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ABSTRACT. In this article dynamical behavior of coupled Duffing oscillators is analyzed un-
der a small modification. The oscillators have cubic damping instead of linear one. Although
single duffing oscillator has complex dynamics, coupled duffing systems possess a much more
complex structure. The dynamical behavior of the system is investigated both numerically and
analytically. Numerical results indicate that the system has double scroll attractor with suitable
parameter values. On the other hand, bifurcation diagrams illustrate rich behavior of the system,
and it is seen that, system enters into chaos with different routes. Beside classical bifurcations,
bubbling route to chaos is observed for suitable parameter settings. On the other hand, Multista-
bility of the system is indicated with the coexisting attractors, such that under same parameter
setting the system shows different periodic and chaotic attractors. Moreover, chaotic synchro-
nization of coupled oscillators is illustrated in final section.
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1. I NTRODUCTION

Dynamics of coupled non-linear oscillators attracted much attention in recent years. Most
important reason is that, they have wide range of application for modelling dynamical systems
not only in physics, but also in various branches of science such as chemistry, biology, physi-
ology [1, 2, 3] etc. Despite their apparent simplicity, dynamical behavior of coupled oscillators
is very complicated such that analytical methods are not enough to describe all the features of
the system. One must use numerical methods beside analytical methods, which is crucial for a
better understanding of dynamical features.
In the present paper, dynamical behavior of coupled Duffing oscillators is investigated. Cou-
pled Duffing oscillators are modified by introducing cubic damping instead of a linear damping.
This modification makes substantial changes in dynamics of oscillators. In the numerical phase
portraits, it is observed that the system possess chaotic double scroll attractor similar to the case
in the famous Chua circuit [4]. One parameter bifurcation diagrams show the complexity of
this system such that the system enters chaos through different routes [5]. Another interesting
feature that appears in those bifurcation diagrams is period doubling bubbles [6, 7, 8]. Those
bubbles make the system enter chaotic state by successive period doubling bifurcations.
On the other hand the multi stable characteristic of the system is seen by coexisting attractors
[9, 10]. For a given set of parameters, the state of the system changes along with the initial
conditions. Different periodic and chaotic attractors are simultaneously produced in the system
for suitable parameter settings.
The final part is devoted to synchronization of those coupled oscillators. Several approaches of
chaos synchronization have been developed, such as complete synchronization [11], general-
ized synchronization [12], inverse matrix projective synchronization [13] and modified projec-
tive synchronization [14]. Of particular interest is the duffing oscillators. For this aim, periodic
driving force is incorporated for each oscillator with same amplitude and frequency. Before
complete synchronization is achieved, intermittent loss of synchronization is shown.
The rest of the paper is organized as follows: the proposed system is described and analyzed in
Section 2. In Section 3 bifurcations and the routes to chaos are investigated. In Section 4 coex-
isting attractors and multi stability of the system is shown. In Section 5 Chaos synchronization
is implemented for coupled Duffing oscillators. Finally, conclusions are stated in Section 6.

2. DESCRIPTION OF THE M ODEL AND L INEAR STABILITY ANALYSIS

The classical Duffing Oscillator is governed by the following equation of motion,

(2.1)
d2x

dt2
+ δ

dx

dt
+

dV (x)

dx
= 0

whereδ is damping parameter and the potential of the system is

(2.2) V (x) = α
x2

2
+ β

x4

4

Depending on the parametersα andβ one distinguishes three different cases of Duffing os-
cillator, namely single well(α > 0, β > 0), double well(α < 0, β > 0) and double hump
(α > 0, β < 0). Each of them exhibits non-linear phenomena with different chaotic and peri-
odic motions.
When two or more system 2.1 interact with specific coupling, the dynamics gets much more
complex and attractive. There have been different types of coupled oscillators each describing
interesting features. However most often used ones can be listed as coupled Duffing oscillators
[15, 16, 17, 18], coupled Van der Pol oscillators[19, 20, 21, 22], coupled Van der Pol Duff-
ing oscillators [23, 24, 25]. For the present paper two coupled duffing oscillators are analyzed
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including a cubic damping in both oscillators and considering a linear bidirectional coupling
between them. The potential for the system is given by following

(2.3) V (x, y) = −x2

2
+

x4

16
− y2

2
+

y4

16
+

k

2
(x− y)2

Instead of considering linear damping as in 2.1 cubic nonlinear damping (Van der Pol) type is
incorporated and the following set of equations are derived

(2.4)

d2x

dt2
= x− 1

4
x3 + k(y − x)− δx2dx

dt
d2y

dt2
= y − 1

4
y3 + k(x− y)− δ′y2dy

dt

Before going to details of system 2.4, it is convenient to transform it to first-order differential
equations. One can write the system in the following form

(2.5)

dx

dt
= px

dpx

dt
= x− 1

4
x3 + k(y − x)− δx2px

dy

dt
= py

dpy

dt
= y − 1

4
y3 + k(x− y)− δ′y2py

The equilibrium points of the system are determined by setting the right hand side of system
(2.5) to zero. In general case the system possesses 9 equilibrium points, but only 3 of them
are independent of parameters. The other 6 depend on coupling parameterk and for small
interval ofk they stay real, otherwise they are complex. In the present study the stability analy-
sis is carried out for the first three equilibrium points. These points areE1 = (0, 0, 0, 0) and
E2,3 = (±2, 0,±2, 0). It is important to note that the system is invariant under the transforma-
tion (x, px, y, py) ↔ (−x,−px,−y,−py). This implies that the stability nature of2ndand3rd

equilibrium points must be the same.
Stability of equilibrium points can be determined with the investigation of eigenvalues of its
Jacobian matrix. For the system (2.5) the Jacobian matrix is given by

(2.6) MJ =


0 1 0 0

1− k − 3
4
x2 − 2δxpx −δx2 k 0
0 0 0 1
k 0 1− k − 3

4
y2 − 2δ′ypy −δ′y2


and the eigenvalues are roots of the characteristic equation det(MJ−λId) = 0. For the first equi-
librium point E1 the eigenvalues areλ1 = 1, λ2 = −1, λ3 =

√
−2k + 1, λ4 = −

√
−2k + 1.

Since there is at least one positive real eigenvalue, the equilibrium pointE1 is unstable saddle.
Since the behavior of2ndand3rd equilibrium points are the same, only stability ofE3 is carried
out. For the equilibrium pointE3, the eigenvalues satisfy the characteristic equation of the form

(2.7) λ4 + c3λ
3 + c2λ

2 + c1λ + c0 = 0,

whereci(i = 0, 1, 2, 3) are defined as

(2.8)
c0 = 4(k + 1), c1 = 4(δk + δ′)(2 + k)

c2 = 2(2 + k + 8δδ′), c3 = 4(δ + δ′)
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The roots of equation (2.7) are obtained with Newton-Raphson algorithm for changingk be-
tween0 < k < 4 while keeping damping terms constantδ = −0.109 andδ′ = 1.10. The results
as the spectrum of eigenvalues are shown in Figure 1.

Figure 1: Eigenvalues of solutions of the characteristic equation (2.7) in complex plane (Re(λ), Im(λ)).

SinceMJ is a real matrix, complex eigenvalues appear in complex conjugate pairs responsi-
ble for the observed symmetry on real axis. Four branches of eigenvalues appearing in Figure
1 indicate that the equilibrium pointE3 is not stable furthermore the complex eigenvalues are
crossing the imaginary axis, which is an indication of Hopf bifurcation for varyingk.

3. BIFURCATIONS AND ONSET OF CHAOS

With numerical investigation it is observed that this system possess double scroll attractor
shown in Figure 2 and Figure 3 similar to the Chua attractor, and similar mechanisms take place
such that two unstable fixed points give rise to attractors of the same type under appropriate
parameter settings and two attractors eventually merge giving rise to a double scroll attractor.
Dynamical behavior of the system is illustrated with the aid of bifurcation diagrams and Lya-
punov exponents in order to determine routes to chaos. For this aim, equations 2.5 are solved
numerically with a given initial condition and local maximum ofx is plotted against bifurcation
parameter. On the other hand Lyapunov exponents are calculated with the Wolf algorithm [26].
In order to show bifurcation structure, two of the parameters are held constant and3rd parameter
is allowed to change, and it is seen that system supports variety of local and global bifurcations
which is shown in Figure 4a, especially period doubling cascades and symmetry breaking bi-
furcations takes place in large fraction of area.
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(a) (b)

Figure 2: Double scroll attractor appearing in the phase space of,(a) (px, py, y) (b) (x, px, py) for the parameters
of k = 1.13, δ = −0.109, δ′ = 1.15 with the initial conditions of(0.5, 0.0, 0.5, 0.0)

(a) (b) (c)

Figure 3: 2D views of double scroll attractor in(a) (x− px) space,(b) (x− y)space,(c) (y − py) space

Figure 4 is obtained fork = 0.921, δ = −0.109, while δ′ is increased from0.2 up to 1.5.
A period-1 oscillation take place after supercritical Hopf bifurcation which is not depicted in
figure then by a period doubling bifurcation chaos starts. Forδ′ near0.50 attractor collides with
saddle and periodic windows appear. System reenters chaotic state nearδ′ 0.53 but then reverse
period doubling bifurcationδ′ near0.62 happens and period-3 attractor seems to appear. After
δ′ = 0.73, chaotic motions are triggered again by period doubling bifurcation. The system also
suffers intermittent route to chaos forδ′ = 0.86 where internal crisis take place. One last period
doubling bifurcation happensδ′ close to1.4 but system can not stay in chaos too much since it
is immediately followed by exterior crisis and chaos suddenly disappears yielding unbounded
motion.
Figure 4b represents largest and second Lyapunov exponents. In chaotic regions largest Lya-
punov exponents gets greater and in periodic regions they are close to zero. For points where
period doubling bifurcation occurs they tend to touch zero.
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(a)

(b)

Figure 4: (a) Bifurcation diagram for varyingδ′. (b) First and second Lyapunov exponents for varyingδ′.

(a)

(b)

Figure 5: (a)Bifurcation diagram for varyingk, (b)First and second Lyapunov exponents for varyingk
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In Figure 5a bifurcation diagram with respect to coupling parameterk is represented, and
corresponding Lyapunov exponents are shown in Figure 5b. While largest Lyapunov expo-
nents indicating chaotic regions, it is notable that second Lyapunov exponents give indication
of hyperchaotic regime fork close to0.8 with a maximum value ofλ2 = 0.014. The other
parameters are set toδ = −0.104, δ′ = 0.967 and diagrams are obtained for initial conditions
of (−0.2, 0.0,−0.2, 0.0).
Another interesting feature is that for suitable parameters system shows period doubling bub-
bles [27, 28] which are frequently encountered in many nonlinear systems. Figure 6 depicts
this behavior where small chaotic regions exist inside bubbles for short interval ofk, but system
gets out of chaos with those structures.

Figure 6: Bifurcation diagram with respect tok showing period doubling bubbles forδ = −0.154, δ′ = 1.1 .

In many nonlinear systems it is well established that the periodic orbits can be created with
period doubling bifurcation and then destroyed with reverse period doubling bifurcation. This
phenomenon is known as antimonotonicity [29, 30] and it has been reported in many dynamical
systems. For this purpose, we investigate those bubble structures in bifurcation diagram. We
observe that for small range of bifurcation parameter the system supports this phenomenon.
Figure 7c clearly shows how the system enters chaos within bubbles. In the bifurcation diagram
with respect to parameterk successive period doubling bifurcation yields chaos, then reverse pe-
riod doubling bifurcations take away the system from chaos as the parameterδ′ slowly changed.

(a) (b) (c)

Figure 7: Formation of chaos inside bubbles(a) δ′ = 1.24 (b) δ′ = 1.10 (c) δ′ = 1.06.

4. COEXISTING ATTRACTORS AND M ULTISTABILITY

The coexistence of attractors is one of the most striking features in non-linear dynamics. In
recent years the existence of multiple attractors [31, 32, 33, 34] for the same parameter settings
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(a) (b) (c)

Figure 8: Coexistence of attractors,(a) period-1 attractor with initial conditions of(−0.5, 0.5, 2.5, 0.0), (b)
chaotic attractor with initial conditions of(−0.5, 1.0, 2.5, 0.0), (c) period-1 attractor with initial conditions of
(−0.5, 0.5,−2.5, 0.0). The parameters arek = 1.0, δ = 1.5, δ′ = −0.109.

has been studied extensively and such a phenomenon has been observed in various systems. In
this respect we analyze the system numerically with same parameter settings but different initial
conditions. It was observed that the system is sensitive to initial conditions such that multi stable
characteristic [32, 35, 36] of the system is revealed with the coexistence of different attractors.
Some of the numerical results are shown below

(a) (b)

Figure 9: Coexistence of attractors,(a) chaotic attractor with initial conditions of(−0.5, 0.5, 1.5, 2.5), (b) period-
3 attractor with initial conditions of(0.5, 0.5, 1.5, 2.5). The parameters arek = 0.87, δ = 0.58, δ′ = −0.109.

(a) (b)

Figure 10: Coexistence of attractors,(a) period-2 attractor with initial conditions of(0.5,−0.5, 1.5, 2.5), (b)
period-3 attractor with initial conditions of(0.5, 0.5, 1.5, 2.5). The parameters arek = 0.87, δ = 0.35, δ′ =
−0.109.
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5. SYNCHRONIZATION AND CHAOS CONTROL

Since its introduction by Pecora and Carrol [37] in 1990 chaos synchronization has been at-
tracted much interest recently. The motivation behind this research field is its huge potential
for application such as communication systems, time series analysis, brain modelling, cardiac
rhythm activity, earthquake dynamics etc.
In this section, chaotic synchronization of two coupled Duffing oscillators are analysed numer-
ically and it is shown that there is a threshold value of coupling between oscillators after which
complete synchronization takes place.
In order to achieve our goal, we introduce periodic driving forces onto system 2.4 such that the
equation of motions reads

(5.1)

d2x

dt2
= x− 1

4
x3 + k(y − x)− δx2dx

dt
+ g sin(wt)

d2y

dt2
= y − 1

4
y3 + k(x− y)− δ′y2dy

dt
+ g sin(wt)

Damping parameters are equalizedδ = δ′ so that in the no couplingk = 0 case two identi-
cal chaotic oscillators are obtained for a suitable parameter setting. On the other hand, driving
forces and frequencies are set tog = 0.702, andw = 1.15 respectively. Chaotic systems are
very sensitive to initial conditions and small deviation from the initial conditions leads to un-
predictable results, however when coupling is turned on two systems starts to synchronize.

Figure 11: Bifurcation of|e(t)| along k .

In order to validate the synchronization of two oscillators the fluctuation of the quantity
e(t) = y(t)−x(t) which is called error dynamics, can be tracked. Before synchronization state,
fluctuations ofe(t) are chaotic. When synchronization starts the fluctuations tend to zero, and
the dynamics is restricted ony = x subspace also known as synchronization manifold [38, 39].
Equations for oscillators (9) are solved numerically for initial conditions of(−0.2,−0.2, 0.4, 0.3).
Our numerical simulations show a synchronization state for neark = 0.40. To this aim, the bi-
furcation diagram is shown in Figure 11 where absolute value of the error function [40]e(t) is
plotted against coupling parameterk.
For k = 0.37 the fluctuations for error dynamics are shown in Figure 12. Synchronization can
not achieved due to intermittent losses [41].
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(a) (b) (c)

Figure 12: Intermittent losses of synchronization fork = 0.37. Fluctuation of errors(a)y − x, (b) py − px,
(c)E =

√
(y − x)2 + (py − px)2

Fork = 0.40 two oscillators are in complete synchronization which is shown in Figure 13.

(a) (b) (c)

Figure 13: Synchronization fork = 0.40. Fluctuation of errors (a)y − x (b) py − px (c)E =√
(y − x)2 + (py − px)2

After a transient oft = 500 complete synchronization achieved for coupled oscillators. On
the other hand the changes in phase portraits are indicated for varyingk in Figure 14. It can
also be seen from phase portraits above that synchronization is achieved for increasingk, ask
approaches0.40 the motions are getting more and more bounded inx = y plane.

(a) (b) (c)

Figure 14: Phase portraits for(a) nonsynchronous statek = 0.05, (b) nonsynchronous statek = 0.30
(c)Synchronous statek = 0.40
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6. CONCLUSION

In this paper, the dynamics of coupled double well duffing oscillators is investigated with
addition of nonlinear damping. The characteristics of the system is analyzed both analytically
and numerically. By using linear stability analysis, the behavior of 3 equilibrium points are
determined and it is shown that two symmetric unstable equilibrium points give rise to Hopf
bifurcation and the possibility of double scroll attractor.
Using nonlinear dynamical tools such as bifurcation diagrams, phase portraits and Lyapunov
exponents, the complicated structure of the system is investigated. It is shown that the system
possesses double scroll attractor as in the case of Chua circuit instead of classical double well
attractor of duffing system. Variety of local and global bifurcations such as Hopf bifurcation,
period doubling, symmetry breaking, reverse period doubling and crises were seen. The forma-
tion of bubbles are shown and bubbling route to chaos is identified in the vicinity of bifurcation
diagrams. Although2nd Lyapunov exponents are seem to be constant, the system gives an in-
dication of hyperchaotic behavior for small interval of coupling parameter. Furthermore, multi
stability of the system is presented with the coexisting chaotic and periodic solutions of the
system under the same parameter settings.
The system is open to detecting many other interesting features and new routes to chaos. The
other equilibrium points may also give rise to attractors with similar mechanisms and they need
more general analysis. Hyperchaotic behavior in the system can be extended with a further
investigation of parameters and initial conditions. On the other hand, approximating methods
can be applied also to obtain analytical expressions for bifurcating solutions, which can further
enlighten the complex behavior of the system.
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