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ABSTRACT. We show how the degree of homogeneity of a function is a highly useful, precise
measure of the sensitivity of a function to a change in its variables. This measure can be evaluated
directly thanks to a simple geometric construct, entirely independently of measurement units.
The usefulness of this concept is also illustrated by the fact that it leads to new, direct proofs,
geometric as well as algebraic, of Euler's theorem; this is in contrast to the traditional approach
that requires a limiting process.
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1. INTRODUCTION AND MOTIVATION

While the total differential and the directional derivative are always very precisely defined and
given geometric representations in 3-d space, apparently this is never done in the case of the
degree of homogeneity, also a measure of the sensitivity of a function to a change in its
variables. This small neglect can be considered as unfortunate, because defining and picturing
this quantity offers quite a number of advantages:

1. It provides at a glanc&dependently of any measurement urats order of magnitude of
this sensitivity.

2. The simple geometric construct bfleads to an immediate geometric proof of Euler's
theorem in 3-d space.

3. From the very definition of we can directly obtain an algebraic proof of Euler’s theorem
in n-dimensional space, without any recourse to a limiting process.

Our planis as follows. In Section 2, we defihas a limit, with important properties. Section
3 describes how homogeneous functions can be graphically generated, whatever their degree.
We then offer, in Section 4, a geometric interpretatioh,atarting with the case < £ < 1. We
will observe that this construct has general value for anykeAls an application, in Section 5
we give a geometric proof of Euler’s theorem, extended algebraically, in Section 6, to functions
of n variables.

2. DEFINING THE DEGREE OF HOMOGENEITY AS A LIMIT

Consider a homogenousvariable functiony = f(zy, ..., z,)), i.e. suchthat*y = f(\zy, ..., A\z,,);
while )\ is a positive number, the powér— the degree of homogeneity — can be any real num-
ber. We suppose that poifit;, ..., z,, y) does not contain any zero. L&\ /\ = Ax;/x; =
(A\x; —x;)/z; = A — 1,4 = 1,..,n designate @ommon relativéncrease given to each variable
x;, andAy/y the resulting relative increase gf equal to(Aky — y) Jy = A\¥ — 1.We note that
when allAz; — 0 simultaneouslyp — 1.
Definition. The degree of homogeneitys the limit of the ratio of the relative increase of the
function to the common relative increase given to each variable when the latter tends to zero.
Forming the ratiqAy/y) / (Az;/x;) and taking limits indeed leads to:

o Ayly L Ayly _dyfy A1
2.1) A A AR AN S aa AT TR
by L'Hospital’s rule.
Conversely, if at any of its points), ..., ¥ a functiony = f(xy, ..., x,,) is such that the ratio
(dy/y) / (d\/X) is constant and equal g theny = f(zy, ..., x,) is homogeneous oflegreek.
This follows immediately from the integration of

(2.2) % = kd—;\,
giving

Iny=klnA+InC,
or
(2.3) y=C\' = g(\).

The stricly positive constant of integrati@nis identified by setting/(1) = f(29,...,2°%) = C;
we thus have

(2.4) y=g(\) = f(af, ... a0) A" = yoA",
a power function of\, whose power is its degree of homogeneity.
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The formulationk = % sets in full light the significance df as a sensitivity measure of
y = f(z1,...,x,) With respect to a common relative change in its variables., x,,. A natural
guestion now is: what kind of precision do we have when we say that a one percent increase
in the variables generates in linear approximation @ercent increase in the function? This
approximation of the exact value turns out to be excellent, as the following example gives a first
indication.

Suppose that our function is= 1024292, homogeneous of degrée= 0.6. Consider an
initial point (29, 29) = (1000, 500), with yo = f(29,29) = 549.2803. Let us give to these
variables a one percent increase, implying: 1.01 and f(Az}, Az}) = f(1010,505) = 552.
5694, i.e. arelative increasAy/y = 0.599% . On the other hand the relative increase in linear
approximation is given byly/y = kd\/\ = 0.6%, corresponding to an estimated value of the
functiony* = 552. 5760, and a relative error as small &s19 x 1072,

We will now show thatt remains an excellent tool for the estimate/o§/y even whenk
and\ are significantly different from 1. Let us determine the relative error, derotedde by
using the degree of homogeneity to determine the new value of the function. At)pdhe
exact value of the function i3 = g(\) = y,\*; on the other hand, its linear approximation
around) = 1, denotedy*, is

(2.5) v =y + 9 (1)(A=1) =yl +k(\—1)
and therefore the relative error is

* 1+kN—1
(2.6) ey = L=y LERAZD

y AF
We first observe that the error made is entirely independent o$tiiueture of the function
y = f(xy,...,2z,), a structure that may be very complicated; nor will it depend on the point
(29, ..., 2%, o) we start from. It will solely depend on the degree of homogeneiynd on the
common relative increase given to each variable.

The following table therefore illustrates the precision generatedibyneasuring the sensi-
tivity of anyhomogeneous function of degreatanyof its points.

k 0.6 0.8 1 12 1.4

A
0.8 0.006 0. 004 0  —0.006 —0.016
0.9 0.001 0.0009 0  —0.0013 —0.003
0.99 1.21%107°  8.09%10% 0 —1.22%107° —2.85%107°

1 0 0 0 0 0
1.01 119107 791%10°° 0 —1.18%107° —2.76%107°
1.1 0.001 0.0007 0  —0.001 —0.002
1.2 0.004 0.003 0 —0.004 —0.008

Table 1. The smallness of the error made byn measuring the sensitivity of any homoge-
neous function at any of its points.
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Finally, let us observe that the degree of homogenkity a pure number, independent of
any measurement units. This means that if we can represent it geometrically, we will be able to
have at first sight of a homogeneous function a numerical order of magnitude of its sensitivity
to changes in its variables — something we cannot do with the directional derivative or the
differential, which are unit dependent. In order to do so, let us first show how we can generate
a homogeneous function of any degfee

3. CONSTRUCTING HOMOGENEOUS FUNCTIONS OF DEGREE k.

We first depict, with an example, how such functions can be generated. This will lead to a
geometric interpretation of in a natural, direct way. The benefit of such analysis is that we
will be led to a direct, new proof of Euler’s theorem, without any recourse to a limit process.

o Xpr, 502 g0

Figure 1: Generating a function homogeneous of degrékhe generating curvg = \* (29, 29) = g(\) sweeps
all points of the leading curvg = f(z1,29) = l(z1).

In space(y, z1, z2), consider a single variable functign= f(z1,29) = I(z1); we call this
curve aleadingcurve. As illustrated in figure 1(z,) may be, on various intervals, increasing
or decreasing, concave or convex. LetA(z!, z9) be any point on the horizontal, = =9 ,
and A the point defined byz?, 29, f(2?, 29)).

Let OA designate the ray from the origin to point A and beyond,; this ray will serve as an axis,
denoted\. Consider now the curve corresponding to a positive, power fungtieng(\) =
M f(29,29), wherek is any real number; we call this curveganeratingcurve, andg(1) =
f (29, 29). This curve will be concave or convex according)tec & < 1 ork > 1. In Figure 1,
g(\) is concave.

Choosing all possible values of, we now make this concave curve sweep all points of the
leading curvey = f(z1,29) = I(x;). In our example, this action generates a highly undulating
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surface corresponding to a functign= f(x1,z) homogeneous of degrée Indeed, from any
point (1, 23), multiplying 29 andz by a factorA will multiply f (29, x9) by A*.

We can verify this algebraically. Indeed, the simple knowledgg&(of, z9) = I(z;) andy =
g(\) = N f(29, 29) is sufficient to determine the expression of the entire funcfian, z,); this
can be done, for instance, as follows. With

(3.1) Faf, Axf) = N f(a], 25)
we can set the common growth factoof the variables as

sl )
2 b2,
&2 AT
and write [(3.1) as
a s s
(33) f(=5at, 5 a8) = flan, @) = (=5)F f(ad, o).
L1 L9 L9

We can make both argumentsandz, appear in the last term df (3.3) by usingy= x5 (21 /x2),
for instancewe then obtain the function

(3.4) 1, 35) = <j—§>’ff(x8§—; 29),

which can be ascertained to be homogeneous of dégree

We should stress that the leading cutye ) = f(x1, 29) chosen at the outset in our example
may have more complicated features than those just mentioned. It can be, on various intervals,
negative, not differentiable, or discontinuous, thus leading to functions homogeneous of degree
k with the same properties.

4., THE DEGREE OF HOMOGENEITY : A SIMPLE CONSTRUCTION .

4.1. Thecaséd < k < 1.
As in figure 1,9(\) is pictured in figure 2 as the concave section of flie,, =) surface by
a vertical plane intersecting the horizontal plane along ray W& draw BA as the tangent to
g(\) atA.

. afirst approach

From the very definition of the degree of homogeneity, given by equation 1, we can write

dy/y dy A
4.1 =22 202
(4.1) NN d\y

and therefore

“2) DC OA DC OA DC

~CA'OC OA'OC  OC

As an example of a negative homogeneous function, consider the refreshing ice-cream cone you were called
upon to hand to your daughter. Needless to say, she knows how to please her father. She told you: “ Imagine | put
the tip of my ice-cream at the origin on your diagram, and its heigbih axiszs; r is the radius of the circle at
heighth, where | just let you take a bite.” She made your day when adding: “In your fora (3.3), it seth,

2
k =1, keepingz? < r, | can replacef (29, z9) by +1/12 — (29) = +4/r2 — <h%) . You will certainly agree

2
that the equation of my ice-cream f§x1, zo) = £524 /72 — (h%) ; of coursef(x1,z2) is defined only when

%xl <z < h, and | guarantee thgtis homogeneous of degree one”.
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Figure 2: The degree of homogeneitycan be shown to be equal to the ratio DC/OC. Without loss of generality,
we can normalize OC (equal i = f(9,29)) to 1; k is then just equal to DC. In this diagrarh,is equal to 0.6.

We will not lose any generality if we normalize OC, equalto to one. We thus have the
very simple representation of the degree of homogeneity:

(4.3) k = DC.

. a second approach
| owe to Ernst Hairer an alternate, very elegant way of deriving the résaltDC/OC. We
have, withg’(\) = EX*"1y,

and
,. DC DC

remembering that OA= 1; henceky, = DC, and the result = DC/y, = DC/OC.

We can illustrate how the degree of homogeneity measures the sensitiyity ¢fz;, x2) to
a common, relative change in its variables. Suppose that, as in Fig=2).6. This implies that
an increase of 1% im; andx, generates an increaseyéqual to 0.6% in linear approximation,
and an increase exactly equal to 0.6% on tangent BA.

We can now show that this representation remains valid for any real valugtb& only
proviso being that it is negative, DC is the absolute valuekof

4.2. The casée: > 1.

The vertical sectioy = A\ f(29,29) = My, = g(\) is now a power function of\ with
powerk > 1, pictured in Figure 2 as the convex curve going through O and A Its tangent at A
intersects the axis at B, and the ordinatgat D. We can verify that B will be on the segment
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(A)—
R A
|
Xs A
— x'i
Xy " x?

Figure 3: The casé& > 1. Normalizing OC= y, to one, as in the case< k < 1, the degree of homogenettyis
equal to DC. In this diagran is approximately equal to 1.6.

OA as follows: as before, triangles AAB and CDA are similar; equation|(4.1) applies again,
andk = OA/BA > 1 implies OA> BA. Moreover equation (4]2) applies as well, leading to
k = DC/OC, and we find agaih = DC if OC, equal tay,, is normalized to one.

Before considering the situation wheres negative let us take up two particular cases that
offer special interestt = 1, andk = 0.

4.3. The casé: = 1.

Complex as this surface may be, cutting it with a vertical plane through the origin O results in
an intersection given by ray OAj()\) becomes the linear function= f(z9, 29)); ask tends
toward 1, it can be seen either from Figure 1 or Figure 2 that péirgad D tend to merge with
the origin, and DC/OG= 1.

4.4. The casé: = 0.

As we stressed at the end of SectioraB,homogeneous functions, whatever their degree,
may well exhibit complicated surfaces; homogeneity of degree zero does not create an excep-
tion. This may be surprising if we simply look at the equation defining homogeneity, in this
case

(4.6) f(/\x(l)’ )\.I'g) - /\Of(:E(l),:L“g) = f(x(l)v (ﬂg) = Yo.

We should not forget that the functigiiz;, x2) turns out to be a constag along axis O\; our
generating curve is

(4.7) y=g(A) = yo;
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this is just one member of an infinite number of horizontals emanating from the vertical axis
Oy, sweeping a leading curve = [(z,) = f(x1,29) that may well exhibit the complicated
features we referred to.

To illustrate, consider the function

n n
ar] — br}

n n’
cx} + dxy

(4.8) y=flz1,22) =

homogeneous of degree zero; along anyaray- ux,, the value ofy is

a—bu"
¢+ dun’

a consant independent ofr; andz,, but a highly dependent function of, the angular co-
efficient of rayz, = pxy. The surfacef(zy, z9) cuts the horizontal plane along ray =
(a/b)"" 2.

Geometrically, we can see how any of these horizontal lines is generated. Let us refer to
Figure 2, for instance. With = OA/BA, since OA is fixed, whek: — 0 the length BA must
tend to infinity. As a consequence, Di&nds to the horizontal CAand the length DC collapses
to zero, as it should.

(4.9) y = flay, pay) =

Figure 4: The casé& < 0. Normalizing OC= y, to one, the length DC is equal to the degree of homogeneity in
absolute value. Hergé is equal to— 1.2; DC= |k| = 1.2.

4.5. The casé: < 0.

With o > 0, g(\) = Ay, is now decreasing i < 0; the tangent DB crosses the ordinate at
a point D higher than C, and meets thaxis at B, above A. The slope gf)) being negative,
we have at point Adg/d\ = — AA/AB; therefore, we can write
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dy/y dy A AA’ OA OA

4.10 k== —=— — . ——=— —.
(4.10) dA\/X T d\'y BA 'AA’ BA
Due to the similarity of triangles AAB and CDA, we have
OA DA’ DC DC
4.11 k= — = —=— — = — —;
( ) BA BA’ AA’ oC’

thus, normalising OC 3, to one,k = — DC.
We can conclude that in all cases CD is equal to the degree of homogénaitgbsolute
value. We thus are set up to prove Euler’s theorem in 3-d space.

5. A FIRST APPLICATION : A DIRECT, GEOMETRIC PROOF OF EULER’S THEOREM.

We assume thaj = f(z1,z») is differentiable. Let us come back to Figure 2 and to the last
equality in [4.2), that can be expressed as

bC  DC

OC  f(af,29)’

it will prove particularly useful to obtain Euler’'s theorem. We first can write
(5.1) DC= kf(a!, 29).

Now doublingaz:1 and z9 results in an increase on the tangent’ B4ual to the differential
L (af, 29) 29 + L (af, 29) 29, symmetrical and equal to DC. We thus also have

k:

_of of
and therefore
of 8f
Since pointA(z?, z3) was arbitrarily chosen in plar(el, x5), equation|(53) can be written as
5.4) ) = S (o) 01+ 5 n,m)

which is Euler’s theorem.

6. A DIRECT, ALGEBRAIC PROOF OF EULER’S THEOREM IN n— SPACE.

Your daughter had barely touched her ice-cream when she told you: “I vividly remember that
when our excellent teacher introduced us to homogeneous functions, he demonstrated Euler’s
theorem by differentiating their definitional property with respechi@nd finally taking the
limit when \ — 1.

“It seems to me, she added, that you can obtain the theorem directly, without recourse to a
limiting process. Consider the differential

dy = Z(@f/aa:i)dwi;
=1

dividing by y, you can write

6.1) dy _1190f 1%+_._+ﬁxn%
Yy 81’1 8In Iy
Sincedx/x1 = ... = dx, [/, these can be denotéd /\ and factored out, giving
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6.2 —
6.2) y'oAN oy 8m1x1+ +8xn

Using your definition of the degree of homogeneity givenby|(2.1), repla¢e in (6.2) the left-hand
side(dy/y) / (dX/X) by k, and multiply both sides by; (6.2) then becomes the Euler theorem
(6.3) ky = aa—jlxl + ...+ %xn

She went two steps further: “In fact, she added, | never thought that the designatias af
"degree of homogeneity" was illuminating, or even appropriate. Would it mean that a function
with £ = 2 is "more homogeneous" than a function with= 1? We might even consider,
guite on the contrary, th@t= 1 is an indication oimorehomogeneity, not less, because in this
case the function behavegactlyas its variables, while any function with= 1 does not. The
higherk, the more pronounced becomes tireergenceof the function’s behavior from that of
its variables! The above mentioned difference just means that the first function is more sensitive
than the second to a common change in the variables. Therefore it seems to me that we rather
should callk the "degree o$ensitivity of the function.”

With the faintest of smiles, you thought that your daughter’s suggestions were not devoid of
merit. You also decided that it was time to take her to the tennis court, as you had promised.
Then, on your way there, you thought: “Why shouldn’t | one day write a paper with her?”
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