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ABSTRACT. Fu and Lu showed that the commutator of multiplication operator byb and then-
dimensional Hardy operator is bounded onLp if b is in someCMO space. We shall prove the
converse of this theorem and also prove that their result is optimal by giving a counterexample.
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1. I NTRODUCTION

Since Coifman, Rochberg and Weiss [2] introduced the commutator of multiplication oper-
ator and singular integral operator, many studies have been done for this commutator (see the
references in [5]). Long and Wang [5] considered the commutator of multiplication operator by
b and Hardy operatorHf(x) = x−1

∫ x

0
f(t)dt. Fu and Lu [3] generalized their results onRn.

They showed that ifb ∈ CMOp(Rn)∩CMOp′(Rn), the commutator of multiplication operator
by b and then-dimensional Hardy operator is bounded onLp(Rn).

In this paper we show the converse of their theorem and also prove that the conditionCMOp(Rn)∩
CMOp′(Rn) is optimal by giving a counterexample in Section 5.

The following notation is used: For a setE ⊂ Rn we denote the Lebesgue measure ofE by
|E|. We denote the characteristic function ofE by χE. We write a ball of radiusr centered at
the origin byB(0, r) = {x; |x| < r}.

2. DEFINITIONS

First we definen-dimensional fractional Hardy operators. Let0 ≤ β < n.

Definition 2.1.

Hβf(x) :=
1

|x|n−β

∫
B(0,|x|)

f(y)dy, x ∈ Rn \ {0},

and the adjoint operator

H∗
βf(x) :=

∫
{B(0,|x|)

f(y)

|y|n−β
dy, x ∈ Rn \ {0}.

Whenβ = 0, H0 is then-dimensional Hardy operator.

Let b be a locally integrable function onRn. We define the commutator operator of multipli-
cation byb and the fractional Hardy operator as follows.

Definition 2.2.

Hβ,bf(x) := b(x)Hβf(x)−Hβ(bf)(x), H∗
β,bf(x) := b(x)H∗

βf(x)−H∗
β(bf)(x).

Chen and Lau [1] and García-Cuerva [4] introducedCMOp spaces and Herz-Hardy spaces
HAp, and proved the next duality theorem. Let1 < p < ∞.

Definition 2.3. A functionf ∈ Lp
loc(Rn) is said to belong toCMOp(Rn), if

‖f‖CMOp := sup
r>0

inf
c

(
1

|B(0, r)|

∫
B(0,r)

|f(x)− c|pdx

)1/p

< ∞.

Remark 2.1. Whenp1 > p2, CMOp1 ⊂ CMOp2 and the John-Nirenberg spaceBMO is
contained inCMOp.

Definition 2.4. We saya is a centeredp-atom if there existsr > 0 such that

supp(a) ⊂ B(0, r), ‖a‖Lp ≤ |B(0, r)|1/p−1 and
∫

a(x)dx = 0.

Definition 2.5. We sayf is in HAp(Rn) if f can be written as

f(x) =
∞∑

j=1

cjaj(x),
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whereaj are centeredp-atoms and
∑∞

j=1 |cj| < ∞, and we define

‖f‖HAp := inf
∞∑

j=1

|cj|,

where the infimum is taken over all representations off .

Remark 2.2. HAp(Rn) ⊂ H1(Rn) whereH1(Rn) is the ordinary Hardy space.

Proposition 2.1 ([4]). Let 1 < p < ∞. The dual space ofHAp(Rn) is CMOp′(Rn) where
1/p + 1/p′ = 1.

(HAp(Rn))∗ = CMOp′(Rn).

3. THEOREMS

Fu and Lu [3] showed the following.

Theorem 3.1 ([3]). Let 1 < p < ∞, 0 ≤ β < n and 1/q = 1/p − β/n > 0. If b ∈
CMOp′(Rn) ∩ CMOq(Rn), thenHβ,b andH∗

β,b are bounded fromLp(Rn) to Lq(Rn).

‖Hβ,b‖Lq ≤ C(‖b‖CMOp′ + ‖b‖CMOq)‖f‖Lp ,

‖H∗
β,b‖Lq ≤ C(‖b‖CMOp′ + ‖b‖CMOq)‖f‖Lp .

Throughout this paper,C is a positive constant which is independent of essential parameters
and not necessarily same at each occurrence.

We obtain the converse of this theorem.

Theorem 3.2. Let 1 < p < ∞, 0 ≤ β < n and1/q = 1/p − β/n > 0. If Hβ,b andH∗
β,b are

bounded operators fromLp(Rn) to Lq(Rn), thenb ∈ CMOp′(Rn)∩CMOq(Rn). Furthermore

‖b‖CMOp′ + ‖b‖CMOq ≤ C
(
‖Hβ,b‖Lp→Lq + ‖H∗

β,b‖Lp→Lq

)
.

We also show that the both conditionsb ∈ CMOp′(Rn) andb ∈ CMOq(Rn) are necessary
to obtainHβ,b : Lp → Lq only. We shall prove this by giving a counterexample in Section 5.

4. PROOF OF THEOREM

To prove Theorem 3.2 we shall prove the following theorem.

Theorem 4.1.Let1 < p < ∞, 0 ≤ β < n and1/q = 1/p− β/n > 0. If Hβ,b is bounded from
Lp(Rn) to Lq(Rn), thenb ∈ CMOp′(Rn). Furthermore

‖b‖CMOp′ ≤ C‖Hβ,b‖Lp→Lq .

By using this theorem, we can prove Theorem 3.2.

Proof of Theorem 3.2.By the assumption,H∗
β,b is bounded fromLp(Rn) to Lq(Rn), therefore

Hβ,b is bounded fromLq′(Rn) to Lp′(Rn). Note that1/p′ = 1/q′ − β/n. By Theorem 4.1 we
obtainb ∈ CMOq(Rn), since(q′)′ = q.

Now we prove Theorem 4.1.

Proof of Theorem 4.1.By the duality betweenHAp andCMOp′ (see Proposition 2.1 in Section
2), it suffices to show the following: For any centeredp-atoma,

(4.1)
∣∣∣∫ a(x)b(x)dx

∣∣∣ ≤ C‖Hβ,b‖Lp→Lq .

To prove (4.1) we need the next lemma.
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Lemma 4.2. Let 1 < p < ∞, 0 ≤ β < n and1/q = 1/p − β/n. For any centeredp-atoma,
there existf andg such that

a(x) = f(x)H∗
βg(x)− g(x)Hβf(x) and ‖f‖Lp · ‖g‖Lq′ ≤ C.

Proof of Lemma 4.2.Let a be a centeredp-atom supported inB(0, r). We set

f(x) = (log 3
2
· ωn−1)

−1a(x) and g(x) = |x|−βχ{2r≤|x|≤3r}(x),

whereωn−1 is the surface of the unit sphereSn−1.
When|x| > r, Hβf(x) = 0, thereforeg ·Hβf ≡ 0.
When|x| ≤ r,

H∗
βg(x) = ωn−1

∫ 3r

2r

1

t
dt = log 3

2
· ωn−1.

Therefore we havef(x) ·H∗
βg(x) = a(x), and obtaina = fH∗

βg − gHβf .
Furthermore we have

‖f‖Lp ≤ C‖a‖Lp ≤ Crn(1/p−1) and ‖g‖Lq′ ≤ Cr−β+n/q′ = Cr−β+n−n/q,

and obtain‖f‖Lp‖g‖Lq′ ≤ C.

By using this Lemma, we prove (4.1).∣∣∣∫ a(x)b(x)dx
∣∣∣ =

∣∣∣∫ (
f(x)H∗

βg − g(x)Hβf(x)
)
b(x)dx

∣∣∣ =
∣∣∣∫ f(x)H∗

β,bg(x)dx
∣∣∣

≤ ‖f‖Lp‖H∗
β,bg‖Lp′ ≤ ‖H∗

β,b‖Lq′→Lp′‖f‖Lp‖g‖Lq′ ≤ C‖Hβ,b‖Lp→Lq .

We obtain the desired result.

5. COUNTEREXAMPLE

In Theorem 4.1 we have already showed that the conditionb ∈ CMOp′(Rn) is necessary to
obtain the boundedness ofHβ,b from Lp to Lq. In this section we shall show that the condition
b ∈ CMOq(Rn) is optimal by giving a counterexample. Whenp1 > p2, CMOp1 ⊂ CMOp2 .
Therefore we need to consider the casep′ < q where1/q = 1/p−β/n. We prove the following:
For anyp′ < r < q, there exists a functionb such thatb ∈ CMOr \ CMOq andHβ,b is not
bounded fromLp to Lq.

Counterexample 1.Suppose that1/q = 1/p− β/n andp′ < r < q. LetAj = {x ∈ Rn; 2j <
|x| < 2j + 1}, A = ∪∞j=2Aj and define

b(x) =
∞∑

j=2

2j/rχAj
(x),

f(x) =
(
|x|n(log |x|)2

)−1/p
χ{|x|>2}\A(x).

Thenb ∈ CMOr(Rn) \ CMOq(Rn) andf ∈ Lp(Rn), butHβ,bf /∈ Lq(Rn).

Proof. It suffices to show thatHβ,bf /∈ Lq(Rn). Since the supports ofb andf are disjoint,
Hβ,bf(x) = b(x)Hβf(x). Forx ∈ Aj, we have

Hβf(x) ≥ C

2j(n−β)

∫
2j−1+1<|y|<2j

(
|y|n(log |y|)2

)−1/p
dy ≥ C2j(β−n/p)j−2/p,

and
b(x)Hβf(x) ≥ C2j(1/r+β−n/p)j−2/p = C2j(1/r−n/q)j−2/p.
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Therefore we obtain∫
Rn

(Hβ,bf(x))qdx ≥ C
∞∑

j=2

2jq(1/r−n/q)2j(n−1)j−2q/p = ∞,

sinceq(1/r − n/q) + n− 1 > q/r − 1 > 0.
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