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2 JAMES A. OGUNTUASE AND LARS-ERIK PERSSON

1. I NTRODUCTION

The research into what is today called the classical Hardy inequality actually began in 1915
in an attempt by Hardy to find a new and more elementary proof of Hilbert’s inequality. In the
process Hardy [11] in a note published in 1920 stated that:

If p > 1 and{ak}∞k=1 is a sequence of nonnegative real numbers, then

(1.1)
∞∑

n=1

(
1

n

∞∑
k=1

ak

)p

≤
(

p

p− 1

)p ∞∑
n=1

ap
n;

and announced (without proof) that ifp > 1 andf is a nonnegativep−integrable function on
(0,∞), thenf is integrable over the interval(0, x) for each positivex and that

(1.2)

∞∫
0

1

x

x∫
0

f(t)dt

p

dx ≤
(

p

p− 1

)p
∞∫
0

fp(x)dx.

Obviously, (1.2) implies (1.1). Inequality (1.2) is usually called theclassical Hardy inequality
while inequality (1.1) is its discrete analogue. Nowadays a well-known simple fact is that (1.2)
can equivalently (via the substitutionf(x) = h(x1− 1

p )x−
1
p ), be rewritten in the form

(1.3)
∫ ∞

0

(
1

x

∫ x

0

h(t)dt

)p
dx

x
≤
∫ ∞

0

hp(x)
dx

x

and in this form it even holds with equality whenp = 1. In this form we see that Hardy’s
inequality is a simple consequence of Jensen’s inequality but this was not discovered in the
dramatic period when Hardy discovered and finally proved inequality (1.2) in his famous paper
[12] from 1925 (see [24] and [25]).

It is interesting to note that inequality (1.3) holds also forp < 0. This observation was first
pointed out by Beesack and Heinig [2] (for further historical remarks see [25]). Moreover, in
1928 Hardy [13] (see also [14]) proved a generalized form of (1.2), namely

(1.4)

∞∫
0

x−k

 x∫
0

f(t)dt

p

dx ≤
(

p

k − 1

)p
∞∫
0

xp−kfp(x)dx (p ≥ 1, k > 1)

and also the dual form of this inequality

(1.5)

∞∫
0

x−k

∞∫
x

f(t)dt

p

dx ≤
(

p

1− k

)p
∞∫
0

xp−kfp(x)dx (p ≥ 1, k < 1).

Over the last decades, many generalizations and refinements of (1.4) and (1.5) have been
discovered and rediscovered (see e.g. [25], [26], [30], [31], [36], [37] and the references cited
therein). For example, in 1971 Shum [37] obtained the following refinements of (1.4) and (1.5):

(1.6)

b∫
0

x−k

 x∫
0

f(t)dt

p

dx+
p

k − 1
b1−k

 b∫
0

f(t)dt

p

≤
(

p

k − 1

)p
b∫
0

xp−kfp(x)dx

for p ≥ 1, k > 1, 0 < b ≤ ∞, and

(1.7)

∞∫
b

x−k

∞∫
x

f(t)dt

p

dx+
p

1− k
b1−k

∞∫
b

f(t)dt

p

≤
(

p

1− k

)p
∞∫
b

xp−kfp(x)dx
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HARDY ’ S INEQUALITY VIA CONVEXITY 3

for p ≥ 1, k < 1, 0 ≤ b <∞.

Our aim in this paper is to give a survey of Hardy’s inequalities via the use of convexity
argument. Hardy himself did obviously not discover this simple and natural argument even if
Jensen’s inequality (proved in 1906) was of course known to him. We strongly believe that if
so both the history and the prehistory of what is today called Hardy type inequalities would had
changed in a dramatic way. See our Section 5 for a further discussion on this topic, which is
important for our paper.

2. HARDY TYPE I NEQUALITIES

In 1965, Godunova [8] while studying inequalities with convex functions, initiated a simple
direct way of obtaining Hardy’s inequality via a convexity argument by proving that for an
arbitrary functionϕ(x) such thatϕ−1(x) is convex the following inequality holds:

(2.1)

∞∫
0

ψ(x)ϕ−1

 x∫
0

k(x, ξ)ϕ(f(ξ)dξ

 dx ≤ C

∞∫
0

f(x)dx,

wherek(x, ξ) andψ(x) are weight and kernel functions andC is a constant independent of the
functionϕ−1(x). In fact, a direct application of Jensen’s inequality

ϕ−1

 x∫
0

k(x, ξ)ϕ(f(ξ)dξ

 dx ≤
x∫
0

k(x, ξ)f(ξ)dξ

and Fubini’s theorem show that the left hand side of (2.1) yields
∞∫
0

ψ(x)ϕ−1

 x∫
0

k(x, ξ)ϕ(f(ξ)dξ

 dx ≤
∞∫
0

ψ(x)

x∫
0

k(x, ξ)f(ξ)dξdx

=

∞∫
0

f(ξ)

∞∫
ξ

ψ(x)k(x, ξ)dxdξ.

By using this simple technique we in particular obtain the following useful result:

Theorem 2.1.Letφ be a positive and convex function on(0,∞). Then

(2.2)

∞∫
0

φ

1

x

x∫
0

g(t)dt

 dx

x
≤

∞∫
0

φ(g(x))
dx

x
.

Remark 2.1. By choosingφ(x) = xp inequality (2.2) yields Hardy’s inequality in the following
form

(2.3)

∞∫
0

1

x

x∫
0

g(t)dt

p

dx

x
≤

∞∫
0

gp(x)
dx

x
, p ≥ 1.

By using the substitutionf(x) = g(x
p−1

p )x−
1
p in (2.3) withp > 1 yields the classical Hardy’s

inequality (1.2).
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4 JAMES A. OGUNTUASE AND LARS-ERIK PERSSON

Remark 2.2. This result by Godunova seems to be fairly little referred to and almost unknown
in the western literature. It was rediscovered in 2002 in the paper [20] by Kaijser et al. This
was the starting point of a new development of the subject. For example, most of the results
reported in this paper are influenced by Theorem 2.1 and Remark 2.1.

Remark 2.3. We also note that (2.2) also directly implies other classical inequalities. For
example by using it withφ(u) = up, replacingg(x) by ln g(x) and making the substitution
h(x) = g(x)

x
we obtain that

(2.4)

∞∫
0

exp

1

x

x∫
0

lnh(t)dt

 dx ≤ e

∞∫
0

h(x)dx.

This is the classical Pólya-Knopp’s inequality, which sometimes is called Knopp’s inequal-
ity [21] but from the literature it is obvious that Pólya knew it before (from around 1925).
Moreover, by restricting to step functions (2.4) implies another classical inequality, namely the
famous Carleman inequality

(2.5)
∞∑

n=1

√
a1...an ≤ e

∞∑
n=1

an,

from 1922, see [3]. Moreover, it is easy to see that (2.4) and (2.5) are limiting cases of (1.2) and
(1.1), respectively, asp→∞.

The above remarks means that the simply proved inequality (1.3) by convexity argument in
fact directly implies (1.1), (1.2), (2.4) and (2.5).

We also mention that in 1964, Levinson [27] proved that ifΦ is a twice differenciable convex

increasing function on[0,∞) with Φ(t)Φ′′(t) ≥
(
1− 1

p

)
Φ′(t)2 for all t > 0, then

∞∫
0

Φ

1

x

x∫
0

|f(t)| dt

 dx ≤ (p′)
p

∞∫
0

Φ (|f(t)|) dx.

The above estimate is a consequence of the Jensen inequality used with the convex function
Ψ(u) = Φ(u)

1
p and the classical Hardy inequality (1.2) used with the functionΨ(|x)|) (cf. [26]).

In 1999, Heinig [15] obtained the weighted extension of Levinson’s result [27] by showing the
following result:

Theorem 2.2. (i) If ϕ ∈ Φp, p > 1, andsupr>0

∞∫
r

u(t)
tp
dt

 1
p
 r∫

0

v(t)1−p′dt

 1
p′

<∞, then

(2.6)

∞∫
0

u(x)ϕ

1

x

x∫
0

f(t)dt

 dx ≤ C

∞∫
0

v(x)ϕ (f(x)) dx.

(ii) If ϕ ∈ Φ, andv(x) = xα

∞∫
x

u(t)
tα+1dt, α > 0, then (2.6) holds withC = eα.

Moreover, by mainly using a convexity argument, Imoru [16] gave another proof of a gener-
alized form of (1.6)-(1.7). In particular, Imoru [16] established the following result:
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HARDY ’ S INEQUALITY VIA CONVEXITY 5

Theorem 2.3. Let g be continuous and nondecreasing on[0,∞] with g(0) = 0, g(x) > 0
for x > 0 and g(∞) = ∞. If p ≥ 1, k 6= 1 and f(x) is nonnegative and Lebesgue-Stieltjes
integrable with respect tog(x) on [0, b] or [b,∞] according to ifk > 1 or k < 1. Then

b∫
0

g(x)−k

 x∫
0

f(t)dg(t)

p

dg(x) +
p

k − 1
g(b)1−k

 b∫
0

f(t)dg(t)

p

≤
(

p

k − 1

)p
b∫
0

g(x)p−kfp(x)dg(x)(2.7)

for p ≥ 1, k > 1, 0 < b ≤ ∞, and
∞∫
b

g(x)−k

∞∫
x

f(t)dg(t)

p

dg(x) +
p

1− k
g(b)1−k

∞∫
b

f(t)dg(t)

p

≤
(

p

1− k

)p
∞∫
b

g(x)p−kfp(x)dg(x)(2.8)

for p ≥ 1, k < 1, 0 ≤ b < ∞. The inequalities sign in (2.7)-(2.8) are reversed if0 < p ≤ 1,
furthermore the constant on the right hand sides of (2.7) or (2.8) is the best possible.

In a recent paper, Persson and Oguntuase [39] presented another elementary proof of (1.6)-
(1.7) (or more generally (2.7)-(2.8)) using Hölder’s and reversed Hölder’s inequalities, which
are consequences of Jensen’s inequality. In particular, Persson and Oguntuase [39] established
the following results:

Theorem 2.4. Let g be continuous and nondecreasing on[0,∞] with g(0) = 0, g(x) > 0 for
x > 0 andg(∞) = ∞. Let p, k, b ∈ R, where0 < b ≤ ∞ and such that one of the following
holds:

(i) p ≥ 1 andk > 1,
(ii) p < 0 andk < 1.
If f(x) is a nonnegative integrable function on[0, b] such that

0 <

b∫
0

g(x)p−kfp(x)dg(x) <∞,

then

b∫
0

g(x)−k

 x∫
0

f(t)dg(t)

p

dg(x) +
p

k − 1
g(b)1−k

 b∫
0

f(t)dg(t)

p

≤
(

p

k − 1

)p
b∫
0

g(x)p−kfp(x)dg(x).(2.9)

(iii) If 0 < p ≤ 1 andk > 1, then inequality (2.9) holds in the reversed direction.
The constant

(
p

k−1

)p
on the right hand side of (2.9) is the best possible in all cases.
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6 JAMES A. OGUNTUASE AND LARS-ERIK PERSSON

Theorem 2.5. Let g be continuous and nondecreasing on[0,∞] with g(0) = 0, g(x) > 0 for
x > 0 and g(∞) = ∞. Let p, k, b ∈ R with 0 < b ≤ ∞ and such that one of the following
holds:

(iv) p ≥ 1 andk < 1,
(v) p < 0 andk > 1.
If f(x) is a nonnegative integrable function on[b,∞] such that

0 <

∞∫
b

g(x)p−kfp(x)dg(x) <∞,

then

∞∫
b

g(x)−k

∞∫
x

f(t)dg(t)

p

dg(x) +
p

1− k
g(b)1−k

∞∫
b

f(t)dg(t)

p

≤
(

p

1− k

)p
∞∫
b

g(x)p−kfp(x)dg(x).(2.10)

(vi) If 0 < p ≤ 1 andk < 1, then inequality (2.10) holds in the reversed direction.
The constant

(
p

k−1

)p
on the right hand side of (2.10) is the best possible in all cases.

Remark 2.4. The simple proof in [39] shows that some versions of (1.6)-(1.7) (or more gener-
ally (2.7)-(2.8)) in fact holds also forp < 0.

3. M ULTIDIMENSIONAL HARDY TYPE I NEQUALITIES

In 1968, Gudanova [9] gave the multidimensional analogue of the result in [8] by proving the
following result:

Theorem 3.1.Letk(t1, t2, ..., tn) ≥ 0 for 0 < ti <∞, i = 1, 2, ..., n;∫
Vt

k(t1, t2, ..., tn)dVt = 1,

whereVt is a domain in the n-dimensional Eucleadian space such that0 < ti < ∞, i =
1, 2, ..., n; Vx and Vy are defined analogously toVt; ϕ(u) is nonnegative convex function for
u ≥ 0; k(y1, y2, ..., yn) ≥ 0 for 0 < yi <∞; f 6= 0; ϕ(x1,x2,...,xn)

x1,x2,...,xn
∈ L1(Vx), then∫

Vx

1

x1...xn

ϕ

(
1

x1...xn

∫
Vy

k

(
y1

x1

, ...,
yn

xn

)
f(y1, y2, ..., yn)dVy

)
dVx

≤
∫

Vx

ϕ(f(x1, x2, ..., xn))

x1...xn

dVx.(3.1)

Proof. This follows almost directly by applying Jensen’s inequality, Fubini’s theorem and using
the substitutionyi

xi
= ti, i = 1, 2, 3, · · · , n.

Remark 3.1. We see that the casen = 1 inequality (3.1) yields the classical Hardy’s inequality
(1.2) via (1.3).
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In 1992, Pachpatte [38] obtained a natural n-dimensional generalization of the classical Hardy
integral inequality (1.2) by using Fubini’s theorem and Jensen’s inequality. In particular, he
proved that

∞∫
0

...

∞∫
0

(
n∏

i=1

xi

)−p

F p(x1, x2, ..., xn)dx1...dxn

≤
(

p

p− 1

)np
∞∫
0

...

∞∫
0

fp(x1, x2, ..., xn)dx1...dxn(3.2)

holds forp > 1 and all nonnegative functionf ∈ Lp(Rn
+), whereF is defined onRn

+ by

F (x1, x2, ..., xn) =

x1∫
0

...

xn∫
0

f(t1, t2, ..., tn)dt1...dtn,

and the constant
(

p
p−1

)np

is the best possible. The corresponding results forp < 0 and0 <

p < 1 were recently obtained by Oguntuaseet al. [31] as consequences of much more general
inequalities for convex and concave functions (see also [30] for further details).

In 2005, Kaijser et. al. [19] used the notion of convexity to obtain the following multidimen-
sional Hardy-type inequality:

Theorem 3.2. Let 0 < bi ≤ ∞, i = 1, 2, ..., n (n ∈ Z+), −∞ ≤ a < c ≤ ∞ and letΦ be a
positive function on[a, c], if Φ is convex, then

b1∫
0

...

bn∫
0

φ

 1

x1...xn

x1∫
0

...

xn∫
0

f(t1...tn)dt1...dtn

 dx1...dxn

x1...xn

≤
b1∫
0

...

bn∫
0

φ (f(x1...xn))

(
1− x1

b1

)
...

(
1− xn

bn

)
dx1...dxn

x1...xn

,(3.3)

for every function on (0,b) such thata < f(x) < c. Furthermore, they showed that ifΦ is
concave, then the sign of (3.3) holds in the reversed direction.

Remark 3.2. By choosingΦ(t) = tp in the above result, some natural multidimensional forms
of the classical and reversed Hardy type inequalities are obtained. Specifically, the following
results were derived.

Corollary 3.3. Let0 < di ≤ ∞, i = 1, 2, ..., n (n ∈ Z+).
(a) If p > 1 or p < 0, then

d1∫
0

...

dn∫
0

 1

y1...yn

y1∫
0

...

yn∫
0

g(s1...sn)ds1...dsn

p

dy1...dyn

≤
(

p

p− 1

)pn
d1∫
0

...

dn∫
0

gp (y1...yn)

(
1−

(
y1

d1

) p−1
p

)
...

(
1−

(
yn

dn

) p−1
p

)
dy1...dyn,

holds for each positive functiong on (0,d).
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(b) If 0 < p < 1, then

∞∫
d1

...

∞∫
dn

 1

y1...yn

y1∫
0

...

yn∫
0

g(s1...sn)ds1...dsn

p

dy1...dyn

≥
(

p

1− p

)pn
∞∫
d1

...

∞∫
dn

gp (y1...yn)

(
1−

(
d1

y1

) 1−p
p

)
...

(
1−

(
dn

yn

) 1−p
p

)
dy1...dyn,

for each positive functiong on (d,∞).
(c) The constants in the inequalities above are sharp in all cases.

Remark 3.3. By applying Corollary 3.3(a) with p > 1 andd1 = d2 = · · · = dn = ∞ we
obtain the inequality (3.2) by Pachpatte.

In a recent paper, Oguntuaseet al. [32] established a class of more general integral multidi-
mensional Hardy type inequalities for an almost everywhere positive functionφwhich is convex
for p > 1 andp < 0, concave forp ∈ (0, 1) and such thatAxp ≤ φ(x) ≤ Bxp holds onR+,
for some positive constantsA ≤ B. Oguntuaseet al. [32] obtained a class of general integral
multidimensional Hardy type inequalities with power weights, whose left hand sides involve

φ

 x1∫
0

...

xn∫
0

f(t)dt

 instead of

 x1∫
0

...

xn∫
0

f(t)dt

p

, while the corresponding right hand sides

remain as in the classical Hardy’s inequality and have explicit constants in front of the inte-
grals. In particular, for the casep > 1 the following strenghtened multidimensional Hardy type
inequalities were obtained:

Theorem 3.4. Let 1 < p < ∞ andm = (m1, ...,mn) ∈ Rn be such thatmi 6= 1, i = 1, ..., n.
Letφ : [0,∞) → R be a convex, almost everywhere positive function, such thatAxp ≤ φ(x) ≤
Bxp holds on[0,∞) for some constants0 < A ≤ B <∞,

(i) If b ∈ (0,∞] andm > 1, then the inequality

b1∫
0

...

bn∫
0

φ

 x1∫
0

...

xn∫
0

f(t)dt

 n∏
i=1

x−mi
i dx

≤ B2

A

(
n∏

i=1

p

mi − 1

)p b1∫
0

...

bn∫
0

fp(x)dx
n∏

i=1

xp−mi

i

[
1−

(
xi

bi

)mi−1

p

]
dx(3.4)

holds for all nonnegative integrable functionsf : (0,b) → R.
(ii) If b ∈ [0,∞) andm < 1, then the inequality

∞∫
b1

...

∞∫
bn

φ

∞∫
x1

...

∞∫
xn

f(t)dt

 n∏
i=1

x−mi
i dx

≤ B2

A

(
n∏

i=1

p

1−mi

)p ∞∫
b1

...

∞∫
bn

fp(x)dx
n∏

i=1

xp−mi

i

[
1−

(
bi
xi

) 1−mi
p

]
dx(3.5)

holds for all nonnegative integrable functionsf : (b,∞) → R.
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Furthermore, the related inequalities to those in Theorem 3.4 to the casesp < 0 and0 < p <
1 were also established in [32] as follows:

Theorem 3.5. Suppose that−∞ < p < 0 andm = (m1, ...,mn) ∈ Rn be such thatmi 6= 1,
i = 1, ..., n. Letφ : (0,∞) → R be a positive convex function, such thatAxp ≤ φ(x) ≤ Bxp

holds on(0,∞) for some constants0 < A ≤ B < ∞. If b ∈ (0,∞] and m < 1, then
inequality (3.4) holds for all positive integrable functionsf on (0,b). If b ∈ [0,∞) and
m > 1, then the inequality (3.5) holds for all positive integrable functionsf on (b,∞).

Theorem 3.6. Let 0 < p < 1 andm = (m1, ...,mn) ∈ Rn be such thatmi 6= 1, i = 1, ..., n.
Letφ : [0,∞) → R be a convex, almost everywhere positive function, such thatBxp ≤ φ(x) ≤
Axp, x ∈ [0,∞), for some constants0 < B ≤ A <∞. For a functionf let F be defined by

F (x) =



x1∫
0

...

xn∫
0

f(t)dt m > 1

∞∫
x1

...

∞∫
xn

f(t)dt m < 1.

(i) If b ∈ (0,∞] andm > 1, then
b1∫
0

...

bn∫
0

φ (F (x))
n∏

i=1

x−mi
i dx

≥ B2

A

(
n∏

i=1

p

mi − 1

)p b1∫
0

...

bn∫
0

fp(x)dx
n∏

i=1

xp−mi

i

[
1−

(
xi

bi

)mi−1

p

]
dx

holds for all nonnegative integrable functionsf : (0,b) → R.
(ii) If b ∈ [0,∞) andm < 1, then

∞∫
b1

...

∞∫
bn

φ (F (x))
n∏

i=1

x−mi
i dx

≥ B2

A

(
n∏

i=1

p

1−mi

)p ∞∫
b1

...

∞∫
bn

fp(x)dx
n∏

i=1

xp−mi

i

[
1−

(
bi
xi

) 1−mi
p

]
dx

4. HARDY TYPE I NEQUALITIES WITH GENERAL K ERNELS

As mentioned the first author which derived a Hardy type inequality with a general kernel
was Godunova [8] (see also [9]). In a recent paper, Kaijser et. al. [19] obtained some new inte-
gral inequalities with general integral operators (without additional restrictions on the kernel).
Specifically, the following results were stated and proved:

Theorem 4.1. Let u be a weight function on(0, b), 0 < b ≤ ∞, and let k(x, y) ≥ 0 on
(0, b)× (0, b). Assume thatk(x,y)u(x)

xK(x)
is locally integrable on(0, b) for each fixedy ∈ (0, b) and

definev by

v(y) = y

b∫
y

k(x, y)

K(x)
u(x)

dx

x
<∞, y ∈ (0, b).
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If Φ is a positive and convex function on(a, c), −∞ ≤ a < c ≤ ∞, then

b∫
0

Φ(Akf(x))u(x)
dx

x
≤

b∫
0

Φ(f(x))v(x)
dx

x
,

for all f with a < f(x) < c, 0 ≤ x ≤ b, where

(4.1) Akf(x) =
1

K(x)

x∫
0

k(x, y)f(y)dy, K(x) =

x∫
0

k(x, y)dy <∞.

In the same paper the dual operatorA?
k, defined by

(4.2) A?
kf(x) =

1

K̃(x)

∞∫
x

k(x, y)f(y)dy,

whereK̃(x) =

∞∫
x

k(x, y)dy <∞ was studied and the following result was proved:

Theorem 4.2.For 0 ≤ b <∞, letu be a weight function such thatk(x,y)u(x)

x eK(x)
is locally integrable

on (b,∞) for each fixedy ∈ (b,∞). Let the functionv be defined by

v(y) = y

y∫
b

k(x, y)

K̃(x)
u(x)

dx

x
<∞, y ∈ (b,∞).

If Φ is a positive and convex function on(a, c), −∞ ≤ a < c ≤ ∞, then

∞∫
b

Φ(A?
kf(x))u(x)

dx

x
≤

∞∫
b

Φ(f(x))v(x)
dx

x
,

for all f with a < f(x) < c, 0 ≤ x ≤ b, whereA?
k is defined by (4.2).

The result for the operatorAk which involves the casesp 6= q without additional restrictions
on the kernel was derived by Kaijser et. al. [19] as follows:

Theorem 4.3.Let 1 < p ≤ q <∞, 0 < b ≤ ∞, s ∈ (1, p), and letΦ be a convex and strictly
monotone function on(a, c), −∞ ≤ a < c ≤ ∞. Let AK be the general Hardy operator
defined by (4.1). Then the inequality

(4.3)

 b∫
0

[Φ(AKf(x))]q u(x)
dx

x


1
q

≤ C

 b∫
0

Φp(f(x))v(x)
dx

x


1
p

holds for all functionsf(x), a < f(x) < c, if

A(s) := sup
0<t<b

 b∫
t

[
k(x, t)

K(x)

]q

u(x)V (x)
q(p−s)

p
dx

x


1
q

V (t)
s−1

p <∞
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holds, where

V (t) =

t∫
0

v1−p′(x)

x1−p′
dx.

Moreover, if C is the best possible constant in (4.3), then

C ≤ inf
1<s<p

(
p− 1

p− s

) 1
p′

A(s).

In 2008, Oguntuaseet. al. [34] obtained some new multidimensional Hardy-type inequalities
involving arithmetic mean operators with general positive kernels using mainly a convexity
argument. The results obtained improved some known results in the literature and in particular,
some recent results of Kaijser et. al. [19] are generalized and complemented. By defining the
general Hardy-type (arithmetic mean) operatorsAK and its dualAK∗ as follows:

(4.4) AKf(x1, ..., xn) :=
1

K(x1, ..., xn)

x1∫
0

...

xn∫
0

k(x1, ..., xn, t1, ..., tn)f(t1, ..., tn)dt1...dtn

and

(4.5) AK∗f(x1, ..., xn) :=
1

K̃(x1, ..., xn)

∞∫
x1

...

∞∫
xn

k(x1, ..., xn, t1, ..., tn)f(t1, ..., tn)dt1...dtn

with K(x1, ..., xn) andK̃(x1, ..., xn) given by

(4.6) K(x1, ..., xn) :=

x1∫
0

...

xn∫
0

k(x1, ..., xn, t1, ..., tn)dt1...dtn

and

(4.7) K̃(x1, ..., xn) :=

∞∫
x1

...

∞∫
xn

k(x1, ..., xn, t1, ..., tn)dt1...dtn,

then Oguntuaseet. al. [34] obtained the following results:

Theorem 4.4. Let n ∈ N+, k(x1, ..., xn, t1, ..., tn) and u(x1, ..., xn) be weight functions and
assume that

k(x1, ..., xn, t1, ..., tn)u(x1, ..., xn)

x1...xnK(x1, ..., xn)

is locally integrable and for each(t1, ..., tn), ti ∈ (0, bi), definev by

v(x1, ..., xn) = t1...tn

b1∫
t1

...

bn∫
tn

k(x1,..., xn, t1, ..., tn)u(x1, ..., xn)

K(x1, ..., xn)

dx1...dxn

x1...xn

<∞.

(i) If Φ is positive and convex on(a, c), −∞ ≤ a < c ≤ ∞, then
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b1∫
0

...

bn∫
0

Φ (AKf(x1, ..., xn))u(x1, ..., xn)
dx1...dxn

x1...xn

≤
b1∫
0

...

bn∫
0

Φ (f(x1, ..., xn)) v(x1, ..., xn)
dx1...dxn

x1...xn

for all f with a < f(x1, ..., xn) < c, 0 ≤ xi ≤ bi, i = 1, 2, ..., n.
(ii) If Φ is positive and concave on(a, c),−∞ ≤ a < c ≤ ∞, then

b1∫
0

...

bn∫
0

Φ (AKf(x1, ..., xn))u(x1, ..., xn)
dx1...dxn

x1...xn

≥
b1∫
0

...

bn∫
0

Φ (f(x1, ..., xn)) v(x1, ..., xn)
dx1...dxn

x1...xn

for all f with a < f(x1, ..., xn) < c, 0 ≤ xi ≤ bi, i = 1, 2, ..., n. HereAK andK(x1, ..., xn)
are as defined by (4.4) and (4.6), respectively.

Furthermore, in the same paper Oguntuaseet. al. [34] also obtained the dual of Theorem 4.4
as follows:

Theorem 4.5. Let n ∈ N+, 0 ≤ bi < xi, ti ≤ ∞, i = 1, 2, ..., n, and letk(x1...xn, t1, ..., tn)
andu(x1, ..., xn) be weight functions such that

k(x1, ..., xn, t1, ..., tn)u(x1, ..., xn)

x1...xnK̃(x1, ..., xn)

is locally integrable and for each(t1, ..., tn), ti ∈ (bi,∞), definev by

v(x1, ..., xn) = t1...t1

t1∫
b1

...

tn∫
bn

k(x1, ..., xn, t1, ..., tn)u(x1, ..., xn)

K̃(x1, ..., xn)

dx1...dxn

x1...xn

<∞.

(i) If Φ is positive and convex on(a, c), −∞ ≤ a < c ≤ ∞ andAK∗ is the general dual
Hardy operator defined by (4.5), then the inequality

∞∫
b1

...

∞∫
bn

Φ (AK∗f(x1, ..., xn))u(x1, ..., xn)
dx1...dxn

x1...xn

≤
∞∫
b1

...

∞∫
bn

Φ (f(x1, ..., xn)) v(x1, ..., xn)
dx1...dxn

x1...xn

holds for allf with a < f(x1, ..., xn) < c, 0 ≤ xi ≤ bi, i = 1, 2, ..., n.
(ii) If Φ is positive and concave on(a, c), −∞ ≤ a < c ≤ ∞ andAK∗ is the general dual

Hardy operator defined by (4.5), then the inequality
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∞∫
b1

...

∞∫
bn

Φ (AK∗f(x1, ..., xn))u(x1, ..., xn)
dx1...dxn

x1...xn

≥
∞∫
b1

...

∞∫
bn

Φ (f(x1, ..., xn)) v(x1, ..., xn)
dx1...dxn

x1...xn

holds for allf with a < f(x1, ..., xn) < c, 0 ≤ xi ≤ bi, i = 1, 2, ..., n, andK̃(x1, ..., xn) is as
defined by (4.7).

Moreover, for the case1 < p ≤ q < ∞ the following generalization of the Kaijser et. al.
[19] result was proved in [34]:

Theorem 4.6. Let 1 < p ≤ q < ∞, 0 < bi ≤ ∞, s1, ..., sn ∈ (1, p), i = 1, 2, ..., n and let
Φ be a convex function on(a, c), −∞ ≤ a < c ≤ ∞. Let AK be the general Hardy operator
defined by (4.4) and letu(x1, ..., xn) andv(x1, ..., xn) be weight functions, wherev(x1, ..., xn)
is of product type i.e.v(x1, ..., xn) = v(x1).v(x2)...v(xn). Then the inequality

 b1∫
0

...

bn∫
0

[Φ(AKf(x1, ..., xn))]q u(x1, ..., xn)
dx1...dxn

x1...xn


1
q

≤ C

 b1∫
0

...

bn∫
0

Φp(f(x1, ..., xn))v(x1, ..., xn)
dx1...dxn

x1...xn


1
p

(4.8)

holds for all functionsf(x1, ..., xn), a < f(x1, ..., xn) < c, if

A(s1, ..., sn) := sup
0<t1...tn<b1...bn

 b1∫
t1

...

bn∫
tn

[
k(x1, ..., xn, y1, ..., yn)

K(x1, ..., xn)

]q

u(x1, ..., xn)

·V
q(p−s1)

p

1 (x1)...V
q(p−sn)

p
n (xn)

dx1...dxn

x1...xn

) 1
q

V
s1−1

p

1 (t1)...V
sn−1

p
n (tn) <∞

holds, where

Vi(xi) =

xi∫
0

v1−p′dti, i = 1, 2, ..., n,

andp′ = p
p−1

. Furthermore, ifC is the best possible constant in (4.8), then

C ≤ inf
1<s1...sn<p

(
p− 1

p− s1

) 1
p′

...

(
p− 1

p− sn

) 1
p′

A(s1, ..., sn).

Remark 4.1. For the casen = 1 (4.8) coincides with inequality (4.3) obtained by Kaijser et.
al. in [19].
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5. FURTHER RESULTS AND CONCLUDING REMARKS

Remark 5.1. In this paper we have pronounced that Jensen’s inequality implies Hardy’s in-
equality. We also pronounce that Jensen’s inequality implies several of the classical inequal-
ities e.g. those by Hölder, Young, Minkowski, Beckenbach-Dresher, Hilbert, Levin, Hardy-
Littlewood-Pólya and the AG-mean inequality or, more generally, that the scale of Power means
Pα or even general Gini meansGα,β increases in bothα andβ (−∞ < α, β < ∞). See the
book of Niculescu-Persson [29] and the references given there.

Here we just give a simple proof of the fact that Jensen’s inequality directly implies Hölder
inequality

(5.1)
∫
Ω

|fg| dµ ≤

∫
Ω

|f |p dµ

 1
p
∫

Ω

|g|q dµ

 1
q

,
1

p
+

1

q
= 1, p > 1,

without going via Young’s inequality as is usually done in most textbooks, however c.f. e.g.
[28, p. 39-40].

Proof. Without loss of generality we assume that0 <

∫
Ω

|g|q dµ < ∞ and putg1 = |g|q and

f1 = |f | |g|−
1

p−1 . Then, by Jensen’s inequality applied with the convex functionΦ(u) = up, we
obtain that

(5.2)

 1∫
Ω
g1dµ

∫
Ω

f1g1dµ

p

≤ 1∫
Ω
gdµ

∫
Ω

fp
1 g1dµ,

i.e.,

(5.3)
∫
Ω

f1g1dµ ≤

∫
Ω

fp
1 g1dµ

 1
p
∫

Ω

g1dµ

 1
q

which is (5.1).

Note that our proof above also directly implies that Hölder’s inequality holds in the reverse
direction when0 < p < 1, which follows from the fact that the functionΦ(u) = up is convex
also forp < 0 so that (5.2) holds also forp < 0. This means that (5.3) and, thus, (5.1) holds in
the reverse direction forp < 0, i.e. for0 < q < 1.

Next we give some historical remarks.

Remark 5.2. The almost dramatic period 1915-1925 until Hardy finally stated and proved his
inequality (1.1) was recently described in detail in [24]. Obviously, the prehistory would had
been completely changed if Hardy (or some collaborators from this time) had discovered that
(1.1) can equivalently be rewritten in the form (1.3) and this inequality follows directly from
Jensen’s inequality (and Fubini’s theorem). And Jensen’s inequality from 1906 (see [18] was of
course known to Hardy.

Remark 5.3. Also in the 1928 paper [13] Hardy was not aware of this simple technique since
in the same way we can see that also (1.4) (=the first weighted version of Hardy’s inequality) is
in fact equivalent to (1.3). Just consider the relation

f(x) = h(x
k−1

p )x
k−1

p
−1
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and make the obvious calculations. In particular, this means that in fact (1.4) is not more general
than (1.1).

Remark 5.4. The starting point to begin to develop weighted Hardy’s inequality to what is
today called Hardy type inequalities was just (1.4). The history concerning the development of
this theory was recently described in the book [25]. This development has not been so much
influenced by the simple convexity arguments discussed in this paper, see e.g. the books [14],
[25], [26], [22] and the references given there. We strongly beleive that severaral proofs also in
these more general cases can be simplified by using this powerful convexity technique.

Next, we mention that in the cases we have considered also some generalizations with general
measures can be done. In fact, very recently, Krulić et. al. [23] obtained some new weighted
Hardy type inequalities with an integral operatorAk defined by

(5.4) Akf(x) =
1

K(x)

∫
Ω2

k(x, y)f(y)dµ2(y),

wherek : Ω1 × Ω2 → R is a general nonnegative kernel,(Ω1, µ1) and(Ω2, µ2) are measure
spaces and

(5.5) K(x) =

∫
Ω2

k(x, y)dµ2(y), x ∈ Ω1.

Specifically, they obtained the following results:

Theorem 5.1. Let u be a weight function,k(x, y) ≥ 0. Assume thatk(x,y)
K(x)

u(x) is locally inte-
grable onΩ1 for each fixedy ∈ Ω2. Definev by

v(y) =

∫
Ω1

k(x, y)

K(x)
u(x)dµ1(x) <∞.

If Φ is convex function on the intervalI ⊆ R, then the inequality∫
Ω1

Φ(Akf(x))u(x)dµ1(x) ≤
∫
Ω2

Φ(f(y)v(y)dµ2(y)

holds for all measurable functionsf : Ω2 → R, such thatIm f ⊆ I, whereAk is defined by
(5.4) and (5.5).

Kruli ć et. al. [23] further obtained a more general result than Theorem 4.3 of Kaijser et. al.
[19]. More precisely, they obtained the following generalization of Theorem 5.1 as follows:

Theorem 5.2.Let0 < p ≤ q <∞ and let the assumptions in Theorem 4.3 hold but now with

v(y) =

∫
Ω1

[
k(x, y)

K(x)

] q
p

u(x)dµ1(x)


p
q

<∞.

If Φ is a positive convex function on the intervalI ⊆ R, then the inequality∫
Ω1

[Φ(Akf(x))]
q
p u(x)dµ1(x)

 1
q

≤

∫
Ω2

Φ(f(y)v(y)dµ2(y)

 1
p

holds for all measurable functionf : Ω2 → R, such thatIm f ⊆ I.
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Proof. Follows almost directly by using Jensen’s inequality and Minkowski’s general integral
inequality.

Remark 5.5. Observe that the casep = q yields Theorem 4.3 obtained by Kaijser et. al. [19].

Another type of results can be obtained by using this technique but instead of convex func-
tions by using some closely related class of functions. Here we shall use a class of functions
recently introduced by Abramovich, Jameson and Sinnamon [1] (see also [33]).

Definition 5.1. A functionϕ : [0,∞) → R is superquadratic provided that for allx ≥ 0 there
exists a constantCx ∈ R such that

ϕ(y)− ϕ(x)− ϕ (|y − x|) ≥ Cx (y − x) for all y ≥ 0.

We say thatf is subquadratic if−f is superquadratic.

We also state the following refinement of Jensen’s inequality.(see [1]):

Lemma 5.3. Let (Ω, µ) be a probability measure space. Then the inequality

(5.6) ϕ

(∫
Ω

f(s)dµ(s)

)
≤
∫

Ω

ϕ(f(s))dµ(s)−
∫

Ω

ϕ

(∣∣∣∣f(s)−
∫

Ω

f(s)dµ(s)

∣∣∣∣) dµ(s)

holds for all probability measuresµ and all nonnegativeµ−integrable functionsf if and only
if ϕ is superquadratic. Moreover, (5.6) holds in the reversed direction if and only ifϕ is sub-
quadratic.

In fact, since this refined version of Jensen’s inequality holds for superquadratic functions,
so by using the technique presented in this paper, we can expect to obtain some new refined
Hardy type inequalities. In fact, recently Oguntuase and Persson [33] obtained the following
surprising results (see also Remarks (5.6) and (5.8)).

Theorem 5.4.Let1 < p <∞, k = (k1,...kn) ∈ Rn be such thatki > 1 (i = 1, ..., n), 0 < b ≤
∞, and let the functionf be locally integrable on(0, b) such that0 <

∫ b1
0
...
∫ bn

0

∏n
i=1 x

p−ki

i fp(x)dx <
∞.

(i) If p ≥ 2, then

∫ b1

0

...

∫ bn

0

n∏
i=1

x−ki
i

(∫ x1

0

...

∫ xn

0

f(t)dt

)p

dx

+

(
n∏

i=1

ki − 1

p

)∫ b1

0

...

∫ bn

0

∫ b1

t1

...

∫ bn

tn

∣∣∣∣∣
n∏

i=1

p

ki − 1

(
ti
xi

)1− ki−1

p

f(t)

− 1

x1...xn

∫ x1

0

...

∫ xn

0

f(t)dt

∣∣∣∣p n∏
i=1

x
p−ki−

ki−1

p

i dx

n∏
i=1

t
ki−1

p
−1

i dt

≤

(
n∏

i=1

p

ki − 1

)p ∫ b1

0

...

∫ bn

0

n∏
i=1

(
1−

[
xi

bi

] ki−1

p

)
xp−ki

i fp(x)dx.(5.7)

(ii) If 1 < p ≤ 2, then inequality (5.7) holds in the reversed direction.

Remark 5.6. Equality holds in (5.7) forp = 2.
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Remark 5.7. For the casen = 1 Theorem 5.4 coincides with the corresponding Theorem 3.1
in [33].

Theorem 5.5. Let 1 < p < ∞, k = (k1,...kn) ∈ Rn be such thatki < 1, i = 1, 2, ..., n,
0 ≤ b <∞, and letf be locally integrable on(b,∞) and such that

0 <
∫∞

b1
...
∫∞

bn

∏n
i=1 x

p−ki

i fp(x)dx <∞.

(iii) If p ≥ 2, then∫ ∞

b1

...

∫ ∞

bn

n∏
i=1

x−ki
i

(∫ ∞

x1

...

∫ ∞

xn

f(t)dt

)p

dx

+

(
n∏

i=1

1− ki

p

)∫ ∞

b1

...

∫ ∞

bn

∫ t1

b1

...

∫ tn

bn

∣∣∣∣∣
n∏

i=1

p

1− ki

(
ti
xi

) 1−ki
p

+1

f(t)

− 1

x1...xn

∫ ∞

x1

...

∫ ∞

xn

f(t)dt

∣∣∣∣p n∏
i=1

x
1−ki

p
+p−ki

i dx
n∏

i=1

t
ki−1

p
−1

i dt

≤

(
n∏

i=1

p

1− ki

)p ∫ ∞

b1

...

∫ ∞

b1

n∏
i=1

(
1−

[
bi
xi

] 1−ki
p

)
xp−ki

i fp(x)dx.(5.8)

(iv) If 1 < p ≤ 2, then inequality (5.8) holds in the reversed direction.

Remark 5.8. Equality holds in (5.8) forp = 2.

Remark 5.9. For the casen = 1 Theorem 5.5 reduces to Theorem 3.2 in [33].

Remark 5.10. Finally, we remark that this technique can also be used to prove some operator
valued Hardy type inequalities, see Hansen et. al. [10] (see also [23]).

This is the journey so far, which mainly started in this new setting in the paper [20]. We
strongly believe that this will signal a new direction in the development of Hardy type inequal-
ities
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[6] A. ČIŽMEŠIJA, J. PĚCARIĆ and L.-E. PERSSON, On strengthened Hardy and Pólya-Knopp’s
inequalities,J. Approx. Theory, 125(2003), pp. 74-84.

[7] V. ECHANDIA, C. E. FINOL and L. MALIGRANDA, Interpolation of some spaces of Orlicz type
I, Bull. Polish Acad. Sci. Math.38 (1990) No. 1-12, pp. 125-134.

[8] E. K. GODUNOVA, Inequalities based on convex functions,Izv. Vysh. Uchebn. Zaved. Matematika,
47 (1965), (4), pp. 45-53; English transl. inAmer. Math. Soc., Transl., II Ser.,88 (1970), pp. 57-66.

AJMAA, Vol. 7, No. 2, Art. 18, pp. 1-19, 2011 AJMAA

http://ajmaa.org


18 JAMES A. OGUNTUASE AND LARS-ERIK PERSSON

[9] E. K. GODUNOVA, Integral inequalities with convex functions, Izv. Vysh. Uchebn. Zaved. Matem-
atika, 68 (1968), (1), pp. 47-49 (Russian).
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