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ABSTRACT. LetA be a C*-algebra with unit1 anda ∈ A be a nilpotent. By Donoghue’s The-
orem, all corner points of its numerical rangeV (a) belong to the spectrumσ(a). It is therefore
natural to expect that, more generally, the distance from a pointp on the boundary∂V (a) of
V (a) to σ(a) should be in some sense bounded by the radius of curvature of∂V (a) atp.
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2 M. T. HEYDARI

1. I NTRODUCTION AND PRELIMINARIES

For a bounded linear operatorA on a Hilbert spaceH, the numerical rangeW (A) is the
image of the unit sphere ofH under the quadratic formx →< Ax, x > associated with the
operator. More precisely,

W (A) = {< Ax, x >: x ∈ H, ‖x‖ = 1}.

Thus the numerical range of an operator, like the spectrum, is a subset of the complex plane
whose geometrical properties should say something about the operator.

One of the most fundamental properties of the numerical range is its convexity, stated by the
famous Toeplitz-Hausdorff Theorem. Other important property ofW (A) is that its closure con-
tains the spectrum of the operator,W (A) is a connected set with a piecewise analytic boundary
∂W (A) (see [4]). Hence, for all but finitely many pointsp ∈ ∂W (A), the radius of curvature
Rp(A) of ∂W (A) at p is well defined. By convention,Rp(A) = 0 if p is a corner point of
W (A), andRp(A) = ∞ if p lies inside a flat portion of∂W (A).

Let Dp(A) denote the distance fromp to σ(A), we defineM(A) as the smallest constant such
that

Dp(A) ≤ M(A)Rp(A)(1.1)

for all p ∈ ∂W (A) with finite non zero curvature.

By Donoghue’s TheoremDp(A) = 0 wheneverRp(A) = 0. Therefore,M(A) = 0 for all
convexoid elementA. Recall that a convexoid element is one that its numerical range coincides
with the convex hull of its spectrum. For the non-convexoid elementA,

M(A) = sup
Dp(A)

Rp(A)
(1.2)

where the supremum in the right-hand side is taken along all pointsp ∈ ∂W (A) with finite
non-zero curvature.

The computation ofM(A) for arbitraryn × n matrix A is an interesting open problem. For
n > 3, we have not any exact value of

Mn = sup{M(A) : A ∈ Cn×n}.

Hence, it is natural for Mathias to pose this question that whether there exists a universal con-
stantM such thatM = supn Mn. In this way, Caston, et al [2] obtained the following approxi-
mations forMn:

n

2
sin(

π

n
) ≤ Mn ≤

n

2
.(1.3)

Mirman found a sequence ofn × n Toeplitz nilpotent matricesAn with M(An) ingrowing
asymptotically aslog n (see [2]). Hence, the answer to Mathia’s question is negative. However,
the lower bound in (1.3) is still of some interest, at least for small values ofn. The question of
the exact rate of growth ofMn (is it log n, n or something in between) remains open.

For the study of numerical range of finite matrices, the matrix-theoretic properties can be
exploited to yield special tools which are not available for general operators. For ann-by-n
matrixA, let

pA(x, y, z) = det(xRe(A) + yIm(A) + zIn)
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BOUNDARY CURVATURE 3

and letC(A) denote the dual curve ofpA(x, y, z) = 0. SincepA is a real homogeneous poly-
nomial of degreen, the curveC(A) is given by a real polynomial of degree at mostn(n − 1),
is of classn, and hasn real foci [aj, bj, 1], j = 1, ..., n, which correspond exactly to then
eigenvaluesaj + ibj of A. The connection ofC(A) with the numerical rangeW (A) is provided
by a result of Kippenhahn [3]:W (A) is the convex hull of the real points of the curveC(A),
namely,W (A) is the convex hull of the set{

a + ib ∈ C : a, b ∈ R, ax + by + z = 0 is tangent topA(x, y, z) = 0

}
.

Kippenhahn’s result can be easily verified by considering that

x = max
θ

(
σ(Re(e−iθA))

)
is a supporting line ofW (Re(e−iθA)) for any realθ. Since it can be shown that∂W (A) contains
only finitely many line segments, the above result implies that∂W (A) is piecewise algebraic,
that is, it is the union of finitely many algebraic curves. Hence one important way to yield
∂W (A), is the Kippenhahn’s result stated that the numerical range ofA coincides with the
convex hull of the real points ofC(A) [3]. On the other hand, a parametric representation of
the boundary ofW (A) can be also obtained from the largest eigenvalue ofRe(e−iθA) yielding
useful information onW (A).

For anyn × n matrix A, let λ(θ) denote the maximum eigenvalue ofRe(e−iθA). It is well
known thatλ(θ) is an analytic function ofθ (possibly except for some isolated points), and a unit
vector inCn is such that< Ax, x > belong to∂W (A)∩Lθ if and only if Re(e−iθA)x = λ(θ)x
[3]. Also ∂W (A) admits a parametric representation:

x(θ) = λ(θ)cos(θ)− λ
′
(θ)sin(θ);

y(θ) = λ(θ)sin(θ) + λ
′
(θ)cos(θ).

(again, with possible exception of finitely many points). The curvature and radius of curvature
of ∂W (A) atp = (x(θ), y(θ)) are equals to

K(θ) =
1

λ(θ) + λ
′′
(θ)

and
R(θ) = λ(θ) + λ

′′
(θ),

respectively.

2. MAIN RESULTS

2.1. C*-algebras type. Let A be a C*-algebra with unit1 and letS be the state space ofA,
i.e.,S = {ρ ∈ A∗ : ρ ≥ 0, ρ(1) = 1}. For eacha ∈ A, the C*-algebra numerical rangeV (a)
and numerical radiusv(a) are defined, respectively, by

V (a) := {ρ(a) : ρ ∈ S}, andv(a) := {|z| : z ∈ V (a)}.

Remark 2.1. Let ρ be a state ofA. Then there exists a cyclic representationπρ of A on a
Hilbert spaceHρ and a unit cyclic vectorxρ for Hρ such that

ρ(a) = 〈πρ(a)xρ, xρ〉, a ∈ A.

By Gelfand-Naimark Theorem the direct sumπ : a 7→
∑

ρ∈S ⊕πρ(a) is a faithful representation
of A on the Hilbert spaceH =

∑
ρ∈S ⊕Hρ (see [7]). Therefore, for eachρ ∈ S, ρ(a) ∈

W (πρ(a))(⊆ W (π(a))) and henceV (a) is contained inW (π(a)). On the other hand ifx is a
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4 M. T. HEYDARI

unit vector ofH, then the formulaρ(b) = 〈π(b)x, x〉, b ∈ A defines a state onA and hence
ρ(a) = 〈π(a)x, x〉 ∈ V (a) and it follows that

(2.1) W (A) = V (a),

whereA = π(a) (see also Theorem 3 of [1]).

Hence, for all but finitely many pointsp ∈ ∂V (a), the radius of curvatureRp(a) of ∂V (a) at
p is well defined. By conventionally,Rp(a) = 0 if p is a corner point ofV (a), andRp(a) = ∞
if p lies inside a flat portion of∂V (a).

If Dp(a) denotes the distance fromp to σ(a), we can defineM(a), just like that of operators,
to be the smallest constant such that

Dp(a) ≤ M(a)Rp(a)(2.2)

for all p ∈ ∂V (a) with finite non zero curvature.

Relation (2.1) implies that the Donoghue’s Theorem is also true for the C*-algebra numerical
range and therefore,Dp(a) = 0 wheneverRp(a) = 0. As a consequence,M(a) = 0 for all
convexoid elementa. For the non-convexoid elementa,

M(a) = sup
Dp(a)

Rp(a)
(2.3)

where the supremum in the right-hand side is taken along all pointsp ∈ ∂V (a) with finite
non-zero curvature.

In this paper, we find upper and lower bounds ofM(a) whena is a nilpotent element of
a C∗-algebra. In particular, the exact value ofM(a) whena is nontrivial self-inverse will be
obtained.

2.2. Nilpotency. Let A be a bounded linear operator on a complex Hilbert spaceH. We denote
the numerical radius ofA and the distance from the origin to the boundary of its numerical range
by w(A) andw0(A), respectively.

It has been shown that ifA is a nonzero nilpotent operator with the power of nilpotencyn
such thatw(A) ≤ (n − 1)w0(A), andA attains its numerical radius then the following condi-
tions are equivalent(see [3]):

(1) w(A) = (n− 1)w0(A);
(2) A is unitarily equivalent to an operator of the formηAn ⊕ A

′
, whereη is a scalar satis-

fying |η| = 2w0(A), andA
′
is another operator;

(3) W (A) = λW (An), whereλ is a scalar, andAn is then× n matrix

An :=


0 1 . . . 1

0
...

...
... 1

0


GivenA that is a C*-algebra with unit1 anda ∈ A is a nilpotent element with the power

of nilpotencyn ≥ 1, i.e., an = 0, v(a) = (n − 1)v0(a), wherev0(a) denotes the distance
from the origin to the boundary of its numerical range andA = π(a), whereπ is the faithful
representation ofA that follows from the Gelfand-Naimark constraction, thenW (A) = V (a)
and sow(A) = (n− 1)w0(A). Also an = 0 implies thatAn = 0, A is a nilpotent operator with
nilpotencyn. ThenV (a) = λW (An), whereλ is a scalar, which leads to the following:
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Theorem 2.1. LetA be a C*-algebra with unit1 anda ∈ A be a nilpotent element with the
power of nilpotencyn ≥ 1, i.e., an = 0. If v(a) = (n − 1)v0(a), wherev0(a) denotes the
distance from the origin to the boundary of its numerical range, then

n

2
sin(

π

n
) ≤ M(a) ≤ n

2
.

Proof. Let ∂W (An) = x(θ) + iy(θ) and∂V (a) = u(θ) + iv(θ). By a direct computation we
obtain the following relations:

• u(θ) = Re(λ)x(θ)− Im(λ)y(θ)

• v(θ) = Im(λ)x(θ) + Re(λ)y(θ)

• Dp(a) = |λ|Dp(An)

• Rp(a) = |λ|Rp(An).

Therefore,M(a) = M(An). PutMn = Re(e−iθAn)− λIn andPn(λ) = det(Mn). Then

Pn(λ) = det


−λ e−iθ

2
e−iθ

2
. . . e−iθ

2
eiθ

2
−λ e−iθ

2
. . . e−iθ

2
eiθ

2
eiθ

2
−λ . . . e−iθ

2
...

...
...

.. .
...

eiθ

2
eiθ

2
eiθ

2
. . . −λ

 .

Adding the−1 multiple of any row to before one, we get

Pn(λ) = det



−λ− eiθ

2
λ + e−iθ

2
0 0 . . . 0

0 −λ− eiθ

2
λ + e−iθ

2
0 . . . 0

0 0 −λ− eiθ

2
λ + e−iθ

2
. . . 0

0 0 0 −λ− eiθ

2
. . . 0

...
...

...
...

...
...

eiθ

2
eiθ

2
eiθ

2
eiθ

2
. . . −λ


.

Expanding this determinant about the first column, we get the following recursive formula:

Pn(λ) = (−λ− eiθ

2
)Pn−1(λ) + (−1)n−1 eiθ

2
(λ +

e−iθ

2
)n−1, (n ≥ 1)

with the initial conditionP0(λ) = 1 (see also problem 392 of [8]). Solving this recursive
formula, gives

Pn(λ) =
(−1)n+1

eiθ − e−iθ

[
e−iθ(λ +

eiθ

2
)n − eiθ(λ +

e−iθ

2
)n

]
.(2.4)

Considering the equationPn(λ) = 0, we get the equation(
λ + eiθ

2

λ + e−iθ

2

)n

= e2iθ

in terms ofλ. Solving the above equation in terms ofλ, we have the following roots

λk =
1

2

[
sin θ cot(

kπ + θ

n
)− cos θ

]
,
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wherek = 0, 1, ..., n − 1. By a straightforward computation we see thatλ(θ), the maximum
eigenvalue ofRe(e−iθAn), is equal toλ0 andλ0 ≥ λk, for eachk. So

λ(θ) =
1

2

[
sin(θ) cot(

θ

n
)− cos(θ)

]
(−π ≤ θ ≤ π).(2.5)

The equation (2.5) and the fact thatsin kθ ≤ k sin θ imply thatw(An) = n−1
2

andw0(An) =
1
2
.

The above observations will be useful to verify the following results. Pick−π ≤ θ ≤ π and
let

γ1(θ) :=
(
λ(θ) + iλ

′
(θ)

)
eiθ.

and

γ2(t) = −1

2
+ i(

−3

2
cot(

π

n
)t +

1

2
cot(

π

n
))

for 0 ≤ t ≤ 1 whereλ
′
(θ) = dλ(θ)

dθ
. Then∂W (An) = γ1 + γ2 and so∂W (An) is differentiable.

A direct calculation from (2.5) implies that

λ
′
(θ) =

1

2

[
cos(θ) cot(

θ

n
)− 1

n
sin(θ) csc2(

θ

n
) + sin(θ)

]
(2.6)

for −π ≤ θ ≤ π, θ 6= 0; andλ
′
(0) = 0.

λ
′′
(θ) =

1

2

[
− sin(θ) cot(

θ

n
)− 2

n
cos(θ) csc2(

θ

n
) +(2.7)

1

n2
sin(θ) cos(

θ

n
) csc3(

θ

n
) + cos(θ)

]
for −π ≤ θ ≤ π, θ 6= 0; andλ

′′
(0) = 0. Hence, the radius curvature function of the boundary

of numerical range ofAn, i.e,∂W (An) is

R(θ) =
1

n2
csc3(

θ

n
)

[
sin(θ) cos(

θ

n
)− n cos(θ) sin(

θ

n
)

]
.

Note thatD(π)
R(π)

= n
2

sin(π
n
) and sinceσ(An) = {0},

M(An) = sup
θ 6=0

√
(λ(θ))2 + (λ

′
(θ))2

λ(θ) + λ
′′
(θ)

.(2.8)

Hence
M(An) ≥ n

2
sin(

π

n
).

On the other hand, (1.3) implies that

M(An) ≤ n

2
,

and therefore,
n

2
sin(

π

n
) ≤ M(An) ≤ n

2
.

SinceM(a) = M(An), the proof is completed. In particular, ifn = 2 thenM(a) = 1.
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Remark 2.2. Let a be a self-inverse element, i.e.,a2 = 1 anda 6= 1, then∂V (a) is an ellipse
with foci at ±1 and major/minor axis‖a‖ ± 1

‖a‖ [6]. If ∂V (a) = t cos(θ) + is sin(θ) with
t2 = s2 + 1, then

M(a) = sup
0≤θ≤2π

D(θ)

R(θ)
= sup

0≤θ≤π
2

D(θ)

R(θ)

= sup
0≤θ≤π

2

ts
√

(t cos(θ)− 1)2 + s2 sin2(θ)

(t2 sin2(θ) + s2 cos2(θ))
3
2

= sup
0≤θ≤π

2

ts(t− cos(θ))

(sin2(θ) + s2)
3
2

= max

{√
t2 − 1

t
,

t

t + 1

}
.

Therefore, we have the following corollary:

Corollary 2.2. Leta be a non trivial self inverse element of the C*-algebraA. Then

M(a) = max

{
‖a‖2 − 1

‖a‖2 + 1
,
‖a‖2 + 1

(‖a‖+ 1)2

}
.
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