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1. I NTRODUCTION

A variational inequality (VI) problem is to find a vectoru∗ ∈ Ω such that

(1.1) (u′ − u∗)
T
F (u∗) ≥ 0, ∀u′ ∈ Ω,

whereΩ is a nonempty closed convex subset ofRn, andF is a mapping fromΩ into Rn. In this
paper, we consider the VI problem with the following structure:

(1.2) u =

(
x
y

)
, F (u) =

(
f(x)
g(y)

)
,

(1.3) Ω = {(x, y) | x ∈ X, y ∈ Y, Ax+By = b} ,
whereX andY are given nonempty closed convex subsets ofRn andRm, respectively,A ∈ Rl×n

andB ∈ Rl×m are given matrices,b ∈ Rl is a given vector,f : X → Rn andg : Y → Rm

are given monotone operators. Such problems have many important applications, especially in
economics and transportation equilibrium problems, which can be found in Bertsekas and Gafin
[1], Dafermos [7], Eckstein and Fukushima [9], Fukushima [10] and Nagurney and Ramanujam
[14].

By attaching a Lagrange multiplier vectorλ ∈ Rl to the linear constraintAx + By = b, one
obtains an equivalent form of problem (1.1)-(1.3):

(1.4) w∗ ∈ W, (w′ − w∗)
T
Q(w∗) ≥ 0, ∀w′ ∈ W,

where

(1.5) w =

 x
y
λ

 , Q(w) =

 f(x)− ATλ
g(y)−BTλ
Ax+By − b

 , W = X× Y× Rl.

In the following, we denote VI problem (1.4)-(1.5) by SVI(W, Q).
The classical proximal point algorithm generates a sequence{wk} via the following scheme:

(1.6) wk+1 ∈ W,
(
w′ − wk+1

)T [
Q(wk+1) + c

(
wk+1 − wk

)]
≥ 0, ∀w′ ∈ W.

Much recent research work has centered on nonlinear generalizations of (1.6) based on Bregman
functions [4, 6, 8]. Supposeφ is a Bregman function (defined in Section 3). Then an alternative
to (1.6) is the nonlinear proximal point algorithm (NPPA):

wk+1 ∈ W,
(
w′ − wk+1

)T {
Q(wk+1) + c

[
∇φ

(
wk+1

)
−∇φ

(
wk

)]}
≥ 0, ∀w′ ∈ W.

He et. al. [13] proposed the proximal alternating directions method (PADM), which generates
the new tripletwk+1 =

(
xk+1, yk+1, λk+1

)
∈ W fromwk =

(
xk, yk, λk

)
∈ W by the following

scheme, for allx′ ∈ X andy′ ∈ Y we have

(1.7)
(
x′ − xk+1

)T {
f(xk+1)− AT

[
λk − β

(
Axk+1 +Byk − b

)]
+ r

(
xk+1 − xk

)}
≥ 0,

(1.8)
(
y′ − yk+1

)T {
g(yk+1)−BT

[
λk − β

(
Axk+1 +Byk+1 − b

)]
+ s

(
yk+1 − yk

)}
≥ 0,

and

(1.9) λk+1 = λk − β
(
Axk+1 +Byk+1 − b

)
,

whereβ, r, s are given positive constants. It is clear that the proximal alternating directions
method (ADM) (1.7)-(1.9) adopts the new information in the iteration whenever possible. The
sub-VI problems (1.7) and (1.8) are easier to be solved than the original alternating directions
method [11, 12]. Combining the advantages of the NPPA and the PADM, we propose a nonlin-
ear proximal alternating directions method (NPADM).
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The rest of this paper is organized as follows. In the next section, we summarize some pre-
liminaries. Section 3 presents a nonlinear proximal ADM method and gives some preparations
concerning the convergence analysis. Then we prove the convergence of the proposed method
in Section 4. Finally, in Section 5, some concluding remarks are made.

2. PRELIMINARIES

In this section, we state the definitions of the D-function and Bregman function, and summa-
rize some basic properties of them.

Definition 2.1. [2] D-Function. LetS ⊆ Rn be a nonempty open convex set and letS̄ denote
its closure. Letφ : S̄ → R be a strictly convex function that is continuously differentiable onS.
The functionDφ : S̄× S → R, defined by

(2.1) Dφ(u, v) = φ(u)− φ(v)− (∇φ(v))T (u− v) ,

is called the D-function.

Remark 2.1. From the strict convexity ofφ, one can prove thatDφ(u, v) ≥ 0, andDφ(u, v) = 0
if and only if u = v.

D-functions do not in general behave like Euclidean distances. Generally, they are not sym-
metric and do not obey the triangle inequality. They have simple properties like that of squares
of Euclidean distances, as captured in the following lemma:

Lemma 2.1. ([5], Lemma 3.1) Givenφ : Rn → (−∞,+∞], Dφ defined in Eq. (2.1), and
u, v, t ∈ Rn such thatφ(u), φ(v), φ(t) are finite andφ is differentiable atv andt, then we have

(2.2) Dφ(u, v) = Dφ(u, t) +Dφ(t, v) + [∇φ(t)−∇φ(v)]T (u− t) .

Proof. The result can be conformed by a straightforward substitution of the definition (2.1) into
(2.2).

To apply the D-functionDφ effectively in the proposed method, we need to add some addi-
tional conditions on the functionφ.

Definition 2.2. [3] Bregman Function. LetS ⊆ Rn be a nonempty open convex set, and letS̄
be its closure. A functionφ : S̄ → R is called a Bregman function with zoneS if it satisfies the
following conditions:

(i) φ is strictly convex and continuous on̄S.
(ii) φ is continuously differentiable onS.

(iii) Given anyu ∈ S̄ andα ∈ R, the right partial level set L(u, α) = {v ∈ S|Dφ(u, v) ≤ α}
is bounded.

(iv) If
{
vk

}
⊂ S is a convergent sequence with limitv∞, thenDφ(v

∞, vk) → 0.
(v) If

{
uk

}
⊂ S̄ and

{
vk

}
⊂ S are sequences such thatvk → v∞ and

{
uk

}
is bounded, and

furthermoreDφ(u
k, vk) → 0, then one hasuk → v∞.

The following lemma due to Solodov and Svaiter [15] will be useful in proving the conver-
gence of the proposed method.

Lemma 2.2. Let φ be a convex function that satisfies conditions (i) and (ii) in Definition 2.2.
Suppose that, for

{
uk

}
⊂ S̄ and

{
vk

}
⊂ S, the following limiting condition is satisfied:

lim
k→∞

Dφ(u
k, vk) = 0.

If one of the sequences
{
uk

}
and

{
vk

}
is convergent, then the other also converges to the same

limit.
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Proof. See Theorem 2.4 in [15].

In the proposed method, we use D-functions to replace the quadratic terms in (1.7)-(1.8). And
the related Bregman functionsϕ andψ need to satisfy Condition A, which is stated as follows:
Condition A: Letϕ andψ be Bregman functions with zoneX0 and zoneY0, respectively, where
X ⊂ X0 and Y ⊂ Y0. And∇ϕ and∇ψ are Lipschitz continuous, i.e., there exist constants
ν > 0 andτ > 0, such that

(2.3) ‖∇ϕ(x1)−∇ϕ(x2)‖ ≤ ν ‖x1 − x2‖ , ∀ x1, x2 ∈ X0

and

(2.4) ‖∇ψ(y1)−∇ψ(y2)‖ ≤ τ ‖y1 − y2‖ , ∀ y1, y2 ∈ Y0.

For convenience, we make some basic assumptions to guarantee that the problem under con-
sideration is solvable and the NPADM is well defined.
Assumption A: f(x) andg(y) are continuous onX andY, respectively.
Assumption B: The solution set of SVI(W, Q), denoted byW∗, is nonempty.

3. A NONLINEAR PROXIMAL ADM M ETHOD AND ITS M AIN PROPERTIES

We now formally present a nonlinear proximal ADM method for monotone variational in-
equalities. Starting with an initial arbitrary tripletw0 =

(
x0, y0, λ0

)
∈ X × Y × Rl and three

positive constantsr, s andβ. A sequence
{
wk

}
=

{(
xk, yk, λk

)}
⊂ X × Y × Rl, k ≥ 0 is

successively generated by the following steps:
Step 1.Find xk+1 ∈ X such that

(3.1)
(
x′ − xk+1

)T [
fk+1(x

k+1) + r
(
∇ϕ(xk+1)−∇ϕ(xk)

)]
≥ 0, ∀x′ ∈ X.

Step 2.Find yk+1 ∈ Y such that

(3.2)
(
y′ − yk+1

)T [
gk+1(y

k+1) + s
(
∇ψ(yk+1)−∇ψ(yk)

)]
≥ 0, ∀y′ ∈ Y.

Step 3.Updateλk+1 via

(3.3) λk+1 = λk − β
(
Axk+1 +Byk+1 − b

)
.

Here

(3.4) fk+1(x) = f(x)− AT
[
λk − β

(
Ax+Byk − b

)]
,

(3.5) gk+1(y) = g(y)−BT
[
λk − β

(
Axk+1 +By − b

)]
.

Throughout the rest of the paper, we denote the functionφ : W → R by

(3.6) φ(w) = rϕ(x) + sψ(y) +
1

2β
‖λ‖2 +

β

2
‖By‖2 ,

which is also a Bregman function.
First, we have the following lemma.
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Lemma 3.1. Let wk+1 =
(
xk+1, yk+1, λk+1

)
be generated by (3.1)-(3.5) from givenwk =(

xk, yk, λk
)
. Then for anyw∗ = (x∗, y∗, λ∗) ∈ W∗, it holds that(
λk − λ∗

)T (
Axk+1 +Byk+1 − b

)
(3.7)

≥ β
∥∥Axk+1 +Byk+1 − b

∥∥2
+ β

(
Axk+1 − Ax∗

)T (
Byk −Byk+1

)
+ r

(
xk+1 − x∗

)T (
∇ϕ(xk+1)−∇ϕ(xk)

)
+ s

(
yk+1 − y∗

)T (
∇ψ(yk+1)−∇ψ(yk)

)
.

Proof. Sincew∗ is a solution of SVI(W, Q) andxk+1 ∈ X, yk+1 ∈ Y, we have

(3.8)
(
xk+1 − x∗

)T [
f(x∗)− ATλ∗

]
≥ 0,

and

(3.9)
(
yk+1 − y∗

)T [
g(x∗)−BTλ∗

]
≥ 0.

On the other hand, from (3.1)-(3.2),x∗ ∈ X andy∗ ∈ Y, it follows that(
x∗ − xk+1

)T
(3.10) {

f(xk+1)− AT
[
λk − β

(
Axk+1 +Byk − b

)]
+ r

(
∇ϕ(xk+1)−∇ϕ(xk)

)}
≥ 0,

and (
y∗ − yk+1

)T
(3.11) {

g(yk+1)−BT
[
λk − β

(
Axk+1 +Byk+1 − b

)]
+ s

(
∇ψ(yk+1)−∇ψ(yk)

)}
≥ 0.

Adding Eqs. (3.8) and (3.10) and using the monotonicity off , we have(
xk+1 − x∗

)T
AT

[(
λk − λ∗

)
− β

(
Axk+1 +Byk − b

)]
(3.12)

≥ r
(
xk+1 − x∗

)T (
∇ϕ(xk+1)−∇ϕ(xk)

)
.

In a similar way, adding Eqs. (3.9) and (3.11) and using the monotonicity ofg, we have(
yk+1 − y∗

)T
BT

[(
λk − λ∗

)
− β

(
Axk+1 +Byk+1 − b

)]
(3.13)

≥ s
(
yk+1 − y∗

)T (
∇ψ(yk+1)−∇ψ(yk)

)
.

Adding (3.12) and (3.13), and usingAx∗ +By∗ = b, it follows the assertion.

Notice that
1

2β

∥∥λk − λ∗
∥∥2

=
1

2β

∥∥λk+1 − λ∗
∥∥2

(3.14)

− 1

2β

∥∥λk − λk+1
∥∥2

+
1

β

(
λk − λ∗

)T (
λk − λk+1

)
.

Then from (3.3) and Lemma 3.1, we get

1

2β

∥∥λk − λ∗
∥∥2 ≥ 1

2β

∥∥λk+1 − λ∗
∥∥2

+
β

2

∥∥Axk+1 +Byk+1 − b
∥∥2

(3.15)

+ β
(
Axk+1 − Ax∗

)T (
Byk −Byk+1

)
+ r

(
xk+1 − x∗

)T (
∇ϕ(xk+1)−∇ϕ(xk)

)
+ s

(
yk+1 − y∗

)T (
∇ψ(yk+1)−∇ψ(yk)

)
.
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Similarly, we have

(3.16)
β

2

∥∥Byk −By∗
∥∥2

=
β

2

∥∥Byk+1 −By∗
∥∥2

− β

2

∥∥Byk −Byk+1
∥∥2

+ β
(
Byk −By∗

)T (
Byk −Byk+1

)
.

Adding (3.15) and (3.16), and usingAx∗ +By∗ = b, we obtain

1

2β

∥∥λk − λ∗
∥∥2

+
β

2

∥∥B(yk − y∗)
∥∥2

(3.17)

≥ 1

2β

∥∥λk+1 − λ∗
∥∥2

+
β

2

∥∥B (
yk+1 − y∗

)∥∥2
+
β

2

∥∥Axk+1 +Byk − b
∥∥2

+ r
(
xk+1 − x∗

)T (
∇ϕ(xk+1)−∇ϕ(xk)

)
+ s

(
yk+1 − y∗

)T (
∇ψ(yk+1)−∇ψ(yk)

)
.

4. CONVERGENCE OF THE PROPOSED M ETHOD

Now, we are in the stage to prove the main theorem of this paper, which shows that the
generated sequence

{
wk

}
is monotone under the D-functions.

Theorem 4.1. Let
{
wk

}
be a sequence generated by the proposed method and letw∗ =

(x∗, y∗, λ∗) be a solution of SVI(W, Q). Then for allk, we have

(4.1) Dφ(w
∗, wk+1) ≤ Dφ(w

∗, wk)

−
[
rDϕ(x

k+1, xk) + sDψ(yk+1, yk) +
β

2

∥∥Axk+1 +Byk − b
∥∥2

]
,

wherew∗ = (x∗, y∗, λ∗) andφ is defined in (3.6). In particular, for all k, we have

(4.2) Dφ(w
∗, wk+1) ≤ Dφ(w

∗, wk).

Proof. From Lemma 2.1, we know that

rDϕ(x
∗, xk) = rDϕ(x

∗, xk+1) + rDϕ(x
k+1, xk)(4.3)

+ r
(
x∗ − xk+1

)T
(∇ϕ(xk+1)−∇ϕ(xk)).

Similarly, we have

sDψ(y∗, yk) = sDψ(y∗, yk+1) + sDψ(yk+1, yk)(4.4)

+ s
(
y∗ − yk+1

)T
(∇ψ(yk+1)−∇ψ(yk)).

Using the definitions of D-Function andφ in (3.6), we obtain

Dφ(w, w̄) = rDϕ(x, x̄) + sDψ(y, ȳ) +
1

2β

∥∥λ− λ̄
∥∥2

+
β

2
‖By −Bȳ‖2 .

From the above notation ofDφ, and then adding (3.17), (4.3) and (4.4), we further get (4.1).
Inequality (4.2) follows directly from (4.1).

The following lemma plays an important role in the convergence analysis of the proposed
method.
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Lemma 4.2. Let wk+1 =
(
xk+1, yk+1, λk+1

)
be generated by (3.1)-(3.5) from givenwk =(

xk, yk, λk
)
. Then for anyw′ = (x′, y′, λ′) ∈ W, we have

(4.5)
(
x′ − xk+1

)T
fk+1(x

k+1) ≥
(
x′ − xk+1

)T
r
(
∇ϕ(xk)−∇ϕ(xk+1)

)
and

(4.6)
(
y′ − yk+1

)T
gk+1(y

k+1) ≥
(
y′ − yk+1

)T
s
(
∇ψ(yk)−∇ψ(yk+1)

)
.

Proof. The desired result follows from (3.1) and (3.2), immediately.

The two lemmas given below are devoted to prove the convergence of the NPADM.

Lemma 4.3. Let {wk} be a sequence generated by the proposed method. Then,{wk} is
bounded and every accumulation point of{wk} is a solution point of SVI(W, Q).

Proof. From (4.2) in Theorem 4.1, we know that

wk ∈ L(w∗, α) = {w | Dφ(w
∗, w) ≤ α} ∀ k ≥ 0,

whereα = Dφ(w
∗, w0). This implies that

{
wk

}
is bounded because of condition (iii) in Defin-

ition 2.2. The first assertion is proved.
It follows from (4.1) that

lim
k→∞

rDϕ(x
k+1, xk) + sDψ(yk+1, yk) +

β

2

∥∥Axk+1 +Byk − b
∥∥2

= 0.

Consequently,

(4.7) lim
k→∞

Dϕ(x
k+1, xk) = 0, lim

k→∞
Dψ(yk+1, yk) = 0,

and

(4.8) lim
k→∞

∥∥Axk+1 +Byk − b
∥∥ = 0.

Because
{
wk

}
is bounded, it has at least one accumulation point. Letw∞ be an accumulation

point of
{
wk

}
and the subsequence

{
wkj

}
converges tow∞ = (x∞, y∞, λ∞), i.e.,

(4.9) lim
j→∞

∥∥xkj − x∞
∥∥ = 0, lim

j→∞

∥∥ykj − y∞
∥∥ = 0,

and

(4.10) lim
j→∞

∥∥λkj − λ∞
∥∥ = 0.

From (4.7), we know that

(4.11) lim
j→∞

Dψ(ykj+1, ykj) = 0.

It follows from the boundedness of
{
ykj+1

}
, (4.9) and (4.11) that

{
ykj+1

}
also converges toy∞

since the condition (v) in Definition 2.2 is satisfied. Then we can easily obtain

(4.12) lim
j→∞

∥∥ykj+1 − ykj
∥∥ = 0.

Because∇ψ is Lipschitz continuous (Condition A),

(4.13) lim
j→∞

∥∥∇ψ(ykj+1)−∇ψ(ykj)
∥∥ = 0.

Similarly, we get

(4.14) lim
j→∞

∥∥xkj+1 − x∞
∥∥ = 0, lim

j→∞

∥∥∇ϕ(xkj+1)−∇ϕ(xkj)
∥∥ = 0.
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(4.8) and (4.12) yield that

(4.15) lim
j→∞

∥∥Axkj+1 +Bykj+1 − b
∥∥ (3.3)

= lim
j→∞

1

β

∥∥λkj − λkj+1
∥∥ = 0.

From this and (4.10), we can see that
{
λkj+1

}
also converges toλ∞.

Since (see (3.4) and (3.5))

fk+1(x
k+1) = f(xk+1)− ATλk+1 + ATHB

(
yk − yk+1

)
,

and
gk+1(y

k+1) = g(yk+1)−BTλk+1,

it follows from (4.5)-(4.6) and (4.12)-(4.15) that
limj→∞

(
x′ − xkj+1

)T {
f(xkj+1)− ATλkj+1

}
≥ 0, ∀x′ ∈ X,

limj→∞
(
y′ − ykj+1

)T {
g(ykj+1)−BTλkj+1

}
≥ 0, ∀y′ ∈ Y,

limj→∞Ax
kj+1 +Bykj+1 − b = 0,

and consequently
(x′ − x∞)T

{
f(x∞)− ATλ∞

}
≥ 0, ∀x′ ∈ X,

(y′ − y∞)T
{
g(y∞)−BTλ∞

}
≥ 0, ∀y′ ∈ Y,

Ax∞ +By∞ − b = 0,

because
{
wkj+1

}
also converges tow∞. This means thatw∞ is a solution point of SVI(W, Q).

Lemma 4.4. Let
{
wk

}
be a sequence generated by the proposed method. Then,

{
wk

}
is con-

vergent.

Proof. Since
{
wk

}
is bounded, it has at least one accumulation pointw∞. Let

{
wk

}
k∈K be a

subsequence which converges tow∞. Then from condition (iv) in Definition 2.2, we have

lim
k→∞,k∈K

Dφ(w
∞, wk) = 0.

From Lemma 4.3 and Theorem 4.1, we know thatw∞ is a solution point of SVI(W, Q) and

0 ≤ Dφ(w
∞, wk+1) ≤ Dφ(w

∞, wk).

Obviously, the sequence{Dφ(w
∞, wk)} converges and the limit is equal to zero. Moreover,

applying Lemma 2.2 withuk andvk being replaced byw∞ andwk, respectively, we see that{
wk

}
converges tow∞.

From the above analysis, we give the convergence theorem for the NPADM.

Theorem 4.5. Let
{
wk

}
be a sequence generated by the proposed method. Then,

{
wk

}
con-

verges to a solution of SVI(W, Q).

Proof. It is an immediate consequence of Lemmas 4.3 and 4.4.

5. CONCLUDING REMARKS

In this paper, we suggest a nonlinear proximal alternating directions method. It is shown
that the method has global convergence under proper conditions. Our main work is using D-
functions to substitute the quadratic terms in the proximal alternating directions method. It is
our belief that the research on the choices ofϕ andψ is important in application and we hope
this paper may stimulate further investigation in this direction.

AJMAA, Vol. 4, No. 2, Art. 15, pp. 1-9, 2007 AJMAA

http://ajmaa.org


NONLINEAR PROXIMAL ALTERNATING DIRECTIONSMETHOD 9

REFERENCES

[1] D.P. BERTSEKAS and E.M. GAFNI, Projection method for variational inequalities with applica-
tions to the traffic assignment problem,Math. Programming Stud., 17(1987), pp. 139–159.

[2] L.M. BREGMAN, The relaxation method of finding the common point of convex sets and its
application to the solution of problems in convex programming,USSR Comput. Math. Math. Phys.,
7(1967), pp. 200–217.

[3] Y. CENSOR and A. LENT, An iteration row-action method for interval convex programming,J.
Optim. Theory Appl., 34(1981), pp. 321–353.

[4] Y. CENSOR and S.A. ZENIOS, Proximal minimization algorithm with D-functions,J. Optim.
Theory Appl., 73(1992), pp. 451–464.

[5] G. CHEN and M. TEBOULLE, A convergence analysis of proximal-like minimization algorithms
using Bregman functions,SIAM J. Optim., 3(1993), pp. 538–543.

[6] G. COHEN, Auxiliary problem principle extended to variational inequalities,J. Optim. Theory
Appl., 59(1988), pp. 325–333.

[7] S. DAFERMOS, Traffic equilibrium and variational inequalties,Transp. Sci., 14(1980), pp. 42–54.

[8] J. ECKSTEIN, Nonlinear proximal point algorithms using Bregman functions, with applications to
convex programming,Math. Oper. Res., 18(1993), pp. 202–226.

[9] J. ECKSTEIN and M. FUKUSHIMA, Some reformulations and applications of the alternating
directions method of multipliers, In: W.W. Hager et al.(eds.)Large Scale Optimization: State of
the Art, Kluwer Academic Publishers (1994), pp. 115–134.

[10] M. FUKUSHIMA, Application of the alternating direction method of multilpiers to separable con-
vex programming problems,Comput. Optim. Appl., 1(1992), pp. 93–111.

[11] D. GABAY, Applications of the method of multipliers to variational inequalities, In: M. Fortin, R.
Glowinski (eds.)Augmented Lagrangian methods: Applications to the solution of Boundary-Value
Problems, North Holland, Amsterdam, The Netherlands (1983), pp. 299–331.

[12] D. GABAY and B. MERCIER, A dual algorithm for the solution of nonlinear variational problems
via finite element approximations,Comput. Optim. Appl., 2(1976), pp. 17–40.

[13] B.S. HE, L-Z. LIAO, D.R. HAN and H. YANG, A new inexact alternating directions method for
monotone variational inequalities,Math. Program. Ser. A, 92(2002), pp. 103–118.

[14] A. NAGURNEY and P. RAMANUJAM, Transportation network policy modeling with goal targets
and generalized penalty functions,Transp. Sci., 30(1996), pp. 3–13.

[15] M.V. SOLODOV and B.F. SVAITER, An inexact hybrid generalized proximal point algorithm and
some new results on the theorey of Bregman functions,Math. Oper. Res., 25(2000), pp. 214–230.

AJMAA, Vol. 4, No. 2, Art. 15, pp. 1-9, 2007 AJMAA

http://ajmaa.org

	1. Introduction
	2. Preliminaries
	3. A Nonlinear Proximal ADM Method and its Main Properties
	4. Convergence of the Proposed Method
	5. Concluding Remarks
	References

