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ABSTRACT. In this paper, we derive the heptic Hermite basis functions and use them as basis
functions in the orthogonal collocation on finite elements (OCFE) method. We apply the method
to solve the generalized Kuramoto-Sivashinsky equation. Various numerical simulations are pre-
sented to justify the computational efficiency of the proposed method.
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1. I NTRODUCTION

The Kuramoto-Sivashinsky equation (KSe) is ubiquitous in applications in the nonlinear sci-
ences. It appears in the modelling of spatio-temporal chaos [1, 2, 3]. Originally the equation
was used to describe the propagation of waves in dissipative media [4] and in pattern formation
and turbulence in flames [5]. It also appears in various important application areas including in
a film of viscous liquid flowing down a vertical plane [6] and a thin liquid film on an inclined
heated plate [7]. The generalized Kuramoto-Sivashinsky equation (gKSe) has been used in the
study of thin viscous film falling down a vertical substrate in the presence of a reactant [8], in
the study of dissipative waves in plasma physics [9] and also in the formation of soliton pulses
[10]. The theoretical analysis of the Kse and gKSe are well established [2, 3, 11]. In order
to model these phenomena successfully highly accurate numerical methods are required which
may also be useful in supplementing the theoretical results.

In this paper we consider the numerical solution of the gKSe using a high order collocation
method based onC3 heptic Hermite basis with the collocation points chosen as the Gauss points.
Collocation is a useful and versatile numerical method for solving partial differential equations
posed on a bounded spatial domain. It is well known that the computational advantages of collo-
cation methods are they are easy to implement, extremely economical and maintain a reasonable
degree of accuracy, as compared to the usual finite difference and Galerkin-finite-element nu-
merical schemes. Some classical works on the latter schemes for the periodic case have been
proposed in [12, 13] albeit no numerical simulations were furnished. In the paper of [12] they
used a Crank-Nicolson-type finite difference method and obtained a method of order 2. In the
paper [13] they employed the Galerkin-finite-element method using as the trial spaceC1 splines
of degreer − 1 and obtained the optimal spatial rate of convergencer. The use ofC1 splines
results in a larger system to be solved as compared to the use ofC3 Hermite splines used here.
Many alternative schemes have been proposed and developed using a variety of basis func-
tions such as Lattice Boltzmann method for the generalized Kuramoto-Sivashinsky equation
[14], B-splines [15, 16, 17] and cubic Hermite basis functions [18]. In the former case high
order schemes have been developed to solve high order PDEs whilst the latter case is usually
applied by splitting the original PDE into lower order systems. In this paper, we derive the
Hermite heptic basis functions and use them as trial functions to construct a collocation method
for solving a fourth order PDE. The method is computationally more efficient than B-splines
and there is no need to split the PDE into lower order systems as in the case of cubic Hermite
collocation method. The collocation points are chosen as the Gauss points and yields optimal
order of convergence which is sometimes referred to as superconvergence (see [19]). Hence,
the method is designed to yield orders of convergence similar to the Galerkin method but is
computationally more efficient than Galerkin’s method since no integrals need to be computed.
These methods are referred to as Orthogonal collocation on finite elements (OCFE) [20, 21, 22].
In the present context the use ofC3 heptic Hermite basis functions in the OCFE method yield
much smoother and accurate solutions as compared to the methods usingC1 cubic Hermite
basis in [23, 24]. In order to illustrate the robustness and versatility of the method we solve the
Kuramoto-Sivashinsky and the generalized Kuramoto-Sivashinsky equations.

In Section 2 we derive the heptic Hermite basis and use it to develop the OCFE method in
Section 3. In Section 4 we present various numerical examples and simulations. Section 5
concludes the paper.

We do not mention pseudospectral methods based on Chebyshev and Legendre polynomials and Sinc colloca-
tion method.
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Figure 1: Basis functions

2. HEPTIC HERMITE BASIS

The spatial domain[a, b] is discretized using the partition

(2.1) xi = a + (i− 1)h, i = 1, 2, ....N + 1, h =
(b− a)

N

Each subinterval[xi, xi+1] is mapped to [0,1] by using the transformation

(2.2) z =
(x− xi)

h

The interpolating conditions for the heptic basis functions on[0, 1] are given by

H
(p)
k (0) = H

(p)
k+4(1) = δk,p+1 k, p + 1 ∈ S, whereS = {1, 2, 3, 4}

These basis functions are illustrated in figure 1.
The derived Hermite polynomials obtained using the above interpolation conditions are:
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H1(z) = (20z3 + 10z2 + 4z + 1)(z − 1)4

H2(z) = (10z3 + 4z2 + z)(z − 1)4

H3(z) =
z2

2
(z − 1)4(4z + 1)

H4(z) =
z3

6
(z − 1)4

H5(z) = H1(1− z)

H6(z) = −H2(1− z)

H7(z) = H3(1− z)

H8(z) = −H4(1− z)

The approximate solution in theith interval is given by

U i(z, t) =
8∑

k=1

C
(i)
k (t)Hk(z)

and in the(i + 1)st interval by

U i+1(z, t) =
8∑

k=1

C
(i+1)
k (t)Hk(z)

By using the continuity of the basis functions and their derivatives up to order 3 atxi+1, we
can show that the first four coefficients in the(i + 1)st interval are a repetition of the last four
coefficients in theith interval. Hence we may approximate the solution in theith interval as

(2.3) U(z, t) =
8∑

k=1

Ck+4(i−1)(t)Hk(z),

where we have dropped the superscripti. The continuity of the basis functions across two
successive interval is shown in figure 2

3. ORTHOGONAL COLLOCATION ON FINITE ELEMENTS

We consider the following fourth order nonlinear PDE which is known as the generalized
Kuramoto Sivashinsky equation:

(3.1) ut + εuux + νuxx + µuxxx + δuxxxx = 0, x ∈ [a, b], t ≥ 0

whereε, ν, µ andδ are non-negative constants and the PDE is augmented with four boundary
conditions atx = a, x = b together with an initial condition att = 0, which are appropriately
defined. For the numerical solution of (3.1) we first apply the quasilinearization technique to
linearize the PDE on[tj, tj+1]. After discretization in space, the collocation method using the
trial solution (2.3) is applied on[xi, xi+1], effectively known as collocation on finite elements.
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Figure 2: Basis functionsHi(z) in theith and(i + 1)th

Equation (3.1) is integrated on[tj, tj+1] using the trapezoidal rule, also known as the Crank-
Nicholson Method [25], to yield the following numerical scheme:[

1 +
ε∆t

2
ux(x, tj)

]
u(x, tj+1) +

ε∆t

2
u(x, tj)ux(x, tj+1) + ν

∆t

2
uxx(x, tj+1)

+ µ
∆t

2
uxxx(x, tj+1) + δ

∆t

2
uxxxx(x, tj+1) = u(x, tj)− ν

∆t

2
uxx(x, tj)

− µ
∆t

2
uxxx(x, tj)− δ

∆t

2
uxxxx(x, tj)(3.2)

Transforming toz and substituting (2.3) into (3.2), we get

8∑
k=1

([
1 +

ε∆t

2h

8∑
k=1

Ck+4(i−1)(tj)H
′
k(z)

]
Hk(z) +

[
ε∆t

2h

8∑
k=1

Ck+4(i−1)(tj)Hk(z)

]
H ′

k(z)

+v
∆t

2h2
H ′′

k (z) + µ
∆t

2h3
H ′′′

k (z) + δ
∆t

2h4
H ′′′′

k (z)

)
Ck+4(i−1)(tj+1)

=
8∑

k=1

[
Hk(z)− v

∆t

2h2
H ′′

k (z) −µ
∆t

2h3
H ′′′

k (z)− δ
∆t

2h4
H ′′′′

k (z)

]
Ck+4(i−1)(tj).

(3.3)
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We choose four collocation points in each subinterval and substitute into equation (3.3). The
points are chosen as the Gauss points shifted to the interval[0, 1] for optimal spatial error.
Together with the four boundary conditions we obtain a(4N + 4)× (4N + 4) linear system of
the form

MCj+1 = BCj

whereCj+1 is the vector of unknown coefficients at timetj+1. We determineC0 from the initial
condition

u(z, t0) = U(z, t0)

=
8∑

k=1

Ck+4(i−1)(t0)Hk(z),(3.4)

by substituting the collocation points into equation (3.4) and solving the resulting linear system.
The spatial error isO(h8) and is consistent with the work of [19]. As the Crank-Nicolson
method isO(dt2) and the temporal order is not affected by the linearization, the method is
overall O(h8 + dt2). We confirm the spatial order by choosing∆t = O(h4) and using the
following computation:

(3.5) order∞ =
ln
(

EN1

EN2

)
ln (N2/N1)

whereEN1 = ||u(x, t)− U(x, t)||∞ usingN1 spatial intervals andEN2 is similarly defined.

4. NUMERICAL EXAMPLES AND SIMULATIONS

For numerical comparison we define the global relative error (GRE) [14]

GRE =

∑N+1
i=1 |u(xi, t)− U(xi, t)|∑N+1

i=1 |u(xi, t)|
whereU(xi, t) denotes the numerical solution andu(xi, t) denotes the exact solution. As there
is super convergence at the nodesxi of O(h2r), wherer is the number of Gauss collocation
points per subinterval [19], it may be shown that theGRE can also be used to estimate the
order by

(4.1) orderGRE =
ln
(

GREN1

GREN2

)
ln (N2/N1)

whereGREN1 refers to theGRE usingN1 spatial subintervals andGREN2 is similarly defined.
Example 1. We consider the Kuramoto Sivashinsky equation which is obtained by settingµ = 0
in (3.1).

We setε = ν = δ = 1 in (3.1) and takex ∈ [−30, 30]. The exact solution is given by [14]

(4.2) u(x, t) = a1 +
15

19

√
11

19
[−9 tanh(a2(x− a1t− x0)) + 11 tanh3(a2(x− a1t− x0))]

a1 = 5, a2 = 1
2

√
11
19

, x0 = −12 . The initial condition and Dirichlet boundary conditions are
extracted from the exact solution by settingt = 0 andx = −30, x = 30, respectively, in (4.2).
Since we have a fourth order derivative in (3.1) we require two additional boundary conditions
which are taken as

uxx(−30, t) = uxx(30, t) = 0.
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t 1 2 3 4
GRE1 1.2335× 10−4 1.6780× 10−4 2.0791× 10−4 2.5018× 10−4

GRE2 6.6956× 10−5 9.6417× 10−5 1.0947× 10−4 1.2600× 10−4

orderGRE 2.123 1.926 2.229 2.384

Table 4.1: [15] GRE errors and order fort = 1, 2, 3, 4: GRE1 andGRE2 correspond toN1 = 300, N2 = 400,
respectively.

Inf (m=8.0)

GRE (m=7.6)

L2 (m=7.3)

150 200 250 300 350
N

10-6

10-5

10-4

0.001

0.010

0.100

Error

Figure 3: Order for various normst = 1

t 1 2 3 4
GRE (Lai&Ma [14]) 6.7923× 10−4 1.1503× 10−3 1.5941× 10−3 2.0075× 10−3

GRE1 (Present Method)3.5460× 10−5 6.5605× 10−5 9.4498× 10−5 1.2117× 10−4

Table 4.2: GRE errors for varioust values.

The problem above was solved in [15] using Quintic B-splines and Crank Nicolson method.
It is observed in table 4.1 that their scheme has order approximately equal to two. We will
demonstrate that the method proposed here has a much higher order of eight. In Figure 4 we
illustrate a 3D plot of the solution usingN = 300. It is observed that the solution represents a
single antisymmetric wave traveling to the right (this is more clearly visible in the right picture
which shows the top view). Table 4.2 gives the GRE for varioust values using∆t = (∆x)4. In
Table 4.2 we compare the results obtained by Lai and Ma [14] (GRE) with the results obtained
using the present method (GRE1). In the paper of Lai and Ma [14] they computed the solution
usingN = 600, ∆x = 1/10, ∆t = (∆x)4, (a grid of size6 × 106) and obtained theGRE
shown in Table 4.2. UsingN = 180, ∆x = 1/3, ∆t = (∆x)4 (a grid of size43740) we
obtained a more accurate solution for a considerably smaller grid. Moreover, in Figure 3 we
display the errors for various norms on a Log-log scale. It is clearly observed that theGRE
error usingN = 360 is much smaller than that obtained by Lai and Ma [14]. The value ofm
represents the slope of a linear fit of the data and we observe that the order of the method is 8
as predicted by the theory [19].
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Figure 4: Left panel: 3D surface plot withN = 300. Right panel: Top view

t 6 8 10 12
GRE (Lai&Ma [14]) 7.8808× 10−6 9.5324× 10−6 1.0891× 10−5 1.1793× 10−5

GRE1 (Present Method)1.8017× 10−6 2.3418× 10−6 2.8795× 10−6 6.2398× 10−6

Table 4.3: GRE error forx ∈ [−50, 50], t = 6, 8, 10, 12 values,N = 300.

Example 2. As a second example we consider by settingµ = 0, ε = δ = 1 andν = −1 in (3.1)
and takex ∈ [−50, 50]. The exact solution is given by

(4.3) u(x, t) = b +
15

19
√

19

[
−3 tanh(k(x− bt− x0)) + tanh3(k(x− bt− x0))

]
b = 5, k = 1

2
√

19
, x0 = −25

The initial condition and Dirichlet boundary conditions are extracted from the exact solution
by settingt = 0 andx = −50, x = 50, respectively, in (4.3) and the additional boundary
conditions:

uxx(−50, t) = uxx(50, t) = 0.

In table 4.3 we tabulated the results of the method given in [14] who used a computational
grid of size107 and the present method fort = 6, 8, 10, 12. The GRE1 obtained using the
present method was calculated using usingN = 300, which corresponds to a computational
grid of size 24300. Once again it is observed that the results obtained using the present method
is superior to that obtained in [14]. Figure 5 gives the order computed in various norms on a
Log-log scale and confirms the expected order of 8. Figure 6 illustrates a 3D surface plot of the
solution.
Example 3. In this example taken from [14] we takeε = 1, ν = 1, µ = 4, δ = 1 and take
a = −30, b = 30 in (3.1). This case corresponds to the generalized Kuramoto Sivashinsky
equation. The exact solution is given by

u(x, t) = b+9−15
(
tanh(k(x− bt− x0)) + tanh2(k(x− bt− x0))− tanh3(k(x− bt− x0))

)
,

whereb = 6, k =
1

2
, x0 = −10. The initial and boundary conditions are chosen as in the

previous example.
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Inf (m=8.0)

GRE (m=7.8)

L2 (m=7.4)

250 300 350 400 450
N

10-8

10-7

10-6

10-5

10-4

Error

Figure 5: Order for various normst = 1

Figure 6: Left panel: 3D surface plotx ∈ [−60, 60] with N = 300. Right panel: Top View.

t 1 2 3 4
GRE (Lai&Ma [14]) 2.5945× 10−2 2.7959× 10−2 2.6701× 10−2 3.5172× 10−2

GRE1 (Present Method)2.0599× 10−3 3.1221× 10−3 3.3803× 10−3 3.0072× 10−3

Table 4.4:GRE error for varioust values andN = 180.

In table 4.4 we tabulated the results of the method given in [14] who used a computational
grid of size6 × 106 and the present method fort = 1, 2, 3, 4. TheGRE1 obtained using the
present method was calculated using usingN = 180, which corresponds to a computational
grid of size 14580. Once again it is observed that the results obtained using the present method
is superior to that obtained in [14]. Figure 7 gives the order computed in various norms on a
Log-log scale and confirms the expected order of 8. Figure 8 illustrates a 3D surface plot of the
solution.
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Inf (m=8.0)

GRE (m=8.0)

L2 (m=7.5)

200 300 400 500
10-7

10-5

0.001

0.100

Figure 7: Order for various normst = 1

Figure 8: Left panel:3D surface plot withN = 300. Right panel: Top view

Example 4. In our final example we consider a scenario in which (3.1) is used as a model to
simulate chaotic solutions . We consider solving (3.1) with the same parameters as defined
in Example 1, but with the initial condition chosen as the Gausssian function (see [15] and
references therin)

u(x, 0) = e−x2

,

and homogeneous boundary conditions

u(−30, t) = u(30, t) = 0

uxx(−30, t) = uxx(30, t) = 0.

The computations are performed usingN = 300, ∆t = 0.01, andTfinal = 20s. Figure 9
represents a3D surface plot of the solution. It is observed that the solution is not a traveling
wave but resembles the solution of a chaotic system. The right plot gives the top view and
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Figure 9: Left panel:3D surface plot withN = 300, ∆t = 0.01. Right panel: Top view

clearly shows how a simple initial condition evolves into a solution with a more complicated
behaviour.

5. CONCLUSION

In this paper we have derived theC3 heptic Hermite basis and used it to develop the OCFE
method to solve the generalised Kuramoto equation. The gKSe describe many physical phe-
nomena in the nonlinear sciences. The use of Gauss points as collocation points yields super-
convergence at selected points in the spatial domain. It is demonstrated that the spatial order of
the method is eight and that the current numerical method is more appealing than the eminent
works presented in [12, 13, 15, 14]. A complete set of numerical examples and simulations
are presented which demonstrate that the current method is suitable for handling various situ-
ations characterized by the solution of the gKSe, such as traveling waves, solitons and chaotic
solutions.
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