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ABSTRACT. Let A be a C*-algebra with unit anda € A be a nilpotent. By Donoghue’s The-
orem, all corner points of its numerical rangéa) belong to the spectrum(a). It is therefore
natural to expect that, more generally, the distance from a poam the boundanpV (a) of
V(a) to o(a) should be in some sense bounded by the radius of curvatul¥ @f) at p.
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2 M. T. HEYDARI

1. INTRODUCTION AND PRELIMINARIES

For a bounded linear operater on a Hilbert spacét, the numerical rangé&l/(A) is the
image of the unit sphere @i under the quadratic form —< Axz,x > associated with the
operator. More precisely,

W(A) ={< Az, z >z € H,||z|| = 1}.

Thus the numerical range of an operator, like the spectrum, is a subset of the complex plane
whose geometrical properties should say something about the operator.

One of the most fundamental properties of the numerical range is its convexity, stated by the
famous Toeplitz-Hausdorff Theorem. Other important properfy/¢fd) is that its closure con-
tains the spectrum of the operattr,( A) is a connected set with a piecewise analytic boundary
OW (A) (seel[4]). Hence, for all but finitely many poingse 01V (A), the radius of curvature
R,(A) of OW(A) atp is well defined. By conventionz,(A) = 0 if p is a corner point of
W(A), andR,(A) = oo if p lies inside a flat portion a1V (A).

Let D,(A) denote the distance fromto o(A), we definel/ (A) as the smallest constant such
that

(1.1) D,(A) < M(A)R,(A)
for all p € OW (A) with finite non zero curvature.
By Donoghue’s Theorenv,(A) = 0 wheneverR,(A) = 0. Therefore, M (A) = 0 for all

convexoid elementl. Recall that a convexoid element is one that its numerical range coincides
with the convex hull of its spectrum. For the non-convexoid elemgnt

Dy(A)
Ry(A)

where the supremum in the right-hand side is taken along all ppirtsoiV (A) with finite
non-zero curvature.

(1.2) M(A) = sup

The computation of\/(A) for arbitraryn x n matrix A is an interesting open problem. For
n > 3, we have not any exact value of

M, =sup{M(A): Ae C™"}.

Hence, it is natural for Mathias to pose this question that whether there exists a universal con-
stantM such thatV/ = sup,, M,,. In this way, Caston, et al[2] obtained the following approxi-
mations forM,,:
n . ™ n

(2.3) 5 sm(n) <M, < 5

Mirman found a sequence af x n Toeplitz nilpotent matricesl,, with A/ (A,,) ingrowing
asymptotically asog n (seel[2]). Hence, the answer to Mathia’s question is negative. However,
the lower bound in[(1]3) is still of some interest, at least for small values ®he question of
the exact rate of growth a¥/,, (is it log n, n or something in between) remains open.

For the study of numerical range of finite matrices, the matrix-theoretic properties can be
exploited to yield special tools which are not available for general operators. Fotgm
matrix A, let

pa(z,y, z) = det(zRe(A) +yIm(A) + z1,)

AJMAA Vol. 12, No. 1, Art. 8, pp. 1-7, 2015 AJMAA


http://ajmaa.org

BOUNDARY CURVATURE 3

and letC'(A) denote the dual curve ¢fy(z,y, z) = 0. Sincep, is a real homogeneous poly-
nomial of degree:, the curveC'(A) is given by a real polynomial of degree at mast — 1),

is of classn, and has: real foci [a;,b;,1], j = 1,...,n, which correspond exactly to the
eigenvalues,; + ib; of A. The connection of’(A) with the numerical rangd/(A) is provided
by a result of Kippenhahn [3]i//(A) is the convex hull of the real points of the curggA),
namely,W (A) is the convex hull of the set

{a+z‘be(C:a,beR,ax+by+z:0istangenttQaA(%y,Z) 20}-

Kippenhahn's result can be easily verified by considering that
T = max (o(Re(e ™ A)))

is a supporting line ofi’ (Re(e~% A)) for any rea¥. Since it can be shown that¥ (A) contains

only finitely many line segments, the above result implies ¢H&t(A) is piecewise algebraic,
that is, it is the union of finitely many algebraic curves. Hence one important way to yield
OW (A), is the Kippenhahn's result stated that the numerical rangé obincides with the
convex hull of the real points af'(A) [3]. On the other hand, a parametric representation of
the boundary of¥/(A) can be also obtained from the largest eigenvaluBagt—% A) yielding
useful information otV (A).

For anyn x n matrix A, let \(§) denote the maximum eigenvalue Bt(e="? A). It is well
known that\(6) is an analytic function of (possibly except for some isolated points), and a unit
vector inC" is such thak Az, x > belong todW (A) N L, if and only if Re(e ™ A)x = \(0)x
[3]. Also 0WW(A) admits a parametric representation:

2(0) = X(0)cos(0) — X (0)sin(0);
y(0) = X(0)sin(0) + X (0)cos(h).

(again, with possible exception of finitely many points). The curvature and radius of curvature
of OW (A) atp = (z(6),y(0)) are equals to

and

respectively.

2. MAIN RESULTS

2.1. C*-algebras type. Let A be a C*-algebra with unit and letS be the state space of,
ie.,S={pe A*:p>0,p(l) = 1}. For eachu € A, the C*-algebra numerical rangé&(a)
and numerical radius(a) are defined, respectively, by

V(a) :={pla) : p € S}, andv(a) :={|z] : z € V(a)}.
Remark 2.1. Let p be a state ofAd. Then there exists a cyclic representationof A on a
Hilbert spacef, and a unit cyclic vectot, for H, such that
pla) = (my(a)x,,x,), a € A
By Gelfand-Naimark Theorem the direct suma — 3 _ ®,(a) is a faithful representation

of A on the Hilbert spacét = > _;&H, (see [7]). Therefore, for each € S, p(a) €
W(r,(a))(C W(n(a))) and hencéd/(a) is contained iV (r(a)). On the other hand if is a
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unit vector of’H, then the formulep(b) = (w(b)x,z),b € A defines a state ol and hence
pla) = (m(a)x,z) € V(a) and it follows that

(2.1) W(A) =V(a),
whereA = 7(a) (see also Theorem 3 afl[1]).

Hence, for all but finitely many poings € 0V (a), the radius of curvatur&,(a) of 0V (a) at
p is well defined. By conventionally?,(a) = 0 if p is a corner point o¥/(a), andR,(a) = oo
if p lies inside a flat portion odV (a).

If D,(a) denotes the distance fropto o(a), we can definé// (), just like that of operators,
to be the smallest constant such that

(2.2) Dp(a) < M(a)Ry(a)
for all p € 9V (a) with finite non zero curvature.

Relation [2.1) implies that the Donoghue’s Theorem is also true for the C*-algebra numerical
range and thereford),(a) = 0 wheneverRk,(a) = 0. As a consequencé/(a) = 0 for all
convexoid element. For the non-convexoid elemednt

Dy(a)
Ry(a)
where the supremum in the right-hand side is taken along all ppirgsoV (a) with finite
non-zero curvature.

In this paper, we find upper and lower boundsidfa) whena is a nilpotent element of
a C*-algebra. In particular, the exact value &f(a) whena is nontrivial self-inverse will be
obtained.

(2.3) M (a) = sup

2.2. Nilpotency. Let A be a bounded linear operator on a complex Hilbert s@pacé/e denote
the numerical radius of and the distance from the origin to the boundary of its numerical range
by w(A) andwy(A), respectively.

It has been shown that # is a nonzero nilpotent operator with the power of nilpotency
such thatw(A4) < (n — 1)wg(A), and A attains its numerical radius then the following condi-
tions are equivalent(se€ [3]):

(1) w(A) = (n— Dywo(A); |

(2) Ais unitarily equivalent to an operator of the for,, & A, wherer is a scalar satis-
fying || = 2w(A), andA’ is another operator;

(3) W(A) = AW (A,), where) is a scalar, andl,, is then x n matrix

01 ... 1

A, = 0
1
0

Given A that is a C*-algebra with unit anda € A is a nilpotent element with the power
of nilpotencyn > 1, i.e.,a” = 0, v(a) = (n — 1)vg(a), wherevy(a) denotes the distance
from the origin to the boundary of its numerical range ahd- 7(a), wherer is the faithful
representation ofl that follows from the Gelfand-Naimark constraction, tHér{A) = V(a)
and sow(A) = (n — wy(A). Alsoa™ = 0 implies thatA™ = 0, A is a nilpotent operator with
nilpotencyn. ThenV (a) = AW (A,,), where) is a scalar, which leads to the following:
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Theorem 2.1. Let A be a C*-algebra with unitl anda € A be a nilpotent element with the
power of nilpotency: > 1, i.e.,a™ = 0. If v(a) = (n — 1)vy(a), wherevy(a) denotes the
distance from the origin to the boundary of its numerical range, then

%M?gM@g%

Proof. Let OW (A,) = x(0) + iy(#) anddV (a) = u(f) + iv(0). By a direct computation we
obtain the following relations:

e u(f) = Re(N)x(6) — Im(N\)y(0)

e v(0) = Im(N)z(0) + Re(N)y(0)

o Dy(a) = [ADp(Ayn)

o Rp(a) = |AlRy(An).
Therefore M (a) = M(A,). PutM, = Re(e"*A,) — X,, and P, (\) = det(M,,). Then

- e— 10 e— 10 e— 10
A 5 )
£ _)\ 6710 6719
%9 0 2 o gie
Pn(/\):det % % A ... 62
o1 eif o1
NN A

Adding the—1 multiple of any row to before one, we get

“A-2 A+ 0 0 0 |
0 —A—2 A+ 0 0
0 0 —A-9 A+5- 0
— 2 2.
PN =det | 0 (N 0
61’9 eiG 61‘9 E;G
7 T T T —A

Expanding this determinant about the first column, we get the following recursive formula:

0 e—i@

0 7
c T)"fla (n>1)

Pa(X) = (A= 5)Pacs(0) + (1) - (0 +
with the initial condition%(\) = 1 (see also problem 392 of![8]). Solving this recursive
formula, gives

(2.4) Pa(A) = i 4%A+é%”—i%x+ ﬂ%”
: n T el _ e—if € 2 € 2 :

Considering the equatioR,(\) = 0, we get the equation
61’9 n
( A+ 2 ) _ 20
—1i0 -
A&
in terms of\. Solving the above equation in terms)gfwe have the following roots

)\k:%{sinﬁcot( )—cos&}7

km+ 6
n
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wherek = 0,1,...,n — 1. By a straightforward computation we see théf), the maximum
eigenvalue ofe(e=% A,)), is equal tor, and )\, > A, for eachk. So

(2.5) AO) = % sin(0) cot(%) —cos(0)| (cr<0<m)

The equation| (2]5) and the fact that k6 < ksin 6 imply thatw(A,) = 25 andwg(A,) =
%.

The above observations will be useful to verify the following results. Riek< # < 7 and
let

Y1(0) := (A(O) + N (0))e”.
and
1 =3 ™ 1 T
Yo (t) = 5+ z(7 cot(ﬁ)t +3 cot(ﬁ))

for 0 <t < 1whereX (0) = 29 ThendW (A,) = 7, + 7, and s (A,) is differentiable.

A direct calculation from[(2]5) implies that
(2.6) X () = %{cos(@) cot(g) 21 sin(0) CSC2(9) + sin(ﬁ)]
n

n n

for — < 0 <, 0 # 0; and\'(0) = 0.

(2.7) A (0) = [— sin(0) cot(%) - %cos(&) cscz(%) +

DO | —

% sin(6) COS(%) CSC?’(%) + COS(Q)}

n

for —m < 0 <, 0 # 0; and\”(0) = 0. Hence, the radius curvature function of the boundary
of numerical range ofi,,, i.e,0W (A,) is
R(9) = L csc3(€) [sin(&) cos(g) — ncos(d) sin(g)] :

n? n n n

Note thatg((;r)) = Zsin(Z) and sincer(A,,) = {0},

!

VOO + (X (0))2
(2.8) MAn) =sup =0 T8

Hence

M(A,) > 5 sin(—).

On the other hand] (J.3) implies that !
M(4,) < 5.
and therefore, ; _ ;
55111(%) < M(A) < 5.

SinceM (a) = M(A,), the proof is completed. In particular,if= 2 thenM (a) = 1. 1
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Remark 2.2. Let a be a self-inverse element, i.e% = 1 anda # 1, thendV (a) is an ellipse
with foci at +1 and major/minor axigla|| + ﬁ [6]. If OV (a) = tcos(f) + issin(f) with
t? = s + 1, then

D) _ D(6)

M(a) = sup —= = sup —=
@) 0§0§p27r R(0) ogegg R(0)

t2—1 t
= max ) :
t t+1

Therefore, we have the following corollary:

Corollary 2.2. Leta be a non trivial self inverse element of the C*-algebtaThen
laf* =1 lal® +1 }
M(a) = max{ : .
lall* +1° (lall +1)?
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