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1. INTRODUCTION

The geometric mean of two positive semi-definite operators arises in various areas and has
many of the properties of the geometric mean of two positive scalars. Some of these properties
are in inequalities form which have proved to be a powerful tool in several scientific problems.
In one direction, many of the operator inequalities to have come under study are inequalities
arising from the Löwner partial order between operators acting on a Hilbert space, [1]. A
second line of research is concerned with inequalities between the norms of operators. It is in
this latter direction that our present work aims.

More precisely, the fundamental goal of this paper is to give further useful inequalities, with
lower and upper bounds, for the geometric operator mean, in the sense to extend that of the
operator norms. Namely, if the notation Gp(A,B) refers to the power geometric mean of two
positive operators A and B, i.e.

Gp(A,B) := B1/2
(
B−1/2AB−1/2

)1−p
B1/2 = A1/2

(
A−1/2BA−1/2

)p
A1/2,

with 0 ≤ p ≤ 1, then we establish that (see Theorem 3.2)

Φ(Gp(A,B)) ≤ Gp(Φ(A),Φ(B)) := (Φ(A))1−p(Φ(B))p,

together with a lower bound, where the notation Φ stands for a real-valued map, called sub-
linear functional, extending the norm map of operators. In particular, our study includes the
following statements

Φ(A) = Tr A, trace of A,

Φ(A) = ρ(A), spectral radius of A,

Φ(A) = ‖A‖S, Shur’s norm of A.

Since the operation mean is generally not associative, our inequalities obtained here are not
obvious to write immediately for three or more operators. Our approach allows us to extend our
above approach from the case of two operators to that of three or more ones.

The paper will be organized as follows: After this short section, Section 2 contains a back-
ground material that will be needed in the sequel. Section 3 displays our aim for two positive
semi-definite operators. In Section 4 we discuss our goal for three or more operators.

2. BASIC NOTIONS AND PRELIMINARY RESULTS

In this section, we recall some standard notations and results that are needed throughout the
paper. Let H be a real or complex Hilbert space with its inner product 〈., .〉 and the associate
norm ‖.‖. We denote by L(H) the Banach space of bounded linear operators defined from H
into itself equipped with the standard norm and by L+(H) ⊂ L(H) the closed convex cone
of self-adjoint positive semi-definite operators. The positive semi-definiteness induces a partial
ordering on the subspace of the self-adjoint operators, called Löwner order, defined as follows:
for A,B in L(H), we write A ≤ B as usual if A,B are self-adjoint and B − A is positive
semi-definite.

Henceforth, whenever we consider an order relation A ≤ B, it will be assumed that the
operators A and B are self-adjoint. If H is a finite dimensional space, where L(H) can be
identified to the space of square matrices, we denote by adj A the adjugate matrix of A, i.e.
the transpose of the matrix of co-factors of A. If A is an invertible matrix then adj A =
(det A).A−1.

An m-tuple of positive real numbers p = (p1, p2, ..., pm) summing to 1 will be called a
probability vector. We now state the following lemma which will be needed in the sequel.

AJMAA, Vol. 9, No. 2, Art. 13, pp. 1-8, 2012 AJMAA

http://ajmaa.org


INEQUALITIES FOR GEOMETRIC MEAN 3

Lemma 2.1. Let p1, p2, ..., pm be a probability vector and a1, a2, ..., am be non-negative reals.
Define the map F : (IR∗+)m −→ IR+ by

F (x1, x2, ..., xm) =

∑m
j=1 pjajxj∏m
j=1 x

pj
j

.

Then there holds

inf
x1,...,xm>0

F (x1, x2, ..., xm) =
m∏
j=1

a
pj
j .

Proof. By the concavity of the real-valued map t 7−→ ln t on ]0,+∞[, it is not hard to establish
the following inequality (called generalized Young’s inequality):

m∏
j=1

γ
pj
j ≤

m∑
j=1

pjγj,

for all positive real numbers γ1, γ2, ..., γm. Taking γj = ajxj in this latter inequality we obtain,
after a simple manipulation,

m∏
j=1

a
pj
j

m∏
j=1

x
pj
j ≤

m∑
j=1

pjajxj.

It follows that
m∏
j=1

a
pj
j ≤ F (x1, x2, ..., xm),

for all x1, x2, ..., xm > 0. To complete the proof, it is sufficient to ensure that the lower bound
of the latter inequality is attained for somem-tuple of positive real numbers x01, x

0
2, ..., x

0
m. Such

m-tuple will be determined as the critic point, i.e. vanishing the partial derivatives, of the real
function (x1, x2, ..., xm) 7−→ F (x1, x2, ..., xm). An elementary computation, with a routine
manipulation, yields

∂F

∂xk
(x1, x2, ..., xm) =

(pkakxk)
(∏m

j=1 x
pj
j

)
− pk

(∑m
j=1 pjajxj

)(∏m
j=1 x

pj
j

)
xk

(∏m
j=1 x

pj
j

)2 ,

for all integer k = 1, 2, ...,m. The researched critic point is then such that

x0kak =
m∑
j=1

pjajxj,

for every k = 1, 2, ...,m. The second side of the last equality doesn’t depend on k and so
x0kak = x01a1 for all k = 1, 2, ...,m. Substituting this in the expression of F (x1, x2, ..., xm) we
obtain, after a simple reduction,

F (x01, x
0
2, ..., x

0
m) =

m∏
j=1

a
pj
j ,

which is nothing other than the desired result. The proof of the lemma is complete.

Now, let Φ : L+(H) −→ IR be a real-valued function (called functional below) with operator
arguments. We say that Φ is monotone increasing if A ≤ B implies Φ(A) ≤ Φ(B). The
functional Φ will be called sub-linear if the two following assertions are both satisfied

Φ is sub-additive, i.e. ∀A,B ∈ L+(H) Φ(A+B) ≤ Φ(A) + Φ(B),

Φ is positively homogenous, i.e. ∀A ∈ L+(H), ∀t > 0 Φ(tA) = tΦ(A).
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4 MUSTAPHA RAÏSSOULI

Let us present a list of examples about monotone increasing and sub-linear functionals.

Example 2.2. Every linear functional is sub-linear. In particular, let us consider the "trace"
functional Φ : L+(H) −→ IR defined by:

∀A ∈ L+(H) Φ(A) = Tr A :=
∞∑
i=1

〈Aei, ei〉 ,

where (ei) is an orthonormal basis of H . It is easy to verify that Φ is monotone increasing and
sub-linear.

Example 2.3. Every norm of L(H) is sub-linear. In particular, the standard norm

Φ(A) = ‖A‖ = sup{‖Au‖, ‖u‖ = 1},
which satisfies

∀A ∈ L+(H) ρ(A) = sup
u6=0

〈Au, u〉
‖u‖2

,

where ρ(A) denotes the spectral radius of A, is then sub-linear and monotone increasing.

Example 2.4. Let u ∈ H be a fixed vector and set

∀A ∈ L+(H) Qu(A) = 〈Au, u〉 .
Clearly, the functional A 7−→ Qu(A), for fixed u ∈ H , is monotone increasing and sub-linear.

Example 2.5. For a self-adjoint operator A, the Schur’s norm is the functional A 7−→ ‖A‖S :=√
Tr A2. It is not hard to see that A 7−→ ‖A‖S is sub-linear and monotone increasing.

Example 2.6. Let λmin(A) be the smallest eigenvalue of the self-adjoint operator A. It is easy
to see that the functional A 7−→ λmin(A) is monotone increasing but not sub-linear.

Example 2.7. Let C be an open convex set of L(H) containing 0 and consider the Minkowski
functional µC of C defined by

∀A ∈ L(H) µC(A) = inf{t > 0, A ∈ tC}.
It is well known that µC is sub-linear, but generally not monotone increasing.
However, if we take

C = {A ∈ L(H), 〈Au, u〉 < 1, ∀u ∈ H, ‖u‖ = 1},
then it is easy to verify that µC is (sub-linear and) monotone increasing.

3. GEOMETRIC MEAN OF TWO OPERATORS

Let p be a real number such that 0 ≤ p ≤ 1. The power geometric mean Gp(A,B) of two
positive definite operators A and B defined by

(3.1) Gp(A,B) = B1/2
(
B−1/2AB−1/2

)1−p
B1/2 = A1/2

(
A−1/2BA−1/2

)p
A1/2,

was introduced as an extension of the standard geometric operator mean corresponding to the
intermediary value p = 1/2. If A and B are commuting, particularly for the scalar case, then
Gp(A,B) = A1−pBp. In the case where the operators A and B are only semi-definite (i.e. not
necessary invertible) then Gp(A,B) can be similarly defined via the continuity criterion for an
operator mean by setting

A−1 = lim
ε↓0

(A+ ε.I)−1,

for the sake of convenience.
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The elementary properties of Gp(A,B), that are needed in the sequel, are summarized in the
following: for all A,B ∈ L+(H), 0 ≤ p ≤ 1, there hold
(i) The joint homogeneity, i.e.

∀t, s > 0 Gp(tA, sB) = t1−pspGp(A,B).

(ii) The self-duality relationship, i.e.(
Gp(A,B)

)−1
= Gp(A−1, B−1).

(iii) The power arithmetic-geometric mean inequality, i.e.

Gp(A,B) ≤ (1− p)A+ pB.

(iv) The relative entropy inequality, i.e.

Gp(A,B) ≥ (1 + p)A− pAB−1A.
In this section, we will display some other inequalities, called of functional type, for the

power geometric mean Gp(A,B). We start with the next simple result.

Proposition 3.1. Assume here thatH is a finite dimensional space. For all positive semi-definite
matrices A,B and 0 ≤ p ≤ 1 the following relationship holds

det
(
Gp(A,B)

)
= (det A)1−p (det B)p = Gp(det A, det B).

Proof. Follows from the explicit form (3.1) of Gp(A,B) with the standard properties of the
determinant.

Now, we are in position to state the following theorem which is the first main result of this
paper.

Theorem 3.2. Let Φ : L+(H) −→ IR+ be a monotone increasing sub-linear functional. Then,
for all A,B ∈ L+(H) and 0 ≤ p ≤ 1, there holds

(3.2)
(
Φ(A)

)1+p(
Φ(AB−1A)

)−p ≤ Φ
(
Gp(A,B)

)
≤
(
Φ(A)

)1−p(
Φ(B)

)p
.

Proof. Let us show the right hand of the inequality (3.2). By the power arithmetic- geometric
mean inequality (iii), i.e.

Gp(A,B) ≤ (1− p)A+ pB,

we have, with Φ as in the above,

Φ(Gp(A,B)) ≤ (1− p)Φ(A) + pΦ(B).

Replacing in this latter inequality A and B by tA and sB (t > 0, s > 0) respectively, we obtain
after a simple reduction

Φ(Gp(A,B)) ≤ (1− p)tΦ(A) + psΦ(B)

t1−psp
,

and hence

Φ(Gp(A,B)) ≤ inf
t>0,s>0

(
(1− p)tΦ(A) + psΦ(B)

t(1− p)sp

)
.

Applying Lemma 2.1 with m = 2, p1 = 1− p, p2 = p, a1 = Φ(A), a2 = Φ(B) and

F (t, s) =
(1− p)tΦ(A) + psΦ(B)

t1−psp
,

we deduce immediately the desired result.
Now let us prove the left side of (3.2). Writing the relative entropy inequality (iv) in the form

Gp(A,B) + pAB−1A ≥ (1 + p)A,
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we deduce, with Φ as in the above,

Φ
(
Gp(A,B)

)
+ pΦ(AB−1A) ≥ (1 + p)Φ(A),

or again
Φ
(
Gp(A,B)

)
≥ (1 + p)Φ(A)− pΦ(AB−1A).

Similarly to the above we obtain, after all reductions

Φ(Gp(A,B)) ≥ (1 + p)tps−pΦ(A)− pt1+ps−1−pΦ(AB−1A)

for all reals t, s > 0. It follows that

Φ(Gp(A,B)) ≥ sup
t>0,s>0

(
(1 + p)tps−pΦ(A)− pt1+ps−1−pΦ(AB−1A)

)
.

It is easy to verify that the second member of this latter inequality is equal to(
Φ(A)

)1+p(
Φ(AB−1A)

)−p
,

so completes the proof.

Now, choosing appropriate functionals Φ in Theorem 3.2, we will deduce some corollaries
stated in the following.

Corollary 3.3. For all A,B ∈ L+(H) and 0 ≤ p ≤ 1 we have

(Tr A)1+p
(
Tr(AB−1A)

)−p
≤ Tr

(
Gp(A,B)

)
≤ (Tr A)1−p(Tr B)p.

If moreover the space H is with finite dimensional then(
Tr(adj A)

)1+p(
Tr(adj AB−1A)

)−p
≤ Tr

(
adj Gp(A,B)

)
≤
(
Tr(adj A)

)1−p(
Tr(adj B)

)p
.

Proof. The first inequality is immediate from Theorem 3.2 with Example 2.2. Let us show the
second one. By an argument of continuity, it is sufficient to establish the inequality for A and
B invertible. From the self-duality relationship (ii) we deduce, with the above inequality

Tr
(
Gp(A,B)

)−1
= Tr Gp(A−1, B−1) ≤ (Tr A−1)1−p(Tr B−1)p.

This, with the fact that,
Tr (adj A) = (det A)Tr A−1,

and Proposition 3.1, yields

Tr
(
adj Gp(A,B)

)
≤ (det A)1−p(det B)p(Tr A−1)1−p(Tr B−1)p,

so proving the right side of the desired inequality. Similarly, we show the left hand of the
inequality and the proof is complete.

Corollary 3.4. For every A,B ∈ L+(H) and 0 ≤ p ≤ 1 the following inequality holds(
ρ(A)

)1+p(
ρ(AB−1A)

)−p ≤ ρ
(
Gp(A,B)

)
≤
(
ρ(A)

)1−p(
ρ(B)

)p
.

Proof. Combining Theorem 3.2 with Example 2.3 we obtain the desired result.

Corollary 3.5. For all A,B ∈ L+(H), 0 ≤ p ≤ 1 and u ∈ H , we have(
Qu(A)

)1+p(Qu(AB−1A)
)−p ≤ Qu(Gp(A,B)

)
≤
(
Qu(A)

)1−p(Qu(B)
)p
,

where Qu(A) = 〈Au, u〉 is the quadratic form of A at u.

Proof. Comes from Theorem 3.2 with Example 2.4.
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Corollary 3.6. Let A,B ∈ L+(H) and 0 ≤ p ≤ 1, then one has

‖A‖1+pS ‖AB
−1A‖−pS ≤ ‖Gp(A,B)‖S ≤ ‖A‖1−pS ‖B‖

p
S.

Proof. It is sufficient to combine Theorem 3.2 with Example 2.5.

We notice that, for all positive invertible operatorsA,B and Φ as in the above, inequality (3.2)
implies immediately (

Φ(A)
)2 ≤ Φ(B)Φ(AB−1A),

which is not obvious to establish directly. By choosing a convenient functional Φ, as in the
previous, we deduce many related inequalities.

Remark 3.1. The above results for the geometric operator mean Gp(A,B) yields some related
functional inequalities for the Tsallis relative entropy Tp(A|B) given by

Tp(A|B) :=
Gp(A,B)− A

p
.

In particular, if Φ is a functional linear map, we have

Φ(Tp(A|B)) ≤ Tp(Φ(A)|Φ(B)),

which is to compare, as result and related proof, with Theorem 2.3 of [7].
When the parameter p tends to 0, we obtain that of the relative operator entropy:

S(A|B) := A1/2 log
(
A−1/2BA−1/2

)
A1/2.

We left to the reader the routine task of formulating the relevant inequalities in the above
cases. For further details about relative operator entropy, we refer to [4, 6, 7] for instance.

4. GEOMETRIC MEAN OF THREE OR MORE OPERATORS

This section is devoted to extend the results of the above section from two positive operators
to three or more ones. We preserve the same notations as in the previous.

Theorem 4.1. Let p = (p1, p2, ..., pm) be a probability vector and Gp(A1, A2, ..., Am) a geo-
metric operator mean satisfying the two following properties

(i) Joint homogeneity, i.e.

Gp(t1A1, t2A2, ..., tmAm) =

(
m∏
i=1

tpii

)
Gp(A1, A2, ..., Am), ∀t1, ..., tm > 0,

(ii) The arithmetic-geometric mean inequality, i.e.

Gp(A1, A2, ..., Am) ≤
m∑
i=1

piAi.

Let Φ : L+(H) −→ IR be a monotone increasing sub-linear functional. Then the following
inequality holds

Φ
(
Gp(A1, A2, ..., Am)

)
≤

m∏
i=1

(
Φ(Ai)

)pi .
Proof. Using Lemma 2.1, the proof is similar to that of Theorem 3.2. The details are left to the
reader.
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Corollary 4.2. Let p = (p1, p2, ..., pm) be a probability vector and Gp(A1, A2, ..., Am) be a geo-
metric operator mean satisfying the assertions (i) and (ii) of Theorem 4.1. Then the following
inequalities are met

Trace
(
Gp(A1, A2, ..., Am)

)
≤

m∏
i=1

(Trace(Ai))
pi ,

ρ
(
Gp(A1, A2, ..., Am)

)
≤

m∏
i=1

(
ρ(Ai)

)pi ,
∀u ∈ H Qu

(
Gp(A1, A2, ..., Am)

)
≤

m∏
i=1

(
Qu(Ai)

)pi ,
‖Gp(A1, A2, ..., Am)‖S ≤

m∏
i=1

(
‖Ai‖S

)pi .
Proof. Follow from Theorem 4.1 when combined, respectively, with Example 2.2, Example 2.3,
Example 2.4 and Example 2.5.

Example 4.3. There are many different geometric operator means involving several variables
introduced in the literature that verify the above properties (i) and (ii), see [2, 8, 9] for instance.
So, these operator means satisfy the conclusions of Theorem 4.1 and Corollary 4.2.

We notice that, if the geometric operator mean Gp(A1, A2, ..., Am) verifies further the self-
duality relationship, as the case for that of [8], then it satisfies an analogue inequality to the
second one of Corollary 3.3.
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