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ABSTRACT. Inthis paper, we present a nonlinear proximal alternating directions method (NPADM)
for solving a class of structured variational inequalities (SVI). By choosing suitable Bregman
functions, we generalize the proximal alternating directions method proposed by Hel el al. [13].
The convergence of the method is proved under quite mild assumptions and flexible parameter

conditions.
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1. INTRODUCTION
A variational inequality (V1) problem is to find a vector € ) such that
(1.1) (W —u)" Fu*) >0, Vo' e,

wheref2 is a nonempty closed convex subseRdf andF' is a mapping frons2 into R™. In this
paper, we consider the VI problem with the following structure:

02 () =)

(1.3) Q={(z,y) |z€X, yeY, Ax+ By =b},

whereX andY are given nonempty closed convex subsef®’oandR™, respectivelyA € R>*"
and B € R™>*™ are given matrices); € R' is a given vectorf : X — R" andg : Y — R™
are given monotone operators. Such problems have many important applications, especially in
economics and transportation equilibrium problems, which can be found in Bertsekas and Gafin
[1], Dafermos([7], Eckstein and Fukushima [9], Fukushima [10] and Nagurney and Ramanujam
[14].

By attaching a Lagrange multiplier vectdre R’ to the linear constraintiz + By = b, one
obtains an equivalent form of problefm ({1.[)-(1.3):

(1.4) w*eW, (w' — w*)TQ(w*) >0, V' e W,

where
T flx) — ATX

(1.5) w=|y |, Qw)= 1| gy)—B"x |, W=XxY xR.
A Ax+ By —b

In the following, we denote VI problem (1.4)-(1.5) by SW, Q).

The classical proximal point algorithm generates a sequémntg via the following scheme:
(1.6) wttew, (w’ — wk“)T [Q(wkH) +c (wk+1 — wk)} >0, Vuw' € W.
Much recent research work has centered on nonlinear generalizatipng of (1.6) based on Bregman
functions [4[6[ 8]. Supposgis a Bregman function (defined in Sectdn 3). Then an alternative
to (1.6) is the nonlinear proximal point algorithm (NPPA):
Wt e w, (v — wkH)T {Q*™) + ¢ [Vo (W) = V¢ (w*)]} >0, Vo' eW.

He et. al. [13] proposed the proximal alternating directions method (PADM), which generates
the new tripletw+1 = (F+1, y#+1 A1) € W from wk = (2*,y*, \*) € W by the following
scheme, for alt’ € X andy’ € Y we have

@.7) (¢ =) {fa) — AT [N = B (A 4 ByF —0)] 4 (M - 2F) ) >0,

T
(18) (y/ i yk—l-l) {g<yk+1) - BT [)\k . 6 (A$k+1 + Byk+1 o b)} +s (yk-‘rl . yk)} Z 0,
and
(1.9) A= \F — B (A" + Byt — ),
where, r, s are given positive constants. It is clear that the proximal alternating directions
method (ADM) [1.7){(1.P) adopts the new information in the iteration whenever possible. The
sub-VI problems[(1]7) andl (1.8) are easier to be solved than the original alternating directions

method [11, 12]. Combining the advantages of the NPPA and the PADM, we propose a nonlin-
ear proximal alternating directions method (NPADM).
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The rest of this paper is organized as follows. In the next section, we summarize some pre-
liminaries. Section|3 presents a nonlinear proximal ADM method and gives some preparations
concerning the convergence analysis. Then we prove the convergence of the proposed method
in Sectior{ 4. Finally, in Sectidn 5, some concluding remarks are made.

2. PRELIMINARIES

In this section, we state the definitions of the D-function and Bregman function, and summa-
rize some basic properties of them.

Definition 2.1. [2] D-Function. LetS C R™ be a nonempty open convex set andSetenote
its closure. Let) : S — R be a strictly convex function that is continuously differentiableSon
The functionDy : S x S — R, defined by

(2.1) Dy(u,v) = (u) = p(v) = (Vo(v)) (u—v),
is called the D-function.

Remark 2.1. From the strict convexity o, one can prove thadd,(u, v) > 0, andD(u,v) =0
if and only if u = v.

D-functions do not in general behave like Euclidean distances. Generally, they are not sym-
metric and do not obey the triangle inequality. They have simple properties like that of squares
of Euclidean distances, as captured in the following lemma:

Lemma 2.1. ([5], Lemma 3.1) Givew : R" — (—o0,+00|, D, defined in Eq. [(2]1), and
u,v,t € R™ such thatp(u), ¢(v), ¢(t) are finite andyp is differentiable at and¢, then we have

(2.2) Dy(u,v) = Dy(u. t) + Dy(t,v) + [Vo(t) = Vo(u)]" (u—1).
Proof. The result can be conformed by a straightforward substitution of the defirjitign (2.1) into

2.2).n

To apply the D-functionD, effectively in the proposed method, we need to add some addi-
tional conditions on the function.

Definition 2.2. [3] Bregman Function. Le$ C R” be a nonempty open convex set, andSet
be its closure. A function : S — R is called a Bregman function with zofgf it satisfies the
following conditions:
(i) ¢ is strictly convex and continuous &h
(i) ¢ is continuously differentiable of.
(iii) Given anyu € S anda € R, the right partial level set (w, o) = {v € S|Dy(u,v) < a}
is bounded.
(iv) If {v*} C Sisaconvergent sequence with limaft, thenDy,(v>, v*) — 0.
(v) If {u¥} c Sand{v*} C S are sequences such thét— v> and{u"} is bounded, and
furthermoreD,, (u*, v*) — 0, then one hag* — v™.

The following lemma due to Solodov and Svaiter|[15] will be useful in proving the conver-
gence of the proposed method.

Lemma 2.2. Let ¢ be a convex function that satisfies conditions (i) and (ii) in Definition 2.2.
Suppose that, fofu*} ¢ Sand{v*} C S, the following limiting condition is satisfied:

lim Dy(u”,v*) = 0.

k—o00

If one of the sequencds.*} and {v*} is convergent, then the other also converges to the same
limit.
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Proof. See Theorem 2.4 in [15}

In the proposed method, we use D-functions to replace the quadratic tefms in (1.7)-(1.8). And
the related Bregman functiogsand« need to satisfy Condition A, which is stated as follows:
Condition A: Lety andvy be Bregman functions with zoiXg and zoneY, respectively, where
X C XpandY C Y, AndVe and Vi are Lipschitz continuous, i.e., there exist constants
v > 0andrt > 0, such that

(2.3) IVo(z1) = V(o) S vior —aaf, Va2 €Xg
and
(2.4) IVO(y1) = V() < 7llyr —well,  Vyr,50 € Yo

For convenience, we make some basic assumptions to guarantee that the problem under con-
sideration is solvable and the NPADM is well defined.
Assumption A: f(z) andg(y) are continuous oiX andY, respectively.
Assumption B: The solution set of S\W, 0), denoted byW*, is nonempty.

3. ANONLINEAR PROXIMAL ADM M ETHOD AND ITS MAIN PROPERTIES

We now formally present a nonlinear proximal ADM method for monotone variational in-
equalities. Starting with an initial arbitrary triplet® = (z°,¢y°,A\°) € X x Y x R’ and three
positive constants, s and3. A sequencg{w*} = {(2*,y* \*)} C X x Y xR, k > 0is
successively generated by the following steps:

Step 1.Find z**! € X such that

(3.1) (2 — xk“)T (o1 (&™) + 7 (Vp(a"T) — Vp(a))] >0, Vo' € X.
Step 2.Find y**! € Y such that
32 (v — ") [ (") + s (Vo) - Vo) =0, W eV

Step 3.UpdateX*"! via

(3.3) A=A — B (A"t 4 Byt —b) .

Here

(3.4) fr(z) = f(x) — AT [\* = B (Az + By* —b)],
(3.5) g1 (y) = gly) — BT [\* = B (A" + By —b)] .

Throughout the rest of the paper, we denote the functioftV — R by

(36) o) = rp(a) + svly) + 55 I+ 5 1Bl

which is also a Bregman function.
First, we have the following lemma.
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Lemma 3.1. Let w**! = (z%+1 y*+1 \¥*1) be generated by (3.1)-(3.5) from givert =
(z*,y*, \*). Then for anyw* = (z*,y*, \*) € W*, it holds that

(3.7) (AF = )" (AdhH! 4 ByF+l — )
> || A"+ + ByHt —b||* + 8 (A2t — Ax*)” (By* — By
+or (2 — ) (V™) — V(b))
+ s (T —y) (Ve - Veh).

Proof. Sincew* is a solution of SV(W, Q) andz**! € X, y*! € Y, we have

(3.8) (@ —2) " [f(a) = ATN] > 0,
and
(3.9) W —y)" [o") = BTN > 0.

On the other hand, from (3.1))-(3.2); € X andy* € Y, it follows that
(3.10) (z*— xk“)T
{f(mk-f—l) o AT [)\k . ﬁ (A.I’k—H + Byk o b)} +r (Vgo(mkﬂ) - VgD(I’k))} Z O,

and
3.11) (v — )"

{g(yk—H) _gT [)\k 3 (Axk-i-l + Bka B b)} +s (V¢(yk+1) . V¢(yk))} > 0.
Adding Egs. [(3.B) and (3.10) and using the monotonicity ofve have
(3.12) (51— 2) " AT [(AF = ) = 8 (A" + ByF —b)]

> (xkﬂ _ $*)T (Vgp(karl) _ V(p(mk)) '
In a similar way, adding Eqd. (3.9) arjd (3.11) and using the monotoniciiywé have
(3.13) (yk—H _ y*)T BT [()\k . )\*) —3 (Amk“ + Byk—H - b)}
> s (¥ - ) (Vo) - Veh) .
Adding (3.12) and[(3.13), and usingr* + By* = b, it follows the assertion.g
Notice that

1 "
(3.14) %5 [AF = A

2 2

| *
— %H)\k—kl_)\
1

5 (/\k o )\*)T ()\k - /\k+1)‘

— % H)\k _ )\k+1”2 +
Then from (3.B) and Lemnja 3.1, we get

(3.15)

‘)\kz . )\*H2 > % ||/\k+1 ) 2 + g HAka + Byk-i-l . bH2

1
25|
+ 0 (Axk+1 — A:v*)T (Byk — Byk“)
+ 7 ($k+l . w*)T (Vgp(xkdrl) . Vgp(mk))

+ s (Y =y (Vo) — Vo).
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Similarly, we have

(3.16) g |1By* — By*||” = g | By —

g HByk . Byk+1H2 1+ 8 (Byk: . By*)T (Byk . Bykz-l-l) ‘

Adding (3.1%) and(3.16), and usinti* + By* = b, we obtain

1
(3.17) %H)\k—)\* 2—|—§HB(yk—y*) 2

1 *
Z%”)\lﬂrl_)\

+r (@ = 2*) (V™) - V()
Fs (=) (Vo) - Vo).

Y L P

4, CONVERGENCE OF THE PROPOSEDMETHOD

Now, we are in the stage to prove the main theorem of this paper, which shows that the
generated sequende* } is monotone under the D-functions.

Theorem 4.1. Let {w’“} be a sequence generated by the proposed method and*let
(z*,y*, \") be a solution of SYW, )). Then for allk, we have

(4.2) D¢(w*,wk+1) < D¢(w*,wk)
— TD@(-IJC+1 )+SD ( k+1 Ly )+§||Axk+1+8yk—bH2 ’

wherew* = (z*, y*, \*) and¢ is defined in[(3)6). In particular, for all k, we have
(4.2) Dy(w*,w*) < Dy(w*, w").
Proof. From Lemma 21, we know that
(4.3) rDy(x*,2%) = rD(z*, o) + rD, (2", 2F)

o (2 = ) (Vip(ah ) — Tp(ah)).
Similarly, we have
(4.4) sDy(y*,y*) = sDy(y", ") + sDy (", ")

+5 (5" — o) (Vo) - Vo (b)),
Using the definitions of D-Function anglin (3.6), we obtain

Dy(w,w) =rD,(w, ) + sDy(y,y) + % A=A+ § | By — Byl

From the above notation db4, and then adding (3.17), (4.3) arid (4.4), we further (4.2).
Inequality [(4.2) follows directly from[ (4]1)n

The following lemma plays an important role in the convergence analysis of the proposed
method.
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Lemma 4.2. Let w**! = (z%+1 y*+1 \¥*1) be generated by (3.1)-(3.5) from givert =
(%, ¥, A"”). Then for anyw’ = (2/,9/, \') € W, we have

(4.5) (&' = 2" frn (F) > (o = ) (Vp(ah) — Vip(z*))
and
(4.6) (y' — yk+1)Tgk+1(yk+1) > (y/ . yk+1)T s (V?/)(yk) . V¢(yk+1)) .

Proof. The desired result follows from (3.1) arjd (3.2), immediatgly.
The two lemmas given below are devoted to prove the convergence of the NPADM.

Lemma 4.3. Let {w"*} be a sequence generated by the proposed method. Thén, is
bounded and every accumulation point{af*} is a solution point of SV, Q).

Proof. From [4.2) in Theorerp 4,1, we know that
wh € L(w*, a) = {w| Dg(w*,w) < a} VEk>0,

wherea = Dy(w*, w?). This implies that{wk} is bounded because of condition (iii) in Defin-
ition[2.2. The first assertion is proved.
It follows from (4.7) that

lim 7D, (2", 2%) 4+ sDy (v* ™, y )—i—gHAa:kH—l—Byk—bHQZO.

k—o0
Consequently,
(47) ]}EEOD ( k+1 l‘k) :0’ khngD ( k+1 yk) :0,
and
(4.8) kll_{g) ||A£L‘k+1 + By bH =0.

Because{w’“} is bounded, it has at least one accumulation point.uk®®tbe an accumulation
point of {w"*} and the subsequende*s } converges ta™> = (2>, y>,X*), i.e

(4.9 lim Hx OOH =0, lim ||y OOH =0,
j—00 Jj—00
and
(4.10) lim || A% — 2| = 0.
Jj—00

From (4.7), we know that
(4.11) lim Dy (y5* y*) = 0.

Jj—oo

It follows from the boundedness ¢f/" '}, ) and|(4.111) thafy**' } also converges tg™
since the condition (v) in Definition 2.2 is satisfied. Then we can easily obtain

(4.12) lim |/ = yH ]| = 0.

BecauséV is Lipschitz continuous (Condition A),

(4.13) Jim [[Ve(y+h) = Vo )| = 0.

Similarly, we get

(4.14) Jim [l — 2= =0, Jim [[Ve(e® ") = Veab)]| =0
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(4.8) and[(4.1R) yield that
(4.15) lim [|Azb ! 4 Bybstt — b lim % A — N+ | = o,
j—o0 j—00

From this and (4.20), we can see tr{af“j“} also converges ta™.
Since (se 4) anfl (3.5))

Frrn(a¥Y) = @) — ATNH L ATHB (4 — 1)

and
gk+1(yk+1) — g(yk+1> . BTAk—H,
it follows from (4.5)-[4.6) and (4.12}-(4.15) that
lim;_o (2/ — :rkﬂ'*l)T {f(zhtl) — ATAMTEL > 0, V' € X,
hmj—>oo (y' _ yk:jﬂ)T {g(ykjﬂ) _ BT)\k]-—H} >0, vy €Y,

lim;_o, Azkitt + ByFitl — p =0,
and consequently
(2 — 2=)" {f(z>=) — ATA*} >0, V' e X,
(W —y*)" {9y=) = B"A\*} =20, W eY,
Axz>* 4+ By>* —b =0,
becausd w* ™} also converges to>. This means that* is a solution point of SMIW, Q). &

Lemma 4.4. Let {w"} be a sequence generated by the proposed method. {hé#,is con-
vergent.

Proof. Since{w"} is bounded, it has at least one accumulation peitit Let {w*}, , be a
subsequence which converges®. Then from condition (iv) in Definition 2|2, we have

1i Dy(w™, w*) = 0.
kﬁolor’r]ieK oW, w") =0

From Lemma 4.3 and Theordm 4.1, we know thét is a solution point of SMIW, )) and
0 < Dy(w™, w*™) < Dy(w™, w").

Obviously, the sequenceD,(w>,w")} converges and the limit is equal to zero. Moreover,
applying Lemma 2]2 with/* andv* being replaced bys> andw”, respectively, we see that
{w*} converges ta>. §

From the above analysis, we give the convergence theorem for the NPADM.

Theorem 4.5. Let {w"} be a sequence generated by the proposed method. {hén,con-
verges to a solution of SWV, Q).

Proof. It is an immediate consequence of Lemina$ 4.3 arjdi.4.

5. CONCLUDING REMARKS

In this paper, we suggest a nonlinear proximal alternating directions method. It is shown
that the method has global convergence under proper conditions. Our main work is using D-
functions to substitute the quadratic terms in the proximal alternating directions method. It is
our belief that the research on the choiceso@nd+ is important in application and we hope
this paper may stimulate further investigation in this direction.
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