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ABSTRACT. It is nowadays well-known that Hardy’s inequality (like many other inequalities)
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Here we report on some results obtained in this way mostly after 2002 by mainly using this
fundamental idea.

Key words and phrasesHardy’s inequality, convex functions, convexity argument, superquadric functions.

2000Mathematics Subject Classificat/oRrimary 26D10, Secondary 26D15.

ISSN (electronic): 1449-5910
(© 2011 Austral Internet Publishing. All rights reserved.


http://ajmaa.org/
mailto: <oguntuase@yahoo.com>
mailto: <larserik@sm.luth.se>
http://www.ams.org/msc/

2 JAMES A. OGUNTUASE AND LARS-ERIK PERSSON

1. INTRODUCTION

The research into what is today called the classical Hardy inequality actually began in 1915
in an attempt by Hardy to find a new and more elementary proof of Hilbert’s inequality. In the
process Hardy [11] in a note published in 1920 stated that:

If p > 1and{ax},-, is a sequence of nonnegative real numbers, then

(1.1) Z( Zak) < (—inag;

n=1
and announced (without proof) thatif> 1 and f is a nonnegative—integrable function on
(0, 00), thenf is integrable over the intervél, =) for each positive: and that

(1.2) 7 (é]f(t)dt)pdx < (Z%)p7fp(x)dx

Obviously, [1.2) implieg (1]1). Inequality (1.2) is usually called¢tessical Hardy inequality
while inequality [(1.1) is its discrete analogue. Nowadays a well-known simple fact i$ that (1.2)

can equivalently (via the substitutigifz) = h(xl‘%)x‘%) be rewritten in the form

0o [ [ o) 2 < [

and in this form it even holds with equality when= 1. In this form we see that Hardy’s
inequality is a simple consequence of Jensen’s inequality but this was not discovered in the
dramatic period when Hardy discovered and finally proved inequglity (1.2) in his famous paper
[12] from 1925 (se€ [24] and [25]).

It is interesting to note that inequality (1.3) holds alsozor 0. This observation was first
pointed out by Beesack and Heinig [2] (for further historical remarks|see [25]). Moreover, in
1928 Hardy[[13] (see also [14]) proved a generalized form of (1.2), namely

(1.4) 7xk (/ f(t)dt)pd:c < (%)pc?:cpkfp(x)dx (p>1,k>1)

0
and also the dual form of this inequality

(1.5) /x_k (/f(t)dt) dr < (ﬁ)p/x”_kfp(x)dw (p>1,k<1).

Over the last decades, many generalizations and refinemerjts Jof (1.4) gnd (1.5) have been
discovered and rediscovered (see €.al [25], [26], [30], [31], [36], [37] and the references cited
therein). For example, in 1971 Shum [37] obtained the following refinemerits ¢f (1.4) ahd (1.5):

(1.6) ?x (/f t) dx+—b1’“(/f )p<(%>p7xpkfp(x)dx

forp21,k;>1,0<b§oo,and

(1.7) 7sck (7 f(t)dt)pder ﬁ;kblf’f (7 f(t)dt)p < (ﬁ)p7xpkfp(x)dx

b
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forp>1,k<1,0<b< 00.

Our aim in this paper is to give a survey of Hardy’s inequalities via the use of convexity
argument. Hardy himself did obviously not discover this simple and natural argument even if
Jensen’s inequality (proved in 1906) was of course known to him. We strongly believe that if
so both the history and the prehistory of what is today called Hardy type inequalities would had
changed in a dramatic way. See our Section 5 for a further discussion on this topic, which is
important for our paper.

2. HARDY TYPE |NEQUALITIES

In 1965, Godunove [8] while studying inequalities with convex functions, initiated a simple
direct way of obtaining Hardy’s inequality via a convexity argument by proving that for an
arbitrary functionp(x) such thatp=!(z) is convex the following inequality holds:

(2.1) / ors ( / k(x,@so(f(s)ds) iz < C / f(x)dz

wherek(z, £) andy(z) are weight and kernel functions antis a constant independent of the
functiony~!(z). In fact, a direct application of Jensen’s inequality

ot (/ k‘(%ﬁ)@(f(fﬂf) dx < /k(ﬂf’f)f(é)dé

0 0
and Fubini’s theorem show that the left hand sid€ of|(2.1) yields

/ ba)p! ( / k(x,@so(f(f)df) i <

/ e / €)F(€)deds
e

0
f(€ /w (e, €)dudt.
13

By using this simple technique we in particular obtain the following useful result:

Theorem 2.1. Let ¢ be a positive and convex function @h co). Then

(2.2) 7¢ (1 7g<t>dt) * < 7¢<g<x>>dﬁ

0 0

Remark 2.1. By choosingp(z) = z* inequality 2.2) yields Hardy’s inequality in the following
form

(2.3) 7 (%ﬂ(t)dt)p‘i—x < O/ngu)‘i—x, P> 1.

0 0 0

By using the substitutiorf(z) = g(x Z )x 7 in ( ) withp > 1 yields the classical Hardy’s
inequality [I1.2).
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Remark 2.2. This result by Godunova seems to be fairly little referred to and almost unknown
in the western literature. It was rediscovered in 2002 in the papeér [20] by Kaijser et al. This
was the starting point of a new development of the subject. For example, most of the results
reported in this paper are influenced by Theofem 2.1 and Rgmark 2.1.

Remark 2.3. We also note thaf (2.2) also directly implies other classical inequalities. For
example by using it withp(u) = P, replacingg(z) by In g(z) and making the substitution
h(z) = 22 we obtain that

o0 1 x o0
(2.4) /exp —/lnh(t)dt dr < e/h(:c)d:c.
T
0 0 0

This is the classical Polya-Knopp’s inequality, which sometimes is called Knopp’s inequal-
ity [21] but from the literature it is obvious that Pélya knew it before (from around 1925).
Moreover, by restricting to step functionjs (2.4) implies another classical inequality, namely the
famous Carleman inequality

o0

(2.5) Y Vara <ey ay,

n=1

from 1922, se€ [3]. Moreover, it is easy to see thaf (2.4) (2.5) are limiting cages of (1.2) and
(1.1), respectively, as — oo.

The above remarks means that the simply proved inequality (1.3) by convexity argument in

fact directly implies[(1..1) [(T]2)[ (Z.4) and (2.5).

We also mention that in 1964, Levinson [27] proved that if a twice differenciable convex
increasing function off), co) with ®(¢)®"(t) > (1 - %) ®'(t)? for all ¢ > 0, then

o0 o0

Ik (i]f(t)dt) i <Y [ @150

0 0
The above estimate is a consequence of the Jensen inequality used with the convex function
U(u) = @(u)% and the classical Hardy inequali.2) used with the funcliop)|) (cf. [26]).
In 1999, Heinig[15] obtained the weighted extension of Levinson’s result [27] by showing the
following result:

1

0 P r Y

Theorem 2.2. (i) If o € @, p > 1, andsup, /%dt /v(t)l‘p'dt < oo, then
T 0
o 1 x o
(2.6) [ty (; / f(t)dt) 4 <C [ v(o)g (f(a)) do
0 0 0

(17) If ¢ € &, andv(z) = z* / Zﬁ)l dt, o > 0, then

xT

) holds witlt' = e“.

Moreover, by mainly using a convexity argument, Imaru [16] gave another proof of a gener-
alized form of [1.6){(1]7). In particular, Imoru_ [16] established the following result:

AJMAA Vol. 7, No. 2, Art. 18, pp. 1-19, 2011 AJMAA


http://ajmaa.org

HARDY’S INEQUALITY VIA CONVEXITY 5

Theorem 2.3. Let g be continuous and nondecreasing noo] with g(0) = 0, g(x) > 0
forz > 0andg(oco) = co. If p > 1, k # 1 and f(x) is nonnegative and Lebesgue-Stieltjes
integrable with respect tg(x) on [0, b] or [b, oc] according to ifk > 1 or k < 1. Then

7g<x>-k <7f(t)dg(t))pdg( )+ o) (/ F(t)dgt )
@7 < (%)79(@“#(@@@)

forp>1,k>1,0<b< o0,and

79(96)"“ (7 f(t)dg(t))pdg( )+ —(b) (/f )dg(t )
(28 < (ﬁ;k)p%(x)”—kff’(x)dg(x)

forp > 1,k < 1,0 < b < co. The inequalities sign irf (2.7)-(3.8) are reversed ik p < 1,
furthermore the constant on the right hand sides of|(2.7) ol (2.8) is the best possible.

In a recent paper, Persson and Oguntuase [39] presented another elementary proof of (1.6)-
(1.7) (or more generally (2.7)-(2.8)) using Holder's and reversed Holder’s inequalities, which
are consequences of Jensen’s inequality. In particular, Persson and Oguntuase [39] established
the following results:

Theorem 2.4. Let g be continuous and nondecreasing [0noo] with ¢g(0) = 0, g(x) > 0 for
x > 0andg(oco) = co. Letp, k,b € R, where0 < b < oo and such that one of the following
holds:

(i) p > landk > 1,

(17) p < 0andk < 1.

If f(x) is a nonnegative integrable function {h b] such that

b

0< / g(2)7~* 7 (x)dg(x) < oo,

then

o ( / f(t)dg(t)) dg(a) + L g(8) ( / f(t)dg(t)>

(2.9) < (%)p7g(x)pkfp(a:)dg(x).

(i73) If 0 < p < 1andk > 1, then inequality|(2.9) holds in the reversed direction.
The constan(%)p on the right hand side 0.9) is the best possible in all cases.
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Theorem 2.5. Let g be continuous and nondecreasing [0noo| with ¢g(0) = 0, g(x) > 0 for
x > 0 andg(oco) = oo. Letp, k,b € Rwith0 < b < oo and such that one of the following
holds:

(iv) p > landk < 1,

(v)p<Oandk > 1.

If f(x)is a nonnegative integrable function @noo] such that

(e 9]

0< / g(2)7~* P (2)dg(x) < oo,

b

then

p p

79($)k 7f(t)dg(f) dg(x )+—g /f )dg(t)

(2.10) < (i;k)pojg(x)pkfp(:c)dg(x).

(vi) If 0 < p < 1andk < 1, then inequality|(2.10) holds in the reversed direction.
The constan(k_l) on the right hand side o 0) is the best possible in all cases.

Remark 2.4. The simple proof in[[39] shows that some versiong of|(1.6)}(1.7) (or more gener-
ally (2.7)-(2.8)) in fact holds also fqr < 0.

3. MULTIDIMENSIONAL HARDY TYPE INEQUALITIES

In 1968, Gudanova [9] gave the multidimensional analogue of the result in [8] by proving the
following result:

Theorem 3.1.Letk(ty,ta,....,t,) > 0for0 <t; < c0,i=1,2,....,m

/ E(ty, to, ... t,)dV, = 1,
Vi

whereV; is a domain in the n-dimensional Eucleadian space such@hat t;, < oo, i =
1,2,...,n; V, and V, are defined analogously t@;; »(u) is nonnegative convex function for

u > 0;k(y1, Y2, - yn) > 0for 0 < y; < oo; f # 0; MeLl(V) then

T1,T2,-s

1 1 n
/ @ ( / k (yl PEEED] Y ) f(yhy% 7yn)d%) d‘/ac
Ve L1---Tny T1...Tp Vy T Tp

(3.1) < /V e(f(z1, 22, ...,xn))de'

T1...Tp

Proof. This follows almost directly by applying Jensen’s inequality, Fubini’s theorem and using
the substitutior% =t,1=1,2,3,--- ,n. 1

Remark 3.1. We see that the case= 1 inequality [3.1) yields the classical Hardy’s inequality

(T2) via [13).
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In 1992, Pachpatté [38] obtained a natural n-dimensional generalization of the classical Hardy
integral inequality[(1]2) by using Fubini’s theorem and Jensen’s inequality. In particular, he

proved that
o0 (e.) n —p
// (H%) FP(xq, 29, ..., 2,)dx;...dxy
0 o \i=l1
np [o@) [o@)
(3.2) < (}%) /.../fp(:zjl,xg,...,xn)darl...dxn
0 0

holds forp > 1 and all nonnegative functiofi € LP(R’" ), whereF' is defined orR”} by

F(l’l,ilfg,..., / /f tl,tg,..., dtl dtn,

and the consta 1% " Is the best possible. The corresponding resultefer 0 and0 <

p < 1 were recently obtained by Oguntuasteal. [31] as consequences of much more general
inequalities for convex and concave functions (see also [30] for further details).

In 2005, Kaijser et. al! [19] used the notion of convexity to obtain the following multidimen-
sional Hardy-type inequality:

Theorem 3.2.Let0 < b; < o00,i=1,2,...,n(n € ZT), —0o < a < ¢ < oo and letd be a
positive function ora, c|, if ® is convex, then

//¢ %/ /f ity | L2
(3.3) <Z...Z¢(f(x1...xn))(1%> (1—5)%,

for every function on(,b) such thate < f(x) < c. Furthermore, they showed thatdf is
concave, then the sign ¢f (8.3) holds in the reversed direction.

Remark 3.2. By choosing®(t) = t* in the above result, some natural multidimensional forms
of the classical and reversed Hardy type inequalities are obtained. Specifically, the following
results were derived.

Corollary 3.3. Let0 < d; < 00,i=1,2,....,n (n € Z7).
(a) If p>1orp<0,then

dn p

dy
/ / / / Sn d81 dSn dyldyn
Y1---Yn
pn dn =2 B
P y P Yn P
0 0

holds for each positive functianon (0, d).
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(b) If 0 < p < 1,then

o] p
// / / Sp)dsy...ds, | dyy...dy,
Yi---Yn
dl d'n,
m 5 N5
> <1L) /.../gp (y1-yn) | 1 — (—1> 1= (—) dyy...dy,,
-D ) y h Yn

for each positive functiop on (d, co).
(¢) The constants in the inequalities above are sharp in all cases.

Remark 3.3. By applying Corollaryf 33a) withp > 1 andd; = d, = --- = d,, = co we
obtain the inequality (3]2) by Pachpatte.

In a recent paper, Oguntuaseal. [32] established a class of more general integral multidi-
mensional Hardy type inequalities for an almost everywhere positive fungtidrch is convex
forp > 1 andp < 0, concave fop € (0,1) and such thatlz? < ¢(z) < BaP holds onR .,
for some positive constant$ < B. Oguntuaseet al. [32] obtained a class of general integral
multidimensional Hardy type inequalities with power weights, whose left hand sides involve

/ /f instead of //f (t)dt | , while the corresponding right hand sides

remaln as in the classical Hardys mequallty and have explicit constants in front of the inte-
grals. In particular, for the cage> 1 the following strenghtened multidimensional Hardy type
inequalities were obtained:

Theorem 3.4.Letl < p < oo andm = (my, ..., m,) € R" be such thain; # 1,i =1, ...,n.
Let¢ : [0,00) — R be a convex, almost everywhere positive function, suchﬁﬂn&K q§( ) <
Bax? holds on|0, oo) for some constant$ < A < B < o0,

(i) If b€ (0,00 andm > 1, then the inequality

by b T n
[4¢ {...[f(t)dt Emimidx

by bn —
B? [ {~ P 3 L~ T;\ P
: < — P prmil] — (2
(3.4) < (Hmi_1> / /f (x)dxHx, [1 (b> ]dx
=1 0 0 =1
holds for all nonnegative integrable functiofis (0,b) — R.
(77) If b € [0,00) andm < 1, then the inequality
/ / / / f(t)dt Hg; i dx
bl rL
(3.5) < B ﬁ / /fp dxpr moly_ (% v dx
' - A e 1 —m; o

holds for all nonnegative integrable functiofis (b, c0) — R.
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Furthermore, the related inequalities to those in Thegrem 3.4 to thecasésand0 < p <
1 were also established in_[32] as follows:

Theorem 3.5. Suppose thatco < p < 0 andm = (my, ..., m,,) € R™ be such thain; # 1,
i=1,...n. Leto : (0,00) — R be a positive convex function, such that? < ¢(z) < BaP
holds on(0, co) for some constant8 < A < B < co. If b € (0,00] andm < 1, then
inequality [3.4) holds for all positive integrable functiofison (0,b). If b € [0,00) and
m > 1, then the inequality (3]5) holds for all positive integrable functigrsn (b, co).

Theorem 3.6.Let0 < p < 1 andm = (my,...,m,) € R" be such thain; # 1,1 =1, ...,n.
Leto : [0,00) — R be a convex, almost everywhere positive function, suchBhat< ¢(z) <
AzP x € [0, 00), for some constants < B < A < co. For a functionf let F' be defined by

Z...éf(t)dt m>1

Fx)=<¢
/.../f(t)dt m< 1.
\ T1 Tn
(i) If b€ (0,00 andm > 1, then
by bn

/.../gb(F(x))ﬁx;midx

0
b1 bn m;—1
B2 n P n _ i Lp
B (M) [ [T |- () 7 |
=1 o o i=1 i

holds for all nonnegative integrable functiois (0,b) — R.
(i7) If b €]0,00)andm < 1, then

o)

/...7¢(F(x)>ﬁx;midx

b1 bn

I ( n g >p7 7 T bi S
> — H fp(x)dxfo - (—> dx
A i=1 1—m; 5 b i=1 Li

4. HARDY TYPE INEQUALITIES WITH GENERAL KERNELS

As mentioned the first author which derived a Hardy type inequality with a general kernel
was Godunové 8] (see alda [9]). In a recent paper, Kaijser ef. al. [19] obtained some new inte-
gral inequalities with general integral operators (without additional restrictions on the kernel).
Specifically, the following results were stated and proved:

Theorem 4.1. Let u be a weight function ori0,b), 0 < b < oo, and letk(z,y) > 0 on
(0,b) x (0,b). Assume thaf% is locally integrable on(0, b) for each fixed; € (0,b) and
definev by

o=y [ M0 4) 2 < 0, ye (0.1).
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If ¢ is a positive and convex function 6m c), —oco < a < ¢ < oo, then

/ (A (2))u(n) ™ < / (f(x))o(n) ™,

i T

forall fwitha < f(x) <¢,0 <z <b, where

@A) =g [ i Ko = [k <o

In the same paper the dual operatr;, defined by

e}

/ ke, ) f(y)dy,

xT

4.2) A f(z) = f(zx)

o0

whereK (z) = /k(x, y)dy < oo was studied and the following result was proved:

xT

Theorem 4.2.For 0 < b < oo, letu be a weight function such th’é\% is locally integrable
on (b, o) for each fixed; € (b, ). Let the functiorv be defined by

Y

o) =y [ ’“gf))mdf <0, y e (boo).

b

If @ is a positive and convex function ém ¢), —co < a < ¢ < oo, then

o0 o0

dx dx
[T < o,
b b
forall f witha < f(z) < ¢, 0 <z < b, whereAj is defined by[ (4]2).

The result for the operatot, which involves the casgs+# ¢ without additional restrictions
on the kernel was derived by Kaijser et. al.|[19] as follows:

Theorem4.3.Let 1 <p<¢g<o00,0<b<o0,sé€(1,p), and letd be a convex and strictly
monotone function o, c), —oco < a < ¢ < oo. Let Agx be the general Hardy operator
defined by[(4]1). Then the inequality

b ; ;
43) ( / [@(Amx»]qu(x)i—x) <c ( / <I>p<f<x>>v<x>%)

holds for all functionsf(z), a < f(z) < ¢, if
b .
k 1 ap=s) d s—1
4= g, (/ (3] oo™ —) VT <o
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holds, where

Moreover, if C'is the best possible constant jn (4.3), then

1
Y

C < inf (p_l) A(s).

I<s<p \p— 8
In 2008, Oguntuaset. al [34] obtained some new multidimensional Hardy-type inequalities
involving arithmetic mean operators with general positive kernels using mainly a convexity
argument. The results obtained improved some known results in the literature and in particular,
some recent results of Kaijser et. al. [19] are generalized and complemented. By defining the
general Hardy-type (arithmetic mean) operatdfsand its duald k- as follows:

(44) AKf(Zlfl,...,ZL‘n) = < / / L1y eeny l‘n,tl,...,tn)f(tl,...,tn)dtl...dtn
-rla

and

] 0o oo
(45) AK*f($1,...,xn) I:~—/.../k(l’l,...,l’n,tl,...,tn)f<t1,...,tn)dtl...dtn

K(z1,...,2y)
x1 Zn
with K (z1, ..., z,) andf((q:l, ..., ) given by
(46) K(xl,...,:cn) I:/.../k(l’l,...,wn,th...,tn)dtl...dtn
0 0

and
(47) I} ZEl,..., / / L1y eeny ZEn,th...,tn)dtl...dtn,

then Oguntuaset. al [34] obtained the followmg results:

Theorem 4.4.Letn € N, k(z1,..., Ty, t1, ..., t,) @ndu(zy, ..., z,,) be weight functions and

assume that
k(1 .y Tpy tyy oy ty)u(y, .o, Tp)

1. 2o K (21, ..., Tp)
is locally integrable and for eacty, ..., ¢,,), t; € (0,b;), definev by

bl b'n

N / / xn,tl,...,tn)u(:cl,...,:Un) dxy...dz,, .

K(xy,...,xy) T1...Tp

(¢) If @ is positive and convex ofa, ¢), —oo < a < ¢ < oo, then
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b1 bn
dzy...dx,
<I>(AKf(x1> ,l’n))U(flfl, 7xn> -
T1...Tp
VN dz;..d
§//@(f(xl,,xn))v(xl,,xn)ﬁ
0 0

forall fwitha < f(xq1,...,2,) <c¢,0<x; <b;,i=1,2,....,n.
() If @ is positive and concave d, ¢), —o0o < a < ¢ < oo, then

by bn

dzy...dx,
/.../@(AKf(xl,...,xn))u(xl,...,xn)l—
T1...Tp
0 0
b1 bn d J
2//(D(f(ml,,xn))v(xl,,xn)ﬁ
0 0

forall f witha < f(x1,....,2,) <¢,0<x; <b;,i=1,2,....n. Here Ax and K (x, ..., z,,)
are as defined by (4.4) and (4.6), respectively.

Furthermore, in the same paper Oguntugisel [34] also obtained the dual of Theorém|4.4
as follows:

Theorem 4.5.Letn € N, 0 < b; < 4, t; < 00,7 = 1,2,...,n, and letk(x;...x,, t1, ..., t,)
andu(xy, ..., z,,) be weight functions such that

k<x17 "'7'Tn7t17 "'7tn)u(xl7 7xn)

1. T K (21, ..., Tp)

is locally integrable and for eactyy, ..., t,,), t; € (b;, o), definev by

t1 tn

K1y ooy Ty s oo b )01, oy ) At
U(‘r17-~-7xn) :tltl// <$17 7x~ 1 )U(Il X ) T1 €X < oo

K(xq,...,x,) T1...Tn

b1 bn

() If ® is positive and convex ofu, c), —oo < a < ¢ < oo and Ag- is the general dual
Hardy operator defined by (4.5), then the inequality

T da,...dz,
/.../<I>(AK*f(:El,...,:pn))u(xl,...,a:n)l—
T1...Tp
by bn
T dxy...dx,
< /.../@(f(a;l,...,xn))v(xl,...,xn)m
b1 bn,

holds for all f witha < f(z1,...,2,) < ¢, 0 <z; <b;,i=1,2,...,n.
(1) If @ is positive and concave g, c), —oco < a < ¢ < oo and Ak~ is the general dual
Hardy operator defined by (4.5), then the inequality
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o0 o0

dzy...dx,
/.../<I>(AK*f(:El,...,a:n))u(xl,...,a:n)l—
T1...Tp
b by
T dry...dx,
> /.../CID(f(a;l,...,xn))v(xl,...,xn)m
b by

holds for all f witha < f(z1,....,2,) < ¢, 0 < z; <b;;1=1,2,....n, and}?(:pl, ey Tp) IS @S
defined by[(4]7).

Moreover, for the casé < p < ¢ < oo the following generalization of the Kaijser et. al.
[19] result was proved in [34]:

Theorem 4.6. Let 1 < p < g <o00,0<b <00, 581,...,8, € (1,p), i =1,2,...,n and let
® be a convex function ofu, c), —oo < a < ¢ < 0. Let Ak be the general Hardy operator
defined by[(4]4) and let(z1, ..., z,,) andv(z1, ..., z,) be weight functions, whergx1, ..., z,,)
is of product type i.ev(z1, ..., z,,) = v(x1).v(z2)...v(x,). Then the inequality

Q=

b1 bn
dzy...dx,
/.../[CID(AKf(xl,...,xn))]qu(xl,...,xn)l—
T1...Tp
0 0
(4.8) <C /.../@p(f(xl,...,:pn))v(xl,...,xn)M
T1...Tp
0 0
holds for all functionsf(z1, ..., x,), a < f(z1,...,z,) < ¢, if
T K Ak
L1y ooy Ty Yty ooy Yn
A(sy, .y Sp) 1= su //[ u(xy, .y, Ty
( ! ) 0<t1...tn<pbl...bn K(I‘17"’7{En> ( ! )
t1 tn
a(p—s1) a(p—sn) dr dSUn % s1—1 sp—1
V7 (x). Vi ? (a:n)ml—w) Vi? (t)Va ? (tn) < o0
1.--Ln

holds, where

Ty

Vi(z;) = /vl_p,dtz‘a i=1,2,..,n,
0
andp’ = .. Furthermore, if C'is the best possible constant@B), then

1 1
—1\7 —1\7
C < inf (p )p <p )p A(S1, ey Sp)-
1<s1.sn<p \ P — S1 P — Sn

Remark 4.1. For the case: = 1 (4.8) coincides with inequality (4.3) obtained by Kaijser et.
al. in [1S].
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5. FURTHER RESULTS AND CONCLUDING REMARKS

Remark 5.1. In this paper we have pronounced that Jensen’s inequality implies Hardy’s in-
equality. We also pronounce that Jensen’s inequality implies several of the classical inequal-
ities e.g. those by Holder, Young, Minkowski, Beckenbach-Dresher, Hilbert, Levin, Hardy-
Littlewood-Polya and the AG-mean inequality or, more generally, that the scale of Power means
P, or even general Gini mear, s increases in botlx and (—oco < a, < o0). See the

book of Niculescu-Persson [29] and the references given there.

Here we just give a simple proof of the fact that Jensen’s inequality directly implies Holder
inequality

P q 1 1
(5.1) / Foldu < / PP du / gl'dn] 4 =1p>1
Q Q Q

without going via Young’s inequality as is usually done in most textbooks, however c.f. e.g.
[28, p. 39-40].

Proof. Without loss of generality we assume tiak /|g|qdu < oo and putg; = |g|* and

Q
fi=1fl ]g]‘ﬁ . Then, by Jensen’s inequality applied with the convex funclién) = «?, we

obtain that
p

1 1
(5.2) /flgld,u < /ffgld%
Jo rdp Jo, 9dp
Q Q
i.e.,
(5.3) / figrdp < / fLodp / Grdp
Q Q Q
which is (5.1).n

Note that our proof above also directly implies that Holder’s inequality holds in the reverse
direction wher) < p < 1, which follows from the fact that the functiob(u) = u” is convex
also forp < 0 so that[(5.R) holds also fgr < 0. This means thaf (5.3) and, thus, (5.1) holds in
the reverse direction fqr < 0, i.e. for0 < g < 1.

Next we give some historical remarks.

Remark 5.2. The almost dramatic period 1915-1925 until Hardy finally stated and proved his
inequality [1.1) was recently described in detail(in/[24]. Obviously, the prehistory would had
been completely changed if Hardy (or some collaborators from this time) had discovered that
(1.1) can equivalently be rewritten in the form (1.3) and this inequality follows directly from
Jensen’s inequality (and Fubini’s theorem). And Jensen'’s inequality from 1906 ($ee [18] was of
course known to Hardy.

Remark 5.3. Also in the 1928 paperl [13] Hardy was not aware of this simple technique since
in the same way we can see that afso|(1.4) (=the first weighted version of Hardy’s inequality) is
in fact equivalent to[(I]3). Just consider the relation

k=1, k=1_1q

flx) = h(z > )z
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and make the obvious calculations. In particular, this means that in falct (1.4) is not more general

than [1.1).

Remark 5.4. The starting point to begin to develop weighted Hardy’s inequality to what is
today called Hardy type inequalities was just [1.4). The history concerning the development of
this theory was recently described in the book [25]. This development has not been so much
influenced by the simple convexity arguments discussed in this paper, see e.g. the books [14],
[25], [26], [22] and the references given there. We strongly beleive that severaral proofs also in
these more general cases can be simplified by using this powerful convexity technique.

Next, we mention that in the cases we have considered also some generalizations with general
measures can be done. In fact, very recently, Krati al. [23] obtained some new weighted

Hardy type inequalities with an integral operatby defined by
1
(5. AS(@) = T [ R W) (),
Qo

wherek : Q; x 2, — R is a general nonnegative kernéf},, i) and ({2, 1,) are measure
spaces and

(5.5) K(z) = [ k)i ), o € 0
Qo
Specifically, they obtained the following results:

Theorem 5.1. Letu be a weight functionk(z,y) > 0. Assume tha[({”zf))u(x) is locally inte-
grable on¢, for each fixed, € €2,. Definev by

o(y) = ’}((( y))uu)dm(x) <o

2
If ® is convex function on the intervalC R, then the inequality

[es@u@in@ < [ erwewdn
Ql QQ
holds for all measurable functions : 2, — R, such thatlm f C I, where A, is defined by

(5.4) and[(5.5).

Krulic et. al. [23] further obtained a more general result than Thepregm 4.3 of Kaijser et. al.
[19]. More precisely, they obtained the following generalization of Thegrein 5.1 as follows:

Theorem 5.2.Let0 < p < ¢ < oo and let the assumptions in Theorem| 4.3 hold but now with

p

o(y) = ( / [kz(cgi;y))]gu<x>dul<x>)q < .

1

If ® is a positive convex function on the interval R, then the inequality

1

(/ [¢(Akf(x))}ZU(x)dul(w)) < (/Cb(f(y)v(y)duz(y))

Ql QZ
holds for all measurable functiofi: 2, — R, such thatim f C 1.
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Proof. Follows almost directly by using Jensen’s inequality and Minkowski’s general integral
inequality. n

Remark 5.5. Observe that the cage= ¢ yields Theorem 4|3 obtained by Kaijser et. al.I[19].

Another type of results can be obtained by using this technique but instead of convex func-
tions by using some closely related class of functions. Here we shall use a class of functions
recently introduced by Abramovich, Jameson and Sinnaimon [1] (see also [33]).

Definition 5.1. A function ¢ : [0,00) — R is superquadratic provided that for all> 0 there
exists a constant’, € R such that

ey) — () —¢(ly —z|) =2 Co (y —x) forally > 0.
We say thatf is subquadratic if- f is superquadratic.

We also state the following refinement of Jensen’s inequality.(see [1]):

Lemma 5.3. Let (€2, ) be a probability measure space. Then the inequality

68 o[ s < [etrnie - [ (‘f(s) - [ 16t ) duts

holds for all probability measureg and all nonnegative:—integrable functions if and only
if ¢ is superquadratic. Moreovei, (3.6) holds in the reversed direction if and ondyisfsub-
quadratic.

In fact, since this refined version of Jensen’s inequality holds for superquadratic functions,
so by using the technique presented in this paper, we can expect to obtain some new refined
Hardy type inequalities. In fact, recently Oguntuase and Per§son [33] obtained the following

surprising results (see also Remafks](5.6) (5.8)).

Theorem 5.4.Letl <p < oo, k = (ky,...k,) € R"besuchthat; >1(i=1,...,n),0 < b <

oo, and let the functiorf be locally integrable orf0, b) such that) < fobl e T, 2R pP () de <
0.
(¢) If p > 2, then

n

b1 bn o zn N
/ / [[=" (/ / f(t)dt> da
0 0 =1 0 0
- kz -1 /bl /bn /bl /bn n P <tz ) l—%
+ b 1t
<:zl_[1 p ) 0 0 Jt tn }—11 ki—1 \z; (t)
T Tn p n ko1 nog
— / / f(t)dt
T1...-Tn Jo 0

67) < (11 kﬁl)p/j /;11 (1_ [CZ_} P

xf_ki_waHti "t
=1
(i) If 1 < p < 2, then inequality[(5]7) holds in the reversed direction.
Remark 5.6. Equality holds in[(5.]7) fop = 2.

=1
1

) 2P P () da.
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Remark 5.7. For the case: = 1 Theoren] 5.4 coincides with the corresponding Theorem 3.1
in [33].

Theorem 55.Letl < p < oo, k = (ky...k,) € R" be such that;; < 1,7 = 1,2,....n,
0 < b < o0, and letf be locally integrable orib, oo) and such that

0< fb(io fbio I, 2?7 () da < co.

(i79) If p > 2, then

[ LAt ([ o)

"zl

s L
_xl..l.xn /j.../xmf(t)dtp‘ [
(5.8) < < ) / /booln1 ( [ } ) 2P 7H P () dae.

() If 1 < p < 2, then inequality[(5)8) holds in the reversed direction.
Remark 5.8. Equality holds in[(5.B) fop = 2.
Remark 5.9. For the case. = 1 Theorenm 5.b reduces to Theorem 3.20in [33].

Remark 5.10. Finally, we remark that this technique can also be used to prove some operator
valued Hardy type inequalities, see Hansen et al. [10] (seelalso [23]).

T D ti i
I (;) f(#)
i=1 ! '

ki—1

ﬁx;_”k“rp_kidwﬁti " g

This is the journey so far, which mainly started in this new setting in the paper [20]. We
strongly believe that this will signal a new direction in the development of Hardy type inequal-
ities
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