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ABSTRACT. An efficient double-projection method, with a new search strategy, is designed for
solving variational inequalities in real Hilbert spaces with pseudo-monotone cost operator. Our
proposed method uses a computationally inexpensive simple line search procedure based on lo-
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sizes. A description of the algorithm along with its weak convergence is provided without as-
suming Lipschitz continuity. Also, a modification to the proposed method is presented, wherein
the second projection onto the closed and convex subset is replaced with the one onto a subgra-
dient half space. Numerical experiments and comparisons with related methods demonstrate the
reliability and benefits of the proposed schemes.
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2 M. A. PEYVAND

1. INTRODUCTION

In this work, we are interested in the investigation of a double-projection method for discov-
ering a solution to the variational inequality problem(VIP), which is formulated as follows:

(1.1) Find x∗ ∈ C such that ⟨F(x∗), y − x∗⟩ ≥ 0, ∀y ∈ C,
where C is a nonempty, closed and convex subset of a real Hilbert space H. Here, ⟨., .⟩ denotes
the usual inner product in H and F : H → H is a given operator. This problem has been widely
used in mathematical programming to model optimization and decision-making problems in
various fields such as finance, economics, network analysis, transportation, elasticity, optimal
control and so on [1, 3, 9, 19, 32]. Over the years, there have been numerous studies focusing
on algorithmic development in this area [10, 21, 27, 30].

The projection method, with its different forms, is a fundamental technique for obtaining
a solution to the VIP due to its simplicity and applicability. This method is inspired by a
well-known theorem stating that x∗ is a solution of (1.1) if and only if it be a fixed point of
PC(x− αF(x)), i.e., x∗ = PC(x

∗ − αF(x∗)), where PC is the (metric) projection of H onto C
and α is any positive real number. Based on this alternative formulation, the simplest solution
method for VIPs constructed as the following:

xn+1 = PC(xn − αF(xn)), ∀n ≥ 1.

However, the convergence of this method requires an L-Lipschitz continuity and strong (or
inverse strong) monotonicity on F . These assumptions can be quite restrictive in practice.

To overcome this drawback, Korpelevich [20] proposed a double-projection method, so-
called the extragradient method, as{

yn = PC(xn − αF(xn)),
xn+1 = PC(xn − αF(yn)),

for all n ≥ 1, where α ∈ (0, 1
L) and F is the L-Lipschitz continuous and monotone mapping.

Because of its importance, some new ideas and results in the development of extragradient
method have been proposed in various ways [5, 7, 10, 24, 27], including line search procedures,
avoiding Lipschitz continuity assumptions, extension in monotonicity of the assigned mapping,
etc.

One of the primary considerations affecting the efficiency of the projection methods is the
selection of the appropriate step size. Motivated and inspired by the extragradient method and
some related works, in this paper, we develop a line search strategy to select the proper step
size and introduce a new fast double-projection algorithm, comparable with the related well-
known algorithms. This strategy at least theoretically allows for an increase in step size from
the first projection to the second projection, which reduces the distance to the solution. Figure
1 illustrates the benefits of selecting a larger step size for the second projection.

The main features and qualities of this work are: (1) We propose a new double-projection
method which is developed for solving pseudo-monotone VIPs. (2) In contrast to some methods
proposed in the literature (for example see [17, 24, 27]), the new method works independently
of the Lipschitz constant of the involving mapping F , if be Lipschitz. This feature is particu-
larly interesting when the Lipschitz constant is either unknown or difficult to approximate. For
example, considering the following constrained optimization

min f(x)

s.t. hi(x) ≤ 0, i = 1, ...,m,

where hi : H → R, i = 1, ...,m, are given convex and continuous functions and the objective
function f : H → R is a convex and twice continuously differentiable function. Then, the
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Figure 1: Benefits of employing the larger stepsize αn+1 for the second projection.

above constrained optimization problem is equivalent to (1.1) with F = ▽f . It is not difficult
to see that ▽f is a Lipschitz continuous operator with constant

L = max{▽2f(x) : hi(x) ≤ 0, i = 1, ...,m}.
This means that finding or estimating L results in an optimization problem, which is an unex-
pected time-consuming task. (3) To overcome the knowledge of the Lipschitz constant diffi-
culty, some new methods are proposed in which convergence of these methods has been shown
under the assumption of Lipschitz continuity of F [2, 14, 15, 18, 22, 23, 31]. In contrast to these
methods, the convergence analysis of our algorithm only requires a locally Lipschitz assump-
tion on F , which is weaker than Lipschitz continuity of F . (4) To the best of our knowledge,
the step size sequences of the double-projection methods are nonincreasing from iteration to
iteration. In this work, after some iterations, the step size sequence {αn}n≥N0 is updated in
an increasing way, which can significantly enhances the convergence rate and yields better nu-
merical results in terms of both iteration count and execution time. In particular, this method
performs a new search strategy based on a computationally inexpensive simple line search to
compute the next larger step size.

The rest of the paper is organized as follows. In the next section, we provide some useful
lemmas and notations for reference. In Section 3, we introduce a new double-projection method.
We also analyze the convergence of the sequence generated by this method. At the end of
the section, we propose a modified version of our algorithm which needs only one projection
onto the feasible set. In Section 4, we present some numerical experiments to showcase the
efficiency of the algorithms and provide a computational overview through a comparison with
the performance of some related methods. The last section, Section 5, concludes the paper.

2. PRELIMINARIES

In this section, we collect some notations, definitions and lemmas for reference. The weak
convergence of {xn} to x∗ is denoted by xn ⇀ x∗ as n → ∞.

The following lemma states some useful properties of the projection [4].

Lemma 2.1. Let C be a nonempty, closed and convex subset of a real Hilbert space H and
x ∈ H. Then for each y ∈ C

(i) ⟨x− PC(x), y − PC(x)⟩ ≤ 0;
(ii) ∥PC(x)− y∥2 ≤ ∥x− y∥2 − ∥x− PC(x)∥2.

We review some pertinent for future reference.

Definition 2.1. The mapping F : H → H is said to be
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a) pseudo-monotone if

⟨F(x), y − x⟩ ≥ 0 ⇒ ⟨F(y), y − x⟩ ≥ 0, ∀x, y ∈ H;

b) monotone if

⟨F(x)−F(y), x− y⟩ ≥ 0, ∀x, y ∈ H;

c) Lipschitz continuous if there exists L > 0 such that

∥F(x)−F(y)∥ ≤ L∥x− y∥, ∀x, y ∈ H;

d) locally Lipschitz continuous if for any u ∈ H there is ρ > 0 and L ≥ 0 such that

∥F(x)−F(y)∥ ≤ L∥x− y∥, ∀x, y ∈ B(u, ρ);

e) sequentially weakly continuous if for any sequence {xn} weakly converging to x∗, the
sequence {F(xn)} converges weakly to F(x∗).

Remark 2.1. (i) It is clear that monotonicity implies pseudo-monotonicity, yet the converse is
not true in general. For instance, define F : R+ → R+ by F(x) =

v

x+ v
with v > 0. Suppose

x, y ∈ R+, x ̸= y, then

⟨F(x)−F(y), x− y⟩ = −v(x− y)2

(x+ v)(y + v)
< 0.

This shows that F is not monotone, but it is pseudo-monotone. Indeed, let x, y ∈ R+. Clearly,
if ⟨F(x), y − x⟩ ≥ 0 then y ≥ x. Since F(y) > 0, so ⟨F(y), y − x⟩ ≥ 0. Hence, F is pseudo-
monotone.
(ii) Lipschitz continuity implies locally Lipschitz continuity, but the converse does not generally
hold. For example, it is not difficult to show that the real-valued function F(x) = x2 is locally
Lipschitz continuous but not Lipschitz continuous on R.

The following lemma is a standard result in mathematical analysis.

Lemma 2.2. A locally Lipschitz continuous mapping F : H → H on a bounded set D ⊂ H is
Lipschitz continuous.

The well-known Minty lemma is as follows[6].

Lemma 2.3. Consider the VIP (1.1) with F : C → H being pseudo-monotone and continuous.
Then, x∗ is a solution of (1.1) if and only if

⟨F(y), y − x∗⟩ ≥ 0, ∀y ∈ C.

The proof of the following lemma, which will be used for the subsequent convergence anal-
ysis, is straightforward.

Lemma 2.4. Suppose that {an} and {bn} are two nonnegative real sequences that

an+1 ≤ an − bn,

for all n. Then {an} is bounded and limn→∞ bn = 0.
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3. THE PROPOSED METHODS AND CONVERGENCE ANALYSIS

In this section, we introduce our proposed algorithms and show that the sequences produced
by these algorithms are weakly convergent to a solution of the VIP (1.1). For the convergence
analysis of the proposed algorithms, we assume the following:

A1: F : H → H is locally Lipschitz, pseudo-monotone and sequentially weakly continu-
ous on C.

A2: The solution set of (1.1), denoted by S, is nonempty.
The construction of our first algorithm is as follows.

Algorithm 1

Initialization: Choose σ ∈ (0, 1), θ ∈ (0, 1), α0 > 0, αmax > 0 and x0 ∈ C.
Iterative Steps: Given the current iterates xn and αn, calculate the next one xn+1 and αn+1 as
follows:
Step 1. Set j = 0 and run the following line search:

1.a. Take βn = θj and compute

yn = PC(xn − βnαnF(xn)).

1.b. Choose the largest αn+1 ≤ min{1 + βn

βn

αn, αmax} such that

(3.1) ∥αn+1F(yn)− βnαnF(xn)∥ ≤ σ∥yn − xn∥.
1.c. Break line search if such αn+1 exists. Otherwise, set j := j + 1 and go to 1.a.

If xn = yn, then stop; xn belongs to S. Otherwise,
Step 2. Compute

xn+1 = PC(xn − αn+1F(yn)).

Set n := n+ 1 and go to Step 1.

Remark 3.1. (i) To ensure that the sequence {αn}n∈N in Algorithm 1 has an upper bound, the
constant αmax is given. Therefore, it makes sense to choose this constant quite large. (ii) The
largest αn+1 that satisfies (3.1) can be easily found by solving equivalent quadratic equation.

The following two lemmas show that Algorithm 1 is well defined.

Lemma 3.1. The step size calculation in line search of Algorithm 1 terminates after finitely
many inner loops.

Proof. Suppose that the line search procedure in Algorithm 1 fails to terminate at n-th iteration

i.e., for all α ∈ (0,
1 + βn

βn

αn) with βn = θj and j = 0, 1, 2, ..., we have

(3.2) σ∥yn − xn∥ < ∥αF(yn)− βnαnF(xn)∥.
We show that this leads to a contradiction. Let D = conv{xn, yn}. Since D is a bounded set
it follows from Lemma 2.2 that F is Lipschitz continuous on D. Hence, there exists a positive
constant L such that

(3.3) ∥F(yn)−F(xn)∥ ≤ Lσ∥yn − xn∥.

Taking βn <
1

Lαn

and setting α = βnαn, from (3.2) and (3.3) we have

σ∥yn − xn∥ < ∥αF(yn)− βnαnF(xn)∥ = βnαn∥F(yn)−F(xn)∥ < σ∥yn − xn∥,
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a contradiction. This completes the proof.

Lemma 3.2. If {xn}, the sequence generated by Algorithm 1, be bounded then {αn} is bounded
and lim supn→∞ αn > 0.

Proof. By Remark 3.1, {αn} is upper bounded. As the sequences {xn} and {yn} are bounded,
recall that F is a locally Lipschitz continuous mapping from assumption A1, there exists any
positive constant L such that

∥F(yn)−F(xn)∥ ≤ Lσ∥yn − xn∥ ∀n ∈ N .

Given the construction of {αn}, it is not difficult to see that if we have αn <
1

L
, then βn = θ0 =

1 and α = αn satisfy inequality

∥αF(yn)− βnαnF(xn)∥ ≤ σ∥yn − xn∥,

i.e., the line search procedure terminates after the first iteration. Since we seek the largest

α ∈ (0,
1 + βn

βn

αn), we have αn ≤ αn+1.

Now, by a contradiction suppose that lim supn→∞ αn = 0. So, there exists a positive integer

N0 such that αn <
1

L
whenever n ≥ N0. Let n + 1 > N0. Considering αn <

1

L
, we obtain

αn ≤ αn+1. Moreover, as αn+1 <
1

L
, we also have αn+1 ≤ αn+2. It follows by induction that

{αn}n≥N0 is nondecreasing and can not converge to zero. Thus our initial assumption has led
to a contradiction, proving the lemma.

Now, we give and prove the following lemmas, which are important in the proof of the main
theorem.

Lemma 3.3. Let {xn} be a sequence generated by Algorithm 1. If {xn} be bounded and
lim
n→∞

∥xn − yn∥ = 0, then it has a weak cluster point belongs to S.

Proof. By Lemma 3.2, there exists an increasing sequence of positive integers, {nk}, such that
{αnk

}, as well as {βnk
αnk

} according to Lemma 3.1, is separated from zero and a subsequence
{xnk

} of {xn} that for some x∗ ∈ C, xnk
⇀ x∗ as k → ∞.

Now, we show that x∗ belongs to S . Indeed, since xnk
⇀ x∗ and lim

n→∞
∥yn − xn∥ = 0, thus

ynk
⇀ x∗ as k → ∞. Further, x∗ ∈ C due to {xn} ⊂ C. Applying Lemma 2.1 (i), we deduce

that
⟨xnk

− βnk
αnk

F(xnk
)− ynk

, p− ynk
⟩ ≤ 0, ∀p ∈ C,

i.e.,
1

βnk
αnk

⟨xnk
− ynk

, p− ynk
⟩ ≤ ⟨F(xnk

), p− ynk
⟩, ∀p ∈ C.

This implies that

(3.4)
1

βnk
αnk

⟨xnk
− ynk

, p− ynk
⟩+ ⟨F(xnk

), ynk
− xnk

⟩ ≤ ⟨F(xnk
), p− xnk

⟩, ∀p ∈ C.

Fixing p ∈ C and taking k → ∞ in (3.4), since lim
n→∞

∥yn − xn∥ = 0 and βnk
αnk

> 0 for all k,
we get

(3.5) lim inf
k→∞

⟨F(xnk
), p− xnk

⟩ ≥ 0.
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Now, we choose a decreasing sequence of positive numbers, {ϵk}k, tending to zero. By (3.5),
for each k, there exists the smallest positive integer Nk such that

(3.6) ⟨F(xnj
), p− xnj

⟩+ ϵk ≥ 0, ∀j ≥ Nk.

From the decreasing nature of sequence {ϵk}k, it follows that the sequence {Nk}k is increasing.
For each k, suppose F(xnNk

) ̸= 0 (otherwise, xnNk
is a solution). Setting

νnNk
=

F(xnNk
)

∥F(xnNk
)∥2

,

we have ϵk = ⟨F(xnNk
), ϵkνnNk

⟩ for each k. So, from (3.6) we get

⟨F(xnNk
), p+ ϵkνnNk

− xnNk
⟩ ≥ 0, ∀k.

Since F is pseudo-monotone, then

(3.7) ⟨F(p+ ϵkνnNk
), p+ ϵkνnNk

− xnNk
⟩ ≥ 0.

Taking the limit as k → ∞ in (3.7), since {xnNk
} ⊂ {xnk

} and xnk
⇀ x∗, to obtain ⟨F(p), p−

x∗⟩ ≥ 0, i.e., to demonstrate that x∗ belongs to S, by Lemma 2.3, it suffices to show that
lim
k→∞

ϵkνnNk
= 0.

Since F is sequentially weakly continuous on C, then F(xnk
) ⇀ F(x∗). Assuming that

F(x∗) ̸= 0 (otherwise, x∗ is a solution), from sequentially weakly lower semicontinuity of
norm, it follows that

0 < ∥F(x∗)∥ ≤ lim inf
k→∞

∥F(xnk
)∥.

So,

0 ≤ lim
k→∞

∥ϵkνnNk
∥ = lim

k→∞

ϵk
∥F(xnk

)∥
≤ 0

∥F(x∗)∥
= 0.

It would imply that lim
k→∞

ϵkνnNk
= 0 and the proof is completed.

Lemma 3.4. Assume that {xn} and {yn} are generated by Algorithm 1 and let u ∈ S. Then,
for every n ∈ N , we have

(3.8) ∥xn+1 − u∥2 ≤ ∥xn − u∥2 − (1− σ2)∥yn − xn∥2.

Proof. Take any u ∈ S. By Lemma 2.1 (ii), we have

∥xn+1 − u∥2 ≤ ∥xn − αn+1F(yn)− u∥2 − ∥xn − αn+1F(yn)− xn+1∥2

= ∥xn − u∥2 − ∥xn − xn+1∥2 + 2αn+1⟨F(yn), u− xn+1⟩
= ∥xn − u∥2 − ∥xn − xn+1∥2 + 2αn+1⟨F(yn), yn − xn+1⟩
+ 2αn+1⟨F(yn), u− yn⟩.(3.9)

Since u ∈ S , by the pseudo-monotonicity of F , we get ⟨F(yn), yn − u⟩ ≥ 0. From this term
and (3.9) we have

∥xn+1 − u∥2 ≤ ∥xn − u∥2 − ∥xn − xn+1∥2 + 2αn+1⟨F(yn), yn − xn+1⟩
= ∥xn − u∥2 − ∥xn − yn∥2 − ∥yn − xn+1∥2

− 2⟨xn − yn, yn − xn+1⟩+ 2αn+1⟨F(yn), yn − xn+1⟩
= ∥xn − u∥2 − ∥xn − yn∥2 − ∥yn − xn+1∥2

+ 2⟨xn − αn+1F(yn)− yn, xn+1 − yn⟩.(3.10)
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Moreover, using Lemma 2.1 (i) yields

⟨xn − αn+1F(yn)− yn, xn+1 − yn⟩ = ⟨xn − βnαnF(xn)− yn, xn+1 − yn⟩
+ ⟨βnαnF(xn)− αn+1F(yn), xn+1 − yn⟩

≤ ⟨βnαnF(xn)− αn+1F(yn), xn+1 − yn⟩

≤ 1

2
∥αn+1F(yn)− βnαnF(xn)∥2 +

1

2
∥xn+1 − yn∥2.(3.11)

Combining (3.10) and (3.11), we thus have shown that

∥xn+1 − u∥2 ≤ ∥xn − u∥2 − ∥xn − yn∥2 + ∥αn+1F(yn)− βnαnF(xn)∥2.
Taking into account (3.1), we obtain

∥xn+1 − u∥2 ≤ ∥xn − u∥2 − (1− σ2)∥yn − xn∥2.
That is the desired result.

Now, we are prepared to state and prove our main convergence result of the proposed algo-
rithm.

Theorem 3.5. Suppose that {xn} is a sequence generated by Algorithm 1. Then {xn} converges
weakly to a solution of (1.1).

Proof. Take any u ∈ S . Let an = ∥xn − u∥2 and bn = (1 − σ2)∥yn − xn∥2, so, (3.8) with
Lemma 2.4 imply that the sequence {xn} is bounded and also

lim
n→∞

∥yn − xn∥ = 0.

By Lemma 3.3, {xn} has a weak cluster point x∗ ∈ S.
Finally, we will prove that xn ⇀ x∗. For this purpose, we show that all subsequences of

{xn}, converge weakly to x∗. As we seen in the proof of Lemma 3.3, there exists {xnk
} ⊂ {xn}

such that xnk
⇀ x∗. Let {xnj

} be another subsequence of {xn} converging weakly to a point
x. As demonstrated previously, x ∈ S . It follows from the standard monotone convergence
theorem that the sequences {∥xn−x∗∥} and {∥xn−x∥} converge, since, both are monotonically
decreasing, applying Lemma 3.4. For each n ∈ N , we can display ⟨xn, x− x∗⟩ as

⟨xn, x− x∗⟩ = 1

2
∥xn − x∗∥2 − 1

2
∥xn − x∥2 + 1

2
∥x∥2 − 1

2
∥x∗∥2.

This implies that the sequence {⟨xn, x− x∗⟩}, as well as {⟨xnk
, x− x∗⟩} and {⟨xnj

, x− x∗⟩},
converges to a limit point Λ. Thus

lim
n→∞

⟨xnk
, x− x∗⟩ = lim

n→∞
⟨xnj

, x− x∗⟩ = Λ,

i.e.,
⟨x∗, x− x∗⟩ = ⟨x, x− x∗⟩ = Λ.

This would impliy that ∥x − x∗∥2 = 0 and therefore x = x∗. So, xn ⇀ x∗ and the proof is
completed.

We next propose a modification of Algorithm 1 that simplifies the computation process by
using only one projection onto the feasible set, while the second has a clear formula. This mod-
ification is advantageous, particularly in cases where the feasible set has a complex structure,
leading to time-consuming projection computations.

The proof of the following convergence theorem is similar to that of Theorem 3.5, and is thus
omitted.

Theorem 3.6. The conclusion of Theorem 3.5 remains true for Algorithm 2.
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Algorithm 2

Initialization: Choose σ ∈ (0, 1), θ ∈ (0, 1), α0 > 0, αmax > 0 and x0 ∈ C.
Iterative Steps: Given the current iterates xn and αn, calculate xn+1 and αn+1 as follows:
Step 1. Set i = 0 and run the following line search:

1.a. Take βn = θi and compute

yn = PC(xn − βnαnF(xn)).

1.b. Choose the largest αn+1 ≤ min{1 + βn

βn

αn, αmax} such that

(3.12) ∥αn+1F(yn)− βnαnF(xn)∥ ≤ σ∥yn − xn∥.
1.c. Break line search if such αn+1 exists. Otherwise, set i := i+ 1 and go to 1.a.

If xn = yn, then stop; xn belongs to S. Otherwise,
Step 2. Compute

xn+1 = PTn(xn − αn+1F(yn)),

where
Tn = {z ∈ H : ⟨xn − βnαnF(xn)− yn, z − yn⟩ ≤ 0}.

Set n := n+ 1 and go to Step 1.

4. NUMERICAL RESULTS

In this section, we perform some experiments to illustrate the effectiveness and implementa-
tion of the proposed algorithms, namely Algorithm 1 (called Alg.1) and Algorithm 2 (Alg.2).
We use two recently proposed algorithms as the modified extragradient-like algorithm (called
Alg.3) of Hieu et al. [12, Algorithm 1] and the modified projection-type method (called Alg.4)
of Thong et al. [29, Algorithm 2] to compare with our algorithms. Alg.3 uses a step size rule
without any line search procedure, while, Alg.4 uses a line search approach to find a proper
step size over each iteration. As be seen in [12, Sect. 5] and [29, Sect. 4], the Alg.3 and Alg.4
work better than several well-known algorithms presented in [11, 13, 25, 28, 33]. We tested
the effectiveness of these algorithms to solve two academic test problems. All experiments
were implemented in Python 3.7 on a Lenovo laptop with the following specifications: an In-
tel(R) Core(TM) i5-5200U CPU at 2.20 GHz , 8.00 GB of RAM running 64-bit Windows 10
Enterprise.

For numerical results, we terminate the iterations if the error term Dn = ∥xn+1−yn∥+∥yn−
xn∥ ≤ 10−6. For the projection onto the feasible set C, we use the algorithm from [8]. From
[4, p. 133], the projection onto the half-space T = {x ∈ H : ⟨c, x⟩ ≤ d} with 0 ̸= c ∈ H and
d ∈ R is calculated as

PT (x) =

{
x+ d−⟨c,x⟩

∥c∥2 c, if ⟨c, x⟩ > d;
x, if ⟨c, x⟩ ≤ d.

We choose σ = 0.7 and θ = 0.9 for Alg.1 and Alg.2, µ = 0.4 for Alg.3, as in original paper,
and l = 0.1, γ = 2 and µ = 0.9 for Alg.4. For the initial parameter α0 for Alg.1, Alg.2 and
Alg.3 (also α1 for Alg.3) we choose any x̂ as a small perturbation of the initial point x0 and take
α0(= α1) =

σ∥x̂−x0∥
∥F(x̂)−F(x0)∥ .

We report the number of iterations (Iter.) and the running CPU time (Time) measured in
seconds. The bold letter indicates the best results in the following tables.
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Example 4.1. (Sun’s problem) In this example, we apply our proposed algorithm to the classi-
cal nonlinear test problem, presented by Sun in [26], with m = 103, 104, 105. The feasible set is
C = {x ∈ Rm

+ : x1+x2+· · ·+xm = m} and the operator F is given as F(x) = F1(x)+F2(x),
where

F1(x) = (f1(x), f2(x), . . . , fm(x)),

F2(x) = Dx+ c,

fi(x) = x2
i−1 + x2

i + xi−1xi + xixi+1, i = 1, 2, . . . ,m,

x0 = xm+1 = 0.

In the above definition of the operator F , D is a m×m matrix defined by condition

dij =


4 i = j,
1 i− j = 1,
−2 i− j = −1,
0 otherwise,

and c = (−1,−1, . . . ,−1). The initial point x0 is generated uniformly randomly from [0, 10]m.
The numerical results for this example with m = 103, m = 104 and m = 105 are described in
Fig. 2, Fig. 3 and Fig. 4, respectively, and are presented in Table 4.1.

0 50 100 150 200
# iterations

10 6

10 5

10 4

10 3

10 2

10 1

100

101

102

D n

Alg.1
Alg.2
Alg.3
Alg.4

Figure 2: Convergence plot for Example 4.1 with m = 103. Execution times are 0.0469, 0.0312, 0.0625 and
0.1094, respectively.
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Figure 3: Convergence plot for Example 4.1 with m = 104. Execution times are 0.2753, 0.1829, 0.3948 and
0.6406, respectively.
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Figure 4: Convergence plot for Example 4.1 with m = 105. Execution times are 3.2758, 2.2186, 4.9854
and 7.7209, respectively.

Table 4.1: The numerical results for Example 4.1.

Algorithms m = 103 m = 104 m = 105

Iter. Time Iter. Time Iter. Time

Alg.1 68 0.0469 72 0.2753 90 3.2758
Alg.2 69 0.0312 72 0.1829 88 2.2186
Alg.3 211 0.0625 227 0.3948 245 4.9854
Alg.4 128 0.1094 138 0.6406 149 7.7209

Example 4.2. (Kojima–Shindo problem) This problem is introduced in [16], as a nonlinear
complementarity problem, with the feasible set C = {x ∈ R4

+ : x1 + x2 + x3 + x4 = 4} and the
operator F : R4 → R4 as

F(x) =


3x2

1 + 2x1x2 + 2x2
2 + x3 + 3x4 − 6

2x2
1 + x1 + x2

2 + 10x3 + 2x4 − 2
3x2

1 + x1x2 + 2x2
2 + 2x3 + 9x4 − 9

x2
1 + 3x2

2 + 2x3 + 3x4 − 3

 .

The results, for this example, are presented in Table 4.2 and in Figures 5 and 6 for two
different starting points x0 = (1, 1, 1, 1) and x0 = (4, 0, 0, 0), respectively.

Table 4.2: The numerical results for Example 4.2.

Algorithms x0 = (1, 1, 1, 1) x0 = (4, 0, 0, 0)

Iter. Time Iter. Time

Alg.1 66 0.0156 57 0.0156
Alg.2 69 0.0156 73 0.0156
Alg.3 114 0.0156 229 0.0312
Alg.4 138 0.0313 165 0.0469
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Figure 5: Convergence plot for Example 4.2 with x0 = (1, 1, 1, 1). Execution times are 0.0156, 0.0156,
0.0156 and 0.0313, respectively.
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Figure 6: Convergence plot for Example 4.2 with x0 = (4, 0, 0, 0). Execution times are 0.0156, 0.0156,
0.0312 and 0.0469, respectively.

The reported results indicate that our proposed algorithms perform well, and have competitive
advantages, compared to related algorithms. Fig.7, As an instance, shows the monotonically
increasing of {αn}n≥n0 , mentioned in the Preliminaries, with respect to Iter. in example 4.2.
The better numerical results may be due to the increasing step sizes of Alg.1 and Alg.2 from
one iteration to another.

5. CONCLUSION

In this work, we have introdced a new double-projection method with a new step size rule
to find the solution set of a pseudo-monotone VIP in real Hilbert spaces. The new method
does not require Lipschitz continuity assumption and local information of the operator is used
to construct a simple line search procedure. We have proved a weak convergence theorem
of the proposed method under some mild conditions imposed on the parameters. We have
introduced a modification to the proposed method which needs only one projection onto the
feasible set. Furthermore, Numerical experiments have been performed to demonstrate the
convergence of the algorithms and to show the superiority of our proposed schemes over some
recently presented methods in the literature.
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0 10 20 30 40 50 60
# iterations

10 1

4 × 10 2

6 × 10 2
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Kojima Shindo Problem

Figure 7: Evolution of {αn}n≥0 in Algorithm 1 for Kojima–Shindo problem with x0 = (1, 1, 1, 1) until
meeting the termination criterion.
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