
Aust. J. Math. Anal. Appl.
Vol. 22 (2025), No. 2, Art. 3, 10 pp.
AJMAA

THE DEGREE OF HOMOGENEITY: DEFINITION, GEOMETRIC
INTERPRETATION AND NEW, DIRECT PROOFS OF EULER’S THEOREM

OLIVIER DE LA GRANDVILLE

Received 3 October, 2024; accepted 30 January, 2024; published 28 February, 2025.

FACULTY OF ECONOMICS, GOETHE UNIVERSITY FRANKFURT, THEODOREADORNO PLATZ 4, 60323
FRANKFURT, GERMANY.

odelagrandville@gmail.com

ABSTRACT. We show how the degree of homogeneity of a function is a highly useful, precise
measure of the sensitivity of a function to a change in its variables. This measure can be evaluated
directly thanks to a simple geometric construct, entirely independently of measurement units.
The usefulness of this concept is also illustrated by the fact that it leads to new, direct proofs,
geometric as well as algebraic, of Euler’s theorem; this is in contrast to the traditional approach
that requires a limiting process.
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2 OLIVIER DE LA GRANDVILLE

1. I NTRODUCTION AND MOTIVATION .

While the total differential and the directional derivative are always very precisely defined and
given geometric representations in 3-d space, apparently this is never done in the case of the
degree of homogeneityk, also a measure of the sensitivity of a function to a change in its
variables. This small neglect can be considered as unfortunate, because defining and picturing
this quantity offers quite a number of advantages:

1. It provides at a glance,independently of any measurement units, an order of magnitude of
this sensitivity.

2. The simple geometric construct ofk leads to an immediate geometric proof of Euler’s
theorem in 3-d space.

3. From the very definition ofk we can directly obtain an algebraic proof of Euler’s theorem
in n-dimensional space, without any recourse to a limiting process.

Our plan is as follows. In Section 2, we definek as a limit, with important properties. Section
3 describes how homogeneous functions can be graphically generated, whatever their degree.
We then offer, in Section 4, a geometric interpretation ofk, starting with the case0 < k < 1. We
will observe that this construct has general value for any realk. As an application, in Section 5
we give a geometric proof of Euler’s theorem, extended algebraically, in Section 6, to functions
of n variables.

2. DEFINING THE DEGREE OF HOMOGENEITY AS A LIMIT .

Consider a homogenousn-variable functiony = f(x1, ..., xn), i.e. such thatλky = f(λx1, ..., λxn);
while λ is a positive number, the powerk – the degree of homogeneity – can be any real num-
ber. We suppose that point(x1, ..., xn, y) does not contain any zero. Let∆λ/λ = ∆xi/xi =
(λxi − xi)/xi = λ− 1, i = 1, .., n designate acommon relativeincrease given to each variable
xi, and∆y/y the resulting relative increase ofy, equal to

(
λky − y

)
/y = λk − 1.We note that

when all∆xi → 0 simultaneously,λ → 1.
Definition. The degree of homogeneityk is the limit of the ratio of the relative increase of the

function to the common relative increase given to each variable when the latter tends to zero.
Forming the ratio(∆y/y) / (∆xi/xi) and taking limits indeed leads to:

(2.1) lim
∆xi→0

∆y/y

∆xi/xi

= lim
λ→1

∆y/y

∆λ/λ
≡ dy/y

dλ/λ
= lim

λ→1

λk − 1

λ− 1
= k,

by L’Hospital’s rule.
Conversely, if at any of its pointsx0

1, ..., x
0
n a functiony = f(x1, ..., xn) is such that the ratio

(dy/y) / (dλ/λ) is constant and equal tok, theny = f(x1, ..., xn) is homogeneous ofdegreek.
This follows immediately from the integration of

(2.2)
dy

y
= k

dλ

λ
,

giving
ln y = k ln λ + ln C,

or

(2.3) y = Cλk = g(λ).

The stricly positive constant of integrationC is identified by settingg(1) = f(x0
1, ..., x

0
n) = C;

we thus have

(2.4) y = g(λ) = f(x0
1, ..., x

0
n)λk = y0λ

k,

a power function ofλ, whose power is its degree of homogeneity.
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The formulationk = dy/y
dλ/λ

sets in full light the significance ofk as a sensitivity measure of
y = f(x1, ..., xn) with respect to a common relative change in its variablesx1, ..., xn. A natural
question now is: what kind of precision do we have when we say that a one percent increase
in the variables generates in linear approximation ak percent increase in the function? This
approximation of the exact value turns out to be excellent, as the following example gives a first
indication.

Suppose that our function isy = 10x0.4
1 x0.2

2 , homogeneous of degreek = 0.6. Consider an
initial point (x0

1, x
0
2) = (1000, 500), with y0 = f(x0

1, x
0
2) = 549. 280 3. Let us give to these

variables a one percent increase, implyingλ = 1.01 andf(λx1
1, λx1

2) = f(1010, 505) = 552.
569 4, i.e. a relative increase∆y/y = 0.599% . On the other hand the relative increase in linear
approximation is given bydy/y = kdλ/λ = 0.6%, corresponding to an estimated value of the
functiony∗ = 552. 5760, and a relative error as small as1. 19× 10−5.

We will now show thatk remains an excellent tool for the estimate of∆y/y even whenk
andλ are significantly different from 1. Let us determine the relative error, denotedε, made by
using the degree of homogeneity to determine the new value of the function. At pointλ, the
exact value of the function isy = g(λ) = y0λ

k; on the other hand, its linear approximation
aroundλ = 1, denotedy∗, is

(2.5) y∗ = y0 + g′(1) (λ− 1) = y0[1 + k (λ− 1)]

and therefore the relative error is

(2.6) ε(k, λ) =
y∗ − y

y
=

1 + k (λ− 1)

λk
− 1.

We first observe that the error made is entirely independent of thestructureof the function
y = f(x1, ..., xn), a structure that may be very complicated; nor will it depend on the point
(x0

1, ..., x
0
n, y0) we start from. It will solely depend on the degree of homogeneityk and on the

common relative increase given to each variable.
The following table therefore illustrates the precision generated byk in measuring the sensi-

tivity of anyhomogeneous function of degreek atanyof its points.

k 0.6 0.8 1 1.2 1.4
λ

0.8 0.006 0. 004 0 −0.006 −0.016

0.9 0.001 0.0009 0 −0.0013 −0.003

0.99 1.21 ∗ 10−5 8.09 ∗ 10−6 0 −1.22 ∗ 10−5 −2.85 ∗ 10−5

1 0 0 0 0 0

1.01 1.19 ∗ 10−5 7.91 ∗ 10−6 0 −1.18 ∗ 10−5 −2.76 ∗ 10−5

1.1 0.001 0.0007 0 −0.001 −0.002

1.2 0.004 0.003 0 −0.004 −0.008

Table 1. The smallness of the error made byk in measuring the sensitivity of any homoge-
neous function at any of its points.
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4 OLIVIER DE LA GRANDVILLE

Finally, let us observe that the degree of homogeneityk is a pure number, independent of
any measurement units. This means that if we can represent it geometrically, we will be able to
have at first sight of a homogeneous function a numerical order of magnitude of its sensitivity
to changes in its variables – something we cannot do with the directional derivative or the
differential, which are unit dependent. In order to do so, let us first show how we can generate
a homogeneous function of any degreek.

3. CONSTRUCTING HOMOGENEOUS FUNCTIONS OF DEGREE k.

We first depict, with an example, how such functions can be generated. This will lead to a
geometric interpretation ofk in a natural, direct way. The benefit of such analysis is that we
will be led to a direct, new proof of Euler’s theorem, without any recourse to a limit process.

Figure 1: Generating a function homogeneous of degreek. The generating curvey = λkf(x0
1, x

0
2) = g(λ) sweeps

all points of the leading curvey = f(x1, x
0
2) = l(x1).

In space(y, x1, x2), consider a single variable functiony = f(x1, x
0
2) ≡ l(x1); we call this

curve aleadingcurve. As illustrated in figure 1,l(x1) may be, on various intervals, increasing
or decreasing, concave or convex. Let A= (x0

1, x
0
2) be any point on the horizontalx2 = x0

2 ,
and A′ the point defined by(x0

1, x
0
2, f(x0

1, x
0
2)).

Let OA designate the ray from the origin to point A and beyond; this ray will serve as an axis,
denotedλ. Consider now the curve corresponding to a positive, power functiony = g(λ) =
λkf(x0

1, x
0
2), wherek is any real number; we call this curve ageneratingcurve, andg(1) =

f(x0
1, x

0
2). This curve will be concave or convex according to0 < k < 1 or k > 1. In Figure 1,

g(λ) is concave.
Choosing all possible values ofx0

1, we now make this concave curve sweep all points of the
leading curvey = f(x1, x

0
2) ≡ l(x1). In our example, this action generates a highly undulating

AJMAA, Vol. 22 (2025), No. 2, Art. 3, 10 pp. AJMAA

https://ajmaa.org


THE DEGREE OFHOMOGENEITY: DEFINITION, GEOMETRIC INTERPRETATION ANDNEW, DIRECT PROOFS OFEULER’ S THEOREM 5

surface corresponding to a functiony = f(x1, x2) homogeneous of degreek. Indeed, from any
point (x1, x

0
2), multiplying x0

1 andx0
2 by a factorλ will multiply f(x0

1, x
0
2) by λk.

We can verify this algebraically. Indeed, the simple knowledge off(x1, x
0
2) ≡ l(x1) andy =

g(λ) = λkf(x0
1, x

0
2) is sufficient to determine the expression of the entire functionf(x1, x2); this

can be done, for instance, as follows. With

(3.1) f(λx0
1, λx0

2) = λkf(x0
1, x

0
2)

we can set the common growth factorλ of the variables as

(3.2) λ =
x1

x0
1

=
x2

x0
2

;

and write (3.1) as

(3.3) f(
x1

x0
1

x0
1,

x2

x0
2

x0
2) = f(x1, x2) = (

x2

x0
2

)kf(x0
1, x0

2).

We can make both argumentsx1 andx2 appear in the last term of (3.3) by usingx0
1 = x0

2(x1/x2),
for instance; we then obtain the function

(3.4) f(x1, x2) = (
x2

x0
2

)kf(x0
2

x1

x2

, x0
2),

which can be ascertained to be homogeneous of degreek.
We should stress that the leading curvel(x1) = f(x1, x

0
2) chosen at the outset in our example

may have more complicated features than those just mentioned. It can be, on various intervals,
negative, not differentiable, or discontinuous, thus leading to functions homogeneous of degree
k with the same properties.

4. THE DEGREE OF HOMOGENEITY : A SIMPLE CONSTRUCTION .

4.1. The case0 < k < 1.
As in figure 1,g(λ) is pictured in figure 2 as the concave section of thef(x1, x2) surface by
a vertical plane intersecting the horizontal plane along ray OA. We draw BA′ as the tangent to
g(λ) at A′.

. a first approach
From the very definition of the degree of homogeneity, given by equation 1, we can write

(4.1) k =
dy/y

dλ/λ
=

dy

dλ
.
λ

y

and therefore

(4.2) k =
DC
CA′

.
OA
OC

=
DC
OA

.
OA
OC

=
DC
OC

.

As an example of a negative homogeneous function, consider the refreshing ice-cream cone you were called
upon to hand to your daughter. Needless to say, she knows how to please her father. She told you: “ Imagine I put
the tip of my ice-cream at the origin on your diagram, and its heighth on axisx2; r is the radius of the circle at
heighth, where I just let you take a bite.” She made your day when adding: “In your formula (3.3), if I setx0

2 = h,

k = 1, keepingx0
1 ≤ r, I can replacef(x0

1, x
0
2) by±

√
r2 − (x0

1)
2 = ±

√
r2 −

(
hx1

x2

)2

. You will certainly agree

that the equation of my ice-cream isf(x1, x2) = ±x2
h

√
r2 −

(
hx1

x2

)2

; of coursef(x1, x2) is defined only when
h
r x1 ≤ x2 ≤ h, and I guarantee thatf is homogeneous of degree one”.
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6 OLIVIER DE LA GRANDVILLE

Figure 2: The degree of homogeneityk can be shown to be equal to the ratio DC/OC. Without loss of generality,
we can normalize OC (equal toy0 = f(x0

1, x
0
2)) to 1; k is then just equal to DC. In this diagram,k is equal to 0.6.

We will not lose any generality if we normalize OC, equal toy0, to one. We thus have the
very simple representation of the degree of homogeneity:

(4.3) k = DC.

. a second approach
I owe to Ernst Hairer an alternate, very elegant way of deriving the resultk = DC/OC. We

have, withg′(λ) = kλk−1y0

(4.4) g′(1) = ky0,

and

(4.5) g′(1) =
DC
CA’

=
DC
OA

= DC,

remembering that OA= 1; henceky0 = DC, and the resultk = DC/y0 = DC/OC.
We can illustrate how the degree of homogeneity measures the sensitivity ofy = f(x1, x2) to

a common, relative change in its variables. Suppose that, as in Fig. 2,k = 0.6. This implies that
an increase of 1% inx1 andx2 generates an increase ofy equal to 0.6% in linear approximation,
and an increase exactly equal to 0.6% on tangent BA’.

We can now show that this representation remains valid for any real value ofk, the only
proviso being that ifk is negative, DC is the absolute value ofk.

4.2. The casek > 1.
The vertical sectiony = λkf(x0

1, x
0
2) = λky0 = g(λ) is now a power function ofλ with

powerk > 1, pictured in Figure 2 as the convex curve going through O and A’. Its tangent at A’
intersects theλ axis at B, and the ordinatey at D. We can verif̧y that B will be on the segment
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Figure 3: The casek > 1. Normalizing OC= y0 to one, as in the case0 < k < 1, the degree of homogeneityk is
equal to DC. In this diagram,k is approximately equal to 1.6.

OA as follows: as before, triangles AA’B and CDA’ are similar; equation (4.1) applies again,
andk = OA/BA > 1 implies OA> BA. Moreover equation (4.2) applies as well, leading to
k = DC/OC, and we find againk = DC if OC, equal toy0, is normalized to one.

Before considering the situation wherek is negative, let us take up two particular cases that
offer special interest:k = 1, andk = 0.

4.3. The casek = 1.
Complex as this surface may be, cutting it with a vertical plane through the origin O results in

an intersection given by ray OA’;g(λ) becomes the linear functiony = f(x0
1, x

0
2)λ; ask tends

toward 1, it can be seen either from Figure 1 or Figure 2 that pointsB andD tend to merge with
the origin, and DC/OC= 1.

4.4. The casek = 0.
As we stressed at the end of Section 3,all homogeneous functions, whatever their degree,

may well exhibit complicated surfaces; homogeneity of degree zero does not create an excep-
tion. This may be surprising if we simply look at the equation defining homogeneity, in this
case

(4.6) f(λx0
1, λx0

2) == λ0f(x0
1, x

0
2) = f(x0

1, x
0
2) = y0.

We should not forget that the functionf(x1, x2) turns out to be a constanty0 along axis Oλ; our
generating curve is

(4.7) y = g (λ) = y0;
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8 OLIVIER DE LA GRANDVILLE

this is just one member of an infinite number of horizontals emanating from the vertical axis
Oy, sweeping a leading curvey = l(x1) = f(x1, x

0
2) that may well exhibit the complicated

features we referred to.
To illustrate, consider the function

(4.8) y = f(x1, x2) =
axn

1 − bxn
2

cxn
1 + dxn

2

,

homogeneous of degree zero; along any rayx2 = µx1, the value ofy is

(4.9) y = f(x1, µx1) =
a− bµn

c + dµn
,

a constant independent ofx1 andx2, but a highly dependent function ofµ, the angular co-
efficient of rayx2 = µx1. The surfacef(x1, x2) cuts the horizontal plane along rayx2 =

(a/b)1/n x1.
Geometrically, we can see how any of these horizontal lines is generated. Let us refer to

Figure 2, for instance. Withk = OA/BA, since OA is fixed, whenk → 0 the length BA must
tend to infinity. As a consequence, DA′ tends to the horizontal CA′, and the length DC collapses
to zero, as it should.

Figure 4: The casek < 0. Normalizing OC= y0 to one, the length DC is equal to the degree of homogeneity in
absolute value. Herek is equal to− 1.2; DC= |k| = 1.2.

4.5. The casek < 0.
With y0 > 0, g(λ) = λky0 is now decreasing ifk < 0; the tangent DB crosses the ordinate at

a point D higher than C, and meets theλ axis at B, above A. The slope ofg(λ) being negative,
we have at point A’dg/dλ = − AA’/AB; therefore, we can write
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(4.10) k =
dy/y

dλ/λ
=

dy

dλ
.
λ

y
= − AA ′

BA
.
OA
AA ′=−

OA
BA

.

Due to the similarity of triangles AA’B and CDA’, we have

(4.11) k = − OA
BA

= − DA′

BA′ = − DC
AA ′ = − DC

OC
;

thus, normalising OC =y0 to one,k = − DC.
We can conclude that in all cases CD is equal to the degree of homogeneityk in absolute

value. We thus are set up to prove Euler’s theorem in 3-d space.

5. A FIRST APPLICATION : A DIRECT , GEOMETRIC PROOF OF EULER ’ S THEOREM .

We assume thaty = f(x1, x2) is differentiable. Let us come back to Figure 2 and to the last
equality in (4.2), that can be expressed as

k =
DC
OC

=
DC

f(x0
1, x

0
2)

;

it will prove particularly useful to obtain Euler’s theorem. We first can write

(5.1) DC= kf(x0
1, x

0
2).

Now doublingx0
1 andx0

2 results in an increase on the tangent BA′ equal to the differential
∂f
∂x1

(x0
1, x

0
2) x0

1 + ∂f
∂x2

(x0
1, x

0
2) x0

2, symmetrical and equal to DC. We thus also have

(5.2) DC=
∂f

∂x1

(x0
1, x

0
2) x0

1 +
∂f

∂x2

(x0
1, x

0
2) x0

2

and therefore

(5.3) kf(x0
1, x

0
2) =

∂f

∂x1

(x0
1, x

0
2) x0

1 +
∂f

∂x2

(x0
1, x

0
2) x0

2.

Since pointA(x0
1, x

0
2) was arbitrarily chosen in plane(x1, x2), equation (5.3) can be written as

(5.4) kf(x1, x2) =
∂f

∂x1

(x1, x2) x1 +
∂f

∂x2

(x1, x2) x2,

which is Euler’s theorem.

6. A DIRECT , ALGEBRAIC PROOF OF EULER ’ S THEOREM IN n− SPACE.

Your daughter had barely touched her ice-cream when she told you: “I vividly remember that
when our excellent teacher introduced us to homogeneous functions, he demonstrated Euler’s
theorem by differentiating their definitional property with respect toλ, and finally taking the
limit whenλ → 1.

“It seems to me, she added, that you can obtain the theorem directly, without recourse to a
limiting process. Consider the differential

dy =
n∑

i=1

(∂f/∂xi)dxi;

dividing byy, you can write

(6.1)
dy

y
=

1

y

[
∂f

∂x1

x1
dx1

x1

+ ... +
∂f

∂xn

xn
dxn

xn

]
.

Sincedx1/x1 = ... = dxn/xn, these can be denoteddλ/λ and factored out, giving
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10 OLIVIER DE LA GRANDVILLE

(6.2)
dy

y
/
dλ

λ
=

1

y

[
∂f

∂x1

x1 + ... +
∂f

∂xn

xn

]
;

Using your definition of the degree of homogeneity given by (2.1), replace in (6.2) the left-hand
side(dy/y) / (dλ/λ) by k, and multiply both sides byy; (6.2) then becomes the Euler theorem

(6.3) ky =
∂f

∂x1

x1 + ... +
∂f

∂xn

xn.

She went two steps further: “In fact, she added, I never thought that the designation ofk as a
"degree of homogeneity" was illuminating, or even appropriate. Would it mean that a function
with k = 2 is "more homogeneous" than a function withk = 1? We might even consider,
quite on the contrary, thatk = 1 is an indication ofmorehomogeneity, not less, because in this
case the function behavesexactlyas its variables, while any function withk 6= 1 does not. The
higherk, the more pronounced becomes thedivergenceof the function’s behavior from that of
its variables! The above mentioned difference just means that the first function is more sensitive
than the second to a common change in the variables. Therefore it seems to me that we rather
should callk the "degree ofsensitivity" of the function.”

With the faintest of smiles, you thought that your daughter’s suggestions were not devoid of
merit. You also decided that it was time to take her to the tennis court, as you had promised.
Then, on your way there, you thought: “Why shouldn’t I one day write a paper with her?”
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