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1. I NTRODUCTION

Let (X, ‖.‖X), (Y, ‖.‖Y ) be real normed spaces. A mapT : X → Y is said to beLipschitzif
there existsL ≥ 0 such that for eachx, y ∈ X, ‖Tx− Ty‖Y ≤ L‖x− y‖X . If L = 1, the map
T is callednonexpansive.

LetE be a real normed space with dual spaceE∗. A mapJ : E → 2E∗
defined by

J(x) :=
{
x∗ ∈ E∗ :

〈
x, x∗

〉
= ‖x‖2, ‖x∗‖ = ‖x‖ ∀ x ∈ E

}
,

is called thenormalized duality mapon E, where
〈
·, ·

〉
denotes the duality pairing between

elements ofE and those ofE∗. The following are some properties of the duality map which
will be needed in the sequel (see e.g., Ibaraki and Takahashi, [12]).

• If E is strictly convex, thenJ is one-to-one.
• If E is reflexive, thenJ is onto.
• If E is smooth, thenJ is single-valued.
• In a Hilbert space,H, the duality mapJ is the identity map onH.

A mapA : E → E is calledaccretiveif for eachx, y ∈ E, there existsj(x − y) ∈ J(x − y)
such that

〈
Ax−Ay, j(x− y)

〉
≥ 0. A mapT : E → E is calledpseudocontractiveif for each

x, y ∈ E, there existsj(x − y) ∈ J(x − y) such that
〈
Tx − Ty, j(x − y)

〉
≤ ‖x − y‖2. It is

easy to see thatA is accretive if and only ifT := (I − A) is pseudocontractive, whereI is the
identity map onE.

Themodulus of convexityof a spaceE is the functionδE : (0, 2] → [0, 1] defined by

δE(ε) := inf
{

1−
∥∥∥x+ y

2

∥∥∥ : ‖x‖ = ‖y‖ = 1; ε = ‖x− y‖
}
.

The spaceE is calleduniformly convexif δE(ε) > 0 for everyε ∈ (0, 2]. Let S := {z ∈ E :
‖z‖ = 1}. The spaceE is said to have aGâteaux differentiable normif

(1.1) lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for allx, y ∈ S and is said to have auniformly Gâteaux differentiable normif for each
y ∈ S, the limit (1.1) exists and is attained uniformly, forx ∈ S. LetE be a real normed space
of dimension≥ 2. Themodulus of smoothnessof E, ρE : [0,∞) → [0,∞), is defined by:

ρE(τ) := sup

{
‖x+ y‖+ ‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ , τ > 0

}
.

The spaceE is calledsmoothif ρE(τ) > 0 ∀ τ > 0 and is calleduniformly smoothif

lim
t→0+

ρE(t)

t
= 0. If there exist a constantc > 0 and a real numberq > 1 such thatρE(τ) ≤ cτ q,

thenE is said to beq-uniformly smooth. Typical examples of such spaces are the Lebesgue
spacesLp, `p and Sobolev spaces,Wm

p for 1 < p <∞ where,

Lp (or lp) or W
m
p is

{
2− uniformly smooth if 2 ≤ p <∞;
p− uniformly smooth if 1 < p < 2.

A mapA : E → 2E∗
is said to bemonotoneif for eachx, y ∈ E, the following inequality holds:〈

x − y, x∗ − y∗
〉
≥ 0 ∀ x∗ ∈ Ax, y∗ ∈ Ay. It is calledmaximal monotoneif, in addition, the

graph ofA is not properly contained in the graph of any other monotone operator.
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Let f : E → R be a convex function. Thesubdifferentialof f at x ∈ E denoted by
∂f : E → 2E∗

is defined by∂f(x) =
{
x∗ ∈ E : f(y) − f(x) ≥

〈
y − x, x∗

〉
∀ y ∈ E

}
.

It is easy to check that∂f is amonotone operatoronE, and that0 ∈ ∂f(x) if and only if x is
a minimizer off . Setting∂f ≡ A, it follows that solving the inclusion0 ∈ Au, in this case, is
solving for a minimizer off .

In general, the following problem is of interest and has been studied extensively by numerous
authors. Findu ∈ E such that

0 ∈ Au,(1.2)

whereA : E → 2E∗
is a monotone-type map.

If H is a real Hilbert space, a well known method for approximating a solution of0 ∈ Au,
whereA : H → 2H is a maximal monotone map is theproximal point algorithm (PPA)intro-
duced by Martinet [17] and studied extensively by Rockafellar [22] and a host of other authors
(see for e.g., Reich and Sabach, [21]; Xu [24]; Brézis and Lions, [4]; Bruck [5]; Kamimura
and Takahashi, [14]; Kamimura and Takahashi, [13]; Reich [20]; Takahashi and Ueda, [26];
Chidume [7]; Chidume and Djitte, [8]; Chidumeet al. [9]). ThePPA is defined byx1 ∈ H,

xn+1 = Jrnxn, n ≥ 1(1.3)

where{rn}∞n=1 ⊂ (0,∞) andJrn := (I + rnA)−1. Martinet [17] considered a special case
A : H → 2H in whichA is defined as follows:

A(v) =

{
A0(v) +ND(v) if v ∈ D,

∅ if v /∈ D,
(1.4)

whereD is a nonempty closed convex subset ofH, A0 : D → H is a single-valued, monotone
map andND(v) := {w∗ ∈ H : 〈v − u,w∗〉 ≥ 0 ∀ u ∈ D}. In this case, the relation0 ∈ A(v)
reduces to−A0(v) ∈ ND(v) which is thevariational inequality problem:

find v ∈ D such that〈v − u,A0(v)〉 ≤ 0 ∀ u ∈ D.

Martinet proved that the sequence{xn}∞n=1 convergesweaklyto an element ofA−1(0) if D is
bounded.

Rockafellar [22] improved this result of Martinet. He considered the case of a general monotone
operator,A : H → 2H and proved that iflim inf

n→∞
rn > 0 andA−1(0) 6= ∅, then, the sequence

{xn}∞n=1 generated by (1.3) convergesweaklyto an element ofA−1(0).

He then posed the following problem.
Problem: Does the proximal point algorithm (1.3) always converges strongly?

This problem was resolved in the negative by Güler [11] who produced a proper closed convex
functiong in the infinite dimensional Hilbert spacel2 for which the proximal point algorithm
convergesweaklybut not strongly, (see also Bauschkeet al., [3]). Several authors modified
the proximal point algorithm to obtainstrongconvergence (see e.g., Bruck [5]; Kamimura and
Takahashi [14]; Lehdili and Moudafi [16]; Reich [20]; Solodov and Svaiter [23]; Xu [24]). We
remark that in every one of these modifications, the recursion formula developed involved either
the computation of(I + rnA)−1(xn) at each point of the iteration process or the construction,
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4 CHARLES EJIKE CHIDUME 1 AND CHINEDU GODWIN EZEA 1,2 AND EMMANUEL EZZAKA OTUBO 1,3

at each iteration, of two subsets of the space, intersecting them and projecting the initial vector
onto the intersection. Clearly, none of these processes is convenient in any possible application.

Typical of such results obtained is the following theorem.

Theorem 1.1(Kamimura and Takahashi, [13]). LetH be a real Hilbert space, letA ⊂ H ×H
be a maximal monotone map and letJr := (I + rA)−1, for r > 0. For x1, u ∈ H, let {xn}∞n=1

be a sequence defined by{
yn = Jrnxn,
xn+1 = αnu+ (1− αn)yn, n ≥ 1,

(1.5)

where{αn}∞n=1 ⊂ [0, 1] and{rn}∞n=1 ⊂ (0,∞) satisfy lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞ and lim
n→∞

rn =

∞. Suppose the criterion for the approximate computation ofyn is ‖yn − Jrnxn‖ < δn where
∞∑

n=1

δn <∞ andA−1(0) 6= ∅, then the sequence{xn}∞n=1 converges strongly toPu, whereP is

the metric projection ofH ontoA−1(0).

Kohsaka and Takahashi, [15] extended Theorem 1.1 to the framework of Banach spaces that are
both smooth and uniformly convex. In particular, they proved the following theorem.

Theorem 1.2(Kohsaka and Takahashi, [15]). LetE be a smooth and uniformly convex Banach
space and letA ⊂ E × E∗ be a maximal monotone mapping. LetJr := (J + rA)−1J for all
r > 0 and let{xn}∞n=1 be a sequence defined by

(1.6) x1 = u ∈ E, xn+1 = J−1(αnJu+ (1− αn)JJrnxn), n ≥ 1,

where{αn}∞n=1 ⊂ [0, 1] and{rn}∞n=1 ⊂ (0,∞) satisfy lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞ and lim
n→∞

rn =

∞. If A−1(0) 6= ∅, then the sequence{xn}∞n=1 converges strongly toPA−1(0)x, wherePA−1(0) is
the generalized projection fromE ontoA−1(0).

We remark that the iterative sequence (1.6) involves the resolvent map,Jrn := (J + rnA)−1J ,
and this, as has been remarked, is generally not convenient in any possible applications because

at each step of the iteration process, one has to compute
(
J + rnA

)−1

J(xn).

Zegeye observed the inclusion of this resolvent map in the recursion formula (1.6). In an attempt
to propose an iteration process which will not involve the resolvent map, he developed the
following theorem for approximating a zero of a monotone mapA.

Theorem 1.3(Zegeye, [27]). LetE be a uniformly convex and2-uniformly smooth real Banach
space with dualE∗. LetA : E∗ → E be a Lipschitz continuous monotone map with constant
L ≥ 0 andA−1(0) 6= ∅. For givenu, x1 ∈ E, let {xn}∞n=1 be generated by the algorithm

xn+1 = βnu+ (1− βn)(xn − αnAJxn), n ≥ 1,(1.7)

whereJ is the normalized duality map fromE to E∗. Suppose thatBmin ∩ (AJ)−1(0) 6= ∅.
Then{xn}∞n=1 converges strongly toRu := x∗ ∈ (AJ)−1(0) and thatJx∗ ∈ A−1(0), where
R is the sunny generalized nonexpansive retraction ofE onto(AJ)−1(0), where{αn}∞n=1 and
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{βn}∞n=1 are sequences in(0, 1) satisfying the following conditions:

(i) lim
n→∞

βn = 0, (ii)
∞∑

n=1

βn = ∞, (iii) lim
n→∞

αn

βn

= 0.

It turns out that there is a gap in the proof of Theorem 1.3. Araka [2] gave anexampleto illus-
trate the existence of this gap.

Before we state this example, we need the following lemma.

Lemma 1.4. Let {an}∞n=1, {bn}∞n=1, and{cn}∞n=1 be sequences of non-negative real numbers
satisfying the following relation

(1.8) an+1 ≤ (1− σn) an + bn + cn, n ≥ 1,

where{σn}∞n=1 ⊂ [0, 1]. If (i)
∞∑

n=1

σn = ∞, (ii) bn

σn
→ 0, asn → ∞, (iii)

∞∑
n=1

cn < ∞. Then,

lim
n→∞

an = 0.

The Example
TakeA = J−1, thenAJ = I, whereI is the identity map onE and choose the iterative
parametersαn = n−2 andβn = n−1 which both satisfy the conditions of the parameters in
Theorem 1.3. Letu 6= 0 be an arbitrary element ofE. Then, using the recursion formula (1.7),
one obtains the following.

xn+1 =
1

n
u+

(
1− 1

n

)(
xn −

1

n2
xn

)
=

(
1− 1

n2
− 1

n
+

1

n3

)
xn +

1

n
u

=
(
1− 1

n2
− 1

n
+

1

n3

)
(xn − u) +

(
1− 1

n2
− 1

n
+

1

n3

)
u+

1

n
u.

Hence,

(1.9) ‖xn+1 − u‖ ≤
(
1− 1

n

)
‖xn − u‖+

2

n2
‖u‖.

Now, settingλn = 1
n

andσn = 2
n2‖u‖, it then follows from inequality (1.9) that

(1.10) ‖xn+1 − u‖ ≤ (1− λn)‖xn − u‖+ σn,

which yields, by Lemma 1.4, that
xn → u ∈ I−1(0), asn→∞, butu 6= 0.

Araka proved the following analogue of Theorem 1.3.

Theorem 1.5 (Araka, [2]). Let E be a reflexive real Banach space with Uniformly Gâteaux
differentiable norm. LetA : E∗ → E. For anyx1 ∈ E, let {xn}∞n=1 be the sequence iteratively
generated by

xn+1 = xn − βnAJxn − αnβnxn, n ≥ 1,(1.11)

whereJ is the normalized duality map fromE toE∗. Suppose that(AJ)−1(0) 6= ∅; and suppose
thatAJ is an accretive Lipschitz map with Lipschitz constantL ≥ 0, then the sequence{xn}∞n=1
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converges strongly tou∗ ∈ (AJ)−1(0) with Ju∗ ∈ (A)−1(0), where{αn}∞n=1 and{βn}∞n=1 are
sequences in(0, 1) satisfying the following conditions:

(i) lim
n→∞

βn = 0, (ii) βn(1 + αn) < 1,
∞∑

n=1

αnβn = ∞,

(iii) lim
n→∞

αn

βn

= 0 iff βn = ◦(αn), (iv) lim
n→∞

β−1
n α−2

n (αn−1 − αn) = 0.

Remark 1.1. An example of an operatorA, for whichAJ is accretive, given in Araka [2] is
A := J−1. This is atrivial example.

It is our purpose in this paper to extend Theorem 1.5 from the class of accretiveLipschitzmaps
to the more general class of accretiveuniformly continuousmaps. Furthermore, the sequence
in our theorem will, as in Theorem 1.5, converge strongly to an element of(AJ)−1(0). Finally,
we presentnon-trivial examplesof mapsA : E∗ → E for whichAJ is accretive.

2. PRELIMINARIES

Lemma 2.1(Moore and Nnoli, [18]). Let{ρn}∞n=1 be a sequence of non-negative real numbers
satisfying the following relation:

(2.1) ρn+1 ≤ ρn − αnψ(ρn+1) + σn, n ≥ 1,

where(i) 0 < αn < 1 (ii)
∞∑

n=1

αn = ∞ (iii) ψ : [0,∞) → [0,∞) is a strictly increasing

function withψ(0) = 0. Suppose thatσn = o(αn). Then,ρn → 0 asn→∞.

Lemma 2.2(Chidume, [6]). LetE be a real normed space, andJ : E → 2E∗
be the normalized

duality map. Then, for anyx, y ∈ E, the following inequality holds:

(2.2) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉,
for all j(x+ y) ∈ J(x+ y).

Lemma 2.3 (Morales and Jung, [19]). LetK be a closed convex subset of a reflexive Banach
spaceE with Uniformly Gâteaux differentiable norm. LetT : K → K be continuous pseudo-
contractive map withF (T ) 6= ∅. Suppose that every nonempty closed convex and bounded
subset ofK has the fixed point property for nonexpansive self-map. Then, foru ∈ K, the path
t→ yt ∈ K, t ∈ (0, 1], satisfying

(2.3) yt = (1− t)Tyt + tu,

converges strongly to a fixed pointQu of T ast→ 0+, whereQ is the unique sunny nonexpan-
sive retract fromK ontoF (T ).

We obtain the following corollary from Lemma 2.3 if0 ∈ K andu = 0.

Corollary 2.4. LetK be a closed subset of a reflexive Banach spaceE with a uniformly Gâteaux
differentiable norm such that0 ∈ K. LetT : K → K be a continuous pseudocontractive map
with F (T ) 6= ∅. Suppose that every nonempty closed convex and bounded subset ofK has the
fixed point property of nonexpansive self-map. Then, the patht→ yt, t ∈ (0, 1], satisfying,

(2.4) yt = (1− t)Tyt,

converges strongly to a fixed point ofQ(0) of T as t → 0+, whereQ is the unique sunny
nonexpansive retract fromK ontoF (T ).
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Remark 2.1. In corollary 2.4, if we define,yn := ytn andtn = 1
1+αn

∀ n ≥ 1, whereαn → 0,
asn→∞, we obtain,

(2.5) yn =
1

1 + αn

Tyn.

It follows from equation (2.5), that

(2.6) αnyn + (I − T )yn = 0

and

(2.7) − αn−1yn−1 = −αnyn + (I − T )yn−1 − (I − T )yn.

We observe that sinceT is a pseudocontractive map, then(I − T ) is an accretive map, whereI
is the identity map.

3. M AIN RESULTS

For the rest of this paper, the sequences{αn}∞n=1 ⊂ (0, 1), {βn}∞n=1 ⊂ (0, 1) are assumed to
satisfy the following conditions:

(i)
∞∑

n=1

αnβn = ∞,

(ii) lim
n→∞

[ |αn−1 − αn|
α2

nβn

+ βn +
ξn

αn

]
= 0, whereξn := ‖AJxn+1 − AJxn‖.

We now prove the following theorem.

Theorem 3.1. Let E be a real Banach space with dual spaceE∗, such that the normalized
duality mapJ fromE to E∗ is single-valued. LetA : E∗ → E be a map such thatAJ is an
accretive and uniformly continuous map. For arbitraryx1 ∈ E, let the sequence{xn}∞n=1 be
iteratively defined by

xn+1 = xn − βnAJxn − αnβnxn, n ≥ 1.(3.1)

Assume that(AJ)−1(0) 6= ∅. Then,{xn}∞n=1 is bounded.

Proof. Let x∗ ∈ (AJ)−1(0). Then, there existsr > 0 such that forB := Br(x∗), the following
conditions hold:

(1) x1 ∈ B r
2
(x∗),

(2) ‖x∗‖ ≤ r
4
,

(3) ξn <
r
8
αn,

(4) βnM0 ≤ r
8
, whereM0 := sup{‖AJx+ αx‖ : x ∈ Br(x∗), α ∈ (0, 1)}.

We prove thatxn ∈ B ∀ n ≥ 1. The proof is by induction. Clearly,x1 ∈ B by construction.
Assume thatxn ∈ B, for somen ≥ 1. We prove thatxn+1 ∈ B. Suppose thatxn+1 /∈ B i.e.,
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suppose‖xn+1 − x∗‖ > r. Then, by lemma 2.2 and the recursion formula(3.1), we have that

r2 < ‖xn+1 − x∗‖2

= ‖xn − x∗ − βn(AJxn + αnxn)‖2

≤ ‖xn − x∗‖2 − 2βn〈AJxn + αnxn, J(xn+1 − x∗)〉
= ‖xn − x∗‖2 − 2βn〈αn(xn+1 − x∗)− αn(xn+1 − xn) + AJxn + αnx

∗

+(AJxn+1 − AJxn+1), J(xn+1 − x∗)〉
= ‖xn − x∗‖2 − 2βnαn‖xn+1 − x∗‖2 + 2βn〈αn(xn+1 − xn)− αnx

∗

+(AJxn+1 − AJxn)− AJxn+1, J(xn+1 − x∗)〉.

Thus, using the recursion formula(3.1) again and the fact thatAJ is an accretive and uniformly
continuous map, we obtain that

r2 < ‖xn+1 − x∗‖2

≤ ‖xn − x∗‖2 − 2βnαn‖xn+1 − x∗‖2 + 2βn〈αn(xn+1 − xn)− αnx
∗

+(AJxn+1 − AJxn), J(xn+1 − x∗)〉

≤ ‖xn − x∗‖2 − 2βnαn‖xn+1 − x∗‖2 + 2βn

[
αn‖xn+1 − xn‖+ αn‖x∗‖

+‖AJxn+1 − AJxn‖
]
‖xn+1 − x∗‖

≤ ‖xn − x∗‖2 − 2βnαn‖xn+1 − x∗‖2 + 2βn

[
αnβnM0 + αn‖x∗‖+ ξn

]
‖xn+1 − x∗‖.

But, by induction hypothesis,xn ∈ B, and using the conditions on the sequences{αn}∞n=1 and
{βn}∞n=1, we obtain that

r2 < ‖xn+1 − x∗‖2

≤ r2 − 2βnαn‖xn+1 − x∗‖2 + 2βn

(r
8
αn +

r

4
αn +

r

8
αn

)
‖xn+1 − x∗‖.

This yields that, 2βnαn‖xn+1 − x∗‖2 ≤ 2βn

(
r
8
αn + r

4
αn + r

8
αn

)
‖xn+1 − x∗‖.

Hence,‖xn+1−x∗‖ ≤ r
4
+ r

4
= r

2
, a contradiction. Therefore,xn ∈ B ∀ n ≥ 1, and so{xn}∞n=1

is bounded.

We now prove the following strong convergence theorem.

Theorem 3.2. Let E be a reflexive real Banach space with uniformly Gâteaux differentiable
norm. LetA : E∗ → E be a map such thatAJ is an accretive and uniformly continuous map.
For anyx1 ∈ E, let the sequence{xn}∞n=1 be iteratively defined by

(3.2) xn+1 = xn − βnAJxn − αnβnxn, n ≥ 1,

whereJ : E → E∗ is the single-valued normalized duality map. Suppose that(AJ)−1(0) 6= ∅.
Then, the sequence{xn}∞n=1 converges strongly to someu∗ ∈ (AJ)−1(0).
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Proof. From the recursion formula(3.2), Lemma2.2 and Corollary2.4 (with yn as in Corollary
2.4), we have that

‖xn+1 − yn‖2 = ‖xn − yn − βn(AJxn + αnxn)‖2

≤ ‖xn − yn‖2 − 2βn〈AJxn + αnxn, J(xn+1 − yn)〉
= ‖xn − yn‖2 − 2βn〈αn(xn+1 − yn)− αn(xn+1 − yn)

+AJxn + αnxn, J(xn+1 − yn)〉
= ‖xn − yn‖2 − 2βnαn〈xn+1 − yn, J(xn+1 − yn)〉

+2βn〈αn(xn+1 − yn)− AJxn − αnxn, J(xn+1 − yn)〉
= ‖xn − yn‖2 − 2βnαn‖xn+1 − yn‖2 + 2βn〈αn(xn+1 − xn)

+(AJxn+1 − AJxn)− (αnyn + AJyn)− (AJxn+1 − AJyn), J(xn+1 − yn)〉.

Thus, using equation(2.6) and the fact thatAJ is an accretive and uniformly continuous map,
we have that

‖xn+1 − yn‖2 ≤ ‖xn − yn‖2 − 2βnαn‖xn+1 − yn‖2

+2βn〈αn(xn+1 − xn) + (AJxn+1 − AJxn), J(xn+1 − yn)〉
≤ ‖xn − yn‖2 − 2βnαn‖xn+1 − yn‖2(3.3)

+2βn

[
αnβnM0 + ξn

]
‖xn+1 − yn‖.

SinceAJ is accretive, using equation (2.7), we observe that

‖yn−1 − yn‖ ≤ ‖yn−1 − yn + α−1
n (AJyn−1 − AJyn)‖

= |α−1
n (αn−1 − αn)|‖yn−1‖.(3.4)

By the boundedness of the sequences{xn}∞n=1 and{yn}∞n=1, one can easily see that

(3.5) ‖xn − yn‖2 ≤ ‖xn − yn−1‖2 +M1‖yn−1 − yn‖,

for some positive constantM1. Using inequalities (3.3), (3.4), (3.5) and the fact that the se-
quences{xn}∞n=1 and{yn}∞n=1 are bounded, it follows that for some positive constantsM0,M1,M2,M3

andM , we have that

‖xn+1 − yn‖2 ≤ ‖xn − yn−1‖2 − 2βnαn‖xn+1 − yn‖2

+M1‖yn−1 − yn‖+ 2βn

[
αnβnM0 + ξn

]
M2

≤ ‖xn − yn−1‖2 − 2βnαn‖xn+1 − yn‖2 +
∣∣α−1

n (αn−1 − αn)|M3

+2βn

[
αnβnM0 + ξn

]
M2

≤ ‖xn − yn−1‖2 − 2βnαn‖xn+1 − yn‖2

+ M
[
|α−1

n (αn−1 − αn)|+ αnβ
2
n + βnξn

]
.

Thus, by Lemma 2.1 and the conditions on{αn} and{βn}, we get that‖xn+1 − yn‖ → 0 as
n → ∞. Consequently,‖xn − yn−1‖ → 0 asn → ∞. Since{yn}∞n=1 converges strongly
to someu∗ ∈ (AJ)−1(0), we get that{xn}∞n=1 converges strongly to someu∗ ∈ (AJ)−1(0),
completing the proof.

Corollary 3.3 below which is a result of Araka [2] is an immediate consequence of Theorem
3.1.

AJMAA, Vol. 4, No. 2, Art. 4, pp. 1-14, 2017 AJMAA

http://ajmaa.org


10 CHARLES EJIKE CHIDUME 1 AND CHINEDU GODWIN EZEA 1,2 AND EMMANUEL EZZAKA OTUBO 1,3

Corollary 3.3. LetE be a reflexive real Banach space with uniformly Gâteaux differentiable
norm with dual spaceE∗. LetA : E∗ → E be any map. For anyx1 ∈ E, let {xn}∞n=1 be the
sequence iteratively defined by

(3.6) xn+1 = xn − βnAJxn − αnβnxn, n ≥ 1,

whereJ : E → E∗ is the normalized duality map. Suppose that(AJ)−1(0) 6= ∅; and suppose
that AJ is an accretive Lipschitz map with Lipschitz constantL ≥ 0. Then, the sequence
{xn}∞n=1 converges strongly to someu∗ ∈ (AJ)−1(0).

Remark 3.1. SinceAJ is Lipschitz, let the Lipschitz constant ofAJ beL. Then, we have

ξn

αn

=
‖AJxn+1 − AJxn‖

αn

≤ LβnMo

αn

.(3.7)

Xu and Roach [25] proved that in a2-uniformly smooth space, the normalized duality map
J : E → E∗ is Lipschitz. Therefore, the assumption thatAJ is a Lipschitz map can be
dispensed with whenA is Lischitz. Hence, we obtain the following corollary.

Corollary 3.4. LetE be a uniformly convex and2-uniformly smooth real Banach space with
dualE∗. LetA : E∗ → E be a Lipschitz maximal monotone map withA−1(0) 6= ∅. For any
x1 ∈ E, let {xn}∞n=1 be the sequence iteratively defined by

(3.8) xn+1 = xn − βnAJxn − αnβnxn, n ≥ 1.

Suppose thatAJ is an accretive map and(AJ)−10 6= ∅. Then, the sequence{xn}∞n=1 converges
strongly to someu∗ ∈ (AJ)−1(0).

Remark 3.2. Corollary 3.4 is a significant improvement of Theorem 1.3, in the sense that this
corollary fills the gap in the theorem as identified by Araka.

AN APPLICATION

Corollary 3.5. LetH be a real Hilbert space andA : H → H be a uniformly continuous and
monotone map such thatA−1(0) 6= ∅. For anyx1 ∈ H, let {xn}∞n=1 be the sequence iteratively
defined by

(3.9) xn+1 = xn − βnAxn − αnβnxn, n ≥ 1.

Then, the sequence{xn}∞n=1 converges strongly to someu∗ ∈ (A)−1(0).

Remark 3.3. In corollary 3.5, the mapA is uniformly continuous, monotone and hasH as its
domain, so it is maximal monotone (see e.g., Cioranescu [10]).

Remark 3.4. Corollary 3.5 complements Theorem 1.1 in the case thatA is uniformly con-
tinuous by providing a sequence which converges strongly to an element ofA−1(0), where
the recursion formula of the sequence does not involve the resolvent map,(I + rA)−1. Fur-
thermore, the condition“... suppose the criterion for the approximate computation ofyn is

‖yn − Jrnxn‖ < δn where
∞∑

n=1

δn <∞ ...” imposed in Theorem 1.1 is dispensed with.
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Remark 3.5. In the case whereA : E → E∗ is any map such thatJ−1A : E → E is an
accretive and uniformly continuous map, following the technique of the proof of Theorem 3.2
and replacingAJ by J−1A, the following theorem is easily proved.

Theorem 3.6. Let E be a reflexive real Banach space with uniformly Gâteaux differentiable
norm. LetA : E → E∗ be a map such thatJ−1A : E → E is an accretive and uniformly
continuous map. For anyx1 ∈ E, let {xn}∞n=1 be the sequence defined iteratively by

(3.10) xn+1 = xn − βnJ
−1Axn − αnβnxn, n ≥ 1,

whereJ : E → E∗ is the normalized duality map such thatJ−1 : E∗ → E exists. Suppose that
(J−1A)−1(0) 6= ∅. Then, the sequence{xn}∞n=1 converges strongly to someu∗ ∈ (J−1A)−1(0).

Remark 3.6. Prototypes of sequences{αn}∞n=1 and{βn}∞n=1 satisfying conditions of Corollar-
ies 3.3 and 3.4 are:

αn = (n+ 1)−a andβn = (n+ 1)−b, n ≥ 1,

where0 < a < b anda+ b < 1.

4. EXAMPLES OF MAPS A FOR WHICH AJ IS ACCRETIVE

Remark 4.1. (see e.g., Alber and Ryazantseva, [1]; p. 36) The analytical representations of
duality maps are known in a number of Banach spaces. For instance, in the spaceslp, Lp(G)
andW p

m(G), p ∈ (1,∞), p−1 + q−1 = 1, respectively,
Jx = ‖x‖2−p

lp
y ∈ lq, y = {|x1|p−2x1, |x2|p−2x2, ...}, x = {x1, x2, ...},

J−1x = ‖x‖2−q
lq

y ∈ lp, y = {|x1|q−2x1, |x2|q−2x2, ...}, x = {x1, x2, ...},
Jx = ‖x‖2−p

Lp
|x(s)|p−2x(s) ∈ Lq(G), s ∈ G,

J−1x = ‖x‖2−q
Lq

|x(s)|q−2x(s) ∈ Lp(G), s ∈ G, and

Jx = ‖x‖2−p
W p

m

∑
|α|≤m(−1)|α|Dα(|Dαx(s)|p−2Dαx(s)) ∈ W q

−m(G),m > 0, s ∈ G.

Remark 4.2. We now give non-trivial examples of maps,A : E∗ → E, such thatAJ is an
accretive map.

LetA : `p → `q, 1 < q < p, 1
p

+ 1
q

= 1.

Recall (Remark 4.1) thatJ : `p → (`p)
∗ is defined by:

(4.1) J(x) = ‖x‖2−p
(
x1|x1|p−2, x2|x2|p−2, x3|x3|p−2, · · ·

)
.

Example 4.1.Now, defineA by

(4.2) A(y) := ‖y‖2−q
(
0, y2|y2|q−2, y2|y2|q−2, y3|y3|q−2, · · ·

)
.

We computeAJ.

(AJ)(x) = A
[
‖x‖2−p

(
x1|x1|p−2, x2|x2|p−2, x3|x3|p−2, · · ·

)]
= ‖x‖2−p‖x‖2−q

(
0, x2|x2|p−2

∣∣∣(x2|x2|p−2‖x‖2−p
)∣∣∣q−2

,

x3|x3|p−2
∣∣∣(x3|x3|p−2‖x‖2−p

)∣∣∣q−2

, · · ·
)

= (0, x2, x3, · · · ).
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Thus,(AJ)(x) = (0, x2, x3, · · · ).
We now show thatAJ is accretive. Since,AJ is linear we compute as follows.

〈AJx, Jx〉 =
〈
(0, x2, x3, · · · ), ‖x‖2−p

(
x1|x1|p−2, x2|x2|p−2, x3|x3|p−2, · · ·

)〉
= ‖x‖2−p

( ∞∑
n=2

|xn|p
)
≥ 0.

Therefore,〈AJx, Jx〉 ≥ 0. Hence,AJ is accretive.

Example 4.2.DefineA by

(4.3) A(y) := ‖y‖2−q
(
y1|y1|q−2,

y2|y2|q−2

2
,
y3|y3|q−2

3
, · · ·

)
.

We computeAJ.

(AJ)(x) = A
[
‖x‖2−p

(
x1|x1|p−2, x2|x2|p−2, x3|x3|p−2, · · ·

)]
= ‖x‖2−p‖x‖2−q

(
x1|x1|p−2

∣∣∣(x1|x1|p−2‖x‖2−p
)∣∣∣q−2

,
x2|x2|p−2

∣∣∣(x2|x1|p−2‖x‖2−p
)∣∣∣q−2

2
,

x3|x3|p−2
∣∣∣(x3|x3|p−2‖x‖2−p

)∣∣∣q−2

3
, · · ·

)
=

(
x1,

x2

2
,
x3

3
, · · ·

)
.

Thus,(AJ)(x) = (x1,
x2

2
, x3

3
, · · · ).

We now show thatAJ is accretive. Clearly,AJ is linear. We compute as follows:

〈AJx, Jx〉 =
〈(
x1,

x2

2
,
x3

3
, · · ·

)
, ‖x‖2−p

(
x1|x1|p−2, x2|x2|p−2, x3|x3|p−2, · · ·

)〉
= ‖x‖2−p

( ∞∑
n=1

|xn|p

n

)
≥ 0.

Therefore,〈AJx, Jx〉 ≥ 0. Hence,AJ is accretive.

Example 4.3.DefineA by

(4.4) A(y) := ‖y‖2−q
(
y1|y1|q−2, y2|y2|q−2, · · · , ym|ym|q−2, 0, 0, 0, · · ·

)
.

We computeAJ.

(AJ)(x) = A
[
‖x‖2−p

(
x1|x1|p−2, x2|x2|p−2, · · · , xm|xm|p−2, · · ·

)]
= ‖x‖2−p‖x‖2−q

(
x1|x1|p−2

∣∣∣(x1|x1|p−2‖x‖2−p
)∣∣∣q−2

, x2|x2|p−2
∣∣∣(x2|x1|p−2‖x‖2−p

)∣∣∣q−2

,

· · · , xm|xm|p−2
∣∣∣(xm|xm|p−2‖x‖2−p

)∣∣∣q−2

, 0, 0, 0, · · ·
)

=
(
x1, x2, · · · , xm, 0, 0, 0, · · ·

)
.
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Thus,(AJ)(x) =
(
x1, x2, · · · , xm, 0, 0, 0, · · ·

)
.

We now show thatAJ is accretive. Clearly,AJ is linear. We compute as follows:

〈AJx, Jx〉 =
〈(
x1, x2, · · · , xm, 0, 0, 0, · · ·

)
, ‖x‖2−p

(
x1|x1|p−2, x2|x2|p−2, x3|x3|p−2, · · ·

)〉
= ‖x‖2−p

( m∑
n=1

|xn|p
)
≥ 0.

Therefore,〈AJx, Jx〉 ≥ 0. Hence,AJ is accretive.
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