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1. I NTRODUCTION

The most natural way to approximate a continuous function of which data are know at certain
discrete points only is to use piecewise linear interpolation. This technique has some most
advantages: it is very easy, it requires data at certain discrete points, it interpolates at the given
data, it reproduces linear functions. The major disadvantage of this technique is that it does not
generate approximating functions which are smooth.

Our approach in order to eliminate this disadvantage, will be to compose certain linear oper-
ators with the piecewise linear interpolator.

We obtain estimates for the remainder in approximating of continuous functions by means of
positive linear operators, using the second order modulus of smoothness.

2. PIECEWISE LINEAR FUNCTIONS ON [a, b]

Let f : [a, b] → R and∆n : a = x0 < x1 < · · · < xn = b be a partition of the interval[a, b].
There exists exactly one continuous functionsS∆nf on the interval[a, b], whose restriction to
each of the intervals[xk, xk+1], k = 0, 1, . . . , n − 1 is a polynomial of degree≤ 1 and which
interpolates the functionf at the pointsxk, i.e. (S∆nf)(xk) = f(xk), k = 0, 1, . . . , n.

So, on each interval[xk, xk+1], k = 0, 1, . . . , n − 1, S∆nf is the Lagrange polynomial of
degree 1

(S∆nf)(x) =
xk+1 − x

xk+1 − xk

f(xk) +
x− xk

xk+1 − xk

f(xk+1).

Several representations for the operatorS∆nf are known. We will use in the sequel the
following representation, given by T. Popoviciu [8].

Theorem 2.1.For every functionf defined on the pointsxk, k = 0, 1, . . . , n there holds:

(2.1) (S∆nf)(x) = f(x0) + (x− x0)[x0, x1, f ]

+
n−1∑
k=1

(xk+1 − xk−1)[xk−1, xk, xk+1; f ]

(
x− xk + |x− xk|

2

)
,

(2.2) (S∆nf)(x) =
n∑

k=1

xk+1 − xk−1

2
[xk−1, xk, xk+1; |t− x|]tf(xk)

where, for mutually distincta, b, c we denote by[a, b, c; f(t, x)]t the fact that the divided differ-
ence is applied in the variablet.

The operatorS∆n : C[a, b] → C[a, b] is a positive linear operator, which has the following
properties:

Lemma 2.2. For x ∈ [xk, xk+1], k = 0, 1, . . . , n− 1 the following equality holds:
i) (S∆nf)(x)− f(x) = (x− xk)(xk+1 − x)[xk, x, xk+1; f ];
ii) S∆nei = ei, i = 0, 1,

(S∆nt2)(x) = x2 + (x− xk)(xk+1 − x),

S∆n((t− x)2; x) = (x− xk)(xk+1 − x);

iii) S∆n(|t− x|; x) = 2
(x− xk)(xk+1 − x)

xk+1 − xk

;

iv) S∆n(|t−λ|; x) =
xk+1−x

xk+1−xk

|xk−λ|+ x−xk

xk+1−xk

|xk+1−λ|.
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Proof. i) (S∆nf)(x)− f(x)

=
xk+1 − x

xk+1 − xk

f(xk) +
x− xk

xk+1 − xk

f(xk+1)− f(x)

= (x− xk)(xk+1 − x)

(
f(xk)

(xk − x)(xk − xk+1)
+

+
f(xk+1)

(xk+1 − x)(xk+1 − xk)
+

f(x)

(x− xk)(x− xk+1)

)
= (x− xk)(xk+1 − x)[xk, x, xk+1; f ].

ii) By i) we obtain forf = e0, e1, e2:

S∆ne0 = e0, S∆ne1 = e1,

(S∆ne2)(x) = x2 + (x− xk)(xk+1 − x)

and evidently
S∆n((t− x)2; x) = (x− xk)(xk+1 − x).

iii) Replacing in i)f(t) = |t− x| we obtain

S∆n(|t− x|; x) = (x− xk)(xk+1 − x)[xk, x, xk+1; |t− x|]t

= 2
(x− xk)(xk+1 − x)

xk+1 − xk

.

iv) It is obtained by i) forf(t) = |t− λ|.

We will need in the sequel the following result given by H. Burkhill [1] and H. Whitney [9].

Lemma 2.3. Letf : [a, b] → R and denote byL1(f ; a, b) the Lagrange polynomial of degree 1
interpolating the functionf at a andb.

Then for allx ∈ [a, b], one has

|f(x)− L1(f ; a, b)| ≤ ω2

(
f ;

b− a

2

)
.

By Lemma 2.3 we obtain forx ∈ [xk, xk+1] the following estimate

(2.3) |(S∆nf)(x)− f(x)| ≤ ω2

(
f ;

xk+1 − xk

2

)
.

Using Lemma 2.2.i) and formula (2.3), we can give an upper bound for the absolute value
of the divided difference of functionf on three distinct points in terms of the modulus of
smoothness

(2.4) |[xk, x, xk+1; f ]| ≤ 1

(x− xk)(xk+1 − x)
ω2

(
f ;

xk+1 − xk

2

)
.

We will use this result under the following form.
Forf ∈ C[a, b] anda ≤ xk−1 < xk < xk+1 ≤ b we have

(2.5) |[xk−1, xk, xk+1; f ]|

≤ 1

(xk − xk−1)(xk+1 − xk)
ω2

(
f ;

xk+1 − xk−1

2

)
.

Let Ln : C[a, b] → C[a, b] be a positive linear operator of the form:

(2.6) (Lnf)(x) =
n∑

k=0

pn,k(x)f(xk), with Lne0 = e0, Lne1 = e1,
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wherepn,k are continuous functions defined on[a, b], pn,k(x) ≥ 0, ∀ x ∈ [a, b], xk, k =
0, 1, . . . , n are the nodes of∆n andei(x) := xi, i ∈ N.

We denote byL∆n the set of discretely defined operatorsLn : C[a, b] → C[a, b] satisfying
(2.6).

Lemma 2.4. The operatorsLn ∈ L∆n have the following discretely representation:

(2.7) (Lnf)(x) = f(x0) + (x− x0)[x0, x1; f ]

+
1

2

n−1∑
k=1

(xk+1 − xk−1)[xk−1, xk, xk+1; f ](x− xk + Ln(|t− xk|; x))

(2.8) (Lnf)(x) =
n∑

k=0

xk+1 − xk−1

2
[xk−1, xk, xk+1; Ln(|u− t|; x)]uf(xk).

Proof. For everyf : [a, b] → R we have

(S∆nf)(xk) = f(xk)

and

Ln(S∆nf)(x) =
n∑

k=0

(S∆nf)(xk)pn,k(x)

=
n∑

k=0

f(xk)pn,k(x) = (Lnf)(x).

We apply the operatorLn to the identities (2.1) and (2.2) and we obtain the results.

3. QUANTITATIVE ESTIMATES ON [a, b]

Making use of Theorem 2.1 and formula (2.4), we can give estimates for the remainder in
approximating a continuous functionsf by operatorLn ∈ L∆n.

Theorem 3.1.LetLn ∈ L∆n andf ∈ C[a, b]. Then for everyx ∈ (xk, xk+1) there holds:

|(Lnf)(x)− f(x)|

≤
(

1 +
Ln(t− x)2 − (x− xk)(xk+1 − x)

ρ2

)
ω2(f ; ‖∆n‖),

whereρ = min(xk+1 − xk) and∆n = max(xk+1 − xk), k = 0, 1, . . . , n− 1.

Proof. From Theorem 2.1(i) we have

(S∆nf)(t)− (S∆nf)(x) = [x0, x1; f ](t− x)+

+
n−1∑
k=1

xk+1 − xk−1

2
[xk−1, xk, xk+1; f ](|t− xk| − |x− xk|+ (t− x)).

Applying the operatorLn on the variablet we obtain

(3.1) (Lnf)(x)− (S∆nf)(x)

=
n−1∑
k=1

xk+1 − xk−1

2
[xk−1, xk, xk+1; f ](Ln(|t− xk|; x)− |x− xk|).

Replacing in (3.1)f(t) = (t− x)2 we obtain

(3.2) Ln((t− x)2; x)− S∆n((t− x)2; x) =
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=
n−1∑
k=1

xk+1 − xk

2
(Ln(|t− xk|; x)− |x− xk|) ≥ 0.

By (2.5) we obtain

(3.3) |[xk−1, xk, xk+1; f ]| ≤ ω2(f ; ‖∆n‖)
(xk+1 − xk)(xk − xk−1)

≤ 1

ρ2
ω2(f ; ‖∆n‖).

By (3.1), (3.2) and (3.3) it result

(3.4) |(Lnf)(x)− (S∆nf)(x)| ≤

≤ 1

ρ2
ω2(f ; ‖∆n‖)

n−1∑
k=1

xk+1 − xk−1

2
(|Ln(|t− xk|; x)− |x− xk|) =

=
1

ρ2
ω2(f ; ‖∆n‖)(Ln((t− x)2; x)− S∆n((t− x)2; x)).

By (2.5) we have

(3.5) |(S∆nf)(x)− f(x)| ≤ ω2

(
f ;
‖∆n‖

2

)
≤ ω2(f ; ‖∆n‖).

By (3.4), (3.5) and Lemma 2.2 (ii) we obtain

|(Lnf)(x)− f(x)| ≤ |(Lnf)(x)− (S∆nf)(x)|+ |(S∆nf)(x)− f(x)| ≤

≤
(

1 +
Ln(t− x)2 − (x− xk)(xk+1 − x)

ρ2

)
ω2(f ; ‖∆n‖).

We can observe that during the proof it appears the estimate of the remainder betweenS∆n

andf . This estimate can be improved for functionf ∈ C(1)[a, b].

Theorem 3.2. If f ∈ C(1)[a, b] andx ∈ [xk, xk+1] then

|(S∆nf)(x)− f(x)| ≤ (x− xk)(xk+1 − x)

xk+1 − xk

ω(f ′, xk+1 − xk).

Proof. Forx ∈ [xk, xk+1] we have

(S∆nf)(x)− f(x) =
xk+1 − x

xk+1 − xk

f(xk)

+
x− xk

xk+1 − xk

f(xk+1)− f(x)

=
xk+1 − x

xk+1 − xk

(f(xk)− f(x)) +
x− xk

xk+1 − xk

(f(xk+1)− f(x))

=
xk+1 − x

xk+1 − xk

(xk − x)f ′(ξ1) +
x− xk

xk+1 − xk

(xk+1 − x)f ′(ξ2)

=
(x− xk)(xk+1 − x)

xk+1 − xk

(f ′(ξ2)− f ′(ξ1))

with ξ1 ∈ (xk, x) andξ2 ∈ (x, xk+1), henceξ2 − ξ1 ≤ xk+1 − xk. Therefore

|(S∆nf)(x)− f(x)| ≤ (x− xk)(xk+1 − x)

xk+1 − xk

ω(f ′, xk+1 − xk).
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Corollary 3.3. For f ∈ C(1)[a, b] the following inequalities hold:

(3.6) |(S∆nf)(x)− f(x)| ≤ ‖∆n‖
4

ω(f ′, ‖∆n‖), x ∈ [a, b];

(3.7) |[x1, x2, x3; f ]| ≤ ω(f ′, x3 − x1)

x3 − x1

,

wherea ≤ x1 < x2 < x3 ≤ b.

Theorem 3.4.LetLn ∈ L∆n andf ∈ C(1)[a, b]. Then for everyx ∈ [xk, xk+1] there holds

|(Lnf)(x)− f(x)|

≤
(

1

4
+

Ln((t− x)2; x)− (xk+1 − x)(x− xk)

ρ2

)
‖∆n‖ω(f ′, ‖∆n‖).

Proof. It is obtained by Theorem 3.2, Corollary 3.3 and using the inequality

ω2(f, h) ≤ hω(f ′, h).

4. QUANTITATIVE ESTIMATES FOR EQUIDISTANT NODES ON [0, 1]

The operatorS∆nf relative to the interval[0, 1] and the nodes of∆n : xk = k/n, k =
0, 1, . . . , n will be denoted in the sequel bySn.

The operatorSn : C[0, 1] → C[0, 1] can be written as:

(4.1) (Snf)(x) =
1

n

n∑
k=0

[
k − 1

n
,
k

n
,
k + 1

n
; |t− x|

]
t

f

(
k

n

)
.

This operator has the following properties [3], which can be deduced by Lemma 2.2.

Corollary 4.1. i) Sn : C[0, 1] → C[0, 1] is positive and linear.
ii) (Snf)(k/n) = f(k/n), k = 0, 1, . . . , n.
iii) Snei = ei, i = 0, 1.

iv) Sn(|t− x|; x) = 2
{nx}(1− {nx})

n

Sn((t− x)2; x) =
{nx}(1− {nx})

n2
,

where{nx} = nx− [nx].

We denote byLn the set of discretely defined operatorsLn : C[0, 1] → C[0, 1] satisfying
(2.6) and the nodes of∆n arexk = k/n, k = 0, 1, . . . , n.

For representation of the operatorsLn ∈ Ln see [4], [5].
As an application of Theorem 3.1 we can given estimates for the remainder in approximation

of functionf ∈ C[0, 1] by means of positive linear operatorsLn ∈ Ln (see also [2]).

Corollary 4.2. LetLn ∈ Ln andf ∈ C[0, 1]. Then for everyx ∈ [0, 1] there holds

|(Lnf)(x)− f(x)|

≤
(

1 + n2Ln((t− x)2; x)

2
− {nx}(1− {nx})

2

)
ω2

(
f,

1

n

)
.
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Proof. It is obtained by Theorem 3.1, forρ = 1/n and∣∣∣∣[k − 1

n
,
k

n
,
k + 1

n
; f

]∣∣∣∣ ≤ n2

2
ω2

(
f ;

1

n

)
.

Forf ∈ C(1)[0, 1], using Theorem 3.4 we can obtain the following results.

Corollary 4.3. LetLn ∈ Ln andf ∈ C(1)[0, 1]. Then for everyx ∈ [0, 1] there holds

|(Lnf)(x)− f(x)| ≤ 1

n

(
1

8
+ n2Ln((t− x)2; x)

2

)
ω

(
f ′,

1

n

)
.

Proof.

|(Lnf)(x)− f(x)| ≤ {nx}(1− {nx})
n

ω

(
f ′,

1

n

)
+

(
n2Ln((t− x)2; x)

2
− {nx}(1− {nx})

2

)
ω2(f, h).

Using inequalityω2(f, h) ≤ hω(f ′, h) we obtain

|(Lnf)(x)− f(x)| ≤ {nx}(1− {nx})
n

ω

(
f ′,

1

n

)
+

1

n

(
n2Ln((t− x)2; x)

2
− {nx}(1− {nx})

2

)
ω

(
f ′,

1

n

)
≤ 1

n

(
1

8
+ n2Ln((t− x)2; x)

2

)
ω

(
f ′,

1

n

)
.
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[4] A. LUPAŞ, Properties of a sequence of approximation operators,Approximation and Optimization,
Proc. of ICAOR, University Press, Cluj-Napoca, 1997.
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