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2 OLIVIER DE LA GRANDVILLE

1. I NTRODUCTION

The calculus of variations is arguably one of the most beautiful areas of mathematics. In-
deed, the problems it addressed at first seemed beyond the reach of the standard differential
calculus available; then remarkably simple methods were progressively devised, illuminating
areas where the best minds had only been able to grope their way. Remember the challenge
offered by Johann Bernoulli, in June 1696, whose solution had eluded even Galileo: find the
pathy(x) between two points A and B in a vertical plane such that a bead slide from A to B in
minimum time. His brother Jakob, as well as Newton, Leibniz, Tschirnhaus and the Marquis de
L’Hospital were able to determine that the solution, called the brachistochrone, was an arc of
cycloid, but only by resorting to a series of very clever geometric and physical considerations.
None of them, however, were able to find an analytic solution to the problem of extremizing an
integral such as

(1.1) I [y (x)] =

∫ b

a

F (x, y, y′) dx,

a so-called functional, i.e. a relationship between a functiony(x) and a numberI. (The time
T taken by the bead, starting at point A(x0, y0) to reach point B(x1, y1), equal toT [y (x)] =

1√
2g

∫ x1

x0

√
1+y′2

y0−y
dx, whereg is the gravitational constant, is an example of the functional (1.1),

albeit the integrand does not depend explicitely onx). Mathematicians would have to wait
nearly half a century for the genius of Euler to come up, in 1744, with the second-order differ-
ential equation

∂F

∂y
(x, y, y′)− d

dx

∂F

∂y′
(x, y, y′) =

(1.2)
∂F

∂y
(x, y, y′)− ∂2F

∂y′∂x
(x, y, y′)− ∂2F

∂y′∂y
(x, y, y′)y′ − ∂2F

∂y′2
(x, y, y′)y′′ = 0

that would constitute a first-order condition for a functional such as (1.1) to be maximized or
minimized. But even Euler was not able to derive his equation from an analytic argument, and
had to rely on geometrical reasoning. As Herman Goldstine relates in his splendidHistory of the
Calculus of Variations[3], Euler himself tells us how he had hopelessly struggled to find such
a derivation and that all the merit of achieving this feat belonged to the 19 year-old Giuseppe
Ludovico de La Grange-Tournier1. Here are Euler’s own words (quoted by Goldstine, [3], p.
110): "Even though the author of this [Euler] had meditated a long time and had revealed to
friends his desire, yet the glory of first discovery was reserved to the very penetrating geometer
of Turin La Grange who, having used analysis alone, has clearly attained the very same solution
which the author had deduced from geometrical considerations"2.

1 One of the best kept secrets in mathematics is that Lagrange was Italian.
2 Perhaps Euler had been too harsh on himself, for two reasons: first his geometric reasoning was vindicated

two centuries later in the "direct methods" of the calculus of variations (see Gelfand and Fomin [2]); secondly, his
approach led him to the extremal of functionals depending onm-order derivatives such has

I [y(x)] =
∫ b

a

F
(
x, y, y′, ..., y(m)

)
dx,

given by the solution of the 2m order differential equation

∂F

∂y

(
x, y, y′, ..., y(m)

)
+

m∑
j=1

(−1)j dj

dxj

∂F

∂y(j)

(
x, y, y′, ..., y(m)

)
= 0,
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Both Euler and Lagrange then dealt with more complex problems, for instance those in-
volving constraints of varying degrees of complexity. But the work was far from finished,
particularly with regard to the (admittedly thorny) sufficient conditions for the optimisation of
functionals. Those would have to wait for the 19th and even the 20th century and the successive
contributions of Legendre, Jacobi, Weierstrass, Hilbert and Carathéodory to be sorted out.

We need to come back for a moment to the initial problem of optimizing (1.1). We do this
for two reasons. The first is to highlight the wonderful intuition of young Giuseppe; the second
is to focus ontwo crucial stepsthat will become essential in the new discipline; indeed, it turns
out that when the functional becomes complicated – for instance if it is required to maximize an
n-uple integral – these steps, in the extended form they need to take, can become very intricate.
On the other hand, one of the purposes of this paper is to show how the Dorfmanian – in its due
extensions – avoids all of these difficulties.

WHEN YOUNG GIUSEPPE STEPPED IN

In the letter young Giuseppe sent to Euler on August 12, 1755 from his home in Torino, he
suggested the following (we will use the notation corresponding to (1.1) and (1.2) ). Suppose
we want to find an extremal of (1.1) subject toy(a) = ya andy(b) = yb. Assume thaty(x)
has been found as an extremal. We can give to this extremal an increase – a variation, or a
perturbation – with the following form: it will be the product of anarbitrary C1 fixed function
η(x) such thatη(a) = η(b) = 0, and avariable real numberα. The new, resulting function
beingy(x) + αη(x), the value of the functional becomes

(1.3) I [y(x) + αη(x)] =

∫ b

a

F (x; y(x) + αη(x); y′(x) + αη′(x)) dx = J(α).

Sincey(x) andη(x) arefixed functions,the functional (1.1) that was dreaded for so many years
just turned into a nice function of a single variable, here denotedJ(α). The wonderful idea
of young Giuseppe was to transform the problem of optimising a functional into a very simple
problem of differential calculus whose solution could yield the Euler equation, as follows. If an
interior solution exists, we must haveJ ′(α)α=0 ≡ J ′(0) = 0, i.e.

(1.4) J ′(0) =

∫ b

a

[
∂F

∂y
η(x) +

∂F

∂y′
η′(x)

]
dx = 0.

The second master stroke by La Grange was to render this first-order condition independent
of η(x). Integrating by parts the second term of the integrand – this is the first crucial step we
alluded to – gives

(1.5)
∫ b

a

∂F

∂y′
η′(x)dx =

[
∂F

∂y′
η(x)

]b

a

−
∫ b

a

η(x)
d

dx

∂F

∂y′
dx;

later called the Euler-Poisson equation. Furthermore, in the same way he was able to tackle functionals defined by
double integrals such as

I [u(x, y)] =
∫ ∫

R

F (x, y, u, ux, uy) dxdy,

leading to the second order partial differential equation

∂F

∂u
(x, y, u, ux, uy)− ∂

∂x

∂F

∂ux
(x, y, u, ux, uy)− ∂

∂y

∂F

∂uy
(x, y, u, ux, uy) = 0,

which would later have so much importance in physics – in particular it led to the Laplace and to the Schrödinger
equations.
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4 OLIVIER DE LA GRANDVILLE

Sinceη(a) = η(b) = 0, the first-order condition given by (1.4) therefore becomes

(1.6) J ′(0) =

∫ b

a

η(x)

[
∂F

∂y
− d

dx

∂F

∂y′

]
dx ≡

∫ b

a

η(x)g(x)dx = 0,

whereg(x) denotes∂F
∂y
− d

dx
∂F
∂y′ . With the welcome impetuosity of youth, La Grange concluded

that for the integral to vanish, definitelyg(x) should be equal to zero over the whole interval
[a, b] sinceη(x) was to be arbitrary. Euler agreed to this, but did ask Giuseppe to please prove
it. That proof became known as the fundamental lemma of the calculus of variations. This is
the second step we alluded to, and the final part of the analytic derivation of the Euler formula.

Lemma 1.1. If g(x) is continuous in[a, b] and if
∫ b

a
η(x)g(x)dx = 0 for any functionη(x) ∈

C (a, b) such thatη(a) = η(b) = 0, theng(x) = 0 for all x in [a, b] .

Proof. Suppose that, at some pointc in [a, b] , g(c) is, say, positive. Sinceg(x) is supposed to
be continuous over[a, b] , definitely there must exist, aroundc and, included in[a, b], an interval
[c1, c2] whereg(x) is positive. Suppose on the other hand thatg(c) vanishes on the remaining
intervals. Therefore, we must have

(1.7)
∫ b

a

η(x)g(x)dx =

∫ c2

c1

η(x)g(x)dx > 0,

which proves the lemma by contradiction. Hence we must haveg(x) ≡ ∂F
∂y
− d

dx
∂F
∂y′ = 0 and

the Euler equation (1.2) is validated as a first order condition for the optimization of functional
(1.1).

*
* *

As mentioned above, these steps – in extended forms – become unescapable whenever we
want to deal, in the classical calculus of variations, with more complicated functionals such as
integrals depending on higher derivatives or multiple integrals. In the case ofn-uple integrals,
the extension of the fundamental lemma of the calculus of variations is easy to conceive and
demonstrate; but if, in the case of double integrals, it is easy to extend the concept of integration
by parts in the form of Green’s theorem, that is definitely not the case if we deal withn-uple
integrals (see for instance Gelfand and Fomin [2], pp. 153-154, or Troutman [9], pp. 179-181).
We will now show how the new concept introduced by Robert Dorfman enables, in extended
forms, to eschew these hurdles and obtain the general Euler equations in a very straightforward,
simple way. To do that we need to make a little detour by paying a short visit to a simple
problem in optimal control theory.

In the middle of the 20th century, significant developments were brought to the calculus of
variations. Originally motivated by the need to define and control optimal time paths in aero-
and astro-engineering3, the theory of optimal control finds today huge applications in countless
scientific endeavours; even in its early stages, it was in the tool-kit of some economists interested
in defining optimal trajectories for the economy.

3 The birth of optimal control can be assigned to two important papers by Magnus Hestenes who was working
at the time at the RAND Corporation [4, 5]. Hestenes enlarged the basic assumptions of the calculus of variations
and introduced the distinction between state variables and control variables. Other prominent researchers at Rand
at the same time were Richard Bellman, the father of dynamic programming, and Rufus Isaacs to whom we owe
the concept of differential games. The modern presentation of optimal control theory used today under the form of
the Pontryagin maximum principle is due to four eminent mathematicians from the Steklov Mathematics Institute
(Moscow): Lev Pontryagin, Vladimir Boltyanskii, Revaz Gamkrelidze and Evgenii Mischenko. Their book [8]
appeared in Russian in 1961; it was translated into English in 1962 and into German in 1964. A fascinating
account of the birth of optimal control during the cold war is in Pesch and Plail [6, 7]
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It is precisely on the basis of a very simple economic model that Robert Dorfman was able
to achieve two things: first to rationalize the main result of optimal control theory, known as
the Pontryagin maximum principle; and second to suggest a modified Hamiltonian that would
yield the basic principle directly.

In Section 2 we recall Robert Dorfman’s remarkable ideas. In Section 3 we will show how
fruitful they can be.

2. DORFMAN ’ S DISCOVERY

Consider the very simple, following problem. Suppose a firm obtains at timet, over an
infinitesimal durationdt, a flow of net incomeu which is a function of three variables

(2.1) u = u(kt, xt, t)

wherekt andxt are defined as follows:
. kt is the capital stock of the firm at timet (this capital stock is the aggregate value of

its buildings, equipment, machinery, etc);kt is called a "state" variable, reflecting one of the
characteristics of the firm at that instant;

. xt is a "control" variable that reflects decisions taken by the firm at timet; for instance,
those may be investment that will eincrease the capital stock, or an enhancement of the quality
of the product.

A fundamental hypothesis is that the time path of the state variable variablekt is governed
by the first order differential equation

(2.2) k̇ = f(kt, xt, t).

Suppose now that with an initial condition onk we know the optimal time path of the control
variablext over time interval[t0, T ] . Then system (2.1),(2.2) is liable to generate the corre-
sponding trajectories of capitalk and net incomeu. If an aim of the firm is to maximize the
total of its net income over that period, it has to determine the trajectory ofxt maximizing the
functional

(2.3) I =

∫ T

t0

u(kt, xt, t)dt,

subject to (2.2). (Note that the dependency of functionu(kt, xt, t) on t may reflect factors as
diverse as technical progress as well as the discounting of future income flows). In this very
simple case, the Pontryagin principle would require to form a Hamiltonian function defined as

(2.4) H = u(kt, xt, t) + λ(t)f(kt, xt, t)

where a new variableλ (t), called an adjoint, or costate variable appears as a multiplier of
k̇ = f(kt, xt, t); its signification will soon appear. In its very simplified form (because we do
not have here possible complexities of the general principle such as inequality constraints or
the non-differentiability of (2.4) with respect to the controlxt), a first-order condition for the
trajectory ofxt to be optimal is thatkt, xt, andλ(t) solve the system

(2.5)
∂H

∂x
=

∂

∂x
u(kt, xt, t) + λ(t)

∂

∂x
f(kt, xt, t) = 0

(2.6)
∂H

∂k
=

∂

∂k
u(kt, xt, t) + λ(t)

∂

∂k
f(kt, xt, t) = −λ̇

(2.7)
∂H

∂λ
= k̇
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6 OLIVIER DE LA GRANDVILLE

If (2.7) is just a consequence of the properties of (2.2) an (2.4), the signification of equations
(2.5) and (2.6) is far from obvious. Dorfman first provided an intuitive justification of these
equations by reasoning as follows. Consider the problem of maximizing integralI over any
interval[t, T ] ; I can be written in two parts:

(2.8) I =

∫ T

t

u(kτ , xτ , τ)dτ = u(kt, xt, t)∆t +

∫ T

t+∆t

u(kτ , xτ , τ)dτ

where∆t is an extremely small time span. Suppose now that the optimal trajectory ofx, denoted
x∗, has been found from timet + ∆t to timeT. Furthermore, we observe that at any point of
time t, the value ofxt has an impact on two magnitudes: first, on the integrandu(kt, xt, t);

second, on the value ofkt+∆t, through the differential equatioṅk = f(kt, xt, t); we have, in
linear approximation,kt+∆t ≈ kt + f(kt, xt, t)∆t. From the latter impact we can conclude that
theoptimal valueof the integral on the right-hand side of (2.8) depends solely onxt – through
the variablekt+∆t. It can thus be denoted as

(2.9)
∫ T

t+∆t

u(kτ , xτ , τ)dτ ≡ V ∗
t+∆t [kt+∆t (xt)] ;

therefore the functionalI has turned into a nice function depending solely on the single variable,
xt (young Giuseppe might have approved of this); this function reads

(2.10) I (xt) = u(kt, xt, t)∆t + V ∗
t+∆t [kt+∆t (xt)] .

Taking the derivative ofI (xt) to zero gives

(2.11) I ′ (xt) =
∂

∂x
u(kt, xt, t)∆t +

∂V ∗
t+∆t

∂kt+∆t

∂kt+∆t

∂xt

= 0.

The term∂V ∗
t+∆t/∂kt+∆t has considerable signification; it is the rate of increase of the optimal

valueV ∗
t+∆t per additional unit of capital available att + ∆t; it is thus theprice of one unit

of capital available at timet + ∆t; this price can be denotedλ(t + ∆t). On the other hand,
∂kt+∆t/∂xt is, in linear approximation,[∂f(kt, xt, t)/∂xt] ∆t; therefore (2.11) can be written

(2.12)
∂

∂x
u(kt, xt, t)∆t + λ(t + ∆t)

∂f(kt, xt, t)

∂xt

∆t = 0.

Dividing by ∆t and taking the limit when∆t → 0 gives equation (2.5), the first equation of the
Pontryagin principle.

Suppose that this first-order condition, associated to other second-order conditions, enabled
us to maximize the integralI =

∫ T

t
u(kτ , xτ , τ)dτ , which can now be denotedV ∗

t (kt). Equation
(2.8) becomes the identity

(2.13) V ∗
t (kt) = u(kt, xt, t)∆t + V ∗

t+∆t(kt+∆t);

differentiating (2.13) with respect tokt and using∂V ∗
t /∂kt = λ(t) gives

(2.14)

λ(t) =
∂

∂kt

u(kt, xt, t)∆t +
∂V ∗

t+∆t(kt+∆t)

∂kt+∆t

∂kt+∆t

∂kt

=
∂

∂kt

u(kt, xt, t)∆t + λ(t + ∆t)
∂kt+∆t

∂kt

.

Using the linear approximationsλ(t + ∆t) ≈ λ(t) + λ̇(t)∆t andkt+∆t ≈ kt + f(kt, xt, t)∆t,
(2.14) becomes

λ(t) =
∂

∂kt

u(kt, xt, t)∆t +
[
λ(t) + λ̇(t)∆t

] [
1 +

∂

∂kt

f(kt, xt, t)∆t

]
=
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(2.15)
∂

∂kt

u(kt, xt, t)∆t+λ(t)+ λ̇(t)∆t+λ(t)
∂

∂kt

f(kt, xt, t)∆t+ λ̇(t)
∂

∂kt

f(kt, xt, t)(∆t)2;

cancellingλ(t) leads in the limit to

(2.16)
∂

∂kt

u(kt, xt, t) + λ(t)
∂

∂kt

f(kt, xt, t)∆t = −λ̇(t),

the second equation of the Pontryagin principle (2.6).
Dorfman already achieved two things: he provided an intuitive justification of those equations

that may look somewhat abtruse to many – particularly equation (2.6); in addition, he gave a
clear signification to the adjoint variableλ(t) as thevalueof one additional unit of the state
variable at any timet.

*
* *

It is at this point that Dorfman had a remarkable insight: he saw that once we had secured
the signification of the adjoint variableλ(t) there was an even simpler route to derive these
equations. The key was to introduce what he called a "modified Hamiltonian". To pay tribute
to Robert Dorfman as well as to honor his memory, we propose to call this new concept a
Dorfmanian.This new concept, denotedH∗ by Dorfman, andD by us, is defined as follows:

(2.17) D = H + λ̇(t)kt = u (kt, xt, t) + λ(t)k̇t + λ̇(t)kt = u (kt, xt, t) +
d

dt
[λ(t)kt] .

The Dorfmanian is thus the traditional Hamiltonian augmented byλ̇(t)kt, i.e. the change in the
value of the state variable due to the sole change in the unit price ofk. This new, augmented
Hamiltonian has an immediate signification. At any point of timet, the decision taken on the
control variable is exerting two effects on the value of the integralI to be maximized:

a) a direct one through the integrandu (kt, xt, t)
b) an indirect one, equal to the rate of increase in the value of the state variabled

dt
[λ(t)kt] =

λ(t)k̇t + λ̇(t)kt.
The Dorfmanian is the exact measure of the sum of those two effects. It is then obvious that

setting to zero the gradient ofD with respect toxt andkt will lead to the system of equations
whose solution will be a candidate to be an extremal ofI. From a methodological point of view,
we can see thatxt andkt are now treated in a symmetrical way; althoughkt is not a control
variable, it nonetheless is a variable that is indirectly controled throughxt. As such it now plays
the same role asxt when the gradient ofD is taken to zero.

Before turning to applications of the Dorfmanian to high-order problems of the calculus
of variations we can already see how very simple the determination of the Euler equation,
for example, will be. Consider the minimisation of

∫ b

a
F (x, y, y′)dx conditional to the usual

boundary conditions. The Dorfmanian will beD = F (x, y, y′) + λ(x)y′ + λ′(x)y; Dy = 0 and
Dy′ = 0 give Fy + λ′(x) = 0 andFy′ + λ(x) = 0, from whichFy − d

dx
Fy′ = 0 immediately

results.

3. EXTENSIONS

We will now show how the Dorfmanian can be extended in a natural way to solve variational
problems involving higher order functionals. We will consider integrals whose integrands de-
pend on several functions; functionals depending on high-order derivatives; and functionals
defined by multiple integrals.
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8 OLIVIER DE LA GRANDVILLE

3.1. Functionals depending onn functions y1 , ..., yn.. Suppose our functional is defined by

(3.1) I [y1 , ..., yn] =

∫ b

a

F
(
x, y1 , ..., yn, y

′
1
, ..., y′

n

)
dx.

with 2n boundary conditions

y1(a) = y1a , y1(b) = y
1b

...
yn(a) = yna , yn(b) = y

nb
.

We introducen adjoint functionsλi (x) , i = 1, ..., n, each of them pertaining to state variable
yi, and playing a role anologous to that ofλ(x) in Section 1. The Dorfmanian will become

D = F
(
x, y1 , ..., yn, y

′
1
, ..., y′

n

)
+

n∑
i=1

d

dx
[λi (x) yi (x)] =

(3.2) F
(
x, y1 , ..., yn, y

′
1
, ..., y′

n

)
+

n∑
i=1

[λ′i (x) yi (x) + λi (x) y′i (x)] .

Setting to zero the gradient ofD with respect to the2n variablesyi, y
′
i, i = 1, ..., n leads to

∂D

∂yi

=
∂F

∂yi

(
x, y1 , ..., yn, y

′
1
, ..., y′

n

)
+ λ′i (x) = 0, i = 1, ..., n

∂D

∂y′i
=

∂F

∂y′i

(
x, y1 , ..., yn, y

′
1
, ..., y′

n

)
+ λi (x) = 0, i = 1, ..., n.

With

λ′i (x) = − d

dx

∂F

∂y′i

(
x, y1 , ..., yn, y

′
1
, ..., y′

n

)
= 0, i = 1, ..., n

we immediately get the system ofn Euler equations

(3.3)
∂D

∂yi

=
∂F

∂yi

(
x, y1 , ..., yn, y

′
1
, ..., y′

n

)
− d

dx

∂F

∂y′i

(
x, y1 , ..., yn, y

′
1
, ..., y′

n

)
= 0, i = 1, ..., n.

3.2. Functionals depending onm-order derivatives. Let F
(
x, y, y′, ..., y(m)

)
be a function

with continuous derivatives up to the second order with respect to all its arguments. Suppose
we want to determine an extremaly(x) of

I [y(x)] =

∫ b

a

F
(
x, y, y′, ..., y(m)

)
dx.

with 2m boundary conditions

y(a) = ya ; y(b) = yb

y′(a) = y′
a
; y′(b) = y′b

... ...
y(m−1)(a) = y(m−1)

a
; y(m−1)(b) = y

(m−1)
b
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INTRODUCING THEDORFMANIAN : A POWERFUL TOOL FOR THE CALCULUS OF VARIATIONS 9

applying to the admissible functions as well as to all their derivatives until their(m− 1)th
order inclusively. Classically, the variation of the functional involvesm + 1 terms of the form
Fy(j)η(j) (x), j = 0, ...,m (with the notationy ≡ y(0)). The second term is to be integrated
once by parts, thej-th will be integratedj − 1 times by parts, and the last term,m times. This
implies, at least conceptually,m(m + 1)/2 integrations by parts. On the other hand, using the
Dorfmanian will necessitate only a few derivations as we will now see.

Considerm adjoint functionsµj (x), j = 0, ...,m − 1 analogous to those introduced earlier.
The Dorfmanian for this problem will be

D = F
(
x, y, y′, ..., y(m)

)
+

m−1∑
j=0

d

dx

[
µj (x) y(j) (x)

]
=

(3.4) F
(
x, y, y′, ..., y(m)

)
+

m−1∑
j=0

[
µ′j (x) y(j) (x) + µj (x) y(j+1) (x)

]
.

Taking to zero the gradient ofD with respect toy, y′, ..., y(m) leads to a system ofm equations
from whichµ′m−1 (x) andµ′m−2 (x) can be identified as

µ′m−1 (x) = − d

dx

∂F

∂y(m)

(
x, y, y′, ..., y(m)

)
and

µ′m−2 (x) = − d

dx

∂F

∂y(m−1)

(
x, y, y′, ..., y(m)

)
+

d2

dx2

∂F

∂y(m)

(
x, y, y′, ..., y(m)

)
Proceeding successively in this way givesµ′0 (x) as

µ′0 (x) =
m∑

j=1

(−1)j dj

dxj

∂F

∂y(j)

(
x, y, y′, ..., y(m)

)
and immediately the2m order Euler-Poisson equation

(3.5)
∂F

∂y

(
x, y, y′, ..., y(m)

)
+

m∑
j=1

(−1)j dj

dxj

∂F

∂y(j)

(
x, y, y′, ..., y(m)

)
= 0

3.3. Extension to the extremum of ann−tuple integral. The advantage of having recourse to
the Dorfmanian rather than going through the traditional approach becomes even more obvious
if we consider the more difficult problem of finding extremals to functionals defined by an
n−tuple integral such as

(3.6) I [z(x1, ..., xn)] =

∫ ∫
· · ·

∫
R

F (x1, ..., xn, z, zx1 , ..., zxn)dx1...dxn;

In this problem, as usual we suppose that the domainR and its boundary∂R have sufficient
regularity. The traditional method of deriving the Euler-Ostrogradski equation requires a gener-
alisation of Green’s theorem inn-space. Contrast this with the simplicity of writing a modified
Dorfmanian as follows:

D = F (x1, ..., xn, z, zx1 , ..., zxn) +
n∑

i=1

∂

∂xi

[λ(x1, ..., xi, ..., xn)z(x1, ..., xi, ..., xn)] =
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(3.7) F (x1, ..., xn, z, zx1 , ..., zxn) + z
n∑

i=1

λxi
+ λ

n∑
i=1

zxi
.

Setting to zero the gradient ofD with respect to then + 1 variablesz, zx1 , ...zxn , we get the
system ofn + 1 equations

(3.8)
∂D

∂z
=

∂F

∂z
+

n∑
i=1

λxi
= 0

and

(3.9)
∂D

∂zxi

=
∂F

∂zxi

+ λ(x1, ..., xi, ..., xn) = 0, i = 1, ..., n.

The lastn equations yield

(3.10) λxi
= − ∂

∂xi

∂F

∂zxi

, i = 1, ..., n;

replacing these values into (2.6) gives

(3.11)
∂F

∂z
−

n∑
i=1

∂

∂xi

∂F

∂zxi

= 0,

the general Ostrogradski (or Euler) equation, obtained in four lines, without any recourse to a
generalisation of Green’s theorem.

If we consider functionals represented by multiple integrals whose integrand depends on
higher order derivatives, as before the Dorfmanian can be generalized in a straightforward way.
To illustrate, suppose we want to find an extremalu(x, y) of the following integral

(3.12) I [u(x, y)] =

∫ ∫
R

F (x, y, u, ux, uy, uxx, uxy, uyy) dxdy.

We now introduce three adjoint functionsλ(x, y), µ(x, y) andω(x, y) corresponding to the vari-
ablesu, ux anduy respectively. The relevant Dorfmanian is

D = F (x, y, u, ux, uy, uxx, uxy, uyy) +
∂

∂x
[λ(x, y)u(x, y)] +

∂

∂y
[λ(x, y)u(x, y)] +

(3.13)
∂

∂x
[µ(x, y)ux(x, y)] +

∂

∂y
[µ(x, y)ux(x, y)] +

∂

∂x
[ω(x, y)uy(x, y)] +

∂

∂y
[ω(x, y)uy(x, y)]

and, in simplified notation, reads

D = F (x, y, u, ux, uy, uxx, uxy, uyy) +

(3.14) + (λx + λy)u + (λ + µx + µy)ux + (λ + ωx + ωy)uy + µuxx + (µ + ω)uyx + ωuyy

Setting the gradient ofD to zero, we get

(3.15)
∂D

∂u
= Fu + λx + λy = 0

(3.16)
∂D

∂ux

= Fux + λ + µx + µy = 0
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(3.17)
∂D

∂uy

= Fuy + λ + ωx + ωy = 0

(3.18)
∂D

∂uxx

= Fuxx + µ = 0

(3.19)
∂D

∂uxy

= Fuxy + µ + ω = 0

(3.20)
∂D

∂uyy

= Fuyy + ω = 0.

To eliminate the adjoint functionsλ(x, y), µ(x, y) andω(x, y), we differentiate once equa-
tions (3.16) and (3.17) with respect tox andy, respectively, and in an analogous way take the
second derivatives of (3.18), (3.19) and (3.20). We get the system

(3.21) Fu + λx + λy = 0

(3.22)
∂

∂x

∂D

∂ux

=
∂

∂x
Fux + λx + µxx + µyx = 0

(3.23)
∂

∂y

∂D

∂uy

=
∂

∂y
Fuy + λy + ωxy + ωyy = 0

(3.24)
∂2

∂x2

∂D

∂uxx

=
∂2

∂x2
Fuxx + µxx = 0

(3.25)
∂2

∂x∂y

∂D

∂uxy

=
∂2

∂x∂y
Fuxy + µxy + ωxy = 0

(3.26)
∂2

∂y2

∂D

∂uyy

=
∂2

∂y2
Fuyy + ωyy = 0

Upon summing equations (3.25) – (3.26) and then (3.20), (3.21), the general Euler 4th-order
partial differential equation

(3.27) Fu −
∂

∂x
Fux −

∂

∂y
Fuy +

∂2

∂x2
Fuxx +

∂2

∂x∂y
Fuxy +

∂2

∂y2
Fuyy = 0

can be immediately derived4. This equation can be reached in a classical way after quite a
lengthy process only, since it involves the repeated use of Green’s theorem, not to mention an
extension of the fundamental lemma of the calculus of variations. By contrast, we showed that
the Dorfmanian led to it in just a few lines.

4 The simplicity – or is it the elegance? – of this general Euler equation should not hide its complexity. Indeed, it
contains no less than186 terms, each of them depending on the 8 variablesx, y, u, ux, uy, uxx, uxy anduyy; among
those 186 terms, 9 include a 4th-order partial derivative ofu(x, y), and 75 exibit a 3rd-order partial derivative (for
example, d2

dx2 Fuxx alone contains 55 terms; 3 of them carry fourth-order partial derivatives and 23 include third-
order ones.
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4. CONCLUDING REMARKS

There are, in our opinion, two main reasons for using the modified Hamiltonian suggested by
Robert Dorfman. The first is its immediate signification as encompassing both the direct and
indirect effects of the control variable. The direct effect is the integrand in the functional to
be maximized or minimized; the indirect effect is the rate of change in the value of the state
variables resulting from the values taken by the control variables. It then makes a lot of sense
that the sum of those effects should be maximized or minimized. The second reason is that,
apart from yielding the Euler equation in just one line, the Dorfmanian, in any of its extensions,
offers a remarkably simple way to solve high-order variational problems, particularly those
where the functional is a multiple integral.
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