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1. INTRODUCTION

Let (X, ||.||x), (Y, ]||.]ly) be real normed spaces. A m@&p: X — Y is said to be.ipschitzif
there existd. > 0 such that for each,y € X, |Tx — Ty|ly < L||z — y||x. If L =1, the map
T is callednonexpansive

Let £ be a real normed space with dual spate A map.J : £ — 2F" defined by
J(z):={a" € E*: (x,2*) = ||z||?, |2*|| = ||lz]| V= € E},

is called thenormalized duality mapn £, Where<~, > denotes the duality pairing between
elements off and those oft*. The following are some properties of the duality map which
will be needed in the sequel (see e.g., Ibaraki and Takahashi, [12]).

If E is strictly convex, ther/ is one-to-one.

If E is reflexive, then/ is onto.

If £ is smooth, ther/ is single-valued.

In a Hilbert spacef, the duality map/ is the identity map orf.

AmapA : E — F is calledaccretiveif for eachz,y € E, there existg(z — y) € J(z — y)
such that<Ax — Ay, j(x — > >0.AmapT : E — FEis calledpseudocontractiv'é for each
z,y € E, there existg (z — y) € J(z —y) such tha Tz — Ty, j(z — y)) < ||lz — y|>. Itis
easy to see that is accretive if and only il := (I — A) is pseudocontractlve whefes the
identity map onk.

Themodulus of convexityf a spacer is the functiondz : (0, 2] — [0, 1] defined by

55(0) = inf {1 = | =2 ¢ llall = Iyl = 15 e = e — w1l }.

The spacé? is calleduniformly convexf dz(e) > 0 for everye € (0,2]. LetS := {z € E:
|z|l = 1}. The spacé is said to have &ateaux differentiable norrif

e

t—0 t

exists for allz,y € S and is said to have aniformly Gateaux differentiable northfor each

y € S, the limit (1.1) exists and is attained uniformly, forc S. Let £ be a real normed space
of dimension> 2. Themodulus of smoothnes$ E, p; : [0,00) — [0, 00), is defined by:

T+y

(1.1)

TH+yY|+ilr—y
pi(r) = sup { BRIy =1y = 7, 7> 0}
The spaceF is calledsmoothif pgz(7) > 0 ¥V 7 > 0 and is calleduniformly smoothif
t .
lim+ p(t) = 0. If there exist a constart> 0 and a real number > 1 such thap;(7) < 79,
t—0

then E is said to beg-uniformly smooth Typical examples of such spaces are the Lebesgue
spaced.,, {, and Sobolev spacel; " for 1 < p < co where,

m 2 — uniformly smooth if 2 < p < oc;
Ly (or L) or W is { p — uniformly smooth if 1 <p < 2.
AmapA : E — 2F is said to banonotonef for eachz, y € E, the following inequality holds:
(x —y,z* —y*) > 0V a* € Az, y* € Ay. Itis calledmaximal monoton#, in addition, the
graph ofA is not properly contained in the graph of any other monotone operator.
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Let f : F — R be a convex function. Theubdifferentialof f atx € FE denoted by
of : E — 2F is defined byof(z) = {x* € E: fly) — flx) > <y—x,m*> Vy € E}
It is easy to check thalf is amonotone operatoon E, and that) € df(z) if and only if z is
a minimizer of f. Settingdf = A, it follows that solving the inclusiofl € Au, in this case, is
solving for a minimizer off.

In general, the following problem is of interest and has been studied extensively by numerous
authors. Find: € E such that

(1.2) 0 € Au,

whereA : E — 2F" is a monotone-type map.

If H is a real Hilbert space, a well known method for approximating a solutidh ef Au,
whereA : H — 2" is a maximal monotone map is tipeoximal point algorithm (PPA)ntro-
duced by Martinet [17] and studied extensively by Rockafellar [22] and a host of other authors
(see for e.g., Reich and Sabach,|[21]; Xu![24]; Brézis and Lions, [4]; Bruck [5]; Kamimura
and Takahashi/ [14]; Kamimura and Takahashi] [13]; Reich [20]; Takahashi and Ueda, [26];
Chidume [7]; Chidume and Djitte, [8]; Chidung al. [9]). The PPAIs defined by, € H,

(1.3) Tpi1 = Iy, Ty, n > 1

where{r,}>°, C (0,00) andJ, := (I +r,A)~'. Martinet [17] considered a special case
A H — 2% in which A is defined as follows:

AO(’U) —+ ND(U) |f v E D,
14 Av) =
(14) (v) {@ if ve¢ D,
whereD is a nonempty closed convex subsetfbfA, : D — H is a single-valued, monotone
map andNp(v) := {w* € H : (v —u,w*) > 0V u € D}. In this case, the relatioh € A(v)
reduces te-Ay(v) € Np(v) which is thevariational inequality problem

findv € D such thatv — u, Ag(v)) <0V u e D.

Martinet proved that the sequenge, }>°, convergesveaklyto an element ofA=(0) if D is
bounded.

Rockafellar[[22] improved this result of Martinet. He considered the case of a general monotone
operator,A : H — 2% and proved that ifiminf r, > 0 andA=1(0) # (), then, the sequence

n—oo

{z,}22, generated by (1]3) convergesaklyto an element ofi~!(0).

He then posed the following problem.
Problem: Does the proximal point algorithm (1.3) always converges stréhgly

This problem was resolved in the negative by Guler [11] who produced a proper closed convex
function g in the infinite dimensional Hilbert space for which the proximal point algorithm
convergesnveaklybut not strongly (see also Bauschket al., [3]). Several authors modified

the proximal point algorithm to obtaistrongconvergence (see e.g., Bruck [5]; Kamimura and
Takahashil[14]; Lehdili and Moudafi [16]; Reich [20]; Solodov and Svalter [23];Xu [24]). We
remark that in every one of these modifications, the recursion formula developed involved either
the computation of7 + r,A)~!(z,) at each point of the iteration process or the construction,
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at each iterationof two subsets of the space, intersecting them and projecting the initial vector
onto the intersection. Clearly, none of these processes is convenient in any possible application.

Typical of such results obtained is the following theorem.

Theorem 1.1(Kamimura and Takahashi, [13]).et H be a real Hilbert space, led C H x H
be a maximal monotone map and let:= (I + rA)~!, forr > 0. For xy,u € H, let{z,}>2,
be a sequence defined by

Yn = J”'nxn7
(15) { In+1 — anu + (1 - an)ynu n Z 17

where{a, }32, C [0,1] and{r,}32, C (0, 00) satisfy lim a,, =0, ) ~ v, = coand lim r, =
n=1

co. Suppose the criterion for the approximate computation,as ||y, — J,, z.|| < ¢, where

Z 5, < oo and A~1(0) # 0, then the sequende:,, }>° , converges strongly t&u, whereP is
n=1

the metric projection off onto A=*(0).

Kohsaka and Takahashi, [15] extended Thedrefn 1.1 to the framework of Banach spaces that are
both smooth and uniformly convex. In particular, they proved the following theorem.

Theorem 1.2(Kohsaka and Takahashi, [15])et £ be a smooth and uniformly convex Banach
space and le! C E x E* be a maximal monotone mapping. Lkt:= (J + rA)~'J for all
r > 0and let{x,}>, be a sequence defined by

(1.6) r1=u€ kB, o =J anJut (1 —an) e x,), n> 1,

n—oo n—oo

where{a, }52, C [0,1] and{r,}52, C (0, 00) satisfylim o, =0, Y v, = oo and lim r,, =
n=1

co. If A=1(0) # 0, then the sequender,, }°2, converges strongly té’Afl(O)fL’, whereP,-1(g) is
the generalized projection frofi onto A=1(0).

We remark that the iterative sequen@(lﬁ) involves the resolvent.maps (J + r,A)~1J,
and this, as has been remarked, is generally not convenient in any possible applications because

at each step of the iteration procesme has to computéJ + rnA> J(x,).

Zegeye observed the inclusion of this resolvent map in the recursion fofmyla (1.6). In an attempt
to propose an iteration process which will not involve the resolvent map, he developed the
following theorem for approximating a zero of a monotone map

Theorem 1.3(Zegeye,|[2]7]) Let E be a uniformly convex ar&tuniformly smooth real Banach
space with duaF*. Let A : E* — E be a Lipschitz continuous monotone map with constant
L>0andA~'(0) # 0. For givenu, z; € E, let{z,}°°, be generated by the algorithm

a.7) Tp1 = Bou+ (1= 06,)(x, — a,Adz,), n > 1,

where J is the normalized duality map frofl to E*. Suppose thaB,,.;, N (AJ)~1(0) # 0.
Then{z, }>, converges strongly tu := z* € (AJ)~'(0) and thatJz* € A~1(0), where
R is the sunny generalized nonexpansive retractio” @nto (A.J)~(0), where{«, }>>, and
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{B,}>2, are sequences ifV, 1) satisfying the following conditions:

N i _ .. _ i) T 9&;: ‘
(Z)ng{}oﬁ” 0, (m);ﬁn oo, (ii7) 1mﬁ 0

n—oo
n

It turns out that there is a gap in the proof of Theofen 1.3. Araka [2] gawexampleto illus-
trate the existence of this gap.

Before we state this example, we need the following lemma.

Lemma 1.4. Let {a,}2,, {b,}52,, and{c,};>, be sequences of non-negative real numbers
satisfying the following relation

(1.8) any1 < (1 —0y,)an+by+cyy, n>1,

where{o,}:2, C [0,1]. If (i) > 0, = o0, (i1) &= — 0,asn — oo, (iii) > ¢, < co. Then,
n=1 " n=1
lim a, = 0.

n—oo

The Example

Take A = J71, thenAJ = I, wherel is the identity map onZ and choose the iterative
parametersy, = n~2 and3, = n~! which both satisfy the conditions of the parameters in
Theorenj 1.3. Let: # 0 be an arbitrary element df. Then, using the recursion formu[a ([L.7),
one obtains the following.

1 1 1
Tpe1 = —U+ <1 — —) (xn — —2:1:n>
n n n

1 1
= (1o )t
1 1 1 1 1 1
= ()@ (g Juk
Hence,
1 2
(1.9) s = ull < (1= =)z = ull + llull
n n

Now, setting),, = £ ando,, = Z||u|, it then follows from inequality{ (1]9) that
(1.10) [@n1 — ull < (1= Az — ull + o,

which yields, by Lemma 1}4, that
r, — u € I71(0), asn — oo, butu # 0.

Araka proved the following analogue of Theorgm|1.3.

Theorem 1.5(Araka, [2]). Let E be a reflexive real Banach space with Uniformly Gateaux
differentiable norm. Letl : £* — E. Foranyx, € E, let{z,}>° | be the sequence iteratively
generated by

(12.11) Tpi1 = Ty — B AJx, — 3,2, 1 > 1,

whereJ is the normalized duality map frofto E*. Suppose thdtAd.J)~1(0) # 0; and suppose
that A.J is an accretive Lipschitz map with Lipschitz constant 0, then the sequende:,, }2° ,
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converges strongly ta* € (AJ)~1(0) with Ju* € (A)~1(0), where{a,, }>°, and {3, }>2, are
sequences if0, 1) satisfying the following conditions:

(i) lim B, =0, (i) B,(L+a) <1, D auf,=oo,
n=1

(i) lim 2% =0 iff B, = o(an), () lim B a (1 — an) = 0.

Remark 1.1. An example of an operatot, for which A.J is accretive, given in Araka[2] is
A= J~ ! This is atrivial example

It is our purpose in this paper to extend Theofem 1.5 from the class of acdrgtsehitzmaps

to the more general class of accretiaiformly continuousnaps. Furthermore, the sequence
in our theorem will, as in Theorefm 1.5, converge strongly to an element.6f*(0). Finally,

we presenhon-trivial example®f mapsA : E* — E for which AJ is accretive.

2. PRELIMINARIES

Lemma 2.1(Moore and Nnoli,[[18]) Let{p,, }>° , be a sequence of non-negative real numbers
satisfying the following relation:

(21) Pn+1 S Pn — anl/)(pn—i-l) +On, N Z 1’
where(i) 0 < «a,, < 1 (i7) Zan = oo (i) ¢ : [0,00) — [0,00) is a strictly increasing

n=1
function withy)(0) = 0. Suppose that, = o(«,,). Then,p,, — 0 asn — oc.
Lemma 2.2(Chidume, [[6]) Let £ be a real normed space, and: £ — 27 be the normalized
duality map. Then, for any, y € F, the following inequality holds:
(2.2) lz+ylI* < llel” + 2{y. (= + y),
forall j(z +y) € J(z +y).

Lemma 2.3 (Morales and Jung, [19])Let K be a closed convex subset of a reflexive Banach
spaceFE with Uniformly Gateaux differentiable norm. L&t: K — K be continuous pseudo-
contractive map with?'(7') # (). Suppose that every nonempty closed convex and bounded
subset of has the fixed point property for nonexpansive self-map. Then, fo#<, the path

t— 1y, € K,t € (0,1], satisfying

(2.3) yr = (L = t)Ty: + tu,

converges strongly to a fixed poift. of T ast — 0™, where() is the unique sunny nonexpan-
sive retract fromK onto F'(T').

We obtain the following corollary from Lemnja 2.3(fe X andu = 0.

Corollary 2.4. Let K be a closed subset of a reflexive Banach sgaweéth a uniformly Gateaux
differentiable norm such thate K. LetT : K — K be a continuous pseudocontractive map
with F(T') # (). Suppose that every nonempty closed convex and bounded sukshtsfthe
fixed point property of nonexpansive self-map. Then, thetpathy,, t € (0, 1], satisfying,

(2.4) ye = (1 —t)Ty,

converges strongly to a fixed point @f0) of T"ast — 0%, where( is the unique sunny
nonexpansive retract frolt onto F'(T).
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Remark 2.1. In corollary, if we definey, =y, andt, = -V n > 1, wherea,, — 0,
asn — oo, we obtain,

1
(2.5) Yn =7 T Yn-
It follows from equation[(2]5), that
(2.6) anyn+ I —=T)y, =0
and
(2.7) — Ay 1Yn-1 = —Yn + L = T)yn_1 — (I = T)y,.

We observe that sincE is a pseudocontractive map, theh— 7") is an accretive map, where
is the identity map.

3. MAIN RESULTS

For the rest of this paper, the sequenges}> , C (0,1), {5,}>>, € (0,1) are assumed to
satisfy the following conditions:

(Z) Zanﬁn = 00,

[‘anl - Oén’
az 3,

We now prove the following theorem.

&n

(i4) lim B, + a—] — 0, whereg,, = ||AJz1 — Az,

n—oo

Theorem 3.1. Let E be a real Banach space with dual spacg such that the normalized
duality mapJ from E to E* is single-valued. Letl : £* — E be a map such thatlJ is an
accretive and uniformly continuous map. For arbitrary € E, let the sequencér,, }2°, be
iteratively defined by

(3.1) Tpi1 = Ty — B A2, — 3,2, n > 1.

Assume thatAJ)~1(0) # 0. Then,{z,}°°, is bounded.

Proof. Letz* € (AJ)~!(0). Then, there exists > 0 such that forB := B, (z*), the following
conditions hold:

(1) =, € Br(x¥),

) [lz*]| < §.

(3) &, < g,

(4) B, My < g, whereM := sup{||AJz + az|| : x € B.(z*),a € (0,1)}.
We prove thatr,, € BV n > 1. The proof is by induction. Clearly;; € B by construction.
Assume thatr,, € B, for somen > 1. We prove that,,,; € B. Suppose that,., ¢ B i.e.,

AIJMAA Vol. 4, No. 2, Art. 4, pp. 1-14, 2017 AJMAA


http://ajmaa.org

8 CHARLES EJIKE CHIDUME ! AND CHINEDU GODWIN EZEA 1:2 AND EMMANUEL EzzAKA OTuBO 13

supposé|z,1 — z*|| > r. Then, by lemma 2|2 and the recursion form{#d]), we have that

2

r? < g — 2|
= |z — 2" — 8, (AJx, + apa,)|?
< lan — 2%))? = 28, (Adz, + anty, J(Tng1 — %))

|zn — 2%))* — 28, {n(Tns1 — %) — an(Tpi1 — 2n) + AJzy +
+(ATTpy1 — AdTpy1), J(0pq1 — 27))

|zn — 2 ||* = 28,0 || Tns1 — 2| + 28, {an(Tni1 — ) — anx
+(AJxp — Adxy) — Adxygq, J(Tpe1 — 7).

*

Thus, using the recursion formu(a.1) again and the fact that.J is an accretive and uniformly
continuous map, we obtain that
S

< lon — $*||2 — 2B, ap||Tne — $*||2 + 28, (an(Tns1 — Tn) — QT
+(AJxp1 — Adxy), J(Tpe — 7))

IN

20 — 2*||* = 28,0z — 2*|* + 28, [anHiUnH — 2| + an[[z7
H[ATzn 1 — Adag |||l 2nga — 2]

< on = 212 = 28,00 nen = 22+ 28, [0nB, Mo + a2 + €] l2nes — 27

But, by induction hypothesis;, € B, and using the conditions on the sequenges}>> , and
{3,},, we obtain that

S

T T r
< =28l — o2+ 28, (S + Tan + gan )z — o).

This yields that, 23, a,|z.41 — 2% < 28, (gan + oy, + gan> |Tner — x|
Hence||z,1 —2*|| < 7+ 7 = §, acontradiction. Therefore,, € B Vn > 1, and so{z, };2,
is boundeda

We now prove the following strong convergence theorem.
Theorem 3.2. Let E be a reflexive real Banach space with uniformly Gateaux differentiable

norm. LetA : E* — FE be a map such thadJ is an accretive and uniformly continuous map.
Foranyz, € E, let the sequencér,, }5° , be iteratively defined by

(3.2) Tpy1 = Tp — B ATz, — B, 2,, n > 1,

whereJ : E — E* is the single-valued normalized duality map. Suppose(that—'(0) # 0.
Then, the sequende,, }°° , converges strongly to some € (AJ)~1(0).
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Proof. From the recursion formulg8.2)), Lemma2.2|and Corollary2.4| (with y,, as in Corollary
2.4), we have that
|Zni1 — ynH2 = |on —yn — B, (AJz, + O‘nxn)H2
120 = ynll* = 28, (AT @0 + ann, J(Tp41 — o))
= zn = yall® = 26, {n(Tn1 — yn) — n(Tns1 — yn)
+AJ T, + any, J(Tns1 — Yn))
120 = Yall* = 26,00 (011 = Yo, I (Tns1 — Yn))
+26, (an(Tpns1 — Yn) — Az, — @ Tpn, J(Tng1 — Yn))
=z = vall® = 26, 0nllzn1 = vall* + 28, (o (@ni1 — 20)
+H(AJzpi1 — Adxy) — (Qnyn + Adyn) — (Adzpir — Adyn), J (Tng1 — Yn))-

Thus, using equatiof®.6) and the fact thatl.J is an accretive and uniformly continuous map,
we have that

IA

[Zni1 = vall? < lzn = yall® = 28,00 12011 — ynl[?
+26n<&n($n+l - .fL'n) + (ijn+1 - AJ{ﬂn), J<:Un+1 - yn))
(3.3) < lwn = ynll® = 28,0l zns — ynll?

+26n [anﬁnMO + gn} ||x7’b+1 - ynH
SinceA.J is accretive, using equation (2.7), we observe that
Hyn—l - ynH < Hyn—l — Yn + CYZl(AJyn—1 - AJyﬂ)H
(3.4) = Jag (an-1 = an)[[[ya-1l.
By the boundedness of the sequenges}> ; and{y,}>> ,, one can easily see that
(35) Hmn - ynH2 S Hxn - ynfl”2 + Ml”ynfl - yn”a

for some positive constant/;. Using inequalities] (3]|3)[ (3.4), (3.5) and the fact that the se-
quencegx, }2°, and{y, }>°, are bounded, it follows that for some positive constai§s A/, My, M;
andM, we have that

|1 = yall® < N0 = Yo P = 28,0l 201 — ynl)?
+M1||yn—1 - ynH + 2671 [anﬁnMO + gni| M2
|20 = Yol = 2B,anllzns — yall® + | (@n1 — an)| M3
+26n [anﬁnMO + fn] M2
<l = Yo ? = 28,00 /lzn —
+ MJog (o = an)| + anl + 0,6,
Thus, by Lemma 2|1 and the conditions om,} and{3,}, we get that|z,; — y,|| — 0 as
n — oo. Consequently|z, — y,—1| — 0 asn — oo. Since{y,}>>, converges strongly

to someu* € (AJ)~'(0), we get that{x, }>°, converges strongly to some € (A.J)~1(0),
completing the proofa

IN

Corollary[3.3 below which is a result of Arakal [2] is an immediate consequence of Theorem

B.1.
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Corollary 3.3. Let E be a reflexive real Banach space with uniformly Gateaux differentiable
norm with dual spacé’*. LetA : E* — E be any map. For any, € FE, let{z,}>°, be the
sequence iteratively defined by

(3.6) Tpi1 = Tp — B, Az, — anfB,x,, n > 1,

whereJ : E — E* is the normalized duality map. Suppose that')~'(0) # 0; and suppose
that AJ is an accretive Lipschitz map with Lipschitz constéant> 0. Then, the sequence
{z,}°°, converges strongly to somg € (AJ)~1(0).

Remark 3.1. SinceAJ is Lipschitz, let the Lipschitz constant df/ be L. Then, we have
o NATZp — Adw,|| < L3, M,

Qn Qn O

(3.7)

Xu and Roach([25] proved that in Zzuniformly smooth space, the normalized duality map
J : E — FE*is Lipschitz. Therefore, the assumption th&t is a Lipschitz map can be
dispensed with whed is Lischitz. Hence, we obtain the following corollary.

Corollary 3.4. Let E be a uniformly convex angtuniformly smooth real Banach space with
dual E*. LetA : E* — E be a Lipschitz maximal monotone map with!(0) # (. For any
x1 € E, let{z,}> | be the sequence iteratively defined by

(3.8) Tpr1 = Tp — B, Az, — anfB,x,, n > 1.

Suppose thatlJ is an accretive map an@d4.J) 10 # (). Then, the sequende:,, }°>>, converges
strongly to some* € (AJ)71(0).

Remark 3.2. Corollary[3.4 is a significant improvement of Theorem 1.3, in the sense that this
corollary fills the gap in the theorem as identified by Araka.

AN APPLICATION

Corollary 3.5. Let H be a real Hilbert space and : H — H be a uniformly continuous and
monotone map such that'(0) # (0. For anyz; € H, let{x,}°°, be the sequence iteratively
defined by

(3.9) Tpy1 = Ty — BAx, — anf,Tn, n > 1.
Then, the sequende;, }>°, converges strongly to somé € (A)~1(0).

Remark 3.3. In corollary[3.5, the map! is uniformly continuous, monotone and hésas its
domain, so it is maximal monotone (see e.g., Cioranescu [10]).

Remark 3.4. Corollary[3.% complements Theorgm 1.1 in the case tha uniformly con-
tinuous by providing a sequence which converges strongly to an elemetit'¢f), where
the recursion formula of the sequence does not involve the resolvent(fapy A)~*. Fur-
thermore, the conditiof.... suppose the criterion for the approximate computationypfis

|y — I, x| < n wherez 0, < 00 ..” imposed in Theorem 1.1 is dispensed with.

n=1
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Remark 3.5. In the case wherel : £ — E* is any map such thal~'4 : £ — FE is an
accretive and uniformly continuous map, following the technique of the proof of Thgorém 3.2
and replacingdJ by J~! A, the following theorem is easily proved.

Theorem 3.6. Let E be a reflexive real Banach space with uniformly Gateaux differentiable
norm. LetA : £ — E* be amap suchthal~'A : E — E is an accretive and uniformly
continuous map. For any, € E, let{z,}°°, be the sequence defined iteratively by

(3.10) Tpi1 = Tn — B, TAT, — B, 20, n > 1,

whereJ : E — E* is the normalized duality map such that! : £* — E exists. Suppose that
(J71A)~1(0) # 0. Then, the sequende,, }>° , converges strongly to somé € (J~1A)~1(0).

Remark 3.6. Prototypes of sequencés,, } > ; and{3, }°°, satisfying conditions of Corollar-
ies[3.3 and 314 are:

o, =(n+1)"%ands, = (n+1)"° n>1,
where0 < a < banda+b < 1.

4. EXAMPLES OF MAPS AFOR WHICH AJ IS ACCRETIVE

Remark 4.1. (see e.g., Alber and Ryazantseve, [1]; p. 36) The analytical representations of
duality maps are known in a number of Banach spaces. For instance, in the 5pdcgs’)
andW? (G),p € (1,00), p~' + ¢~ = 1, respectively,

Jr = ||I||l2p_py € ZQ7 Yy = {|$1|p72$17 |$2|p72l.2’ }7 Tr = {ZE17I27 }a

J e = ||:E||12q_qy € ly, y = {|z1|7 221, |22|T %29, ...}, = {@1, 22, ...},

Ja = ||z||7, "l (s) P22 (s) € Ly(G), s € G,

J = ||x||i;q|x(s)|q*2x(s) €L,(G), seG, and

Jx = ||a:|]2v;§’ ngm(—l)'o“Da(|D°‘x(s)\p_2D°‘:c(s)) eWi (G),m>0,s€q.

m

Remark 4.2. We now give non-trivial examples of mapsg,: £* — FE, such thatdJ is an
accretive map.

LetA:fl, —ly, 1<q<p, ;+;=1
Recall (Remark 4]1) that : ¢, — (¢,)* is defined by:

(4.1) J(@) = 2l (wilan P2, malwal 2, ol 2, ).
Example 4.1. Now, defined by

(4.2) Aly) = ||?/|’2_q (07y2|y2|q_27y2|y2|q_27y3|y3‘q_27 : )
We computed J.

(An)(@) = Alllal (wilan P walaal = gl )|
(alzal2al)®)

)

q—2

Y

= el 27 (0, ol

q
wafas 2| (wslosl 22> 7)

= <07x27$37”')'
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Thus,(AJ)(x) = (0, z2, x5, - ).
We now show thatl.J is accretive. SincedJ is linear we compute as follows.

(Adz, Ja) = (0, ), 227 (@afor 72 w2, w2, ) )

= |l (D lwal?) 2 0.
n=2
Therefore(AJzx, Jx) > 0. Hence,AJ is accretive.

Example 4.2. Define A by

q—2 | |q72
4.3 Aly) = 2—q< q-2 Yalys| Ys|Ys )
( ) (y) ||y|| y1|y1| ’ 9 3 3 )
We computed J.

(AJ)(z) = A[chﬂ%p(ﬂfl\xl’pﬁa$2’$2|p727133|503\p727"')]

g2 xz|f2|p72’<$2|$1|”’2||33||2*p)

’ 2

(z1]z1 [P || ]|*7P)

-2
(ws|wsr=2|z)27) |

: )

( To X3 )
— €T - = ... .
172737

Thus,(AJ)(z) = (z1, %, ).
We now show thatlJ is accretive. ClearlyA.J is linear. We compute as follows:
Ty T
<A‘]$7J'T> - <<x17?2a§37"'>7||x||2_p<x1|xl|p_2ax2|x2|p_27x3|x3|p_27"'>>

o

p
= () 20
n

n=1

= el lal 2 (o 2

$3|l’3‘p_2

Therefore(AJx, Jx) > 0. Hence,AJ is accretive.

Example 4.3. Define A by

(4.4) Aly) = IIyIIQ‘Q(yllyﬂq‘Q,szyQIH, o YmlYm]772,0,0,0, - )
We computed J.

(AN@) = All2lP 7 (@laaP 2 wofoal 2, el 2 )]

q—2 q
\|96|!2’p!\:rf\|2"1(561|961|7"’2 (w1l P72 2]17P) (ol P72 2]17P)

,m2|x2‘P*2

)

q
e [ e e i e

707070a"')

= (xbx%”'Jxm7070707”')'
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ThUS,(AJ)([E) - (xla Lo, T, 07 07 0, o )
We now show thatlJ is accretive. ClearlyA/J is linear. We compute as follows:

<AJ(E,J§L‘> = <<$17$2a'” 7xm707070a"'>a||x||2_p<x1|xl|p_27$2|$2|p_2al‘3|x3|p_27'">>

= Jel2 (D fwal?) 2 0.
n=1

Therefore(AJx, Jx) > 0. Hence,AJ is accretive.
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