

Theorem 8.8. If Tφ is a singular kernel operator, then for1 < p < ∞, T ?
φ is bounded oǹp

w(Z)
if w ∈ Ap andT ?

φ is weak (1,1) with respect tow if w ∈ A1.

Proof. Let K(x) be the linear extension ofφ. Also for a given sequence{a(n) : n ∈ Z}, we
define a functionf(x) =

∑
m∈Z a(m)χIm

(x) whereIm = (m− 1
4
, m + 1

4
).

The following inequality which gives the relation between the maximal singular operator on
Z and the maximal singular integral operator onR is proved in [8].

(A5) T ?
φa(m) ≤ C(T ?

Kf(x) + Sf(x)), x ∈ Im
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where

Sf(x) =

∫
|x−y|> 1

2

|f(y)|
(x− y)2

dy

=
∞∑

k=0

∫
2k≥|x−y|>2k−1

|f(y)|
(x− y)2

dy

≤
∞∑

k=0

4

22k

∫
|x−y|≤2k

|f(y)|dy

≤ CMf(x)

Now,

‖f‖p
Lp

w′(R)

=

∫
R
|f(x)|pw′(x)dx

=
∑
m∈Z

∫
Im

|a(m)|pw(m)dx =
∑
m∈Z

1

2
|a(m)|pw(m) =

1

2
‖a‖`p

w(Z)

and

‖Sf‖Lp

w′(R)
=

(∫
R
|
∫
|x−y|> 1

2

|f(y)|
(x− y)2

dy|pw′(x)dx

) 1
p

Therefore, using Lemma[8.7]∥∥T ?
φa

∥∥
lpw(Z)

=

(∑
m∈Z

|T ?
φa(m)|pw(m)

)
≤

∑
m∈Z

2

∫
Im

|T ?
φa(m)|pw(m)dx

≤
(

2C
∑
m∈Z

∫
Im

[
T ?

k f(x) + Sf(x)

]p

w′(x)dx

) 1
p

≤
(

2C

∫
R

[
T ?

k f(x) + Sf(x)

]p

w′(x)dx

) 1
p

≤
(

2C

∫
R

[
T ?

k f(x) + Mf(x)

]p

w′(x)dx

) 1
p

≤ 2C

(
‖T ?

Kf‖Lp

w′(R)
+ ‖Mf‖Lp

w′(R)

)
≤ C ‖f‖Lp

w′(R)

= C ‖a‖`p
w(Z)

where we usedT ?
K is of strong type (p,p) onLp

w(R) andSf(x) is also of strong type (p,p) on
Lp

w(R). Refer [8]. It follows thatT ?
φ is strong type (p,p) oǹp

w(Z).
Now, we shall prove the weak type (1,1) inequality.
From [A5], we have{

m ∈ Z : T ?
φa(m) > λ

}
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⊆
{

x ∈ Im : T ?
Kf(x) >

λ

2C

}
∪

{
x ∈ Im : Sf(x) >

λ

2C

}
⊆

{
x ∈ Im : T ?

Kf(x) >
λ

2C

}
∪

{
x ∈ Im : Mf(x) >

λ

2C

}
Therefore, the weighted analogue would give for eachx ∈ Im,

|w(
{
m ∈ Z : T ?

φa(m) > λ
}
)|

≤ |w(

{
x ∈ Im : T ?

Kf(x) >
λ

2C

}
)|+ |w(

{
m ∈ Z : Mf(x) >

λ

2C

}
)|

Hence,T ?
K is of weak type (1,1) andM is also of weak type (1,1) onL1

w(Z). Refer [8]. This
givesT ?

φ is weak type (1,1) oǹ1
w(Z).

Now, we want to prove that ifT ?
φ is bounded oǹp

w(Z), 1 < p < ∞, thenw ∈ Ap(Z) when
T ?

φ is maximal Hilbert transformH? whose kernel is given by

φ(k) =

{
1
k

if k 6= 0

0 k = 0

The methodology used in our proof is given in [5]. Observe that for1 < p < ∞, if H? is
bounded oǹp

w(Z) thenH is bounded oǹp
w(Z),

Theorem 8.9. If for 1 < p < ∞ and any positive sequence{w(n) : n ∈ Z}∑
m∈Z

|Ha(m)|pw(m) ≤ C
∑
m∈Z

|a(m)|pw(m) ∀ {a(n) : n ∈ Z}

thenw satisfies the discreteAp condition which is as follows(
1

|I|
∑
m∈I

w(m)

)(
1

|I|
∑
m∈I

w(m)
−1
p−1

)p−1

≤ C

for any intervalI in Z.

Proof. Let I1 = [m, m+1, . . . n] be any interval inZ. Consider doubling intervalI1 and relabel
it as

I0 = [m, m + 1, . . . n, n + 1, n + 2, . . . 2n−m + 1]

so thatI0 = I1 ∪ I2, where

I2 = [n + 1, n + 2 . . . 2n−m + 1]

Take a non-negative sequence{a(n) : n ∈ Z} supported inI1. Observe that

|Ha(m)| = |
∑
n∈I1

a(n)

m− n
| =

∑
n∈I1

a(n)

|m− n|

So, form ∈ I2 we get

|Ha(m)| ≥ 1

2

(
1

|I1|
∑
n∈I1

a(n)

)
χI2(m) ∀n ∈ I1

Now, using boundedness ofH on `p
w(Z) i.e,∑

m∈Z

|Ha(m)|pw(m) ≤ C
∑
m∈Z

|a(m)|pw(m)
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Since support of{a(n) : n ∈ Z} is in I1, we have,(
1

|I1|
∑
n∈I1

a(n)

)p(∑
m∈I2

w(m)

)
≤

∑
m∈Z

((
1

|I1|
∑
n∈I1

a(n)

)p

χI2(m)w(m)

)
≤

∑
m∈Z

χI2(m)|Ha(m)|pw(m) ≤ C
∑
m∈Z

|a(m)|pw(m) = C
∑
m∈I1

|a(m)|pw(m)

It follows that

(A7)

(
1

|I1|
∑
n∈I1

a(n)

)p(∑
m∈I2

w(m)

)
≤ C

∑
m∈I1

|a(m)|pw(m)

Takea(n) = 1 ∀n ∈ Z in [A7] and by interchangingI1 andI2, we have the following two
inequalities.

(A8)
∑
m∈I2

w(m) ≤ C
∑
m∈I1

w(m)

(A9)
∑
m∈I1

w(m) ≤ C
∑
m∈I2

w(m)

Likewise, takea(n) = w(n)
−1
p−1 ∀n ∈ Z in [A7] to get(∑

m∈I2

w(m)

)(
1

|I1|
∑
m∈I1

w(m)
−1
p−1

)p

≤ C
∑
m∈I1

w(m)
−p
p−1 w(m)

So, (∑
m∈I2

w(m)

)(
1

|I1|
∑
m∈I1

w(m)
−1
p−1

)p−1

≤ C

Therefore, (
1

|I1|
∑
m∈I1

w(m)

)(
1

|I1|
∑
m∈I1

w(m)
−1
p−1

)p−1

≤
(

C

|I1|
∑
m∈I2

w(m)

)(
1

|I1|
∑
m∈I1

w(m)
−1
p−1

)p−1

≤ C

It follows thatw ∈ Ap(Z).

9. M AXIMAL SINGULAR OPERATOR ON VARIABLE SEQUENCE SPACES `p(·)(Z)

In this section, we prove weak type, and strong type inequalities for the maximal singular
operator oǹ p(·)(Z) spaces,1 ≤ p < ∞, using Rubio de Francia extrapolation method given in
[7].

Lemma 9.1. Givenp(·) such thatM is bounded oǹp(·)(Z), for eachh ∈ `p(·)(Z), define

Rh(m) =
∞∑

k=0

Mkh(m)

2k‖M‖k
B(`p(·)(Z))

where fork ≥ 1, Mk = M ◦ . . . M where◦ denotes composition operator actingk times and
M0 = |I|, I being identity operator. Then
(a) For all m ∈ Z, |h(m)| ≤ Rh(m)
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(b) R is bounded oǹp(·)(Z) and‖Rh‖`p(·) ≤ 2 ‖h‖p(·)
(c) Rh ∈ A1 and [Rh]A1 ≤ 2 ‖M‖B(`p(·)(Z)), where[]A1 denotes constant ofA1 weight.

Proof of (a) is obvious.The proof of (b) and (c) are same as in the case ofR. For the corre-
sponding results onR, refer [7].

Lemma 9.2. Given, a sequencea = {a(n)}, andp(·) ∈ S then for alls, 1
p−
≤ s < ∞,

‖|a|s‖p(·) = ‖a‖s
sp(·)

This follows at once from the definition of`p(·)(Z) norm. For details refer [7].

Theorem 9.3. Given a sequence{a(n) : n ∈ Z}, supposep(·) ∈ S such thatp− > 1. LetT ?
φ

be a maximal singular operator.
Then, ∥∥T ?

φa
∥∥

`p(·)(Z)
≤ C ‖a‖`p(·)(Z)

If p− = 1, then for allt > 0∥∥∥tχ{n:|T ?
φa(n)|>t}

∥∥∥
`p(·)(Z)

≤ C ‖a‖`p(·)(Z)

Proof. We will prove strong type inequality whenp− > 1.
Takep0 such that1 < p0 ≤ p− ≤ p+ < ∞. Here we useRh ∈ A1(Z) and henceRh ∈

Ap(Z), 1 < p < ∞ and the boundedness ofT ?
φ on `p

Rh(Z).
Therefore by Lemma[9.2]∥∥(T ?

φa)
∥∥p0

`p(·)(Z)
=

∥∥(T ?
φa)p0

∥∥
`

p(·)
p0 (Z)

= sup

h∈`
(

p(·)
p0

)
′

(Z),‖h‖
`
(

p(·)
p0

)
′

(Z)

=1

∑
k∈Z

|T ?
φa(k)|p0|h(k)|

≤ sup

h∈`
(

p(·)
p0

)
′

(Z),‖h‖
`
(

p(·)
p0

)
′

(Z)

=1

∑
k∈Z

|T ?
φa(k)|p0Rh(k)

≤ sup

h∈`
(

p(·)
p0

)
′

(Z),‖h‖
`
(

p(·)
p0

)
′

(Z)

=1

∑
k∈Z

|a(k)|p0Rh(k)

≤ C sup

h∈`
(

p(·)
p0

)
′

(Z),‖h‖
`
(

p(·)
p0

)
′

(Z)

=1

‖|a|p0‖
`

p(·)
p0

(Z)
‖Rh‖

`
(

p(·)
p0

)
′

(Z)

= C sup

h∈`
(

p(·)
p0

)
′

(Z),‖h‖
`
(

p(·)
p0

)
′

(Z)

=1

‖|a|‖p0

`p(·)(Z)
‖Rh‖

`
(

p(·)
p0

)
′

(Z)

≤ 2C‖a‖p0

`p(·)(Z)

Now we are going to prove type weak type (1,1) inequality stated in the theorem.
Let A =

{
m ∈ Z : |T ?

φa(m)| > t
}

. Then,∥∥∥(tχ{m∈Z:|T ?
φa(m)|>t})

∥∥∥
p(·)
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≤ sup
h∈`p(·)′ (Z),‖h‖

`p(·)′ (Z)
=1

∑
k∈Z

|tχ{m∈Z:|T ?
φa(m)|>t}(k)||h(k)|

= sup
h∈`p(·)′ (Z),‖h‖

`p(·)′ (Z)
=1

∑
k∈Z

tχA(k)Rh(k)

= sup
h∈`p(·)′ (Z),‖h‖

`p(·)′ (Z)
=1

tRh(A)

= sup
h∈`p(·)′ (Z),‖h‖

`p(·)′ (Z)
=1

t
C

t

∑
k∈Z

|a(k)|Rh(k)

≤ sup
h∈`p(·)′ (Z),‖h‖

`p(·)′ (Z)
=1

C
∑
k∈Z

|a(k)|Rh(k)

= C
∑
k∈Z

|a(k)|Rh(k)

≤ C ‖a‖`p(·)(Z) ‖Rh‖`p(·)′ (Z)

≤ 2C ‖a‖p(·)

10. M AXIMAL ERGODIC SINGULAR OPERATOR

Let (X, B, µ) be a probability space andU an invertible measure preserving transformation
onX. We define the truncated maximal ergodic singular operator and maximal ergodic singular
operator as follows:

T̃ ?
φ,Nf(x) = sup

1≤n≤N
|

n∑
k=−n

f(U−kx)φ(k)|

T̃ ?
φf(x) = sup

n
|

n∑
k=−n

f(U−kx)φ(k)|

Now, we prove the strong type, weak type inequalities for the maximal ergodic singular
operator on weightedLp

w(X,B, µ) spaces.

Theorem 10.1.Let (X, B, µ) be a probability space andU an invertible measure preserving
transformation onX. If w is an ergodicAp weight,1 < p < ∞, then the maximal ergodic
singular operator

satisfies

(1) ∥∥∥T̃ ?
φf

∥∥∥
Lp

w(X)
≤ Cp ‖f‖Lp

w(X) if 1 < p < ∞

whereCp is independent ofN .
(2) If w ∈ A1, then∫

{x∈X:|T̃ ?
φf(x)|>λ}

w(x)dµ(x) ≤ C

λ

∫
X

|f(x)|w(x)dµ(x)

whereC1 is independent ofN .
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Proof. Fix N > 0 and take a functionf ∈ Lp
w(X).

T̃ ?
φ,Nf(x) = sup

1≤n≤N
|

n∑
k=−n

f(U−kx)φ(k)|

It is enough to prove that̃T ?
φ,N satisfies (1) and (2) with constants not depending onN . Let

λ > 0 and put

Eλ =
{

x ∈ X : |T̃ ?
φ,Nf(x)| > λ

}
For x lying outside aµ null set and a positive integerL, define sequences

ax(k) =

{
f(U−kx) if |k| ≤ L + N

0 otherwise

wx(k) =

{
w(U−kx) if |k| ≤ L + N

0 otherwise

Therefore,

w(
{

x ∈ X : |T̃ ?
φ,Nf(x)| > λ

}
) =

∫
Eλ

w(x)dµ(x) =
1

λp

∫
Eλ

λpw(x)dµ(x)

≤ 1

λp

∫
Eλ

|T̃ ?
φ,Nf(x)|pw(x)dµ(x)

≤ 1

λp

∫
X

|T̃ ?
φ,Nf(x)|pw(x)dµ(x)

=
1

λp

1

2L + 1

L∑
m=−L

∫
X

|T̃ ?
φ,Nf(U−mx)|pw(U−mx)dµ(x)

≤ 1

λp

1

2L + 1

∫
X

L∑
m=−L

|T̃ ?
φ,Nf(U−mx)|pw(U−mx)dµ(x)

≤ 1

λp

1

2L + 1

∫
X

L∑
m=−L

|T ?
φ,Nax(m)|pwx(m)dµ(x)

≤ 1

λp

1

2L + 1

∫
X

∞∑
m=−∞

|T ?
φ,Nax(m)|pwx(m)dµ(x)

≤ C
1

λp

1

2L + 1

∫
X

∞∑
m=−∞

|ax(m)|pwx(m)dµ(x)

= C
1

λp

1

2L + 1

∫
X

(L+N)∑
m=−(L+N)

|ax(m)|pwx(m)dµ(x)

= C
1

λp

1

2L + 1

∫
X

(L+N)∑
m=−(L+N)

|f(U−mx)|pw(U−mx)dµ(x)

≤ C

λp

1

2L + 1

(L+N)∑
m=−(L+N)

∫
X

|f(U−mx)|pw(U−mx)dµ(x)
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=
C

λp

1

2L + 1

(L+N)∑
m=−(L+N)

∫
X

|f(x)|pw(x)dµ(x)

≤ C

λp

1

2L + 1
(2(L + N) + 1) ‖f‖p

Lp
w(X)

≤ C

λp ‖f‖
p
Lp

w(X)

by choosingL appropriately. Conclusion(1) of the theorem now follows by using the
Marcinkiewicz interpolation theorem.

Now, we prove the converse of the above theorem whenT̃ ?
φ,N with singular kernel as

φ(k) =

{
1
k

if k 6= 0

0 k = 0

The singular operator associated with this particular singular kernel is known as the maximal
ergodic Hilbert transform and is denoted bỹH?. Here, we further assume that the associated
measure preserving transformation is ergodic.

Definition 10.1 (Ergodic Rectangle). Let E be a subset ofX with positive measure and let
K ≥ 1 be such thatU iE ∩ U jE = φ if i 6= j and−K ≤ i, j ≤ K. Then the set
R = ∪K

i=−KU iE is called ergodic rectangle of length2K + 1 with baseE.

For the proof of following lemma, refer[4].

Lemma 10.2.Let (X, B, µ) be a probability space,U an ergodic invertible measure preserving
transformation onX andK a positive integer.

(1) If F ⊆ X is a set of positive measure then there exists a subsetE ⊆ F of positive
measure such thatE is base of an ergodic rectangle of length2K + 1.

(2) There exists a countable family{Ej} of bases of ergodic rectangles of length2K + 1
such thatX = ∪jEj.

Theorem 10.3.Let (X,B, µ) be a probability space, U an invertible ergodic measure preserv-
ing transformation onX. If H̃?f is bounded onLp

w(X) for some1 < p < ∞, thenw ∈ AP (X).

Proof. For the given functionw on X, for a.ex ∈ X define the sequencewx(k) = w(U−kx).
We shall prove that

esssupx∈X

(
1

|I|
∑
k∈I

|wx(k)|
)(

1

|I|
∑
k∈I

|wx(k)|p′−1

)p−1

≤ C

This will prove thatw ∈ Ap(X). In order to prove this, we shall prove that the maximal Hilbert
transformH? is bounded oǹp

wx
(Z) and

‖H?a‖`p
wx (Z) ≤ Cp ‖a‖`p

wx (Z)

whereCp is independent ofx. In order to prove the above inequality, take a sequence
{a(n) : n ∈ Z} ∈ `p

wx
(Z).

Let R = ∪2J
k=−2JUkE be an ergodic rectangle of length4J + 1 with baseE. Let F be any

measurable subset ofE. ThenF is also base of an ergodic rectangle of length4J + 1. Let
R′ = ∪2J

k=−2JUkF . Define functionf andw as follows.
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f(U−kx) =

{
a(k) if x ∈ F and− J ≤ k ≤ J

0 otherwise

Then as shown in [3]
‖f‖p

Lp
w(X)

= ‖a‖`p
wx (Z) µ(F )

It is easy to observe that for−J ≤ m ≤ J andx ∈ F

H̃?
Jf(U−mx) = H?

Ja(m)

Now,

C ‖f‖p
Lp

w(X)
≥

∫
X

|H̃?
Jf(x)|pw(x)dµ(x)

=

∫
R′
|H̃?

Jf(x)|pw(x)dµ(x)

=
J∑

k=−J

∫
UkF

|H̃?
Jf(x)|pw(x)dµ(x)

=
J∑

k=−J

∫
F

|H̃?
Jf(U−kx)|pw(U−kx)dµ(x)

=
J∑

k=−J

∫
F

|H?
Ja(k)|pwx(k)dµ(x)

=

∫
F

J∑
k=−J

|H?
Ja(k)|pwx(k)dµ(x)

So from the above estimates

1

µ(F )

∫
F

J∑
k=−J

|H?
Ja(k)|pwx(k)dµ(x) ≤ C ‖a‖`p

wx (Z)

SinceF was an arbitrary subset ofE, we get
J∑

k=−J

|H?
Ja(k)|pwx(k) ≤ C ‖a‖`p

wx (Z)

a.ex ∈ E. SinceU is ergodic,X can be written as countable union of bases of ergodic
rectangles of length4J + 1. Therefore for a.ex ∈ X,

J∑
k=−J

|H?
Ja(k)|pwx(k) ≤ C ‖a‖`p

wx (Z)

SinceC is independent ofJ , a.ex ∈ X,∑
k∈Z

|H?a(k)|pwx(k) ≤ C ‖a‖`p
wx (Z)

It follows that the sequence{wx(n) : n ∈ Z} as defined bywx(k) = w(Ukx) belongs to
Ap(Z) a.ex ∈ X andAp weight constant forwx is independent ofx so thatw ∈ Ap(X).
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Remark 10.1. Using the boundedness of maximal ergodic singular operator and Rubio de
Francia method, we can prove that the maximal ergodic singular operator is bounded on vari-
ableLp(·)(X,B, µ) spaces. But Rubio de Francia method assumes maximal ergodic operator is
bounded on the variableLp(·)(X,B, µ) spaces. With this assumption we can prove the bound-
edness of maximal ergodic singular operator to variableLp(·)(X,B, µ) spaces.

REFERENCES

[1] S.S.S.ANUPINDI and A.M.ALPHONSE,Relations between discrete maximal operators

in harmonic analysis, Proceedings of the Ninth International Conference on Mathemat-

ics and Computing. ICMC 2023.Lecture Notes in Networks and Systems, Springer,

Singapore, vol 697,https://doi.org/10.1007/978-981-99-3080-7_30 .

[2] S.S.S.ANUPINDI and A.M.ALPHONSE, The boundedness of fractional Hardy-

Littlewood maximal operator on variable lp(Z) spaces using Calderon-Zygmund decom-

position, The Journal of the Indian Mathematical Society,Vol 91,Issue 1-2, January -

June (2024),https://doi.org/10.18311/jims/2024/31327 .

[3] S.S.S.ANUPINDI and A.M.ALPHONSE, Maximal ergodic theorem on weightedLp
w(X)

spaces , https://arxiv.org/abs/2303.00464. Accepted for publication inThe Journal Of

Indian Mathematical Society.

[4] E. ATTENCIA and A. DE LA TORRE, A dominated ergodic estimate forLp spaces

with weights,Studia Mathematica, 74, (1982), 35-47.

[5] R.R.COIFMAN and C.FEFFERMAN, Weighted norm inequalities for maximal func-

tions and singular integrals,Studia Mathematica, T. LI (1974).

[6] J. DUOANDIKOETXEA, Fourier Analysis, Graduate Studies in Mathematics,Volume
29, American Mathematical Society.

[7] D. CRUZ-URIBE and A. FIORENZA, Variable Lebesgue spaces:Applied and Numeri-

cal Harmonic Analysis,Foundations and Harmonic analysis„ Springer, Heidelberg, Vol
1034, (2013).

[8] A.M. ALPHONSE and S.MADAN , On Ergodic Singular Integral Operators,Colloquium

Mathematicum, Vol LXVI , (1994).

[9] A.M.ALPHONSE and S.MADAN , The Commutator of the Ergodic Hilbert Transform,

Contemporary Mathematics, Vol 189, (1995).

[10] R.HUNT, B.MUCKENHOUPT and R.WHEEDEN ,Weighted norm inequalities for the

conjugate and Hilbert transform, Transactions of American Mathematical Society, 176,
(1973), pp. 227-25.

AJMAA, Vol. 21 (2024), No. 2, Art. 3, 24 pp. AJMAA

https://doi.org/10.1007/978-981-99-3080-7_30
https://doi.org/10.18311/jims/2024/31327
https://ajmaa.org

	1. Introduction
	2. Definitions and Notation
	Maximal Operators
	Norm in Variable Sequence Spaces
	Weights

	3.  Relations between Maximal operators 
	4. Weighted Classical Results for Maximal Operators
	5.  Properties of Ap Weights
	6. Calderón-Zygmund decompostion for Sequences
	7. Weighted Good Lambda Estimate
	8. Calderón-Zygmund Singular Operator
	9. Maximal Singular Operator on Variable Sequence Spaces p()(Z)
	10.  Maximal Ergodic Singular Operator
	References

