

MAXIMAL SINGULAR OPERATORS ON VARIABLE EXPONENT SEQUENCE SPACES AND THEIR CORRESPONDING ERGODIC VERSION

S.S.S.ANUPINDI AND A.M.ALPHONSE

Received 14 November, 2023; accepted 6 June, 2024; published 5 July, 2024.

DEPARTMENT OF MATHEMATICS, BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE- PILANI, HYDERABAD CAMPUS, JAWAHAR NAGAR, KAPRA MANDAL, DISTRICT.-MEDCHAL-500 078 TELANGANA,

INDIA

[p20180442@hyderabad.bits-pilani.ac.in,](mailto: SRI SAKTI SWARUP ANUPINDI <p20180442@hyderabad.bits-pilani.ac.in>) [alphonse@hyderabad.bits-pilani.ac.in](mailto: MICHAEL ALPHONSE A<p20180442@hyderabad.bits-pilani.ac.in>) *URL*: <https://www.bits-pilani.ac.in/hyderabad/a-michael-alphonse> https://www.bits-pilani.ac.in/research_scholars/sri-sakti-swarup-anupindi

ABSTRACT. In this paper, we prove strong and weak type inequalities of singular operators on weighted $\ell_w^p(\mathbb{Z})$. Using these results, we prove strong type and weak type inequalities of the maximal singular operator of Calderón-Zygmund type on variable exponent sequence spaces $\ell^{p(\cdot)}(\mathbb{Z})$. Using the Calderón-Coifman-Weiss transference principle, we prove strong type, weak type inequalities of the maximal ergodic singular operator on $L_w^p(X, \mathcal{B}, \mu)$ spaces, where (X, \mathcal{B}, μ) is a probability space equipped with measure preserving transformation U.

Key words and phrases: Calderón-Zygmund decomposition; Maximal Singular Operator; Maximal Ergodic Singular Operator; Transference Method; Ergodic Rectangles; Ergodic Weights; Reverse Hölder inequality; Rubio de Francia extrapolation.

2010 *[Mathematics Subject Classification.](https://www.ams.org/msc/)* Primary 37A46. Secondary 28D05.

ISSN (electronic): 1449-5910

c 2024 Austral Internet Publishing. All rights reserved.

1. **INTRODUCTION**

Singular integral operators on the weighted $L^p_w(\mathbb{R})$ spaces are studied in [\[10\]](#page-23-0). In [10], the authors have proved that for $1 < p < \infty$ and if the non-negative function $w(x)$ satisfies A_p condition then the singular integral operators are bounded on $L_w^p(\mathbb{R})$. For $p = 1$, it has been proved that if $w(x)$ satisfies A_1 condition, then the singular integral operators satisfy weak type (1,1) inequality with respect to the weighted measure. The detailed proof of the same can also be seen in [\[6\]](#page-23-1). In [\[8\]](#page-23-2), the authors have studied the singular operators on sequence spaces $\ell^p(\mathbb{Z})$ and their corresponding ergodic versions.

In this paper, we prove strong type, weak type inequalities of singular operators on weighted $\ell_w^p(\mathbb{Z})$ spaces. Using these results we prove strong type, weak type inequalities of maximal singular operator of Calderón-Zygmund type on variable sequence spaces $\ell^{p(\cdot)}(\mathbb{Z})$.

These results are achieved using Calderón-Zygmund decomposition for sequences, properties of A_p weights, reverse Hölder inequality and Rubio de Francia extrapolation. We also prove strong type, weak type inequalities of maximal ergodic singular operators on $L_w^p(X, \mathcal{B}, \mu)$ spaces, where (X, \mathcal{B}, μ) is a probability space equipped with an invertible measure preserving transformation U. We use Calderón-Coifman-Weiss transference principle to achieve these results.

In [\[4\]](#page-23-3) the characterization of those positive functions w (known as ergodic A_p weights) for which the maximal ergodic singular operator associated with an invertible measure preserving transformation on a probability space is bounded on $L_w^p(X, \mathcal{B}, \mu)$ is given. In their proof the ergodic analogue of Calderón-Zygmund decomposition and the concept of ergodic rectangles are used. Using the same concept of ergodic rectangles, we prove that for $1 < p < \infty$, if the maximal ergodic Hilbert transform is bounded on $L_w^p(X, \mathcal{B}, \mu)$, then $w \in A_p(X)$. In [\[4\]](#page-23-3), the authors have given direct proof of this result without using the corresponding results on weighted sequence spaces. In this paper we use the corresponding result on $\ell_w^p(\mathbb{Z})$ to prove this result.

2. **DEFINITIONS AND NOTATION**

Throughout this thesis, $\mathbb Z$ denotes the set of all integers and $\mathbb Z_+$ denotes the set of all positive integers. For a given interval I in $\mathbb Z$ (we always mean finite interval of integers), |I| always denotes the cardinality of I. For each positive integer N, consider collection of disjoint intervals of cardinality 2^N ,

$$
\{I_{N,j}\}_{j\in\mathbb{Z}} = \{[(j-1)2^N+1,\ldots,j2^N]\}_{j\in\mathbb{Z}}.
$$

The set of intervals which are of the form $I_{N,j}$ where $N \in \mathbb{Z}_+$ and $j \in \mathbb{Z}$ are

called dyadic intervals. For fixed N , $I_{N,j}$ are disjoint.

Given a dyadic interval $I = \{[(j-1)2^N + 1, \ldots, j2^N]\}_{j \in \mathbb{Z}}$ and a positive integer m, we define

$$
2LI = [(j - 2)2N + 1, ..., j2N]
$$

\n
$$
4LI = [(j - 4)2N + 1, ..., j2N]
$$

\n
$$
2RI = [(j - 1)2N + 1, ..., (j + 1)2N]
$$

\n
$$
4RI = [(j - 1)2N + 1, ..., (j + 3)2N]
$$

\n
$$
3I = 2LI \cup 2RI
$$

\n
$$
5I = 4LI \cup 4RI
$$

For $k = 2, 3, 4, \ldots$ and $K \in \mathbb{Z}_+$, let $I(0, 2^k K)$ denotes the interval

$$
[-2^{k-1}K, -2^{k-1}K + 1, \ldots, -1, 0, 1, 2, \ldots, 2^{k-1}K - 1, 2^{k-1}K].
$$

For a given sequence $\{a(n) : n \in \mathbb{Z}\}\$ and an interval I_j , $a(I_j) = \sum_{k \in I_j} a(k)$. For a sequence $\{p(n) : n \in \mathbb{Z}, p(n) \ge 1\}$, define $p_-=\inf \{p(n) : n \in \mathbb{Z}\}, p_+=\sup \{p(n) : n \in \mathbb{Z}\}.$ Throughout this paper, we assume $p_+ < \infty$ and $1 \leq p_- \leq p(n) < p_+ < \infty$, $n \in \mathbb{Z}$. We denote set of all such sequences $\{p(n) : n \in \mathbb{Z}\}\$ by S.

Maximal Operators. Let $\{a(n) : n \in \mathbb{Z}\}$ be a sequence. We define the following three types of Hardy-Littlewood maximal operators as follows:

Definition 2.1. If I_r is the interval $\{-r, -r + 1, \ldots, 0, 1, 2, \ldots, r - 1, r\}$, define centered Hardy-Littlewood maximal operator

$$
M'a(m) = \sup_{r>0} \frac{1}{(2r+1)} \sum_{n \in I_r} |a(m-n)|
$$

We define Hardy-Littlewood maximal operator as follows

$$
Ma(m) = \sup_{m \in I} \frac{1}{|I|} \sum_{n \in I} |a(n)|
$$

where the supremum is taken over all intervals containing m .

Definition 2.2. We define dyadic Hardy-Littlewood maximal operator as follows:

$$
M_d a(m) = \sup_{m \in I} \frac{1}{|I|} \sum_{k \in I} |a(k)|
$$

where supremum is taken over all dyadic intervals containing m.

Given a sequence $\{a(n) : n \in \mathbb{Z}\}\$ and an interval *I*, let a_I denote average of $\{a(n) : n \in \mathbb{Z}\}\$ on *I*. Let, $a_I = \frac{1}{|I|}$ $\frac{1}{|I|} \sum_{m \in I} a(m)$. Define the sharp maximal operator $M^{\#}$ as follows

$$
M^{\#}a(m) = \sup_{m \in I} \frac{1}{|I|} \sum_{n \in I} |a(n) - a_I|
$$

where the supremum is taken over all intervals I containing m . We say that sequence ${a(n) : n \in \mathbb{Z}}$ has bounded mean oscillation if the sequence $M^{\#}a$ is bounded. The space of sequences with this property is denoted by $BMO(\mathbb{Z})$.

We define a norm in BMO(\mathbb{Z}) by $||a||_{\star} = ||M^{\#}a||_{\infty}$. The space BMO(\mathbb{Z}) is studied in [\[9\]](#page-23-4).

Norm in Variable Sequence Spaces.

Definition 2.3. Given a bounded sequence $\{p(n) : n \in \mathbb{Z}\}\$ which takes values in $[1,\infty)$, define $\ell^{p(\cdot)}(\mathbb{Z})$ to be set of all sequences $\{a(n) : n \in \mathbb{Z}\}\$ such that for some $\lambda > 0$,

$$
\sum_{k\in\mathbb{Z}}\left(\frac{|a(k)|}{\lambda}\right)^{p(k)} < \infty.
$$

We define modular functional for variable sequences spaces associated with $p(\cdot)$ as

$$
\rho_{p(\cdot)}(a) = \sum_{k \in \mathbb{Z}} |a(k)|^{p(k)}
$$

Further for a given sequence $\{a(k) : k \in \mathbb{Z}\}\$ in $\ell^{p(\cdot)}(\mathbb{Z})$, we define

$$
||a||_{p(\cdot)} = \inf \left\{\lambda > 0 : \rho_{p(\cdot)}\left(\frac{a}{\lambda}\right) \leq 1\right\}
$$

 $||a||_{\ell^{p(\cdot)}(\mathbb{Z})}$ is a norm in $\ell^{p(\cdot)}(\mathbb{Z})$ [\[7\]](#page-23-5).

Weights.

Definition 2.4. For a fixed $p, 1 < p < \infty$, we say that a non-negative sequence $\{w(n) : n \in \mathbb{Z}\}\$ belongs to class A_p if there is a constant C such that, for all intervals I in \mathbb{Z} , we have

$$
\left(\frac{1}{|I|} \sum_{k \in I} w(k)\right) \left(\frac{1}{|I|} \sum_{k \in I} w(k)^{-\frac{1}{p-1}}\right)^{p-1} \le C.
$$

Infimum of all such constants C is called A_p constant.

We say that $\{w(m) : m \in \mathbb{Z}\}$ belongs to class A_1 if there a constant C such that, for all intervals I in \mathbb{Z} ,

$$
\frac{1}{|I|} \sum_{k \in I} w(k) \le C w(m)
$$

for all $m \in I$. Infimum of all such constants C is called A_1 constant. Let $1 \leq p < \infty$ and $\{w(n) : n \in \mathbb{Z}\}\in A_p(\mathbb{Z})$. We say that a sequence $\{a(n) : n \in \mathbb{Z}\}\$ is in $\ell^p_w(\mathbb{Z})$ if

$$
\sum_{n\in\mathbb{Z}} |a(n)|^p w(n) < \infty.
$$

We define norm in $\ell_w^p(\mathbb{Z})$ by

$$
||a||_{\ell^p_w(\mathbb{Z})} = \left(\sum_{k \in \mathbb{Z}} |a(k)|^p w(k)\right)^{\frac{1}{p}}.
$$

For a subset A of \mathbb{Z} , $w(A)$ denotes $\sum_{k \in A} w(k)$.

For a given sequence $\{a(n) : n \in \mathbb{Z}\}\in \ell^p_w(\mathbb{Z})$, the weighted weak type (p,p) inequality for a non-negative weight sequence $\{w(n) : n \in \mathbb{Z}\}\$ is as follows:

$$
w(\{m \in \mathbb{Z} : Ma(m) > \lambda\}) \leq \frac{C}{\lambda^p} \sum_{m \in \mathbb{Z}} |a(m)|^p w(m)
$$

Definition 2.5. Let (X, \mathbf{B}, μ) be a probability space and U an invertible measure preserving transformation on X. Suppose $1 < p < \infty$ and $w : X \to \mathbb{R}$ be a non-negative integrable function. The function w is said to satisfy ergodic A_p condition,

$$
ess sup_{x \in X} \sup_{N \ge 1} \left(\frac{1}{2N+1} \sum_{k=-N}^{N} w(U^k x) \right) \left(\frac{1}{2N+1} \sum_{k=-N}^{N} w(U^k x)^{\frac{-1}{p-1}} \right)^{p-1} \le C.
$$

The function w is said to satisfy ergodic A_1 condition,

$$
ess sup_{x \in X} \sup_{N \ge 1} \frac{1}{2N+1} \sum_{k=-N}^{N} w(U^k x) \le C w(U^m x)
$$

for $m = -N, -N + 1, \ldots, N$.

3. **RELATIONS BETWEEN MAXIMAL OPERATORS**

In the following lemmas, we give relations between maximal operators. For the proofs of the following lemmas, refer [\[1\]](#page-23-6). These relations will be used when we prove the weighted inequalities for maximal ergodic operators.

Lemma 3.1. *Given a sequence* $\{a(m) : m \in \mathbb{Z}\}$ *, the following relation holds:*

$$
M'a(m) \leq Ma(m) \leq 3M'a(m)
$$

Lemma 3.2. *If* $a = \{a(k) : k \in \mathbb{Z}\}\)$ *is a non-negative sequence with* $a \in \ell_1$ *, then*

 $|\{m \in \mathbb{Z} : M'a(m) > 4\lambda\}| \leq 3|\{m \in \mathbb{Z} : M_{d}a(m) > \lambda\}|$

In the following lemma, we see that in the norm of $BMO(\mathbb{Z})$ space, we can replace the average a_I of $\{a(n) : n \in \mathbb{Z}\}\$ by a constant b. The proof is similar to the proof in continuous version [\[6\]](#page-23-1). The second inequality follows from $||a| - |b|| < |a| - |b|$.

Lemma 3.3. *Consider a non-negative sequence* $\mathbf{a} = \{a(k) : k \in \mathbb{Z}\}\$ in BMO(\mathbb{Z}). Then the *following are valid.*

1.
$$
\frac{1}{2} ||a||_{\star} \le \sup_{m \in I} \inf_{b \in \mathbb{Z}} \frac{1}{|I|} |a(m) - b| \le ||a||_{\star}
$$

2.
$$
M^{\#}(|a|)(i) \le M^{\#}a(i), i \in \mathbb{Z}
$$

4. **WEIGHTED CLASSICAL RESULTS FOR MAXIMAL OPERATORS**

Let $1 \leq p < \infty$. In this section, for a given sequence $\{a(n) : n \in \mathbb{Z}\}\$ in $\ell_w^p(\mathbb{Z})$, we prove weighted weak type (p,p) inequality with respect to the weight sequence $\{w(n) : n \in \mathbb{Z}\}\in A_p$ which is stated in Theorem[[4](#page-4-0).2].

The proof of the following theorem is similar to the proof of corresponding result in continuous version [\[6\]](#page-23-1). We state here without proof.

Theorem 4.1. *Let* $\{a(n) : n \in \mathbb{Z}\}$ *be a non-negative sequence and* $\{w(n): n \in \mathbb{Z}\}\in A_p, 1 \leq p < \infty$ *be a non-negative weight sequence. Let* I *be an interval such that* $a(m) > 0$ *for some* $m \in I$ *. Then,*

(1)

(4.1[A])
$$
w(I) \left(\frac{a(I)}{|I|}\right)^p \leq C \sum_{m \in I} |a(m)|^p w(m)
$$

(2) *Given a finite set* $S \subset I$,

(4.1[B])
$$
w(I) \left(\frac{|S|}{|I|}\right)^p \leq Cw(S)
$$

4.[1\[](#page-4-1)A] follows from Hölder's inequality and the A_p condition. 4.1[B] follows by taking $a =$ χ_S in 4.[1\[](#page-4-1)A].

Theorem 4.2. *Assume* $\{w(n) : n \in \mathbb{Z}\}\in A_p$. *Given a non-negative sequence* $\{a(n) : n \in \mathbb{Z}\}\in A_p$ $\ell_w^p(\mathbb{Z})$, for $1 \leq p < \infty$, the weighted weak(p,p) inequality holds:

$$
w(\{m \in \mathbb{Z} : Ma(m) > \lambda\}) \le \frac{C}{\lambda^p} \sum_{m \in \mathbb{Z}} |a(m)|^p w(m)
$$

For the proof of Theorem[[4](#page-4-0).2], refer [\[3\]](#page-23-7).

Theorem 4.3. *If* $w \in A_p$, $1 < p < \infty$, then M is bounded on $\ell_w^p(\mathbb{Z})$.

The proof follows from Theorem[[4](#page-4-0).2] and Marcinkiewicz interpolation theorem.

5. **PROPERTIES OF** A^p **WEIGHTS**

We state the properties of A_p weights for sequences without proofs. The proofs are similar to the proofs of corresponding results in the continuous version.

Property 1. $A_p \subset A_q, 1 \leq p < q$.

Property 2. $w \in A_p$ if and only if $w^{1-p'} \in A_{p'}$

Let $w(m) \in A_p, m \in I$. Proof follows by noting $A_{p'}$ condition for $w^{1-p'}$. For the converse A_p condition can be verified.

Property 3. $w_0, w_1 \in A_1 \implies w_0 w_1^{1-p} \in A_p$.

Here, we state reverse Hölder inequality for weighted sequences. For continuous version of these proofs, refer to [\[6\]](#page-23-1).

Property 4. *[Reverse Hölder Inequality] Let* $w \in A_p$, $1 \leq p < \infty$ *. Then, there exists constants* c and $\epsilon > 0$, depending only on p and the A_p constants of w, such that for any interval I,

$$
\left(\frac{1}{|I|}\sum_{m\in I} w(m)^{1+\epsilon}\right)^{\frac{1}{1+\epsilon}} \le \frac{C}{|I|}\sum_{m\in I} w(m)
$$

Property 5. $A_n = \bigcup_{a \leq n} A_a, 1 \leq p \leq \infty$.

Property 6. *If* $w \in A_p$, $1 \leq p < \infty$, then there exists $\epsilon > 0$ such that $w^{1+\epsilon} \in A_p$

Property 7. *If* $w \in A_p$, $1 \leq p < \infty$ *, then there exists* $\delta > 0$ *such that given a interval I and* $S ⊂ I$,

$$
\frac{w(S)}{w(I)} \le C \left(\frac{|S|}{|I|}\right)^{\delta}
$$

6. **CALDERÓN-ZYGMUND DECOMPOSTION FOR SEQUENCES**

For the proof of Theorem[[6](#page-5-0).1], we refer [\[2\]](#page-23-8).

Theorem 6.1. Let $0 \le \alpha < 1$. Take a real number p such that $1 \le p < \frac{1}{\alpha}$ (If $\alpha = 0$ then $1 \leq p < \infty$). Let $\{a(n) : n \in \mathbb{Z}\}\in \ell^p(\mathbb{Z})$. Then

there exists a sequence of disjoint intervals $\left\{I_j^t\right\}$ such that

$$
(i) \quad t < \frac{1}{|I_j^t|^{1-\alpha}} \sum_{k \in I_j^t} |a(k)| \le 2t, \forall j \in \mathbb{Z}.
$$

$$
(ii) \quad \forall n \notin \cup_j I_j^t, \quad |a(n)| \le t.
$$

(*iii*) If $t_1 > t_2$, then each $I_j^{t_1}$ is subinterval of some $I_m^{t_2}$ $\forall j, m \in \mathbb{Z}$.

7. **WEIGHTED GOOD LAMBDA ESTIMATE**

Lemma 7.1. Let $\{a(n) : n \in \mathbb{Z}\}$ be a non-negative sequence in $\ell_w^p(\mathbb{Z})$. Let $w \in A_p, 1 \leq p_0 \leq \ell_w^p$ $p < \infty$. If $\{a(n) : n \in \mathbb{Z}\}$ is such that M_d $a \in \ell_{w}^{p_0}(\mathbb{Z})$, then

$$
\sum_{m \in \mathbb{Z}} |M_d a(m)|^p w(m) \le C \sum_{m \in \mathbb{Z}} |M^{\#} a(m)|^p w(m)
$$

where M_d *is the dyadic maximal operator and* $M^{\#}$ *is the sharp maximal operator, whenever, the left hand side is finite.*

Proof. In order to prove Lemma^{[[7](#page-5-1).1]}, first we prove the good- λ inequality, which is as follows: For some $\delta > 0$,

$$
w(\{m \in \mathbb{Z} : M_d a(m) > 2\lambda, M^{\#} a(m) \leq \gamma \lambda\}) \leq C\gamma^{\delta} w(\{x \in \mathbb{Z} : M_d a(m) > \lambda\})
$$

Since $\{m \in \mathbb{Z} : M_d a(m) > \lambda\}$ can be decomposed into disjoint dyadic cubes, it is enough to show that for each such interval I,

$$
w(\{m \in I : M_d a(m) > 2\lambda, M^{\#} a(m) \le \gamma \lambda\}) \le C\gamma^{\delta} w(I)
$$

The above inequality can be proved using the same argument as in Lemma[4.6] from [\[1\]](#page-23-6) and property[[7](#page-5-2)] . Now we prove Lemma[[7](#page-5-1).1]

Consider, for any positive integer N

$$
I_N = \int_0^N p\lambda^{p-1} |w\{n \in \mathbb{Z} : M_d a(k) > \lambda\}| d\lambda
$$

Since $a \in \ell^{p_0}$ implies $M_d a \in \ell^{p_0}, I_N$ is finite,

$$
I_N = \int_0^N p\lambda^{p-1} |w \{n \in \mathbb{Z} : M_d a(k) > \lambda\} | d\lambda
$$

\n
$$
= 2^p \int_0^{\frac{N}{2}} p\lambda^{p-1} |w \{n \in \mathbb{Z} : M_d a(k) > 2\lambda\} | d\lambda =
$$

\n
$$
\leq 2^p \int_0^{\frac{N}{2}} p\lambda^{p-1} |w \{n \in \mathbb{Z} : M_d a(k) > 2\lambda, M^\# a(k) \leq \gamma \lambda\} | d\lambda +
$$

\n
$$
2^p \int_0^{\frac{N}{2}} p\lambda^{p-1} |w \{n \in \mathbb{Z} : M_d a(k) > 2\lambda, M^\# a(k) > \gamma \lambda\} | d\lambda
$$

\n
$$
\leq 2^p \int_0^{\frac{N}{2}} p\lambda^{p-1} C\gamma^{\delta} w \{n \in \mathbb{Z} : M_d a(k) > \lambda\} d\lambda +
$$

\n
$$
2^p \int_0^{\frac{N}{2}} p\lambda^{p-1} |w \{n \in \mathbb{Z} : M^\# a(k) > \gamma \lambda\} | d\lambda
$$

\n
$$
\leq 2^p C\gamma^{\delta} \int_0^N p\lambda^{p-1} w \{n \in \mathbb{Z} : M_d a(k) > \lambda\} d\lambda +
$$

\n
$$
2^p \int_0^{\frac{N}{2}} p\lambda^{p-1} |w \{n \in \mathbb{Z} : M^\# a(k) > \gamma \lambda\} | d\lambda
$$

It follows that

$$
(1 - 2pC\gammaδ)IN \le 2p \int_0^{\frac{N}{2}} p\lambda^{p-1} |w\{n \in \mathbb{Z} : M^{\#}a(k) > \gamma\lambda\}|d\lambda
$$

Now take $(1 - 2^p C\gamma^{\delta}) = \frac{1}{2}$. Then,

$$
\frac{1}{2}I_N \le 2^p \int_0^{\frac{N}{2}} p\lambda^{p-1} |w| \{n \in \mathbb{Z} : M^\#a(k) > \gamma \lambda\} |d\lambda
$$

$$
\le \frac{2^p}{\gamma^p} \int_0^{\frac{N}{2}} p\lambda^{p-1} |w| \{n \in \mathbb{Z} : M^\#a(k) > \lambda\} |d\lambda
$$

Now, take $N \to \infty$, we get

$$
\sum_{m \in \mathbb{Z}} M_d a(m)^p w(m) \le C \sum_{m \in \mathbb{Z}} M^{\#} a(m)^p w(m)
$$

-
- \blacksquare

8. **CALDERÓN-ZYGMUND SINGULAR OPERATOR**

In this section, we study Calderón-Zygmund singular operator on weighted $\ell_w^{p(\cdot)}(\mathbb{Z})$ spaces. This operator on $\ell^p(\mathbb{Z})$ spaces is studied in [\[8\]](#page-23-2).

Definition 8.1. A sequence $\{\phi(n)\}\$ is said to be a singular kernel if there exist constants C_1 and $C_2 > 0$ such that

- If $\phi = {\phi(n)}$ is a singular kernel and $\{a(n) : n \in \mathbb{Z}\}\in \ell^p(\mathbb{Z}), 1 \leq p < \infty$, define
- (S1): $\sum_{n=-N}^{N} \phi(n)$ converges as $N \to \infty$.
- (S2): $\phi(0) = 0$ and $|\phi(n)| \leq \frac{C_1}{|n|}, n \neq 0$
- (S3): $|\phi(n+1) \phi(n)| \leq \frac{C_2}{n^2}$, $n \neq 0$.

$$
T_{\phi}a(n) = (\phi \star a)(n) = \sum_{k \in \mathbb{Z}} \phi(n-k)a(k)
$$

Since S2 implies that $\phi \in \ell^r$ for all $1 < r \leq \infty$, the above convolution is defined.

The operator T_{ϕ} defined above is called discrete singular operator.

The maximal singular operator corresponding to this singular operator is defined as

$$
T_{\phi}^{\star}a(n) = \sup_{N} \left| \sum_{k=-N}^{N} \phi(k)a(n-k) \right|
$$

If ϕ is a singular kernel and we let K be the linear extension of ϕ to R, then K is locally integrable and satisfies:

(K1)

$$
\int_{\epsilon < |x| < \frac{1}{\epsilon}} K(x) \quad dx \quad \text{converges as } \epsilon \to 0
$$

(K2)

$$
|K(x)| \le \frac{C}{|x|}
$$

(K3)

$$
|K(x) - K(x - y)| \le \frac{C|y|}{x^2} \text{ for } |x| > 2|y|
$$

The function $K(x)$ which satisfies $(K1), (K2), (K3)$ is known as Calderón-Zygmund singular kernel on R. The principal value integral

$$
T_K f(x) = \lim_{\epsilon > 0} \int_{|x-y| > \epsilon} K(x-y) f(y) dy
$$

and the maximal singular integral operator

$$
T_K^{\star} f(x) = \sup_{\epsilon > 0} \left| \int_{|x-y| > \epsilon} K(x-y) f(y) dy \right|
$$

satisfy strong type (p,p) and weak type $(1,1)$ inequalities [\[8\]](#page-23-2).

The proof of following theorem can be found in [\[8\]](#page-23-2). The following theorem states that the discrete maximal singular operator and discrete singular operator are bounded on $\ell^p(\mathbb{Z})$, $1 <$ $p < \infty$ and they satisfy weak(1,1) inequality. For proof, we refer to [\[8\]](#page-23-2).

Theorem 8.1 ([\[8\]](#page-23-2)). Let $\phi = {\phi(n)}$ *be a singular kernel. Then there exists constant* $C_p > 0$ *such that*

(1) If $1 < p < \infty$, $||T_{\phi}a||_{p} \leq C_{p} ||a||_{p}$, $\forall a \in \ell^{p}(\mathbb{Z})$.

$$
(2) \left|\{n: |T_{\phi}a(n)| > \lambda\}\right| \leq \frac{C_1}{\lambda} \left\|a\right\|_1, \forall a \in \ell^1(\mathbb{Z}) \text{ and } \lambda > 0.
$$

Theorem 8.2 ([\[8\]](#page-23-2)). Let ϕ be a singular kernel and $1 \leq p < \infty$. Then there exists a constant $C_p > 0$ *such that (i)*

$$
\left\|T_{\phi}^{\star}a\right\|_p\leq C_p\left\|a\right\|_p\quad\forall a\in \ell^p(\mathbb{Z}),\quad \textit{if}\quad 1
$$

(ii)

$$
|\{j \in \mathbb{Z} : T^*_{\phi}a(j) > \lambda\}| \leq \frac{C_1}{\lambda} ||a||_1 \quad \forall \lambda > 0 \quad \text{and} \quad a \in \ell^1(\mathbb{Z})
$$

Now, we prove the strong type and weak type inequalities for the discrete singular operator T_{ϕ} on $\ell_w^{p(\cdot)}(\mathbb{Z})$ spaces. For this we require the following lemmas.

Lemma 8.3. *Let* ϕ *be a singular kernel. Given an interval I which contains integers m,n, then for* $r \notin 5I$ *,*

$$
|\phi(m-r) - \phi(n-r)| \le \frac{C|I|}{|n-r|^2}
$$

Proof. If $m > n$, then

$$
|\phi(n-r) - \phi(m-r)|
$$

\n
$$
\leq |\phi(n-r) - \phi(n-r+1) + \phi(n-r+1) - \phi(n-r+2)\cdots +
$$

\n
$$
+\phi(n-r+m-n-1) - \phi(n-r+m-n)|
$$

\n
$$
\leq |\phi(n-r) - \phi(n-r+1)| + |\phi(n-r+1) - \phi(n-r+2)|\cdots +
$$

\n
$$
+ |\phi(n-r+m-n-1) - \phi(n-r+m-n)|
$$

\n
$$
\leq \frac{C}{|n-r|^2} + \frac{C}{|n-r+1|^2} + \cdots + \frac{C}{|m-r-1|^2}
$$

\n
$$
\leq C \frac{|I|}{|n-r|^2}
$$

\n
$$
\leq C \frac{|I|}{|n-r|^2}
$$

By the same argument, if $n > m$, then

$$
|\phi(m - r) - \phi(n - r)| \le \frac{C|I|}{|m - r|^2}
$$

Also

 $|m - r| = |(m - n) + (n - r)| \ge |n - r| - |m - n| \ge |n - r| - |I|$ Since $r \in \mathbb{Z}\setminus 5I$, we have $|n-r| \geq 2|I|$. Hence for $r \in \mathbb{Z}\setminus 5I$. $|m-r| \geq |n-r| - \frac{|n-r|}{2} \geq \frac{|n-r|}{2}$ i.e $\frac{1}{|m-r|}$ ≤ $\frac{2}{|n-r|}$. Therefore, in this case also, $|\phi(m-r) - \phi(n-r)| \leq \frac{C|I|}{(n-r)^2}$. ■ $\frac{2}{(n-r)!}$. Therefore, in this case also, $|\phi(m-r) - \phi(n-r)| \leq \frac{C|I|}{(n-r)^2}$.

Lemma 8.4. *If* T_{ϕ} *is a singular operator, then for each* $s > 1$ *, there exists a constant* $C_s > 0$ *such that*

$$
M^{\#}(T_{\phi}a(m)) \leq C_s \bigg[M(|a|^s)(m)\bigg]^{\frac{1}{s}}
$$

for each integer $m \in \mathbb{Z}$ *.*

Proof. Fix $s > 1$. Given an integer m and an interval I which contains m, by Lemma[[3](#page-4-2).3], it is enough to find a constant h such that

$$
\frac{1}{|I|} \sum_{n \in I} |T_{\phi}a(n) - h| \le CM(|a|^s)(m)^{\frac{1}{s}}
$$

Decompose $a = a_1 + a_2$, where $a_1 = a \chi_{5I}$, $a_2 = a - a_1$. Now let $h = T_{\phi}a(m)$, then

$$
\frac{1}{|I|} \sum_{n \in I} |T_{\phi}a(n) - h| \le \frac{1}{|I|} \sum_{n \in I} |T_{\phi}a_1(n)| + \frac{1}{|I|} \sum_{n \in I} |T_{\phi}a_2(n) - T_{\phi}a_2(m)|
$$

Since $s > 1$, T_{ϕ} is bounded on $\ell^{s}(\mathbb{Z})$. Therefore,

$$
\frac{1}{|I|} \sum_{n \in I} |T_{\phi} a_1(n)| \leq \left(\frac{1}{|I|} \sum_{n \in I} |T_{\phi} a_1(n)|^s\right)^{\frac{1}{s}}
$$
\n
$$
\leq C \left(\frac{1}{|I|} \sum_{n \in \mathbb{Z}} |a_1(n)|^s\right)^{\frac{1}{s}}
$$
\n
$$
\leq C \left(\frac{5}{|5I|} \sum_{n \in 5I} |a(n)|^s\right)^{\frac{1}{s}}
$$
\n
$$
\leq 5^{\frac{1}{s}} C \left[M(|a|^s)(m)\right]^{\frac{1}{s}}
$$

To deal with a_2 , we require the estimate from Lemma[[8](#page-8-0).3]. Now, we estimate the second term as follows.

$$
\frac{1}{|I|} \sum_{n\in I} |T_{\phi}a_2(n) - T_{\phi}a_2(m)|
$$
\n
$$
\leq \frac{1}{|I|} \sum_{n\in I} \sum_{r\in \mathbb{Z}\setminus 5I} \left(\phi(n-r) - \phi(m-r) \right) a(r)|
$$
\n
$$
\leq \frac{1}{|I|} \sum_{n\in I} \sum_{r\in \mathbb{Z}\setminus 5I} |\phi(n-r) - \phi(m-r)| |a(r)|
$$
\n
$$
\leq C \frac{1}{|I|} \sum_{n\in I} \sum_{r\in \mathbb{Z}\setminus 5I} \frac{|I|}{|n-r|^2} |a(r)|
$$
\n
$$
\leq C \frac{1}{|I|} \sum_{n\in I} \sum_{k=1}^{\infty} \sum_{2^k |I| < |n-r|\leq 2^{k+1}|I|} \frac{|I|}{|n-r|^2} |a(r)|
$$
\n
$$
\leq C \frac{1}{|I|} \sum_{n\in I} \sum_{k=1}^{\infty} \frac{|I|}{2^{2k}|I|^2} \sum_{|n-r|\leq 2^{k+1}|I|} |a(r)|
$$
\n
$$
\leq C \frac{1}{|I|} \sum_{n\in I} \sum_{k=1}^{\infty} \frac{1}{2^{2k}|I|} \sum_{|n-r|\leq 2^{k+1}|I|} |a(r)|
$$
\n
$$
\leq C \frac{1}{|I|} \sum_{n\in I} \sum_{k=1}^{\infty} \frac{2}{2^k 2^{k+1}|I|} \sum_{|n-r|\leq 2^{k+1}|I|} |a(r)|
$$

$$
\leq 2CMa(m)\frac{1}{|I|}\sum_{n\in I}\sum_{k=1}^{\infty}\frac{1}{2^k}
$$

$$
\leq CMa(m)\frac{1}{|I|}\sum_{n\in I}1
$$

$$
= CMa(m) \leq CM(|a|^s)(m)^{\frac{1}{s}}
$$

The last inequality follows by using Hölder's inequality. \blacksquare

Theorem 8.5. *If* T_{ϕ} *is a singular operator, then for any* $w \in A_p$, $1 < p < \infty$, T_{ϕ} *is bounded on* $\ell^p_w(\mathbb{Z})$.

Proof. Let $w \in A_p$. Since $A_p = \bigcup_{q \leq p} A_q$, we can find s such that $p > s > 1$ and $w \in A_p$ $A_{\frac{p}{s}}$. Consider a sequence $\{a(n) : n \in \mathbb{Z}\}$ such that $a(n) = 0$ outside the interval $[-R, -R +$ $1, \ldots, R$.

Therefore,

$$
\sum_{m\in\mathbb{Z}} |T_{\phi}a(m)|^p w(m)
$$
\n
$$
\leq \sum_{m\in\mathbb{Z}} \left[M_d \left[T_{\phi}a(m)\right]\right]^p w(m) \qquad Lemma [7.1]
$$
\n
$$
\leq C \sum_{m\in\mathbb{Z}} \left[M^* \left[T_{\phi}a(m)\right]\right]^p w(m) \qquad Theorem [8.4]
$$
\n
$$
\leq C \sum_{m\in\mathbb{Z}} \left[M(|a(m)|^s)\right]^{\frac{p}{s}} w(m)
$$
\n
$$
\leq C \sum_{m\in\mathbb{Z}} |a(m)|^p w(m)
$$

In the second step, we use [Lemma[\[7.1\]](#page-5-1)(Weighted Good -Lambda estimate) provided

$$
\sum_{m\in\mathbb{Z}} \left[M_d(T_{\phi}a(m)) \right]^p w(m)
$$

is finite. To show this it is enough to show that $T_{\phi}a \in \ell_w^p(\mathbb{Z})$. We have to prove

$$
\sum_{m\in\mathbb{Z}} \biggl(T_{\phi}a(m)\biggr)^p w(m) < \infty.
$$

To show that this is finite, we split this sum as

$$
\sum_{m\leq 2R} \biggl(T_{\phi}a(m)\biggr)^p w(m)
$$

and

The former sum

$$
\sum_{m>2R} \bigg(T_{\phi}a(m) \bigg)^p w(m).
$$

$$
\sum_{m\leq 2R} \left(T_{\phi}a(m)\right)^p w(m) < \infty
$$

is trivial as shown below.

For
$$
|m| \leq 2R
$$
,
\n(A4)
$$
|T_{\phi}a(m)| \leq C \sum_{|n| \leq 2R, m \neq n} |a(n)| \frac{C}{|m - n|} \leq C ||a||_{\infty} 4R < \infty.
$$

For $|m| > 2R$,

$$
|T_{\phi}a(m)| = |\sum_{n \in \mathbb{Z}} a(n)\phi(m-n)| \le C \sum_{|n| < R, m \ne n} \frac{|a(n)|}{|m-n|} \le C \frac{\|a\|_{\infty}}{|m|}
$$

Further, $I(0, 2R) \subset I(0, 2^{k+1}R)$ and $w(I(0, 2R))$ is a constant independent of m. Also, since $w \in A_p$, by Lemma[\[6\]](#page-5-3), there exists $q < p$ such that $w \in A_q$. Then by Lemma[4.[1\]](#page-4-1)

$$
w(I(0, 2^{k+1}R)) \le Cw(I(0, 2R)) \left(\frac{|2^{k+1}R|}{|2R|}\right)^q \le Cw(I(0, 2R))(2^k)^q \le C(w, R)2^{kq}
$$

So,

$$
\sum_{|m|>2R} |T_{\phi}a(m)|^p w(m) \le C \sum_{k=1}^{\infty} \sum_{2^k R < |m| \le 2^{k+1}R} \frac{w(m)}{|m|^p}
$$

\n
$$
\le C \sum_{k=1}^{\infty} (2^k R)^{-p} \sum_{|m| \le 2^{k+1}R} w(m)
$$

\n
$$
\le C \sum_{k=1}^{\infty} (2^k R)^{-p} C(w, R) 2^{kq}
$$

\n
$$
= C(w, R) \sum_{k=1}^{\infty} 2^{k(q-p)} = C(w, R) \sum_{k=1}^{\infty} \left(\frac{1}{2^{p-q}}\right)^k < \infty
$$

Combining both results, $T_{\phi}a \in \ell_w^p(\mathbb{Z})$.

Г

Theorem 8.6. *Let* T_{ϕ} *be a Calderón-Zygmund operator and let* $w \in A_1$ *. Then for any* ${a(n) : n \in \mathbb{Z}} \in \ell_w^{1}(\mathbb{Z}),$

$$
w(\{m \in \mathbb{Z} : |T_{\phi}a(m)| > \lambda\}) \leq \frac{C}{\lambda} \sum_{m \in \mathbb{Z}} |a(m)| w(m)
$$

Proof. Perform Calderón-Zygmund decomposition (Theorem[\[6.1\]](#page-5-0)) of sequence $\{a(n) : n \in \mathbb{Z}\}\$ at height λ and obtain disjoint dyadic intervals $\{I_i\}$ which satisfy

$$
\lambda \le \frac{1}{|I_j|} \sum_{m \in I_j} |a(m)| \le 2\lambda
$$

Decompose $a(m) = g(m) + b(m)$, $m \in \mathbb{Z}$

$$
g(m) = \begin{cases} a(m) & \text{if } m \notin \Omega \\ \frac{1}{|I_j|} \sum_{k \in I_j} a(k) & \text{if } m \in I_j \end{cases}
$$

where $\Omega = \cup_j I_j$

$$
b(m) = \sum_{j=1}^{\infty} b_j(m)
$$

where

$$
b_j(m) = \left(a(m) - \frac{1}{|I_j|} \sum_{k \in I_j} a(k)\right) \chi_{I_j}(m)
$$

Write

$$
w(\{m \in \mathbb{Z} : |T_{\phi}a(m)| > \lambda\})
$$

\$\leq w(\left\{m \in \mathbb{Z} : |T_{\phi}g(m)| > \frac{\lambda}{2}\right\}) + w(\left\{m \in \mathbb{Z} : |Tb(m)| > \frac{\lambda}{2}\right\})\$

To estimate the first term, note that $w \in A_1$ implies $w \in A_2$. Further since T_{ϕ} is bounded on $\ell_w^2(\mathbb{Z})$, it follows that

$$
w(\left\{m \in \mathbb{Z} : |T_{\phi}g(m)| > \frac{\lambda}{2}\right\})
$$

\n
$$
\leq \frac{4}{\lambda^2} \sum_{m \in \mathbb{Z}} |T_{\phi}g(m)|^2 w(m)
$$

\n
$$
\leq \frac{C}{\lambda^2} \sum_{m \in \mathbb{Z}} |g(m)|^2 w(m)
$$

\n
$$
= \frac{C}{\lambda^2} \left(\sum_{m \in \Omega^c} |g(m)|^2 w(m) + \sum_{m \in \Omega} |g(m)|^2 w(m)\right)
$$

Now,

$$
\sum_{m \in \Omega^c} |g(m)|^2 w(m)
$$

\n
$$
\leq \lambda \sum_{m \in \Omega^c} |g(m)| w(m) \leq \lambda \sum_{m \in \Omega^c} |a(m)| w(m)
$$

Note $w \in A_1$ implies $\frac{w(I)}{|I|} \leq Cw(m) \quad \forall m \in I$. So on Ω ,

$$
\sum_{m\in\Omega} |g(m)|^2 w(m) \le 4\lambda^2 \sum_{m\in\Omega} w(m)
$$

= $4\lambda \sum_j \left(\left(\frac{1}{|I_j|} \sum_{k\in I_j} |a(k)| \right) \left(\sum_{m\in I_j} w(m) \right) \right)$
= $4\lambda \sum_j \left(\left(\frac{1}{|I_j|} \sum_{k\in I_j} |a(k)| \right) \left(w(k)|I_j| \right) \right)$
= $4\lambda \sum_j \left(\left(\sum_{k\in I_j} |a(k)| \right) \left(w(k) \right) \right)$
 $\le 4C\lambda \sum_j \left(\sum_{m\in I_j} |a(m)| w(m) \right)$

$$
\leq 4C\lambda \sum_{m\in\mathbb{Z}} |a(m)| w(m)
$$

From above estimates we get

$$
w(\left\{m \in \mathbb{Z} : |T_{\phi}g(m)| > \frac{\lambda}{2}\right\}) \leq \frac{C}{\lambda}|a(m)|w(m)
$$

Consider,

$$
w(\left\{m \in \mathbb{Z}: Tb(m) > \frac{\lambda}{2}\right\}) \leq w(\cup_j 3I_j) + w(\left\{m \in \mathbb{Z} \setminus \cup_j 3I_j:|Tb(m)| > \frac{\lambda}{2}\right\})
$$

For the second estimate, by Lemma[4.[1\]](#page-4-1)

$$
w(\bigcup_j 3I_j) \le C \sum_j w(I_j) \le C \sum_j \frac{w(I_j)}{|I_j|} |I_j|
$$

\n
$$
\le C \sum_j \frac{w(I_j)}{|I_j|} \frac{C}{\lambda} \left(\sum_{k \in I_j} |a(k)|\right)
$$

\n
$$
\le \frac{C}{\lambda} \sum_j \left(\sum_{k \in I_j} |a(k)| \frac{w(I_j)}{|I_j|}\right)
$$

\n
$$
\le \frac{C}{\lambda} \left(\sum_{k \in I_j} |a(k)| w(k)\right)
$$

\n
$$
\le \frac{C}{\lambda} \sum_{k \in \Omega} |a(k)| w(k)
$$

\n
$$
\le \frac{C}{\lambda} \sum_{k \in \mathbb{Z}} |a(k)| w(k)
$$

Now let c_j be center of I_j . Then, since b_j has zero average on I_j .

$$
w\left\{\left(m \in \mathbb{Z} \setminus \bigcup_{j} 3I_{j} : |T_{\phi}b(m)| > \frac{\lambda}{2}\right\}\right)
$$

\n
$$
\leq \frac{C}{\lambda} \sum_{m \in \mathbb{Z} \setminus \bigcup_{j} 3I_{j}} |T_{\phi}b(m)|w(m)
$$

\n
$$
= \frac{C}{\lambda} \sum_{m \in \mathbb{Z} \setminus \bigcup_{j} 3I_{j}} \sum_{n \in \mathbb{Z}} \phi(m-n)b_{j}(n)|w(m)
$$

\n
$$
\leq \frac{C}{\lambda} \sum_{m \in \mathbb{Z} \setminus \bigcup_{j} 3I_{j}} \sum_{j} \sum_{n \in I_{j}} \phi(m-n)b_{j}(n)|w(m)
$$

\n
$$
\leq \frac{C}{\lambda} \sum_{m \in \mathbb{Z} \setminus \bigcup_{j} 3I_{j}} \sum_{j} \sum_{n \in I_{j}} [\phi(m-n) - \phi(c_{j}-m)]b_{j}(n)|w(m)
$$

If $m \in \mathbb{Z} \setminus \cup_j 3I_j$ and $n \in I_j$ then $|m - n| \geq |I_j|$ $\forall j$. So, it follows that $\forall j \in \mathbb{Z}$, from Lemma[8.[3\]](#page-8-0) $|\phi(m - n) - \phi(c_j - m)| \leq C \frac{|I_j|}{|m - n|}$ $\frac{|I_j|}{|m-n|^2}$. It follows that,

$$
w(\{m \in \mathbb{Z} \setminus \cup_j 3I_j : |Tb(m)| > \lambda\})
$$

$$
\leq \frac{C}{\lambda} \sum_{m \in \mathbb{Z} \setminus 3I_j} \sum_{j} \sum_{n \in I_j} \left(\frac{C|I_j|}{|m - n|^2} w(m) \right) |b_j(n)|
$$
\n
$$
\leq \frac{C}{\lambda} \sum_{j} \sum_{n \in I_j} \sum_{m \in \mathbb{Z} \setminus 3I_j} \left(\frac{|I_j|}{|m - n|^2} w(m) \right) |b_j(n)|
$$
\n
$$
\leq \frac{C}{\lambda} \sum_{j} \sum_{n \in I_j} \sum_{s=0}^{\infty} \sum_{2^s |I_j| < |m - n| \le 2^{s+1} |I_j|} \left(\frac{|I_j|}{|m - n|^2} w(m) \right) |b_j(n)|
$$
\n
$$
\leq \frac{C}{\lambda} \sum_{j} \sum_{n \in I_j} \sum_{s=0}^{\infty} \frac{I_j}{2^{2s} |I_j|^2} \sum_{2^s |I_j| < |m - n| \le 2^{s+1} |I_j|} w(m) |b_j(n)|
$$
\n
$$
\leq \frac{C}{\lambda} \sum_{j} \sum_{n \in I_j} M w(n) |b_j(n)|
$$
\n
$$
\leq \frac{C}{\lambda} \sum_{j} \sum_{n \in I_j} w(n) |b_j(n)|
$$
\n
$$
\leq \frac{C}{\lambda} \sum_{j} \sum_{n \in I_j} \left(|a_j(n)| + |g_j(n)| \right) \chi_{I_j}(n) w(n)
$$
\n
$$
\leq \frac{C}{\lambda} \sum_{j} \sum_{n \in I_j} |a_j(n)| w(n) + \frac{C}{\lambda} \sum_{j} \sum_{n \in I_j} |g_j(n)| w(n)
$$
\n
$$
\leq \frac{C}{\lambda} \sum_{n \in \mathbb{Z}} |a(n)| w(n) + \frac{C}{\lambda} \sum_{n \in \mathbb{Z}} |g(n)| w(n)
$$
\n
$$
\leq \frac{C}{\lambda} \sum_{m \in \mathbb{Z}} |a(n)| w(n)
$$

Combining both estimates for $T_{\phi}g$, $T_{\phi}b$, we get desired result.

Now, we prove the weak and strong type inequalities for the maximal singular operator T^*_{ϕ} operator on $l_w^p(\mathbb{Z})$ spaces. Here, we use transference method to transfer the corresponding results on R.

The following lemma, whose proof is obvious, is used in the proof of Theorem[[8](#page-14-0).8]

Lemma 8.7. *Suppose* $\{w(n) : n \in \mathbb{Z}\}$ *is a sequence in* $A_p(\mathbb{Z}), 1 \leq p < \infty$ *. Put*

$$
w'(x) = \begin{cases} w(j) & \text{if } x \in [j - \frac{1}{4}, j + \frac{1}{4}], \quad j \in \mathbb{Z} \\ 0 & \text{otherwise} \end{cases}
$$

If $w \in A_p(\mathbb{Z})$ *, then* $w' \in A_p(\mathbb{R})$ *,* $1 \leq p < \infty$ *.* $\hat{H}w \in A_1(\mathbb{Z})$, then $w' \in A_1(\mathbb{R})$.

Theorem 8.8. If T_{ϕ} is a singular kernel operator, then for $1 < p < \infty$, T_{ϕ}^* is bounded on $\ell_w^p(\mathbb{Z})$ *if* $w \in A_p$ and T^*_{ϕ} is weak (1,1) with respect to w if $w \in A_1$.

Proof. Let $K(x)$ be the linear extension of ϕ . Also for a given sequence $\{a(n) : n \in \mathbb{Z}\}\)$, we define a function $f(x) = \sum_{m \in \mathbb{Z}} a(m) \chi_{I_m}(x)$ where $I_m = (m - \frac{1}{4})$ $\frac{1}{4}$, $m + \frac{1}{4}$ $\frac{1}{4}$.

The following inequality which gives the relation between the maximal singular operator on $\mathbb Z$ and the maximal singular integral operator on $\mathbb R$ is proved in [\[8\]](#page-23-2).

$$
(A5) \t\t T_{\phi}^{\star}a(m) \le C(T_{K}^{\star}f(x) + Sf(x)), \quad x \in I_{m}
$$

where

$$
Sf(x) = \int_{|x-y| > \frac{1}{2}} \frac{|f(y)|}{(x-y)^2} dy
$$

=
$$
\sum_{k=0}^{\infty} \int_{2^k \ge |x-y| > 2^{k-1}} \frac{|f(y)|}{(x-y)^2} dy
$$

$$
\le \sum_{k=0}^{\infty} \frac{4}{2^{2k}} \int_{|x-y| \le 2^k} |f(y)| dy
$$

$$
\le CMf(x)
$$

Now,

$$
||f||_{L_{w'(\mathbb{R})}^p}^p = \int_{\mathbb{R}} |f(x)|^p w'(x) dx
$$

=
$$
\sum_{m \in \mathbb{Z}} \int_{I_m} |a(m)|^p w(m) dx = \sum_{m \in \mathbb{Z}} \frac{1}{2} |a(m)|^p w(m) = \frac{1}{2} ||a||_{\ell_w^p(\mathbb{Z})}
$$

and

$$
||Sf||_{L^p_{w'(\mathbb{R})}} = \left(\int_{\mathbb{R}} \left| \int_{|x-y| > \frac{1}{2}} \frac{|f(y)|}{(x-y)^2} dy \right|^p w'(x) dx\right)^{\frac{1}{p}}
$$

Therefore, using Lemma[[8](#page-14-1).7]

$$
||T_{\phi}^{*}a||_{l_{w}^{p}(\mathbb{Z})} = \left(\sum_{m\in\mathbb{Z}}|T_{\phi}^{*}a(m)|^{p}w(m)\right)
$$

\n
$$
\leq \sum_{m\in\mathbb{Z}}2\int_{I_{m}}|T_{\phi}^{*}a(m)|^{p}w(m)dx
$$

\n
$$
\leq \left(2C\sum_{m\in\mathbb{Z}}\int_{I_{m}}\left[T_{k}^{*}f(x)+Sf(x)\right]^{p}w'(x)dx\right)^{\frac{1}{p}}
$$

\n
$$
\leq \left(2C\int_{\mathbb{R}}\left[T_{k}^{*}f(x)+Sf(x)\right]^{p}w'(x)dx\right)^{\frac{1}{p}}
$$

\n
$$
\leq \left(2C\int_{\mathbb{R}}\left[T_{k}^{*}f(x)+Mf(x)\right]^{p}w'(x)dx\right)^{\frac{1}{p}}
$$

\n
$$
\leq 2C\left(\|T_{K}^{*}f\|_{L_{w'(\mathbb{R})}^{p}}+\|Mf\|_{L_{w'(\mathbb{R})}^{p}}\right)
$$

\n
$$
\leq C\|f\|_{L_{w(\mathbb{Z})}^{p}}
$$

\n
$$
= C\|a\|_{\ell_{w(\mathbb{Z})}^{p}}
$$

where we used T_K^* is of strong type (p,p) on $L_w^p(\mathbb{R})$ and $S_f(x)$ is also of strong type (p,p) on $L^p_w(\mathbb{R})$. Refer [\[8\]](#page-23-2). It follows that T^*_{ϕ} is strong type (p,p) on $\ell^p_w(\mathbb{Z})$.

Now, we shall prove the weak type $(1,1)$ inequality.

From [[A](#page-14-2)5], we have

$$
\left\{m\in\mathbb{Z}:T_{\phi}^{\star}a(m)>\lambda\right\}
$$

$$
\subseteq \left\{ x \in I_m : T_K^* f(x) > \frac{\lambda}{2C} \right\} \cup \left\{ x \in I_m : Sf(x) > \frac{\lambda}{2C} \right\}
$$

$$
\subseteq \left\{ x \in I_m : T_K^* f(x) > \frac{\lambda}{2C} \right\} \cup \left\{ x \in I_m : Mf(x) > \frac{\lambda}{2C} \right\}
$$

Therefore, the weighted analogue would give for each $x \in I_m$,

$$
|w(\lbrace m \in \mathbb{Z} : T_{\phi}^{\star} a(m) > \lambda \rbrace)|
$$

\$\leq |w(\lbrace x \in I_m : T_{K}^{\star} f(x) > \frac{\lambda}{2C} \rbrace)| + |w(\lbrace m \in \mathbb{Z} : M f(x) > \frac{\lambda}{2C} \rbrace)|\$

Hence, T_K^* is of weak type (1,1) and M is also of weak type (1,1) on $L_w^1(\mathbb{Z})$. Refer [\[8\]](#page-23-2). This gives T^*_{ϕ} is weak type (1,1) on $\ell_w^1(\mathbb{Z})$.

Now, we want to prove that if T^*_{ϕ} is bounded on $\ell^p_w(\mathbb{Z}), 1 < p < \infty$, then $w \in A_p(\mathbb{Z})$ when T^{\star}_{ϕ} is maximal Hilbert transform H^{\star} whose kernel is given by

$$
\phi(k) = \begin{cases} \frac{1}{k} & \text{if } k \neq 0\\ 0 & k = 0 \end{cases}
$$

The methodology used in our proof is given in [\[5\]](#page-23-9). Observe that for $1 < p < \infty$, if H^* is bounded on $\ell_w^p(\mathbb{Z})$ then H is bounded on $\ell_w^p(\mathbb{Z})$,

Theorem 8.9. *If for* $1 < p < \infty$ *and any positive sequence* $\{w(n) : n \in \mathbb{Z}\}\$

$$
\sum_{m\in\mathbb{Z}} |Ha(m)|^p w(m) \le C \sum_{m\in\mathbb{Z}} |a(m)|^p w(m) \quad \forall \{a(n) : n \in \mathbb{Z}\}\
$$

then w *satisfies the discrete* A_p *condition which is as follows*

$$
\left(\frac{1}{|I|}\sum_{m\in I}w(m)\right)\left(\frac{1}{|I|}\sum_{m\in I}w(m)^{\frac{-1}{p-1}}\right)^{p-1}\leq C
$$

for any interval I *in* Z*.*

Proof. Let $I_1 = [m, m+1, \dots n]$ be any interval in \mathbb{Z} . Consider doubling interval I_1 and relabel it as

$$
I_0 = [m, m+1, \dots, n, n+1, n+2, \dots, 2n-m+1]
$$

so that $I_0 = I_1 \cup I_2$, where

$$
I_2 = [n+1, n+2...2n-m+1]
$$

Take a non-negative sequence $\{a(n) : n \in \mathbb{Z}\}\$ supported in I_1 . Observe that

$$
|Ha(m)| = |\sum_{n \in I_1} \frac{a(n)}{m - n}| = \sum_{n \in I_1} \frac{a(n)}{|m - n|}
$$

So, for $m \in I_2$ we get

$$
|Ha(m)| \ge \frac{1}{2} \left(\frac{1}{|I_1|} \sum_{n \in I_1} a(n) \right) \chi_{I_2}(m) \quad \forall n \in I_1
$$

Now, using boundedness of H on $\ell_w^p(\mathbb{Z})$ i.e,

$$
\sum_{m\in\mathbb{Z}} |Ha(m)|^p w(m) \leq C \sum_{m\in\mathbb{Z}} |a(m)|^p w(m)
$$

Since support of $\{a(n) : n \in \mathbb{Z}\}\$ is in I_1 , we have,

$$
\left(\frac{1}{|I_1|} \sum_{n \in I_1} a(n)\right)^p \left(\sum_{m \in I_2} w(m)\right) \le \sum_{m \in \mathbb{Z}} \left(\left(\frac{1}{|I_1|} \sum_{n \in I_1} a(n)\right)^p \chi_{I_2}(m)w(m)\right)
$$

$$
\le \sum_{m \in \mathbb{Z}} \chi_{I_2}(m) |Ha(m)|^p w(m) \le C \sum_{m \in \mathbb{Z}} |a(m)|^p w(m) = C \sum_{m \in I_1} |a(m)|^p w(m)
$$

It follows that

(A7)
$$
\left(\frac{1}{|I_1|}\sum_{n\in I_1}a(n)\right)^p\left(\sum_{m\in I_2}w(m)\right)\leq C\sum_{m\in I_1}|a(m)|^pw(m)
$$

Take $a(n) = 1 \quad \forall n \in \mathbb{Z}$ in [[A](#page-17-0)7] and by interchanging I_1 and I_2 , we have the following two inequalities.

$$
\sum_{m \in I_2} w(m) \le C \sum_{m \in I_1} w(m)
$$

$$
\sum_{m \in I_1} w(m) \le C \sum_{m \in I_2} w(m)
$$

Likewise, take $a(n) = w(n)^{\frac{-1}{p-1}}$ $\forall n \in \mathbb{Z}$ in [[A](#page-17-0)7] to get

$$
\left(\sum_{m\in I_2} w(m)\right) \left(\frac{1}{|I_1|} \sum_{m\in I_1} w(m)^{\frac{-1}{p-1}}\right)^p \le C \sum_{m\in I_1} w(m)^{\frac{-p}{p-1}} w(m)
$$

So,

$$
\left(\sum_{m\in I_2} w(m)\right) \left(\frac{1}{|I_1|} \sum_{m\in I_1} w(m)^{\frac{-1}{p-1}}\right)^{p-1} \le C
$$

Therefore,

$$
\left(\frac{1}{|I_1|} \sum_{m \in I_1} w(m)\right) \left(\frac{1}{|I_1|} \sum_{m \in I_1} w(m)^{\frac{-1}{p-1}}\right)^{p-1}
$$

$$
\leq \left(\frac{C}{|I_1|} \sum_{m \in I_2} w(m)\right) \left(\frac{1}{|I_1|} \sum_{m \in I_1} w(m)^{\frac{-1}{p-1}}\right)^{p-1} \leq C
$$

It follows that $w \in A_p(\mathbb{Z})$. ■

9. **MAXIMAL SINGULAR OPERATOR ON VARIABLE SEQUENCE SPACES** ` p(·) (Z)

In this section, we prove weak type, and strong type inequalities for the maximal singular operator on $\ell^{p(\cdot)}(\mathbb{Z})$ spaces, $1 \leq p < \infty$, using Rubio de Francia extrapolation method given in [\[7\]](#page-23-5).

Lemma 9.1. *Given* $p(\cdot)$ *such that* M *is bounded on* $\ell^{p(\cdot)}(\mathbb{Z})$ *, for each* $h \in \ell^{p(\cdot)}(\mathbb{Z})$ *, define*

$$
Rh(m) = \sum_{k=0}^{\infty} \frac{M^k h(m)}{2^k \|M\|_{B(\ell^{p(\cdot)}(\mathbb{Z}))}^k}
$$

where for $k \geq 1$, $M^k = M \circ \dots M$ *where* \circ *denotes composition operator acting* k *times and* M⁰ = |I|*,* I *being identity operator. Then (a) For all* $m \in \mathbb{Z}, |h(m)| \leq Rh(m)$

(b) R is bounded on $\ell^{p(\cdot)}(\mathbb{Z})$ and $||Rh||_{\ell^{p(\cdot)}} \leq 2 ||h||_{p(\cdot)}$ $f(c) \ Rh \in A_1$ and $[Rh]_{A_1} \leq 2 \left\| M \right\|_{B(\ell^{p(\cdot)}(\mathbb{Z}))}$, where $\left\|_{A_1}$ denotes constant of A_1 weight.

Proof of (a) is obvious. The proof of (b) and (c) are same as in the case of \mathbb{R} . For the corresponding results on \mathbb{R} , refer [\[7\]](#page-23-5).

Lemma 9.2. *Given, a sequence* $a = \{a(n)\}\$ *, and* $p(·) \in S$ *then for all* $s, \frac{1}{p_{-}} \leq s < \infty$ *,* $\| |a|^s \|_{p(.)} = \| a \|_{s}^s$ $sp(\cdot)$

This follows at once from the definition of $\ell^{p(\cdot)}(\mathbb{Z})$ norm. For details refer [\[7\]](#page-23-5).

Theorem 9.3. *Given a sequence* $\{a(n) : n \in \mathbb{Z}\}$ *, suppose* $p(·) ∈ S$ *such that* $p_− > 1$ *. Let* T^*_{ϕ} *be a maximal singular operator. Then,*

$$
\left\|T_{\phi}^{\star}a\right\|_{\ell^{p(\cdot)}(\mathbb{Z})}\leq C\left\|a\right\|_{\ell^{p(\cdot)}(\mathbb{Z})}
$$

If $p_$ = 1*, then for all* $t > 0$

$$
\left\|t\chi_{\left\{n:\left|T^{\star}_{\phi}a(n)\right|>t\right\}}\right\|_{\ell^{p(\cdot)}(\mathbb{Z})}\leq C\left\|a\right\|_{\ell^{p(\cdot)}(\mathbb{Z})}
$$

Proof. We will prove strong type inequality when $p_$ > 1.

Take p_0 such that $1 < p_0 \leq p_- \leq p_+ < \infty$. Here we use $Rh \in A_1(\mathbb{Z})$ and hence $Rh \in A_1(\mathbb{Z})$ $A_p(\mathbb{Z}), 1 < p < \infty$ and the boundedness of T^*_{ϕ} on $\ell_{Rh}^p(\mathbb{Z})$.

Therefore by Lemma[[9](#page-18-0).2]

$$
\begin{split}\n\|(T_{\phi}^{*}a)\|_{\ell^{p(\cdot)}(\mathbb{Z})}^{p_{0}} &= \|(T_{\phi}^{*}a)^{p_{0}}\|_{\ell^{\frac{p(\cdot)}{p_{0}}}(\mathbb{Z})} \\
&= \sup_{h \in \ell^{\frac{(p(\cdot)}{p_{0}})'}(\mathbb{Z}), \|h\|_{\ell^{\frac{(p(\cdot)}{p_{0}})'}(\mathbb{Z})}} \sum_{\xi \in \mathbb{Z}} |T_{\phi}^{*}a(k)|^{p_{0}} |h(k)| \\
&\leq \sup_{h \in \ell^{\frac{(p(\cdot)}{p_{0}})'}(\mathbb{Z}), \|h\|_{\ell^{\frac{(p(\cdot)}{p_{0}})'}(\mathbb{Z})}} \sum_{\xi \in \mathbb{Z}} |T_{\phi}^{*}a(k)|^{p_{0}} R h(k) \\
&\leq \sup_{h \in \ell^{\frac{(p(\cdot)}{p_{0}})'}(\mathbb{Z}), \|h\|_{\ell^{\frac{(p(\cdot)}{p_{0}})'}(\mathbb{Z})}} \sum_{\xi \in \mathbb{Z}} |a(k)|^{p_{0}} R h(k) \\
&\leq C \sup_{h \in \ell^{\frac{(p(\cdot)}{p_{0}})'}(\mathbb{Z}), \|h\|_{\ell^{\frac{(p(\cdot)}{p_{0}})'}(\mathbb{Z})}} \|\|a|^{p_{0}}\|_{\ell^{\frac{p(\cdot)}{p_{0}}}(\mathbb{Z})}\|R h\|_{\ell^{\frac{(p(\cdot)}{p_{0}})'}(\mathbb{Z})} \\
&= C \sup_{h \in \ell^{\frac{(p(\cdot)}{p_{0}})'}(\mathbb{Z}), \|h\|_{\ell^{\frac{(p(\cdot)}{p_{0}})'}(\mathbb{Z})}} \|\|a\|\|_{\ell^{p(\cdot)}(\mathbb{Z})}^{p_{0}} \|\|R h\|_{\ell^{\frac{(p(\cdot)}{p_{0}})'}(\mathbb{Z})} \\
&\leq 2C \|a\|_{\ell^{p(\cdot)}(\mathbb{Z})}^{p_{0}} \\
&\leq 2C \|a\|_{\ell^{p(\cdot)}(\mathbb{Z})}^{p_{0}}\n\end{split}
$$

Now we are going to prove type weak type (1,1) inequality stated in the theorem. Let $A = \{m \in \mathbb{Z} : |T^*_{\phi}a(m)| > t\}$. Then,

$$
\Big\|(t\chi_{\bigl\{m\in\mathbb{Z}:|T^{\star}_{\phi}a(m)|>t\bigr\}})\Big\|_{p(\cdot)}
$$

$$
\leq \sup_{h \in \ell^{p(\cdot)}(\mathbb{Z}), \|h\|_{\ell^{p(\cdot)}(\mathbb{Z})} = 1} \sum_{k \in \mathbb{Z}} |t \chi_{\{m \in \mathbb{Z}: |T_{\phi}^{*}a(m)| > t\}}(k)||h(k)|
$$
\n
$$
= \sup_{h \in \ell^{p(\cdot)}(\mathbb{Z}), \|h\|_{\ell^{p(\cdot)}(\mathbb{Z})} = 1} \sum_{k \in \mathbb{Z}} t \chi_{A}(k) Rh(k)
$$
\n
$$
= \sup_{h \in \ell^{p(\cdot)}(\mathbb{Z}), \|h\|_{\ell^{p(\cdot)}(\mathbb{Z})} = 1} tRh(A)
$$
\n
$$
= \sup_{h \in \ell^{p(\cdot)}(\mathbb{Z}), \|h\|_{\ell^{p(\cdot)}(\mathbb{Z})} = 1} t \sum_{k \in \mathbb{Z}} |a(k)| Rh(k)
$$
\n
$$
\leq \sup_{h \in \ell^{p(\cdot)}(\mathbb{Z}), \|h\|_{\ell^{p(\cdot)}(\mathbb{Z})} = 1} C \sum_{k \in \mathbb{Z}} |a(k)| Rh(k)
$$
\n
$$
= C \sum_{k \in \mathbb{Z}} |a(k)| Rh(k)
$$
\n
$$
\leq C \frac{\log |a(k)| Rh(k)}{\log |a(k)|}
$$
\n
$$
\leq C \frac{\log |a|_{\ell^{p(\cdot)}(\mathbb{Z})}}{\log |a|_{\ell^{p(\cdot)}(\mathbb{Z})}} \|Rh\|_{\ell^{p(\cdot)}(\mathbb{Z})}
$$
\n
$$
\leq 2C \frac{\log |a|_{\ell^{p(\cdot)}(\mathbb{Z})}}{\log |a|_{\ell^{p(\cdot)}(\mathbb{Z})}}
$$

 \blacksquare

10. **MAXIMAL ERGODIC SINGULAR OPERATOR**

Let (X, \mathbf{B}, μ) be a probability space and U an invertible measure preserving transformation on X. We define the truncated maximal ergodic singular operator and maximal ergodic singular operator as follows:

$$
\tilde{T}_{\phi,N}^{\star} f(x) = \sup_{1 \le n \le N} \left| \sum_{k=-n}^{n} f(U^{-k}x) \phi(k) \right|
$$

$$
\tilde{T}_{\phi}^{\star} f(x) = \sup_{n} \left| \sum_{k=-n}^{n} f(U^{-k}x) \phi(k) \right|
$$

Now, we prove the strong type, weak type inequalities for the maximal ergodic singular operator on weighted $L_w^p(X, \mathcal{B}, \mu)$ spaces.

Theorem 10.1. Let (X, \mathbf{B}, μ) be a probability space and U an invertible measure preserving *transformation on* X. If w *is an ergodic* A_p *weight*, $1 < p < \infty$ *, then the maximal ergodic singular operator*

satisfies

(1)

$$
\left\| \tilde{T}_{\phi}^{\star} f \right\|_{L_w^p(X)} \le C_p \left\| f \right\|_{L_w^p(X)} \quad \text{if} \quad 1 < p < \infty
$$

where C_p *is independent of* N *.*

(2) *If* $w \in A_1$ *, then*

$$
\int_{\left\{x \in X : |\tilde{T}_{\phi}^{\star}f(x)| > \lambda\right\}} w(x) d\mu(x) \leq \frac{C}{\lambda} \int_{X} |f(x)| w(x) d\mu(x)
$$

where C_1 *is independent of* N *.*

Proof. Fix $N > 0$ and take a function $f \in L_w^p(X)$.

$$
\tilde{T}^*_{\phi,N}f(x) = \sup_{1 \le n \le N} \left| \sum_{k=-n}^n f(U^{-k}x)\phi(k) \right|
$$

It is enough to prove that $\tilde{T}^*_{\phi,N}$ satisfies (1) and (2) with constants not depending on N. Let $\lambda > 0$ and put

$$
E_{\lambda} = \left\{ x \in X : |\tilde{T}_{\phi,N}^{\star} f(x)| > \lambda \right\}
$$

For x lying outside a μ null set and a positive integer L, define sequences

$$
a_x(k) = \begin{cases} f(U^{-k}x) & if \quad |k| \le L+N \\ 0 & otherwise \end{cases}
$$

$$
w_x(k) = \begin{cases} w(U^{-k}x) & if \quad |k| \le L+N \\ 0 & otherwise \end{cases}
$$

Therefore,

$$
w(\left\{x \in X : |\tilde{T}_{\phi,N}^* f(x)| > \lambda\right\}) = \int_{E_{\lambda}} w(x) d\mu(x) = \frac{1}{\lambda^p} \int_{E_{\lambda}} \lambda^p w(x) d\mu(x)
$$

\n
$$
\leq \frac{1}{\lambda^p} \int_{E_{\lambda}} |\tilde{T}_{\phi,N}^* f(x)|^p w(x) d\mu(x)
$$

\n
$$
\leq \frac{1}{\lambda^p} \int_{X} |\tilde{T}_{\phi,N}^* f(x)|^p w(x) d\mu(x)
$$

\n
$$
= \frac{1}{\lambda^p} \frac{1}{2L+1} \sum_{m=-L}^{L} \int_{X} |\tilde{T}_{\phi,N}^* f(U^{-m}x)|^p w(U^{-m}x) d\mu(x)
$$

\n
$$
\leq \frac{1}{\lambda^p} \frac{1}{2L+1} \int_{X} \sum_{m=-L}^{L} |\tilde{T}_{\phi,N}^* f(U^{-m}x)|^p w(U^{-m}x) d\mu(x)
$$

\n
$$
\leq \frac{1}{\lambda^p} \frac{1}{2L+1} \int_{X} \sum_{m=-L}^{L} |\tilde{T}_{\phi,N}^* a_x(m)|^p w_x(m) d\mu(x)
$$

\n
$$
\leq C \frac{1}{\lambda^p} \frac{1}{2L+1} \int_{X} \sum_{m=-\infty}^{\infty} |\tilde{T}_{\phi,N}^* a_x(m)|^p w_x(m) d\mu(x)
$$

\n
$$
\leq C \frac{1}{\lambda^p} \frac{1}{2L+1} \int_{X} \sum_{m=-\infty}^{(L+N)} |a_x(m)|^p w_x(m) d\mu(x)
$$

\n
$$
= C \frac{1}{\lambda^p} \frac{1}{2L+1} \int_{X} \sum_{m=-(L+N)}^{(L+N)} |a_x(m)|^p w_x(m) d\mu(x)
$$

\n
$$
= C \frac{1}{\lambda^p} \frac{1}{2L+1} \int_{X} \sum_{m=-(L+N)}^{(L+N)} |f(U^{-m}x)|^p w(U^{-m}x) d\mu(x)
$$

\n
$$
\leq \frac{C}{\lambda^p} \frac{1}{2L+1} \sum_{m=-(L+N)}^{(L+N)} |f(U
$$

$$
= \frac{C}{\lambda^p} \frac{1}{2L+1} \sum_{m=-(L+N)}^{(L+N)} \int_X |f(x)|^p w(x) d\mu(x)
$$

\n
$$
\leq \frac{C}{\lambda^p} \frac{1}{2L+1} (2(L+N)+1) ||f||_{L^p_w(X)}^p
$$

\n
$$
\leq \frac{C}{\lambda^p} ||f||_{L^p_w(X)}^p
$$

by choosing L appropriately. Conclusion (1) of the theorem now follows by using the Marcinkiewicz interpolation theorem.

Now, we prove the converse of the above theorem when $\tilde{T}^\star_{\phi,N}$ with singular kernel as

$$
\phi(k) = \begin{cases} \frac{1}{k} & \text{if } k \neq 0 \\ 0 & k = 0 \end{cases}
$$

The singular operator associated with this particular singular kernel is known as the maximal ergodic Hilbert transform and is denoted by \tilde{H}^* . Here, we further assume that the associated measure preserving transformation is ergodic.

Definition 10.1 (Ergodic Rectangle). Let E be a subset of X with positive measure and let $K \geq 1$ be such that $U^i E \cap U^j E = \phi$ if $i \neq j$ and $-K \leq i, j \leq K$. Then the set $R = \bigcup_{i=-K}^{K} U^i E$ is called ergodic rectangle of length $2K + 1$ with base E.

For the proof of following lemma, refer[\[4\]](#page-23-3).

Lemma 10.2. Let (X, \mathbf{B}, μ) be a probability space, U an ergodic invertible measure preserving *transformation on* X *and* K *a positive integer.*

- (1) If $F \subseteq X$ is a set of positive measure then there exists a subset $E \subseteq F$ of positive *measure such that* E *is base of an ergodic rectangle of length* $2K + 1$ *.*
- (2) *There exists a countable family* ${E_i}$ *of bases of ergodic rectangles of length* $2K + 1$ *such that* $X = \bigcup_j E_j$ *.*

Theorem 10.3. Let (X, \mathcal{B}, μ) be a probability space, U an invertible ergodic measure preserving transformation on X. If $\tilde{H}^{\star}f$ is bounded on $L_w^p(X)$ for some $1 < p < \infty$, then $w \in A_P(X)$.

Proof. For the given function w on X, for a.e $x \in X$ define the sequence $w_x(k) = w(U^{-k}x)$. We shall prove that

$$
esssup_{x \in X} \left(\frac{1}{|I|} \sum_{k \in I} |w_x(k)| \right) \left(\frac{1}{|I|} \sum_{k \in I} |w_x(k)|^{p'-1} \right)^{p-1} \le C
$$

This will prove that $w \in A_p(X)$. In order to prove this, we shall prove that the maximal Hilbert transform H^* is bounded on $\ell_{w_x}^p(\mathbb{Z})$ and

$$
||H^\star a||_{\ell^p_{w_x}(\mathbb{Z})} \leq C_p ||a||_{\ell^p_{w_x}(\mathbb{Z})}
$$

where C_p is independent of x. In order to prove the above inequality, take a sequence ${a(n) : n \in \mathbb{Z}} \in \ell_{w_x}^p(\mathbb{Z}).$

Let $R = \bigcup_{k=-2}^{2J} U^k E$ be an ergodic rectangle of length $4J + 1$ with base E. Let F be any measurable subset of E. Then F is also base of an ergodic rectangle of length $4J + 1$. Let $R' = \bigcup_{k=-2}^{2J} U^k F$. Define function f and w as follows.

$$
f(U^{-k}x) = \begin{cases} a(k) & \text{if } x \in F \quad \text{and } -J \le k \le J \\ 0 & \text{otherwise} \end{cases}
$$

Then as shown in [\[3\]](#page-23-7)

$$
||f||_{L^p_w(X)}^p = ||a||_{\ell^p_{w_x}(\mathbb{Z})} \mu(F)
$$

It is easy to observe that for $-J \le m \le J$ and $x \in F$

$$
\tilde{H}_J^{\star} f(U^{-m}x) = H_J^{\star} a(m)
$$

Now,

$$
C \left\|f\right\|_{L_w^p(X)}^p \ge \int_X |\tilde{H}_J^{\star} f(x)|^p w(x) d\mu(x)
$$

\n
$$
= \int_{R'} |\tilde{H}_J^{\star} f(x)|^p w(x) d\mu(x)
$$

\n
$$
= \sum_{k=-J}^J \int_{U^k F} |\tilde{H}_J^{\star} f(x)|^p w(x) d\mu(x)
$$

\n
$$
= \sum_{k=-J}^J \int_F |\tilde{H}_J^{\star} f(U^{-k} x)|^p w(U^{-k} x) d\mu(x)
$$

\n
$$
= \sum_{k=-J}^J \int_F |H_J^{\star} a(k)|^p w_x(k) d\mu(x)
$$

\n
$$
= \int_F \sum_{k=-J}^J |H_J^{\star} a(k)|^p w_x(k) d\mu(x)
$$

So from the above estimates

$$
\frac{1}{\mu(F)} \int_{F} \sum_{k=-J}^{J} |H_J^{\star} a(k)|^p w_x(k) d\mu(x) \leq C ||a||_{\ell^p_{w_x}(\mathbb{Z})}
$$

Since F was an arbitrary subset of E , we get

$$
\sum_{k=-J}^{J} |H_J^{\star} a(k)|^p w_x(k) \le C ||a||_{\ell^p_{w_x}(\mathbb{Z})}
$$

a.e $x \in E$. Since U is ergodic, X can be written as countable union of bases of ergodic rectangles of length $4J + 1$. Therefore for a.e $x \in X$,

$$
\sum_{k=-J}^{J} |H_J^*(a(k)|^p w_x(k) \le C ||a||_{\ell_{w_x}^p(\mathbb{Z})}
$$

Since C is independent of J, a.e $x \in X$,

$$
\sum_{k\in\mathbb{Z}}|H^{\star}a(k)|^p w_x(k)\leq C\,\|a\|_{\ell^p_{w_x}(\mathbb{Z})}
$$

It follows that the sequence $\{w_x(n) : n \in \mathbb{Z}\}\$ as defined by $w_x(k) = w(U^k x)$ belongs to $A_p(\mathbb{Z})$ a.e $x \in X$ and A_p weight constant for w_x is independent of x so that $w \in A_p(X)$.

Remark 10.1. Using the boundedness of maximal ergodic singular operator and Rubio de Francia method, we can prove that the maximal ergodic singular operator is bounded on variable $L^{p(\cdot)}(X,\mathcal{B},\mu)$ spaces. But Rubio de Francia method assumes maximal ergodic operator is bounded on the variable $L^{p(\cdot)}(X,\mathcal{B},\mu)$ spaces. With this assumption we can prove the boundedness of maximal ergodic singular operator to variable $L^{p(\cdot)}(X,\mathcal{B},\mu)$ spaces.

REFERENCES

- [1] S.S.S.ANUPINDI and A.M.ALPHONSE, *Relations between discrete maximal operators in harmonic analysis*, Proceedings of the Ninth International Conference on Mathematics and Computing. ICMC 2023. *Lecture Notes in Networks and Systems, Springer, Singapore*, **vol 697**,https://doi.org/10.1007/978-981-99-3080-7_30.
- [2] S.S.S.ANUPINDI and A.M.ALPHONSE, The boundedness of fractional Hardy-Littlewood maximal operator on variable lp(Z) spaces using Calderon-Zygmund decomposition, *The Journal of the Indian Mathematical Society*,**Vol 91**,Issue 1-2, January - June (2024), <https://doi.org/10.18311/jims/2024/31327>.
- [3] S.S.S.ANUPINDI and A.M.ALPHONSE, Maximal ergodic theorem on weighted $L_w^p(X)$ spaces , https://arxiv.org/abs/2303.00464. Accepted for publication in *The Journal Of Indian Mathematical Society*.
- [4] E. ATTENCIA and A. DE LA TORRE, A dominated ergodic estimate for L_p spaces with weights, *Studia Mathematica*, **74**, (1982), 35-47.
- [5] R.R.COIFMAN and C.FEFFERMAN, Weighted norm inequalities for maximal functions and singular integrals,*Studia Mathematica*, T. LI (1974).
- [6] J. DUOANDIKOETXEA, Fourier Analysis, Graduate Studies in Mathematics, **Volume 29**, *American Mathematical Society*.
- [7] D. CRUZ-URIBE and A. FIORENZA, Variable Lebesgue spaces:Applied and Numerical Harmonic Analysis, *Foundations and Harmonic analysis" Springer, Heidelberg*, **Vol 1034**, (2013).
- [8] A.M. ALPHONSE and S.MADAN , On Ergodic Singular Integral Operators, *Colloquium Mathematicum*, **Vol LXVI**, (1994).
- [9] A.M.ALPHONSE and S.MADAN , The Commutator of the Ergodic Hilbert Transform, *Contemporary Mathematics*, **Vol 189**, (1995).
- [10] R.HUNT, B.MUCKENHOUPT and R.WHEEDEN , *Weighted norm inequalities for the conjugate and Hilbert transform*, *Transactions of American Mathematical Society*, **176**, (1973), pp. 227-25.