

MAXIMAL SINGULAR OPERATORS ON VARIABLE EXPONENT SEQUENCE SPACES AND THEIR CORRESPONDING ERGODIC VERSION

S.S.S.ANUPINDI AND A.M.ALPHONSE

Received 14 November, 2023; accepted 6 June, 2024; published 5 July, 2024.

DEPARTMENT OF MATHEMATICS, BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE- PILANI, HYDERABAD CAMPUS, JAWAHAR NAGAR, KAPRA MANDAL, DISTRICT.-MEDCHAL-500 078 TELANGANA, INDIA

p20180442@hyderabad.bits-pilani.ac.in, alphonse@hyderabad.bits-pilani.ac.in URL: https://www.bits-pilani.ac.in/hyderabad/a-michael-alphonse https://www.bits-pilani.ac.in/research_scholars/sri-sakti-swarup-anupindi

ABSTRACT. In this paper, we prove strong and weak type inequalities of singular operators on weighted $\ell^p_w(\mathbb{Z})$. Using these results, we prove strong type and weak type inequalities of the maximal singular operator of Calderón-Zygmund type on variable exponent sequence spaces $\ell^{p(\cdot)}(\mathbb{Z})$. Using the Calderón-Coifman-Weiss transference principle, we prove strong type, weak type inequalities of the maximal ergodic singular operator on $L^p_w(X,\mathcal{B},\mu)$ spaces, where (X,\mathcal{B},μ) is a probability space equipped with measure preserving transformation U.

Key words and phrases: Calderón-Zygmund decomposition; Maximal Singular Operator; Maximal Ergodic Singular Operator; Transference Method; Ergodic Rectangles; Ergodic Weights; Reverse Hölder inequality; Rubio de Francia extrapolation.

2010 Mathematics Subject Classification. Primary 37A46. Secondary 28D05.

ISSN (electronic): 1449-5910

[©] 2024 Austral Internet Publishing. All rights reserved.

1. Introduction

Singular integral operators on the weighted $L^p_w(\mathbb{R})$ spaces are studied in [10]. In [10], the authors have proved that for 1 and if the non-negative function <math>w(x) satisfies A_p condition then the singular integral operators are bounded on $L^p_w(\mathbb{R})$. For p=1, it has been proved that if w(x) satisfies A_1 condition, then the singular integral operators satisfy weak type (1,1) inequality with respect to the weighted measure. The detailed proof of the same can also be seen in [6]. In [8], the authors have studied the singular operators on sequence spaces $\ell^p(\mathbb{Z})$ and their corresponding ergodic versions.

In this paper, we prove strong type, weak type inequalities of singular operators on weighted $\ell^p_w(\mathbb{Z})$ spaces. Using these results we prove strong type, weak type inequalities of maximal singular operator of Calderón-Zygmund type on variable sequence spaces $\ell^{p(\cdot)}(\mathbb{Z})$.

These results are achieved using Calderón-Zygmund decomposition for sequences, properties of A_p weights, reverse Hölder inequality and Rubio de Francia extrapolation. We also prove strong type, weak type inequalities of maximal ergodic singular operators on $L^p_w(X,\mathcal{B},\mu)$ spaces, where (X,\mathcal{B},μ) is a probability space equipped with an invertible measure preserving transformation U. We use Calderón-Coifman-Weiss transference principle to achieve these results.

In [4] the characterization of those positive functions w (known as ergodic A_p weights) for which the maximal ergodic singular operator associated with an invertible measure preserving transformation on a probability space is bounded on $L^p_w(X,\mathcal{B},\mu)$ is given. In their proof the ergodic analogue of Calderón-Zygmund decomposition and the concept of ergodic rectangles are used. Using the same concept of ergodic rectangles, we prove that for $1 , if the maximal ergodic Hilbert transform is bounded on <math>L^p_w(X,\mathcal{B},\mu)$, then $w \in A_p(X)$. In [4], the authors have given direct proof of this result without using the corresponding results on weighted sequence spaces. In this paper we use the corresponding result on $\ell^p_w(\mathbb{Z})$ to prove this result.

2. **DEFINITIONS AND NOTATION**

Throughout this thesis, \mathbb{Z} denotes the set of all integers and \mathbb{Z}_+ denotes the set of all positive integers. For a given interval I in \mathbb{Z} (we always mean finite interval of integers), |I| always denotes the cardinality of I. For each positive integer N, consider collection of disjoint intervals of cardinality 2^N ,

$$\{I_{N,j}\}_{j\in\mathbb{Z}} = \{[(j-1)2^N + 1, \dots, j2^N]\}_{j\in\mathbb{Z}}.$$

The set of intervals which are of the form $I_{N,j}$ where $N \in \mathbb{Z}_+$ and $j \in \mathbb{Z}$ are called dyadic intervals. For fixed N, $I_{N,j}$ are disjoint.

Given a dyadic interval $I=\left\{[(j-1)2^N+1,\ldots,j2^N]\right\}_{j\in\mathbb{Z}}$ and a positive integer m, we define

$$2LI = [(j-2)2^{N} + 1, \dots, j2^{N}]$$

$$4LI = [(j-4)2^{N} + 1, \dots, j2^{N}]$$

$$2RI = [(j-1)2^{N} + 1, \dots, (j+1)2^{N}]$$

$$4RI = [(j-1)2^{N} + 1, \dots, (j+3)2^{N}]$$

$$3I = 2LI \cup 2RI$$

$$5I = 4LI \cup 4RI$$

For $k=2,3,4,\ldots$ and $K\in\mathbb{Z}_+,$ let $I(0,2^kK)$ denotes the interval

$$[-2^{k-1}K, -2^{k-1}K+1, \dots, -1, 0, 1, 2, \dots, 2^{k-1}K-1, 2^{k-1}K].$$

For a given sequence $\{a(n):n\in\mathbb{Z}\}$ and an interval $I_j,\ a(I_j)=\sum_{k\in I_j}a(k)$. For a sequence $\{p(n):n\in\mathbb{Z},p(n)\geq 1\}$, define $p_-=\inf\{p(n):n\in\mathbb{Z}\}$, $p_+=\sup\{p(n):n\in\mathbb{Z}\}$. Throughout this paper, we assume $p_+<\infty$ and $1\leq p_-\leq p(n)< p_+<\infty, n\in\mathbb{Z}$. We denote set of all such sequences $\{p(n):n\in\mathbb{Z}\}$ by \mathcal{S} .

Maximal Operators. Let $\{a(n) : n \in \mathbb{Z}\}$ be a sequence. We define the following three types of Hardy-Littlewood maximal operators as follows:

Definition 2.1. If I_r is the interval $\{-r, -r+1, \ldots, 0, 1, 2, \ldots, r-1, r\}$, define centered Hardy-Littlewood maximal operator

$$M'a(m) = \sup_{r>0} \frac{1}{(2r+1)} \sum_{n \in I_r} |a(m-n)|$$

We define Hardy-Littlewood maximal operator as follows

$$Ma(m) = \sup_{m \in I} \frac{1}{|I|} \sum_{n \in I} |a(n)|$$

where the supremum is taken over all intervals containing m.

Definition 2.2. We define dyadic Hardy-Littlewood maximal operator as follows:

$$M_d a(m) = \sup_{m \in I} \frac{1}{|I|} \sum_{k \in I} |a(k)|$$

where supremum is taken over all dyadic intervals containing m.

Given a sequence $\{a(n):n\in\mathbb{Z}\}$ and an interval I, let a_I denote average of $\{a(n):n\in\mathbb{Z}\}$ on I. Let, $a_I=\frac{1}{|I|}\sum_{m\in I}a(m)$. Define the sharp maximal operator $M^\#$ as follows

$$M^{\#}a(m) = \sup_{m \in I} \frac{1}{|I|} \sum_{n \in I} |a(n) - a_I|$$

where the supremum is taken over all intervals I containing m. We say that sequence $\{a(n):n\in\mathbb{Z}\}$ has bounded mean oscillation if the sequence $M^{\#}a$ is bounded. The space of sequences with this property is denoted by $BMO(\mathbb{Z})$.

We define a norm in BMO(\mathbb{Z}) by $\|a\|_{\star} = \|M^{\#}a\|_{\infty}$. The space BMO(\mathbb{Z}) is studied in [9].

Norm in Variable Sequence Spaces.

Definition 2.3. Given a bounded sequence $\{p(n):n\in\mathbb{Z}\}$ which takes values in $[1,\infty)$, define $\ell^{p(\cdot)}(\mathbb{Z})$ to be set of all sequences $\{a(n):n\in\mathbb{Z}\}$ such that for some $\lambda>0$,

$$\sum_{k \in \mathbb{Z}} (\frac{|a(k)|}{\lambda})^{p(k)} < \infty.$$

We define modular functional for variable sequences spaces associated with $p(\cdot)$ as

$$\rho_{p(\cdot)}(a) = \sum_{k \in \mathbb{Z}} |a(k)|^{p(k)}$$

Further for a given sequence $\{a(k): k \in \mathbb{Z}\}$ in $\ell^{p(\cdot)}(\mathbb{Z})$, we define

$$||a||_{p(\cdot)} = \inf\left\{\lambda > 0 : \rho_{p(\cdot)}(\frac{a}{\lambda}) \le 1\right\}$$

 $||a||_{\ell^{p(\cdot)}(\mathbb{Z})}$ is a norm in $\ell^{p(\cdot)}(\mathbb{Z})$ [7].

Weights.

Definition 2.4. For a fixed $p, 1 , we say that a non-negative sequence <math>\{w(n) : n \in \mathbb{Z}\}$ belongs to class A_p if there is a constant C such that, for all intervals I in \mathbb{Z} , we have

$$\left(\frac{1}{|I|} \sum_{k \in I} w(k)\right) \left(\frac{1}{|I|} \sum_{k \in I} w(k)^{-\frac{1}{p-1}}\right)^{p-1} \le C.$$

Infimum of all such constants C is called A_p constant.

We say that $\{w(m): m \in \mathbb{Z}\}$ belongs to class A_1 if there a constant C such that, for all intervals I in \mathbb{Z} ,

$$\frac{1}{|I|} \sum_{k \in I} w(k) \le Cw(m)$$

for all $m \in I$. Infimum of all such constants C is called A_1 constant.

Let $1 \leq p < \infty$ and $\{w(n) : n \in \mathbb{Z}\} \in A_p(\mathbb{Z})$. We say that a sequence $\{a(n) : n \in \mathbb{Z}\}$ is in $\ell_w^p(\mathbb{Z})$ if

$$\sum_{n \in \mathbb{Z}} |a(n)|^p w(n) < \infty.$$

We define norm in $\ell_w^p(\mathbb{Z})$ by

$$||a||_{\ell_w^p(\mathbb{Z})} = \left(\sum_{k \in \mathbb{Z}} |a(k)|^p w(k)\right)^{\frac{1}{p}}.$$

For a subset A of \mathbb{Z} , w(A) denotes $\sum_{k \in A} w(k)$. For a given sequence $\{a(n) : n \in \mathbb{Z}\} \in \ell^p_w(\mathbb{Z})$, the weighted weak type (p,p) inequality for a non-negative weight sequence $\{w(n): n \in \mathbb{Z}\}$ is as follows:

$$w(\{m \in \mathbb{Z} : Ma(m) > \lambda\}) \le \frac{C}{\lambda^p} \sum_{m \in \mathbb{Z}} |a(m)|^p w(m)$$

Definition 2.5. Let (X, \mathbf{B}, μ) be a probability space and U an invertible measure preserving transformation on X. Suppose $1 and <math>w : X \to \mathbb{R}$ be a non-negative integrable function. The function w is said to satisfy ergodic A_p condition,

$$esssup_{x \in X} \sup_{N \ge 1} \left(\frac{1}{2N+1} \sum_{k=-N}^{N} w(U^k x) \right) \left(\frac{1}{2N+1} \sum_{k=-N}^{N} w(U^k x)^{\frac{-1}{p-1}} \right)^{p-1} \le C.$$

The function w is said to satisfy ergodic A_1 condition,

$$esssup_{x \in X} \sup_{N \ge 1} \frac{1}{2N+1} \sum_{k=-N}^{N} w(U^k x) \le Cw(U^m x)$$

for
$$m = -N, -N + 1, ..., N$$
.

3. RELATIONS BETWEEN MAXIMAL OPERATORS

In the following lemmas, we give relations between maximal operators. For the proofs of the following lemmas, refer [1]. These relations will be used when we prove the weighted inequalities for maximal ergodic operators.

Lemma 3.1. Given a sequence $\{a(m) : m \in \mathbb{Z}\}$, the following relation holds:

$$M'a(m) \le Ma(m) \le 3M'a(m)$$

Lemma 3.2. If $\mathbf{a} = \{a(k) : k \in \mathbb{Z}\}$ is a non-negative sequence with $\mathbf{a} \in \ell_1$, then

$$|\{m \in \mathbb{Z} : M'a(m) > 4\lambda\}| \le 3|\{m \in \mathbb{Z} : M_da(m) > \lambda\}|$$

In the following lemma, we see that in the norm of BMO(\mathbb{Z}) space, we can replace the average a_I of $\{a(n):n\in\mathbb{Z}\}$ by a constant b. The proof is similar to the proof in continuous version [6]. The second inequality follows from $||a|-|b||\leq |a|-|b|$.

Lemma 3.3. Consider a non-negative sequence $\mathbf{a} = \{a(k) : k \in \mathbb{Z}\}$ in $BMO(\mathbb{Z})$. Then the following are valid.

1.
$$\frac{1}{2} \|a\|_{\star} \le \sup_{m \in I} \inf_{b \in \mathbb{Z}} \frac{1}{|I|} |a(m) - b| \le \|a\|_{\star}$$

2.
$$M^{\#}(|a|)(i) \leq M^{\#}a(i), i \in \mathbb{Z}$$

4. WEIGHTED CLASSICAL RESULTS FOR MAXIMAL OPERATORS

Let $1 \leq p < \infty$. In this section, for a given sequence $\{a(n) : n \in \mathbb{Z}\}$ in $\ell_w^p(\mathbb{Z})$, we prove weighted weak type (p,p) inequality with respect to the weight sequence $\{w(n) : n \in \mathbb{Z}\} \in A_p$ which is stated in Theorem[4.2].

The proof of the following theorem is similar to the proof of corresponding result in continuous version [6]. We state here without proof.

Theorem 4.1. Let $\{a(n): n \in \mathbb{Z}\}$ be a non-negative sequence and $\{w(n): n \in \mathbb{Z}\} \in A_p, 1 \leq p < \infty$ be a non-negative weight sequence. Let I be an interval such that a(m) > 0 for some $m \in I$. Then,

(1)

$$(4.1[A]) w(I) \left(\frac{a(I)}{|I|}\right)^p \le C \sum_{m \in I} |a(m)|^p w(m)$$

(2) Given a finite set $S \subset I$,

(4.1[B])
$$w(I) \left(\frac{|S|}{|I|}\right)^p \le Cw(S)$$

4.1[A] follows from Hölder's inequality and the A_p condition. 4.1[B] follows by taking $a = \chi_S$ in 4.1[A].

Theorem 4.2. Assume $\{w(n): n \in \mathbb{Z}\} \in A_p$. Given a non-negative sequence $\{a(n): n \in \mathbb{Z}\} \in \ell^p_w(\mathbb{Z})$, for $1 \leq p < \infty$, the weighted weak(p,p) inequality holds:

$$w(\{m \in \mathbb{Z} : Ma(m) > \lambda\}) \le \frac{C}{\lambda^p} \sum_{m \in \mathbb{Z}} |a(m)|^p w(m)$$

For the proof of Theorem[4.2], refer [3].

Theorem 4.3. If $w \in A_p$, $1 , then M is bounded on <math>\ell_w^p(\mathbb{Z})$.

The proof follows from Theorem[4.2] and Marcinkiewicz interpolation theorem.

5. PROPERTIES OF A_p WEIGHTS

We state the properties of A_p weights for sequences without proofs. The proofs are similar to the proofs of corresponding results in the continuous version.

Property 1. $A_p \subset A_q, 1 \leq p < q$.

Property 2. $w \in A_p$ if and only if $w^{1-p'} \in A_{p'}$

Let $w(m) \in A_p, m \in I$. Proof follows by noting $A_{p'}$ condition for $w^{1-p'}$. For the converse A_p condition can be verified.

Property 3. $w_0, w_1 \in A_1 \implies w_0 w_1^{1-p} \in A_p$.

Here, we state reverse Hölder inequality for weighted sequences. For continuous version of these proofs, refer to [6].

Property 4. [Reverse Hölder Inequality] Let $w \in A_p$, $1 \le p < \infty$. Then, there exists constants c and $\epsilon > 0$, depending only on p and the A_p constants of w, such that for any interval I,

$$\left(\frac{1}{|I|} \sum_{m \in I} w(m)^{1+\epsilon}\right)^{\frac{1}{1+\epsilon}} \le \frac{C}{|I|} \sum_{m \in I} w(m)$$

Property 5. $A_p = \bigcup_{q < p} A_q, 1 < p < \infty.$

Property 6. If $w \in A_p$, $1 \le p < \infty$, then there exists $\epsilon > 0$ such that $w^{1+\epsilon} \in A_p$

Property 7. If $w \in A_p$, $1 \le p < \infty$, then there exists $\delta > 0$ such that given a interval I and $S \subset I$,

$$\frac{w(S)}{w(I)} \le C \left(\frac{|S|}{|I|}\right)^{\delta}$$

6. CALDERÓN-ZYGMUND DECOMPOSTION FOR SEQUENCES

For the proof of Theorem[6.1], we refer [2].

Theorem 6.1. Let $0 \le \alpha < 1$. Take a real number p such that $1 \le p < \frac{1}{\alpha}$ (If $\alpha = 0$ then $1 \le p < \infty$). Let $\{a(n) : n \in \mathbb{Z}\} \in \ell^p(\mathbb{Z})$. Then

there exists a sequence of disjoint intervals $\{I_i^t\}$ such that

(i)
$$t < \frac{1}{|I_j^t|^{1-\alpha}} \sum_{k \in I_j^t} |a(k)| \le 2t, \forall j \in \mathbb{Z}.$$

- (ii) $\forall n \notin \bigcup_j I_j^t$, $|a(n)| \leq t$.
- (iii) If $t_1 > t_2$, then each $I_j^{t_1}$ is subinterval of some $I_m^{t_2} \quad \forall j,m \in \mathbb{Z}$.

7. WEIGHTED GOOD LAMBDA ESTIMATE

Lemma 7.1. Let $\{a(n): n \in \mathbb{Z}\}$ be a non-negative sequence in $\ell_w^p(\mathbb{Z})$. Let $w \in A_p, 1 \leq p_0 \leq p < \infty$. If $\{a(n): n \in \mathbb{Z}\}$ is such that $M_d a \in \ell_w^{p_0}(\mathbb{Z})$, then

$$\sum_{m \in \mathbb{Z}} |M_d a(m)|^p w(m) \le C \sum_{m \in \mathbb{Z}} |M^\# a(m)|^p w(m)$$

where M_d is the dyadic maximal operator and $M^{\#}$ is the sharp maximal operator, whenever, the left hand side is finite.

Proof. In order to prove Lemma[7.1], first we prove the good- λ inequality, which is as follows: For some $\delta > 0$,

$$w(\left\{m \in \mathbb{Z} : M_d a(m) > 2\lambda, M^{\#} a(m) \le \gamma \lambda\right\}) \le C \gamma^{\delta} w(\left\{x \in \mathbb{Z} : M_d a(m) > \lambda\right\})$$

Since $\{m \in \mathbb{Z} : M_d a(m) > \lambda\}$ can be decomposed into disjoint dyadic cubes, it is enough to show that for each such interval I,

$$w(\{m \in I : M_d a(m) > 2\lambda, M^{\#} a(m) \le \gamma \lambda\}) \le C \gamma^{\delta} w(I)$$

The above inequality can be proved using the same argument as in Lemma[4.6] from [1] and property[7]. Now we prove Lemma[7.1]

Consider, for any positive integer N

$$I_N = \int_0^N p\lambda^{p-1} |w\{n \in \mathbb{Z} : M_d a(k) > \lambda\}| d\lambda$$

Since $a \in \ell^{p_0}$ implies $M_d a \in \ell^{p_0}$, I_N is finite,

It follows that

$$(1 - 2^p C \gamma^{\delta}) I_N \le 2^p \int_0^{\frac{N}{2}} p \lambda^{p-1} |w \left\{ n \in \mathbb{Z} : M^{\#} a(k) > \gamma \lambda \right\} |d\lambda|$$

Now take $(1-2^pC\gamma^\delta)=\frac{1}{2}.$ Then,

$$\frac{1}{2}I_N \le 2^p \int_0^{\frac{N}{2}} p\lambda^{p-1} |w\left\{n \in \mathbb{Z} : M^\# a(k) > \gamma\lambda\right\} |d\lambda|$$
$$\le \frac{2^p}{\gamma^p} \int_0^{\frac{N}{2}} p\lambda^{p-1} |w\left\{n \in \mathbb{Z} : M^\# a(k) > \lambda\right\} |d\lambda|$$

Now, take $N \to \infty$, we get

$$\sum_{m \in \mathbb{Z}} M_d a(m)^p w(m) \le C \sum_{m \in \mathbb{Z}} M^\# a(m)^p w(m)$$

8. CALDERÓN-ZYGMUND SINGULAR OPERATOR

In this section, we study Calderón-Zygmund singular operator on weighted $\ell^{p(\cdot)}_w(\mathbb{Z})$ spaces. This operator on $\ell^p(\mathbb{Z})$ spaces is studied in [8].

Definition 8.1. A sequence $\{\phi(n)\}$ is said to be a singular kernel if there exist constants C_1 and $C_2 > 0$ such that

If $\phi = \{\phi(n)\}$ is a singular kernel and $\{a(n) : n \in \mathbb{Z}\} \in \ell^p(\mathbb{Z}), 1 \leq p < \infty$, define

(S1): $\sum_{n=-N}^{N} \phi(n)$ converges as $N \to \infty$. (S2): $\phi(0) = 0$ and $|\phi(n)| \le \frac{C_1}{|n|}, n \ne 0$ (S3): $|\phi(n+1) - \phi(n)| \le \frac{C_2}{n^2}, n \ne 0$.

$$T_{\phi}a(n) = (\phi \star a)(n) = \sum_{k \in \mathbb{Z}} \phi(n-k)a(k)$$

Since S2 implies that $\phi \in \ell^r$ for all $1 < r \le \infty$, the above convolution is defined.

The operator T_{ϕ} defined above is called discrete singular operator.

The maximal singular operator corresponding to this singular operator is defined as

$$T_{\phi}^{\star}a(n) = \sup_{N} |\sum_{k=-N}^{N} \phi(k)a(n-k)|$$

If ϕ is a singular kernel and we let K be the linear extension of ϕ to \mathbb{R} , then K is locally integrable and satisfies:

(K1)
$$\int_{\epsilon<|x|<\frac{1}{\epsilon}}K(x)\quad dx\quad \text{converges as }\epsilon\to 0$$

(K2)

$$|K(x)| \le \frac{C}{|x|}$$

(K3)

$$|K(x) - K(x - y)| \le \frac{C|y|}{x^2} \text{ for } |x| > 2|y|$$

The function K(x) which satisfies (K1), (K2), (K3) is known as Calderón-Zygmund singular kernel on \mathbb{R} . The principal value integral

$$T_K f(x) = \lim_{\epsilon > 0} \int_{|x-y| > \epsilon} K(x-y) f(y) dy$$

and the maximal singular integral operator

$$T_K^{\star} f(x) = \sup_{\epsilon > 0} \left| \int_{|x-y| > \epsilon} K(x-y) f(y) dy \right|$$

satisfy strong type (p,p) and weak type (1,1) inequalities [8].

The proof of following theorem can be found in [8]. The following theorem states that the discrete maximal singular operator and discrete singular operator are bounded on $\ell^p(\mathbb{Z}), 1 < \infty$ $p < \infty$ and they satisfy weak(1,1) inequality. For proof, we refer to [8].

Theorem 8.1 ([8]). Let $\phi = \{\phi(n)\}$ be a singular kernel. Then there exists constant $C_p > 0$ such that

(1) If
$$1 , $\|T_{\phi}a\|_{p} \le C_{p} \|a\|_{p}$, $\forall a \in \ell^{p}(\mathbb{Z})$.$$

(2)
$$|\{n: |T_{\phi}a(n)| > \lambda\}| \leq \frac{C_1}{\lambda} \|a\|_1, \forall a \in \ell^1(\mathbb{Z}) \text{ and } \lambda > 0.$$

Theorem 8.2 ([8]). Let ϕ be a singular kernel and $1 \le p < \infty$. Then there exists a constant $C_p > 0$ such that (i)

$$\left\| T_{\phi}^{\star} a \right\|_{p} \leq C_{p} \left\| a \right\|_{p} \quad \forall a \in \ell^{p}(\mathbb{Z}), \quad \textit{if} \quad 1$$

(ii)

$$\left|\left\{j\in\mathbb{Z}:T_{\phi}^{\star}a(j)>\lambda\right\}\right|\leq\frac{C_{1}}{\lambda}\left\|a\right\|_{1}\quad\forall\lambda>0\quad\text{and}\quad a\in\ell^{1}(\mathbb{Z})$$

Now, we prove the strong type and weak type inequalities for the discrete singular operator T_{ϕ} on $\ell_w^{p(\cdot)}(\mathbb{Z})$ spaces. For this we require the following lemmas.

Lemma 8.3. Let ϕ be a singular kernel. Given an interval I which contains integers m,n, then for $r \notin 5I$,

$$|\phi(m-r) - \phi(n-r)| \le \frac{C|I|}{|n-r|^2}$$

Proof. If m > n, then

$$\begin{split} |\phi(n-r) - \phi(m-r)| \\ &\leq |\phi(n-r) - \phi(n-r+1) + \phi(n-r+1) - \phi(n-r+2) \cdots + \\ &+ \phi(n-r+m-n-1) - \phi(n-r+m-n)| \\ &\leq |\phi(n-r) - \phi(n-r+1)| + |\phi(n-r+1) - \phi(n-r+2)| \cdots + \\ &+ |\phi(n-r+m-n-1) - \phi(n-r+m-n)| \\ &\leq \frac{C}{|n-r|^2} + \frac{C}{|n-r+1|^2} + \cdots + \frac{C}{|m-r-1|^2} \\ &\leq C \frac{|n-m|}{|n-r|^2} \\ &\leq C \frac{|I|}{|n-r|^2} \end{split}$$

By the same argument, if n > m, then

$$|\phi(m-r) - \phi(n-r)| \le \frac{C|I|}{|m-r|^2}$$

Also

$$|m-r| = |(m-n) + (n-r)| \ge |n-r| - |m-n| \ge |n-r| - |I|$$

Since $r \in \mathbb{Z} \setminus 5I$, we have $|n-r| \geq 2|I|$. Hence for $r \in \mathbb{Z} \setminus 5I$. $|m-r| \geq |n-r| - \frac{|n-r|}{2} \geq \frac{|n-r|}{2}$ i.e $\frac{1}{|m-r|} \leq \frac{2}{|n-r|}$. Therefore, in this case also, $|\phi(m-r) - \phi(n-r)| \leq \frac{C|I|}{(n-r)^2}$.

Lemma 8.4. If T_{ϕ} is a singular operator, then for each s>1, there exists a constant $C_s>0$ such that

$$M^{\#}(T_{\phi}a(m)) \le C_s \left[M(|a|^s)(m) \right]^{\frac{1}{s}}$$

for each integer $m \in \mathbb{Z}$.

Proof. Fix s > 1. Given an integer m and an interval I which contains m, by Lemma[3.3], it is enough to find a constant h such that

$$\frac{1}{|I|} \sum_{n \in I} |T_{\phi}a(n) - h| \le CM(|a|^s)(m)^{\frac{1}{s}}$$

Decompose $a=a_1+a_2$, where $a_1=a\chi_{5I}, a_2=a-a_1$. Now let $h=T_\phi a(m)$, then

$$\frac{1}{|I|} \sum_{n \in I} |T_{\phi}a(n) - h| \le \frac{1}{|I|} \sum_{n \in I} |T_{\phi}a_1(n)| + \frac{1}{|I|} \sum_{n \in I} |T_{\phi}a_2(n) - T_{\phi}a_2(m)|$$

Since s > 1, T_{ϕ} is bounded on $\ell^{s}(\mathbb{Z})$. Therefore,

$$\frac{1}{|I|} \sum_{n \in I} |T_{\phi} a_{1}(n)| \leq \left(\frac{1}{|I|} \sum_{n \in I} |T_{\phi} a_{1}(n)|^{s}\right)^{\frac{1}{s}}$$

$$\leq C \left(\frac{1}{|I|} \sum_{n \in \mathbb{Z}} |a_{1}(n)|^{s}\right)^{\frac{1}{s}}$$

$$\leq C \left(\frac{5}{|5I|} \sum_{n \in 5I} |a(n)|^{s}\right)^{\frac{1}{s}}$$

$$\leq 5^{\frac{1}{s}} C \left[M(|a|^{s})(m)\right]^{\frac{1}{s}}$$

To deal with a_2 , we require the estimate from Lemma[8.3]. Now, we estimate the second term as follows.

$$\frac{1}{|I|} \sum_{n \in I} |T_{\phi} a_{2}(n) - T_{\phi} a_{2}(m)|$$

$$\leq \frac{1}{|I|} \sum_{n \in I} |\sum_{r \in \mathbb{Z} \setminus 5I} \left(\phi(n-r) - \phi(m-r) \right) a(r)|$$

$$\leq \frac{1}{|I|} \sum_{n \in I} \sum_{r \in \mathbb{Z} \setminus 5I} |\phi(n-r) - \phi(m-r)| |a(r)|$$

$$\leq C \frac{1}{|I|} \sum_{n \in I} \sum_{r \in \mathbb{Z} \setminus 5I} \frac{|I|}{|n-r|^{2}} |a(r)|$$

$$\leq C \frac{1}{|I|} \sum_{n \in I} \sum_{k=1}^{\infty} \sum_{2^{k}|I| < |n-r| \le 2^{k+1}|I|} \frac{|I|}{|n-r|^{2}} |a(r)|$$

$$\leq C \frac{1}{|I|} \sum_{n \in I} \sum_{k=1}^{\infty} \frac{|I|}{2^{2k}|I|^{2}} \sum_{|n-r| \le 2^{k+1}|I|} |a(r)|$$

$$\leq C \frac{1}{|I|} \sum_{n \in I} \sum_{k=1}^{\infty} \frac{1}{2^{2k}|I|} \sum_{|n-r| \le 2^{k+1}|I|} |a(r)|$$

$$\leq C \frac{1}{|I|} \sum_{n \in I} \sum_{k=1}^{\infty} \frac{2}{2^{k} 2^{k+1}|I|} \sum_{|n-r| \le 2^{k+1}|I|} |a(r)|$$

$$\leq 2CMa(m)\frac{1}{|I|}\sum_{n\in I}\sum_{k=1}^{\infty}\frac{1}{2^k}$$

$$\leq CMa(m)\frac{1}{|I|}\sum_{n\in I}1$$

$$= CMa(m) \leq CM(|a|^s)(m)^{\frac{1}{s}}$$

The last inequality follows by using Hölder's inequality. ■

Theorem 8.5. If T_{ϕ} is a singular operator, then for any $w \in A_p, 1 , <math>T_{\phi}$ is bounded on $\ell_w^p(\mathbb{Z})$.

Proof. Let $w \in A_p$. Since $A_p = \bigcup_{q < p} A_q$, we can find s such that p > s > 1 and $w \in A_{\frac{p}{s}}$. Consider a sequence $\{a(n) : n \in \mathbb{Z}\}$ such that a(n) = 0 outside the interval $[-R, -R + 1, \ldots, R]$.

Therefore,

$$\sum_{m \in \mathbb{Z}} |T_{\phi}a(m)|^{p}w(m)$$

$$\leq \sum_{m \in \mathbb{Z}} \left[M_{d} \left[T_{\phi}a(m) \right] \right]^{p}w(m) \quad Lemma[7.1]$$

$$\leq C \sum_{m \in \mathbb{Z}} \left[M^{\#} \left[T_{\phi}a(m) \right] \right]^{p}w(m) \quad Theorem[8.4]$$

$$\leq C \sum_{m \in \mathbb{Z}} \left[M(|a(m)|^{s}) \right]^{\frac{p}{s}}w(m)$$

$$\leq C \sum_{m \in \mathbb{Z}} |a(m)|^{p}w(m)$$

In the second step, we use [Lemma[7.1](Weighted Good -Lambda estimate) provided

$$\sum_{m\in\mathbb{Z}} \left[M_d(T_\phi a(m)) \right]^p w(m)$$

is finite. To show this it is enough to show that $T_{\phi}a \in \ell_w^p(\mathbb{Z})$. We have to prove

$$\sum_{m\in\mathbb{Z}} \left(T_{\phi} a(m) \right)^p w(m) < \infty.$$

To show that this is finite, we split this sum as

$$\sum_{m < 2R} \left(T_{\phi} a(m) \right)^p w(m)$$

and

$$\sum_{m>2R} \left(T_{\phi} a(m) \right)^p w(m).$$

The former sum

$$\sum_{m < 2P} \left(T_{\phi} a(m) \right)^p w(m) < \infty$$

is trivial as shown below.

For $|m| \leq 2R$,

(A4)
$$|T_{\phi}a(m)| \le C \sum_{|n| \le 2R, m \ne n} |a(n)| \frac{C}{|m-n|} \le C ||a||_{\infty} 4R < \infty.$$

For |m| > 2R,

$$|T_{\phi}a(m)| = |\sum_{n \in \mathbb{Z}} a(n)\phi(m-n)| \le C \sum_{|n| < R, m \ne n} \frac{|a(n)|}{|m-n|} \le C \frac{||a||_{\infty}}{|m|}$$

Further, $I(0,2R) \subset I(0,2^{k+1}R)$ and w(I(0,2R)) is a constant independent of m. Also, since $w \in A_p$, by Lemma[6], there exists q < p such that $w \in A_q$. Then by Lemma[4.1]

$$w(I(0,2^{k+1}R)) \leq Cw(I(0,2R)) \left(\frac{|2^{k+1}R|}{|2R|}\right)^q \leq Cw(I(0,2R))(2^k)^q \leq C(w,R)2^{kq}$$

So,

$$\sum_{|m|>2R} |T_{\phi}a(m)|^p w(m) \le C \sum_{k=1}^{\infty} \sum_{2^k R < |m| \le 2^{k+1}R} \frac{w(m)}{|m|^p}$$

$$\le C \sum_{k=1}^{\infty} (2^k R)^{-p} \sum_{|m| \le 2^{k+1}R} w(m)$$

$$\le C \sum_{k=1}^{\infty} (2^k R)^{-p} C(w, R) 2^{kq}$$

$$= C(w, R) \sum_{k=1}^{\infty} 2^{k(q-p)} = C(w, R) \sum_{k=1}^{\infty} \left(\frac{1}{2^{p-q}}\right)^k < \infty$$

Combining both results, $T_{\phi}a \in \ell_w^p(\mathbb{Z})$.

Theorem 8.6. Let T_{ϕ} be a Calderón-Zygmund operator and let $w \in A_1$. Then for any $\{a(n) : n \in \mathbb{Z}\} \in \ell^1_w(\mathbb{Z})$,

$$w(\{m \in \mathbb{Z} : |T_{\phi}a(m)| > \lambda\}) \le \frac{C}{\lambda} \sum_{m \in \mathbb{Z}} |a(m)| w(m)$$

Proof. Perform Calderón-Zygmund decomposition (Theorem[6.1]) of sequence $\{a(n) : n \in \mathbb{Z}\}$ at height λ and obtain disjoint dyadic intervals $\{I_i\}$ which satisfy

$$\lambda \le \frac{1}{|I_j|} \sum_{m \in I_i} |a(m)| \le 2\lambda$$

Decompose $a(m) = g(m) + b(m), m \in \mathbb{Z}$

$$g(m) = \begin{cases} a(m) & \text{if } m \notin \Omega \\ \frac{1}{|I_i|} \sum_{k \in I_i} a(k) & \text{if } m \in I_j \end{cases}$$

where $\Omega = \bigcup_{i} I_{i}$

$$b(m) = \sum_{j=1}^{\infty} b_j(m)$$

where

$$b_j(m) = \left(a(m) - \frac{1}{|I_j|} \sum_{k \in I_j} a(k)\right) \chi_{I_j}(m)$$

Write

$$w(\{m \in \mathbb{Z} : |T_{\phi}a(m)| > \lambda\})$$

$$\leq w(\left\{m \in \mathbb{Z} : |T_{\phi}g(m)| > \frac{\lambda}{2}\right\}) + w(\left\{m \in \mathbb{Z} : |Tb(m)| > \frac{\lambda}{2}\right\})$$

To estimate the first term, note that $w \in A_1$ implies $w \in A_2$. Further since T_{ϕ} is bounded on $\ell_w^2(\mathbb{Z})$, it follows that

$$w\left(\left\{m \in \mathbb{Z} : |T_{\phi}g(m)| > \frac{\lambda}{2}\right\}\right)$$

$$\leq \frac{4}{\lambda^2} \sum_{m \in \mathbb{Z}} |T_{\phi}g(m)|^2 w(m)$$

$$\leq \frac{C}{\lambda^2} \sum_{m \in \mathbb{Z}} |g(m)|^2 w(m)$$

$$= \frac{C}{\lambda^2} \left(\sum_{m \in \Omega^c} |g(m)|^2 w(m) + \sum_{m \in \Omega} |g(m)|^2 w(m)\right)$$

Now,

$$\sum_{m \in \Omega^{c}} |g(m)|^{2} w(m)$$

$$\leq \lambda \sum_{m \in \Omega^{c}} |g(m)| w(m) \leq \lambda \sum_{m \in \Omega^{c}} |a(m)| w(m)$$

Note $w \in A_1$ implies $\frac{w(I)}{|I|} \le Cw(m) \quad \forall m \in I$. So on Ω ,

$$\begin{split} &\sum_{m \in \Omega} |g(m)|^2 w(m) \leq 4\lambda^2 \sum_{m \in \Omega} w(m) \\ &= 4\lambda \sum_{j} \left(\left(\frac{1}{|I_j|} \sum_{k \in I_j} |a(k)| \right) \left(\sum_{m \in I_j} w(m) \right) \right) \\ &= 4\lambda \sum_{j} \left(\left(\frac{1}{|I_j|} \sum_{k \in I_j} |a(k)| \right) \left(w(k)|I_j| \right) \right) \\ &= 4\lambda \sum_{j} \left(\left(\sum_{k \in I_j} |a(k)| \right) \left(w(k) \right) \right) \\ &\leq 4C\lambda \sum_{j} \left(\sum_{m \in I_j} |a(m)| w(m) \right) \end{split}$$

$$\leq 4C\lambda \sum_{m\in\mathbb{Z}} |a(m)|w(m)$$

From above estimates we get

$$w(\left\{m \in \mathbb{Z} : |T_{\phi}g(m)| > \frac{\lambda}{2}\right\}) \le \frac{C}{\lambda}|a(m)|w(m)|$$

Consider.

$$w\left(\left\{m \in \mathbb{Z} : Tb(m) > \frac{\lambda}{2}\right\}\right) \le w\left(\bigcup_{j} 3I_{j}\right) + w\left(\left\{m \in \mathbb{Z} \setminus \bigcup_{j} 3I_{j} : |Tb(m)| > \frac{\lambda}{2}\right\}\right)$$

For the second estimate, by Lemma[4.1]

$$w(\cup_{j} 3I_{j}) \leq C \sum_{j} w(I_{j}) \leq C \sum_{j} \frac{w(I_{j})}{|I_{j}|} |I_{j}|$$

$$\leq C \sum_{j} \frac{w(I_{j})}{|I_{j}|} \frac{C}{\lambda} \left(\sum_{k \in I_{j}} |a(k)| \right)$$

$$\leq \frac{C}{\lambda} \sum_{j} \left(\sum_{k \in I_{j}} |a(k)| \frac{w(I_{j})}{|I_{j}|} \right)$$

$$\leq \frac{C}{\lambda} \left(\sum_{k \in I_{j}} |a(k)| w(k) \right)$$

$$\leq \frac{C}{\lambda} \sum_{k \in \mathbb{Z}} |a(k)| w(k)$$

$$\leq \frac{C}{\lambda} \sum_{k \in \mathbb{Z}} |a(k)| w(k)$$

Now let c_i be center of I_i . Then, since b_i has zero average on I_i .

$$w\left(\left\{m \in \mathbb{Z} \setminus \bigcup_{j} 3I_{j} : |T_{\phi}b(m)| > \frac{\lambda}{2}\right\}\right)$$

$$\leq \frac{C}{\lambda} \sum_{m \in \mathbb{Z} \setminus \bigcup_{j} 3I_{j}} |T_{\phi}b(m)|w(m)$$

$$= \frac{C}{\lambda} \sum_{m \in \mathbb{Z} \setminus \bigcup_{j} 3I_{j}} |\sum_{n \in \mathbb{Z}} \phi(m-n)b_{j}(n)|w(m)$$

$$\leq \frac{C}{\lambda} \sum_{m \in \mathbb{Z} \setminus \bigcup_{j} 3I_{j}} |\sum_{j} \sum_{n \in I_{j}} \phi(m-n)b_{j}(n)|w(m)$$

$$\leq \frac{C}{\lambda} \sum_{m \in \mathbb{Z} \setminus \bigcup_{j} 3I_{j}} |\sum_{j} \sum_{n \in I_{j}} [\phi(m-n) - \phi(c_{j}-m)]b_{j}(n)|w(m)$$

If $m \in \mathbb{Z} \setminus \bigcup_j 3I_j$ and $n \in I_j$ then $|m-n| \geq |I_j| \quad \forall j$. So, it follows that $\forall j \in \mathbb{Z}$, from Lemma[8.3] $|\phi(m-n) - \phi(c_j-m)| \leq C \frac{|I_j|}{|m-n|^2}$.

It follows that,

$$w(\{m \in \mathbb{Z} \setminus \bigcup_{j} 3I_j : |Tb(m)| > \lambda\})$$

$$\leq \frac{C}{\lambda} \sum_{m \in \mathbb{Z} \backslash 3I_{j}} \sum_{j} \sum_{n \in I_{j}} \left(\frac{C|I_{j}|}{|m-n|^{2}} w(m) \right) |b_{j}(n)|$$

$$\leq \frac{C}{\lambda} \sum_{j} \sum_{n \in I_{j}} \sum_{m \in \mathbb{Z} \backslash 3I_{j}} \left(\frac{|I_{j}|}{|m-n|^{2}} w(m) \right) |b_{j}(n)|$$

$$\leq \frac{C}{\lambda} \sum_{j} \sum_{n \in I_{j}} \sum_{s=0}^{\infty} \sum_{2^{s}|I_{j}| < |m-n| \le 2^{s+1}|I_{j}|} \left(\frac{|I_{j}|}{|m-n|^{2}} w(m) \right) |b_{j}(n)|$$

$$\leq \frac{C}{\lambda} \sum_{j} \sum_{n \in I_{j}} \sum_{s=0}^{\infty} \frac{I_{j}}{2^{2s}|I_{j}|^{2}} \sum_{2^{s}|I_{j}| < |m-n| \le 2^{s+1}|I_{j}|} w(m)|b_{j}(n)|$$

$$\leq \frac{C}{\lambda} \sum_{j} \sum_{n \in I_{j}} Mw(n)|b_{j}(n)|$$

$$\leq \frac{C}{\lambda} \sum_{j} \sum_{n \in I_{j}} w(n)|b_{j}(n)|$$

$$\leq \frac{C}{\lambda} \sum_{j} \sum_{n \in I_{j}} \left(|a_{j}(n)| + |g_{j}(n)| \right) \chi_{I_{j}}(n)w(n)$$

$$\leq \frac{C}{\lambda} \sum_{j} \sum_{n \in I_{j}} |a_{j}(n)|w(n) + \frac{C}{\lambda} \sum_{j} \sum_{n \in I_{j}} |g_{j}(n)|w(n)$$

$$\leq \frac{C}{\lambda} \sum_{n \in \mathbb{Z}} |a(n)|w(n)$$

$$\leq \frac{C}{\lambda} \sum_{m \in \mathbb{Z}} |a(n)|w(n)$$

Combining both estimates for $T_{\phi}g, T_{\phi}b$, we get desired result.

Now, we prove the weak and strong type inequalities for the maximal singular operator T_{ϕ}^{\star} operator on $l^p_w(\mathbb{Z})$ spaces. Here, we use transference method to transfer the corresponding results on \mathbb{R} .

The following lemma, whose proof is obvious, is used in the proof of Theorem[8.8]

Lemma 8.7. Suppose $\{w(n): n \in \mathbb{Z}\}$ is a sequence in $A_p(\mathbb{Z}), 1 \leq p < \infty$. Put

$$w'(x) = \begin{cases} w(j) & \text{if } x \in [j - \frac{1}{4}, j + \frac{1}{4}], \quad j \in \mathbb{Z} \\ 0 & \text{otherwise} \end{cases}$$

If $w \in A_p(\mathbb{Z})$, then $w' \in A_p(\mathbb{R}), 1 \leq p < \infty$. If $w \in A_1(\mathbb{Z})$, then $w' \in A_1(\mathbb{R})$.

Theorem 8.8. If T_{ϕ} is a singular kernel operator, then for $1 , <math>T_{\phi}^{\star}$ is bounded on $\ell_{w}^{p}(\mathbb{Z})$ if $w \in A_p$ and T_{ϕ}^{\star} is weak (1,1) with respect to w if $w \in A_1$.

Proof. Let K(x) be the linear extension of ϕ . Also for a given sequence $\{a(n):n\in\mathbb{Z}\}$, we

define a function $f(x) = \sum_{m \in \mathbb{Z}} a(m) \chi_{I_m}(x)$ where $I_m = (m - \frac{1}{4}, m + \frac{1}{4})$. The following inequality which gives the relation between the maximal singular operator on \mathbb{Z} and the maximal singular integral operator on \mathbb{R} is proved in [8].

(A5)
$$T_{\phi}^{\star}a(m) \le C(T_K^{\star}f(x) + Sf(x)), \quad x \in I_m$$

where

$$Sf(x) = \int_{|x-y| > \frac{1}{2}} \frac{|f(y)|}{(x-y)^2} dy$$

$$= \sum_{k=0}^{\infty} \int_{2^k \ge |x-y| > 2^{k-1}} \frac{|f(y)|}{(x-y)^2} dy$$

$$\leq \sum_{k=0}^{\infty} \frac{4}{2^{2k}} \int_{|x-y| \le 2^k} |f(y)| dy$$

$$\leq CMf(x)$$

Now,

$$||f||_{L_{w'(\mathbb{R})}^p}^p = \int_{\mathbb{R}} |f(x)|^p w'(x) dx$$

$$= \sum_{m \in \mathbb{Z}} \int_{I_m} |a(m)|^p w(m) dx = \sum_{m \in \mathbb{Z}} \frac{1}{2} |a(m)|^p w(m) = \frac{1}{2} ||a||_{\ell_w^p(\mathbb{Z})}$$

and

$$||Sf||_{L^{p}_{w'(\mathbb{R})}} = \left(\int_{\mathbb{R}} |\int_{|x-y| > \frac{1}{a}} \frac{|f(y)|}{(x-y)^{2}} dy|^{p} w'(x) dx \right)^{\frac{1}{p}}$$

Therefore, using Lemma[8.7]

$$\begin{split} \left\| T_{\phi}^{\star} a \right\|_{l_{w}^{p}(\mathbb{Z})} &= \left(\sum_{m \in \mathbb{Z}} \left| T_{\phi}^{\star} a(m) \right|^{p} w(m) \right) \\ &\leq \sum_{m \in \mathbb{Z}} 2 \int_{I_{m}} \left| T_{\phi}^{\star} a(m) \right|^{p} w(m) dx \\ &\leq \left(2C \sum_{m \in \mathbb{Z}} \int_{I_{m}} \left[T_{k}^{\star} f(x) + S f(x) \right]^{p} w'(x) dx \right)^{\frac{1}{p}} \\ &\leq \left(2C \int_{\mathbb{R}} \left[T_{k}^{\star} f(x) + S f(x) \right]^{p} w'(x) dx \right)^{\frac{1}{p}} \\ &\leq \left(2C \int_{\mathbb{R}} \left[T_{k}^{\star} f(x) + M f(x) \right]^{p} w'(x) dx \right)^{\frac{1}{p}} \\ &\leq 2C \left(\left\| T_{K}^{\star} f \right\|_{L_{w'(\mathbb{R})}^{p}} + \left\| M f \right\|_{L_{w'(\mathbb{R})}^{p}} \right) \\ &\leq C \left\| f \right\|_{L_{w'(\mathbb{R})}^{p}} \\ &= C \left\| a \right\|_{\ell_{w(\mathbb{Z})}^{p}} \end{split}$$

where we used T_K^\star is of strong type (p,p) on $L_w^p(\mathbb{R})$ and Sf(x) is also of strong type (p,p) on $L_w^p(\mathbb{R})$. Refer [8]. It follows that T_ϕ^\star is strong type (p,p) on $\ell_w^p(\mathbb{Z})$.

Now, we shall prove the weak type (1,1) inequality.

From [A5], we have

$$\left\{m\in\mathbb{Z}:T_\phi^\star a(m)>\lambda\right\}$$

$$\subseteq \left\{ x \in I_m : T_K^{\star} f(x) > \frac{\lambda}{2C} \right\} \cup \left\{ x \in I_m : Sf(x) > \frac{\lambda}{2C} \right\} \\
\subseteq \left\{ x \in I_m : T_K^{\star} f(x) > \frac{\lambda}{2C} \right\} \cup \left\{ x \in I_m : Mf(x) > \frac{\lambda}{2C} \right\}$$

Therefore, the weighted analogue would give for each $x \in I_m$,

$$|w(\left\{m \in \mathbb{Z} : T_{\phi}^{\star}a(m) > \lambda\right\})|$$

$$\leq |w(\left\{x \in I_m : T_K^{\star}f(x) > \frac{\lambda}{2C}\right\})| + |w(\left\{m \in \mathbb{Z} : Mf(x) > \frac{\lambda}{2C}\right\})|$$

Hence, T_K^{\star} is of weak type (1,1) and M is also of weak type (1,1) on $L_w^1(\mathbb{Z})$. Refer [8]. This gives T_ϕ^{\star} is weak type (1,1) on $\ell_w^1(\mathbb{Z})$.

Now, we want to prove that if T_{ϕ}^{\star} is bounded on $\ell_{w}^{p}(\mathbb{Z}), 1 , then <math>w \in A_{p}(\mathbb{Z})$ when T_{ϕ}^{\star} is maximal Hilbert transform H^{\star} whose kernel is given by

$$\phi(k) = \begin{cases} \frac{1}{k} & \text{if } k \neq 0\\ 0 & k = 0 \end{cases}$$

The methodology used in our proof is given in [5]. Observe that for $1 , if <math>H^*$ is bounded on $\ell^p_w(\mathbb{Z})$ then H is bounded on $\ell^p_w(\mathbb{Z})$,

Theorem 8.9. If for $1 and any positive sequence <math>\{w(n) : n \in \mathbb{Z}\}$

$$\sum_{m \in \mathbb{Z}} |Ha(m)|^p w(m) \le C \sum_{m \in \mathbb{Z}} |a(m)|^p w(m) \quad \forall \left\{ a(n) : n \in \mathbb{Z} \right\}$$

then w satisfies the discrete A_p condition which is as follows

$$\left(\frac{1}{|I|} \sum_{m \in I} w(m)\right) \left(\frac{1}{|I|} \sum_{m \in I} w(m)^{\frac{-1}{p-1}}\right)^{p-1} \le C$$

for any interval I in \mathbb{Z} .

Proof. Let $I_1 = [m, m+1, \dots n]$ be any interval in \mathbb{Z} . Consider doubling interval I_1 and relabel it as

$$I_0 = [m, m+1, \dots, n+1, n+2, \dots, 2n-m+1]$$

so that $I_0 = I_1 \cup I_2$, where

$$I_2 = [n+1, n+2 \dots 2n-m+1]$$

Take a non-negative sequence $\{a(n) : n \in \mathbb{Z}\}$ supported in I_1 . Observe that

$$|Ha(m)| = |\sum_{n \in I_1} \frac{a(n)}{m-n}| = \sum_{n \in I_1} \frac{a(n)}{|m-n|}$$

So, for $m \in I_2$ we get

$$|Ha(m)| \ge \frac{1}{2} \left(\frac{1}{|I_1|} \sum_{n \in I_1} a(n) \right) \chi_{I_2}(m) \quad \forall n \in I_1$$

Now, using boundedness of H on $\ell^p_w(\mathbb{Z})$ i.e,

$$\sum_{m \in \mathbb{Z}} |Ha(m)|^p w(m) \le C \sum_{m \in \mathbb{Z}} |a(m)|^p w(m)$$

Since support of $\{a(n) : n \in \mathbb{Z}\}$ is in I_1 , we have,

$$\begin{split} & \left(\frac{1}{|I_1|} \sum_{n \in I_1} a(n)\right)^p \left(\sum_{m \in I_2} w(m)\right) \leq \sum_{m \in \mathbb{Z}} \left(\left(\frac{1}{|I_1|} \sum_{n \in I_1} a(n)\right)^p \chi_{I_2}(m) w(m)\right) \\ & \leq \sum_{m \in \mathbb{Z}} \chi_{I_2}(m) |Ha(m)|^p w(m) \leq C \sum_{m \in \mathbb{Z}} |a(m)|^p w(m) = C \sum_{m \in I_1} |a(m)|^p w(m) \end{split}$$

It follows that

(A7)
$$\left(\frac{1}{|I_1|} \sum_{n \in I_1} a(n)\right)^p \left(\sum_{m \in I_2} w(m)\right) \le C \sum_{m \in I_1} |a(m)|^p w(m)$$

Take $a(n) = 1 \quad \forall n \in \mathbb{Z}$ in [A7] and by interchanging I_1 and I_2 , we have the following two inequalities.

(A8)
$$\sum_{m \in I_2} w(m) \le C \sum_{m \in I_1} w(m)$$

(A9)
$$\sum_{m \in I_1} w(m) \le C \sum_{m \in I_2} w(m)$$

Likewise, take $a(n) = w(n)^{\frac{-1}{p-1}} \quad \forall n \in \mathbb{Z} \text{ in } [A7] \text{ to get}$

$$\left(\sum_{m \in I_2} w(m)\right) \left(\frac{1}{|I_1|} \sum_{m \in I_1} w(m)^{\frac{-1}{p-1}}\right)^p \le C \sum_{m \in I_1} w(m)^{\frac{-p}{p-1}} w(m)$$

So,

$$\left(\sum_{m\in I_2} w(m)\right) \left(\frac{1}{|I_1|} \sum_{m\in I_1} w(m)^{\frac{-1}{p-1}}\right)^{p-1} \le C$$

Therefore,

$$\left(\frac{1}{|I_1|} \sum_{m \in I_1} w(m)\right) \left(\frac{1}{|I_1|} \sum_{m \in I_1} w(m)^{\frac{-1}{p-1}}\right)^{p-1} \\
\leq \left(\frac{C}{|I_1|} \sum_{m \in I_2} w(m)\right) \left(\frac{1}{|I_1|} \sum_{m \in I_1} w(m)^{\frac{-1}{p-1}}\right)^{p-1} \leq C$$

It follows that $w \in A_p(\mathbb{Z})$.

9. MAXIMAL SINGULAR OPERATOR ON VARIABLE SEQUENCE SPACES $\ell^{p(\cdot)}(\mathbb{Z})$

In this section, we prove weak type, and strong type inequalities for the maximal singular operator on $\ell^{p(\cdot)}(\mathbb{Z})$ spaces, $1 \leq p < \infty$, using Rubio de Francia extrapolation method given in [7].

Lemma 9.1. Given $p(\cdot)$ such that M is bounded on $\ell^{p(\cdot)}(\mathbb{Z})$, for each $h \in \ell^{p(\cdot)}(\mathbb{Z})$, define

$$Rh(m) = \sum_{k=0}^{\infty} \frac{M^k h(m)}{2^k ||M||_{B(\ell^{p(\cdot)}(\mathbb{Z}))}^k}$$

where for $k \geq 1$, $M^k = M \circ ... M$ where \circ denotes composition operator acting k times and $M^0 = |I|$, I being identity operator. Then (a) For all $m \in \mathbb{Z}$, $|h(m)| \leq Rh(m)$

(b) R is bounded on $\ell^{p(\cdot)}(\mathbb{Z})$ and $||Rh||_{\ell^{p(\cdot)}} \leq 2 ||h||_{p(\cdot)}$

(c)
$$Rh \in A_1$$
 and $[Rh]_{A_1} \leq 2 \|M\|_{B(\ell^{p(\cdot)}(\mathbb{Z}))}$, where A_1 denotes constant of A_1 weight.

Proof of (a) is obvious. The proof of (b) and (c) are same as in the case of \mathbb{R} . For the corresponding results on \mathbb{R} , refer [7].

Lemma 9.2. Given, a sequence $\mathbf{a} = \{a(n)\}$, and $p(\cdot) \in \mathcal{S}$ then for all $s, \frac{1}{p_-} \leq s < \infty$, $\||a|^s\|_{p(\cdot)} = \|a\|_{sp(\cdot)}^s$

This follows at once from the definition of $\ell^{p(\cdot)}(\mathbb{Z})$ norm. For details refer [7].

Theorem 9.3. Given a sequence $\{a(n): n \in \mathbb{Z}\}$, suppose $p(\cdot) \in \mathcal{S}$ such that $p_- > 1$. Let T_{ϕ}^{\star} be a maximal singular operator. Then,

$$||T_{\phi}^{\star}a||_{\ell^{p(\cdot)}(\mathbb{Z})} \le C ||a||_{\ell^{p(\cdot)}(\mathbb{Z})}$$

If $p_- = 1$, then for all t > 0

$$\left\|t\chi_{\left\{n:|T_{\phi}^{\star}a(n)|>t\right\}}\right\|_{\ell^{p(\cdot)}(\mathbb{Z})} \leq C \left\|a\right\|_{\ell^{p(\cdot)}(\mathbb{Z})}$$

Proof. We will prove strong type inequality when $p_- > 1$.

Take p_0 such that $1 < p_0 \le p_- \le p_+ < \infty$. Here we use $Rh \in A_1(\mathbb{Z})$ and hence $Rh \in A_p(\mathbb{Z}), 1 and the boundedness of <math>T_{\phi}^{\star}$ on $\ell_{Rh}^p(\mathbb{Z})$.

Therefore by Lemma[9.2]

$$\begin{split} & \| (T_{\phi}^{\star}a) \|_{\ell^{p(\cdot)}(\mathbb{Z})}^{p_0} = \| (T_{\phi}^{\star}a)^{p_0} \|_{\ell^{\frac{p(\cdot)}{p_0}}(\mathbb{Z})} \\ & = \sup_{h \in \ell^{(\frac{p(\cdot)}{p_0})'}(\mathbb{Z}), \|h\|_{\ell^{(\frac{p(\cdot)}{p_0})'}(\mathbb{Z})}} \sum_{k \in \mathbb{Z}} |T_{\phi}^{\star}a(k)|^{p_0} |h(k)| \\ & \leq \sup_{h \in \ell^{(\frac{p(\cdot)}{p_0})'}(\mathbb{Z}), \|h\|_{\ell^{(\frac{p(\cdot)}{p_0})'}(\mathbb{Z})}} \sum_{k \in \mathbb{Z}} |T_{\phi}^{\star}a(k)|^{p_0} Rh(k) \\ & \leq \sup_{h \in \ell^{(\frac{p(\cdot)}{p_0})'}(\mathbb{Z}), \|h\|_{\ell^{(\frac{p(\cdot)}{p_0})'}(\mathbb{Z})}} \sum_{k \in \mathbb{Z}} |a(k)|^{p_0} Rh(k) \\ & \leq C \sup_{h \in \ell^{(\frac{p(\cdot)}{p_0})'}(\mathbb{Z}), \|h\|_{\ell^{(\frac{p(\cdot)}{p_0})'}(\mathbb{Z})}} = 1 \\ & \leq C \sup_{h \in \ell^{(\frac{p(\cdot)}{p_0})'}(\mathbb{Z}), \|h\|_{\ell^{(\frac{p(\cdot)}{p_0})'}(\mathbb{Z})}} \|a|^{p_0}\|_{\ell^{p(\cdot)}(\mathbb{Z})} \|Rh\|_{\ell^{(\frac{p(\cdot)}{p_0})'}(\mathbb{Z})} \\ & \leq 2C \|a\|_{\ell^{p_0}}^{p_0} \leq 2C \|a\|_{\ell^{p_0}}^{p_0} \end{cases} \end{split}$$

Now we are going to prove type weak type (1,1) inequality stated in the theorem.

Let $A = \{ m \in \mathbb{Z} : |T_{\phi}^{\star}a(m)| > t \}$. Then,

$$\left\| (t\chi_{\left\{m\in\mathbb{Z}:|T_{\phi}^{\star}a(m)|>t\right\}})\right\|_{p(\cdot)}$$

$$\leq \sup_{h \in \ell^{p(\cdot)'}(\mathbb{Z}), ||h||_{\ell^{p(\cdot)'}(\mathbb{Z})} = 1} \sum_{k \in \mathbb{Z}} |t\chi_{\left\{m \in \mathbb{Z}: |T_{\phi}^{\star}a(m)| > t\right\}}(k) ||h(k)|$$

$$= \sup_{h \in \ell^{p(\cdot)'}(\mathbb{Z}), ||h||_{\ell^{p(\cdot)'}(\mathbb{Z})} = 1} \sum_{k \in \mathbb{Z}} t\chi_{A}(k) Rh(k)$$

$$= \sup_{h \in \ell^{p(\cdot)'}(\mathbb{Z}), ||h||_{\ell^{p(\cdot)'}(\mathbb{Z})} = 1} tRh(A)$$

$$= \sup_{h \in \ell^{p(\cdot)'}(\mathbb{Z}), ||h||_{\ell^{p(\cdot)'}(\mathbb{Z})} = 1} t \frac{C}{t} \sum_{k \in \mathbb{Z}} |a(k)| Rh(k)$$

$$\leq \sup_{h \in \ell^{p(\cdot)'}(\mathbb{Z}), ||h||_{\ell^{p(\cdot)'}(\mathbb{Z})} = 1} C \sum_{k \in \mathbb{Z}} |a(k)| Rh(k)$$

$$= C \sum_{k \in \mathbb{Z}} |a(k)| Rh(k)$$

$$\leq C ||a||_{\ell^{p(\cdot)}(\mathbb{Z})} ||Rh||_{\ell^{p(\cdot)'}(\mathbb{Z})}$$

$$\leq 2C ||a||_{p(\cdot)}$$

10. MAXIMAL ERGODIC SINGULAR OPERATOR

Let (X, \mathbf{B}, μ) be a probability space and U an invertible measure preserving transformation on X. We define the truncated maximal ergodic singular operator and maximal ergodic singular operator as follows:

$$\tilde{T}_{\phi,N}^{\star}f(x) = \sup_{1 \le n \le N} |\sum_{k=-n}^{n} f(U^{-k}x)\phi(k)|$$

$$\tilde{T}_{\phi}^{\star}f(x) = \sup_{n} \left| \sum_{k=-n}^{n} f(U^{-k}x)\phi(k) \right|$$

Now, we prove the strong type, weak type inequalities for the maximal ergodic singular operator on weighted $L^p_w(X, \mathcal{B}, \mu)$ spaces.

Theorem 10.1. Let (X, \mathbf{B}, μ) be a probability space and U an invertible measure preserving transformation on X. If w is an ergodic A_p weight, 1 , then the maximal ergodic singular operator

satisfies

(1)

$$\left\| \tilde{T}_{\phi}^{\star} f \right\|_{L_{w}^{p}(X)} \leq C_{p} \left\| f \right\|_{L_{w}^{p}(X)} \quad \text{if} \quad 1$$

where C_p is independent of N.

(2) If $w \in A_1$, then

$$\int_{\left\{x \in X: |\tilde{T}_{\hat{\sigma}}^{\star}f(x)| > \lambda\right\}} w(x) d\mu(x) \le \frac{C}{\lambda} \int_{X} |f(x)| w(x) d\mu(x)$$

where C_1 is independent of N.

AJMAA, Vol. 21 (2024), No. 2, Art. 3, 24 pp.

Proof. Fix N > 0 and take a function $f \in L^p_w(X)$.

$$\tilde{T}_{\phi,N}^{\star}f(x) = \sup_{1 \le n \le N} |\sum_{k=-n}^{n} f(U^{-k}x)\phi(k)|$$

It is enough to prove that $\tilde{T}_{\phi,N}^{\star}$ satisfies (1) and (2) with constants not depending on N. Let $\lambda>0$ and put

$$E_{\lambda} = \left\{ x \in X : |\tilde{T}_{\phi,N}^{\star} f(x)| > \lambda \right\}$$

For x lying outside a μ null set and a positive integer L, define sequences

$$a_x(k) = \begin{cases} f(U^{-k}x) & if \quad |k| \le L + N \\ 0 & otherwise \end{cases}$$

$$w_x(k) = \begin{cases} w(U^{-k}x) & if \quad |k| \le L + N \\ 0 & otherwise \end{cases}$$

Therefore,

$$\begin{split} &w(\left\{x \in X : |\tilde{T}_{\phi,N}^{\star}f(x)| > \lambda\right\}) = \int_{E_{\lambda}} w(x)d\mu(x) = \frac{1}{\lambda^{p}} \int_{E_{\lambda}} \lambda^{p}w(x)d\mu(x) \\ &\leq \frac{1}{\lambda^{p}} \int_{X} |\tilde{T}_{\phi,N}^{\star}f(x)|^{p}w(x)d\mu(x) \\ &\leq \frac{1}{\lambda^{p}} \int_{X} |\tilde{T}_{\phi,N}^{\star}f(x)|^{p}w(x)d\mu(x) \\ &= \frac{1}{\lambda^{p}} \frac{1}{2L+1} \sum_{m=-L}^{L} \int_{X} |\tilde{T}_{\phi,N}^{\star}f(U^{-m}x)|^{p}w(U^{-m}x)d\mu(x) \\ &\leq \frac{1}{\lambda^{p}} \frac{1}{2L+1} \int_{X} \sum_{m=-L}^{L} |\tilde{T}_{\phi,N}^{\star}f(U^{-m}x)|^{p}w(U^{-m}x)d\mu(x) \\ &\leq \frac{1}{\lambda^{p}} \frac{1}{2L+1} \int_{X} \sum_{m=-L}^{L} |T_{\phi,N}^{\star}a_{x}(m)|^{p}w_{x}(m)d\mu(x) \\ &\leq \frac{1}{\lambda^{p}} \frac{1}{2L+1} \int_{X} \sum_{m=-\infty}^{\infty} |T_{\phi,N}^{\star}a_{x}(m)|^{p}w_{x}(m)d\mu(x) \\ &\leq C \frac{1}{\lambda^{p}} \frac{1}{2L+1} \int_{X} \sum_{m=-\infty}^{(L+N)} |a_{x}(m)|^{p}w_{x}(m)d\mu(x) \\ &= C \frac{1}{\lambda^{p}} \frac{1}{2L+1} \int_{X} \sum_{m=-(L+N)}^{(L+N)} |a_{x}(m)|^{p}w_{x}(m)d\mu(x) \\ &\leq \frac{C}{\lambda^{p}} \frac{1}{2L+1} \sum_{m=-(L+N)}^{(L+N)} |f(U^{-m}x)|^{p}w(U^{-m}x)d\mu(x) \\ &\leq \frac{C}{\lambda^{p}} \frac{1}{2L+1} \sum_{m=-(L+N)}^{(L+N)} \int_{X} |f(U^{-m}x)|^{p}w(U^{-m}x)d\mu(x) \end{split}$$

$$= \frac{C}{\lambda^{p}} \frac{1}{2L+1} \sum_{m=-(L+N)}^{(L+N)} \int_{X} |f(x)|^{p} w(x) d\mu(x)$$

$$\leq \frac{C}{\lambda^{p}} \frac{1}{2L+1} (2(L+N)+1) \|f\|_{L_{w}^{p}(X)}^{p}$$

$$\leq \frac{C}{\lambda^{p}} \|f\|_{L_{w}^{p}(X)}^{p}$$

by choosing L appropriately. Conclusion (1) of the theorem now follows by using the Marcinkiewicz interpolation theorem.

Now, we prove the converse of the above theorem when $\tilde{T}_{\phi,N}^{\star}$ with singular kernel as

$$\phi(k) = \begin{cases} \frac{1}{k} & \text{if } k \neq 0\\ 0 & k = 0 \end{cases}$$

The singular operator associated with this particular singular kernel is known as the maximal ergodic Hilbert transform and is denoted by \tilde{H}^{\star} . Here, we further assume that the associated measure preserving transformation is ergodic.

Definition 10.1 (Ergodic Rectangle). Let E be a subset of X with positive measure and let $K \geq 1$ be such that $U^iE \cap U^jE = \phi$ if $i \neq j$ and $-K \leq i, j \leq K$. Then the set $R = \bigcup_{i=-K}^K U^iE$ is called ergodic rectangle of length 2K+1 with base E.

For the proof of following lemma, refer[4].

Lemma 10.2. Let (X, \mathbf{B}, μ) be a probability space, U an ergodic invertible measure preserving transformation on X and K a positive integer.

- (1) If $F \subseteq X$ is a set of positive measure then there exists a subset $E \subseteq F$ of positive measure such that E is base of an ergodic rectangle of length 2K + 1.
- (2) There exists a countable family $\{E_j\}$ of bases of ergodic rectangles of length 2K + 1 such that $X = \bigcup_j E_j$.

Theorem 10.3. Let (X, \mathcal{B}, μ) be a probability space, U an invertible ergodic measure preserving transformation on X. If \tilde{H}^*f is bounded on $L^p_w(X)$ for some $1 , then <math>w \in A_P(X)$.

Proof. For the given function w on X, for a.e $x \in X$ define the sequence $w_x(k) = w(U^{-k}x)$. We shall prove that

$$esssup_{x \in X} \left(\frac{1}{|I|} \sum_{k \in I} |w_x(k)| \right) \left(\frac{1}{|I|} \sum_{k \in I} |w_x(k)|^{p'-1} \right)^{p-1} \le C$$

This will prove that $w \in A_p(X)$. In order to prove this, we shall prove that the maximal Hilbert transform H^* is bounded on $\ell^p_{w_r}(\mathbb{Z})$ and

$$\|H^{\star}a\|_{\ell^p_{w_r}(\mathbb{Z})} \le C_p \|a\|_{\ell^p_{w_r}(\mathbb{Z})}$$

where C_p is independent of x. In order to prove the above inequality, take a sequence $\{a(n): n \in \mathbb{Z}\} \in \ell^p_{w_r}(\mathbb{Z})$.

Let $R = \bigcup_{k=-2J}^{2J} U^k E$ be an ergodic rectangle of length 4J+1 with base E. Let F be any measurable subset of E. Then F is also base of an ergodic rectangle of length 4J+1. Let $R' = \bigcup_{k=-2J}^{2J} U^k F$. Define function f and w as follows.

$$f(U^{-k}x) = \begin{cases} a(k) & if \quad x \in F \quad \text{and} \quad J \le k \le J \\ 0 & otherwise \end{cases}$$

Then as shown in [3]

$$||f||_{L_w^p(X)}^p = ||a||_{\ell_{w_x}^p(\mathbb{Z})} \mu(F)$$

It is easy to observe that for $-J \le m \le J$ and $x \in F$

$$\tilde{H}_J^{\star} f(U^{-m} x) = H_J^{\star} a(m)$$

Now,

$$C \|f\|_{L_{w}^{p}(X)}^{p} \ge \int_{X} |\tilde{H}_{J}^{\star}f(x)|^{p}w(x)d\mu(x)$$

$$= \int_{R'} |\tilde{H}_{J}^{\star}f(x)|^{p}w(x)d\mu(x)$$

$$= \sum_{k=-J}^{J} \int_{U^{k}F} |\tilde{H}_{J}^{\star}f(x)|^{p}w(x)d\mu(x)$$

$$= \sum_{k=-J}^{J} \int_{F} |\tilde{H}_{J}^{\star}f(U^{-k}x)|^{p}w(U^{-k}x)d\mu(x)$$

$$= \sum_{k=-J}^{J} \int_{F} |H_{J}^{\star}a(k)|^{p}w_{x}(k)d\mu(x)$$

$$= \int_{F} \sum_{k=-J}^{J} |H_{J}^{\star}a(k)|^{p}w_{x}(k)d\mu(x)$$

So from the above estimates

$$\frac{1}{\mu(F)} \int_{F} \sum_{k=-J}^{J} |H_{J}^{\star} a(k)|^{p} w_{x}(k) d\mu(x) \le C \|a\|_{\ell_{w_{x}}^{p}(\mathbb{Z})}$$

Since F was an arbitrary subset of E, we get

$$\sum_{k=-J}^{J} |H_{J}^{\star} a(k)|^{p} w_{x}(k) \le C \|a\|_{\ell_{w_{x}}^{p}(\mathbb{Z})}$$

a.e $x \in E$. Since U is ergodic, X can be written as countable union of bases of ergodic rectangles of length 4J + 1. Therefore for a.e $x \in X$,

$$\sum_{k=-J}^{J} |H_{J}^{\star} a(k)|^{p} w_{x}(k) \leq C \|a\|_{\ell_{w_{x}}^{p}(\mathbb{Z})}$$

Since C is independent of J, a.e $x \in X$,

$$\sum_{k \in \mathbb{Z}} |H^*a(k)|^p w_x(k) \le C \|a\|_{\ell^p_{w_x}(\mathbb{Z})}$$

It follows that the sequence $\{w_x(n): n \in \mathbb{Z}\}$ as defined by $w_x(k) = w(U^k x)$ belongs to $A_p(\mathbb{Z})$ a.e $x \in X$ and A_p weight constant for w_x is independent of x so that $w \in A_p(X)$.

Remark 10.1. Using the boundedness of maximal ergodic singular operator and Rubio de Francia method, we can prove that the maximal ergodic singular operator is bounded on variable $L^{p(\cdot)}(X,\mathcal{B},\mu)$ spaces. But Rubio de Francia method assumes maximal ergodic operator is bounded on the variable $L^{p(\cdot)}(X,\mathcal{B},\mu)$ spaces. With this assumption we can prove the boundedness of maximal ergodic singular operator to variable $L^{p(\cdot)}(X,\mathcal{B},\mu)$ spaces.

REFERENCES

- [1] S.S.S.ANUPINDI and A.M.ALPHONSE, *Relations between discrete maximal operators in harmonic analysis*, Proceedings of the Ninth International Conference on Mathematics and Computing. ICMC 2023. *Lecture Notes in Networks and Systems, Springer, Singapore*, vol 697, https://doi.org/10.1007/978-981-99-3080-7_30.
- [2] S.S.S.ANUPINDI and A.M.ALPHONSE, The boundedness of fractional Hardy-Littlewood maximal operator on variable lp(Z) spaces using Calderon-Zygmund decomposition, *The Journal of the Indian Mathematical Society*, Vol 91, Issue 1-2, January June (2024), https://doi.org/10.18311/jims/2024/31327.
- [3] S.S.S.ANUPINDI and A.M.ALPHONSE, Maximal ergodic theorem on weighted $L^p_w(X)$ spaces , https://arxiv.org/abs/2303.00464. Accepted for publication in *The Journal Of Indian Mathematical Society*.
- [4] E. ATTENCIA and A. DE LA TORRE, A dominated ergodic estimate for L_p spaces with weights, *Studia Mathematica*, **74**, (1982), 35-47.
- [5] R.R.COIFMAN and C.FEFFERMAN, Weighted norm inequalities for maximal functions and singular integrals, *Studia Mathematica*, T. LI (1974).
- [6] J. DUOANDIKOETXEA, Fourier Analysis, Graduate Studies in Mathematics, **Volume 29**, *American Mathematical Society*.
- [7] D. CRUZ-URIBE and A. FIORENZA, Variable Lebesgue spaces: Applied and Numerical Harmonic Analysis, *Foundations and Harmonic analysis*, *Springer*, *Heidelberg*, **Vol 1034**, (2013).
- [8] A.M. ALPHONSE and S.MADAN, On Ergodic Singular Integral Operators, *Colloquium Mathematicum*, **Vol LXVI**, (1994).
- [9] A.M.ALPHONSE and S.MADAN, The Commutator of the Ergodic Hilbert Transform, *Contemporary Mathematics*, **Vol 189**, (1995).
- [10] R.HUNT, B.MUCKENHOUPT and R.WHEEDEN, Weighted norm inequalities for the conjugate and Hilbert transform, Transactions of American Mathematical Society, **176**, (1973), pp. 227-25.