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ABSTRACT. A square interval matrix over IR can be converted to diagonal form if certain pre-
requisites are satisfied. However not all square matrices can be diagonalized. As a consequence,
we strive the next simplest form to which it can be reduced while retaining important proper-
ties such as eigenvalues, rank, nullity, and so on. It turns out that any real interval matrix has
a Jordan Canonical Form (JCF) over E if it has n interval eigenvalues in IR. We discuss in
this paper a method for computing the Jordan canonical form of an interval matrix using a new
pairing technique and a new type of interval arithmetic that will make classifying and analyzing
interval matrices easier and more efficient. We conclude with a numerical example that supports
the theory and application of predator-prey model.
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1. INTRODUCTION

An element of a set *S” of quantities can be brought to standard (or) canonical form if each
element of .S satisfies certain conditions which make it amenable to be brought to the canonical
form. For example, consider a set of (n x n) real matrices S. If each element of S has ’n’ real
eigenvalues (condition 1) and a set of 'n’ linearly independent eigenvectors in R™ (condition
2), then every element of S can be diagonalized which is its canonical form. But most of the
matrices we encounter in real life situations do not possess this stringent property. Hence we
venture to relax the conditions imposed on the matrices by not requiring the 2-nd condition
namely ’n’ linearly independent eigenvectors.

This relaxation brings a lot more matrices into the ambit of canonicalization, although the
canonical form in the second case, called the *Jordan form’ is slightly different from the canon-
ical form in the first case which has two conditions leading to the diagonal form. The Jordan
form however serves the purpose since it retains the important characteristics of the original
matrix like rank, nullity, trace, determinant and eigenvalues. This is what we attempt to find for
real interval matrices. We study the ’closest-to-diagonal’ interval matrix that can be obtained
through similarity transformations since not all interval matrices are similar to diagonal interval
matrices. That is, a similarity transformation can convert any interval matrix into the interval
Jordan canonical form when the interval eigenvalues are in [IR. The interval Jordan form is a
significant concept in interval linear algebra. This can be applied for solving system of ordi-
nary interval differential equations, state space models of continuous-time dynamic system etc.
The Jordan Canonical Form of a matrix is incredibly susceptible to perturbations, even though
numerical computation of it remains a great obstacle.

Hansen and Smith [12, [13] started the use of interval arithmetic in matrix computations.
After this motivation and inspiration, several authors such as Alefeld and Herzberger [2]], Luc
Jaulin et al. [24], Neumaier [26]], Assem Deif [3]], Ganesan and Veeramani [9, 10]], Nicolas Goze
[27], Moore et al.[23]], etc have studied interval matrices . Many authors such as Pastravanu
et al. [28, 29], Berman et al. [4], Kaszkurewicz et al.[22] etc studied the diagonal stability of
interval matrices and their applications.

Ganesan and Veeramani [9] introduced a new type of arithmetic operations on interval num-
bers. Ganesan [10] discussed some important properties of interval matrices. Assem Deif [3]]
studied interval eigenvalue problems. Abhirup Sit [1] studied eigenvalues of interval matrices
using singularity property. Hema Surya et al. [14}15] discussed the concept of interval linear
algebra on a sound algebraic setting, by judiciously defining a field and a vector space over a
field involving equivalence classes. They also discussed the diagonal canonical form of inter-
val matrices and their applications. Pastravanu et al. [28] 29] discussed the diagonal stability
of interval matrices and their applications in linear dynamical systems. Berman et al. [4] have
also discussed the matrix diagonal stability and its implications. Gilbert Strang [11], Horn et al.
[16] studied Matrix Analysis. Differential equations and stability of dynamic interval systems
are discussed by Hsu et al. [[17], John et al. [[18], Kalman et al. [20], Perko [30] and Xu Daoyi
[34]]. Liao et al. [23]], Juang et al. [[19] studied stability of interval matrices and dynamic inter-
val systems. Chen et al.[5] studied proof of controllability of Jordan form state equations with
its applicable to both continuous and discrete state equations. Silverman and Meadows [33]
discussed controllability and observability in time-variable linear systems and also provide the
significant structural information including a necessary and sufficient condition for controlla-
bility and observability. Poljak and Schlegel [31] studied a generic sense, the Jordan canonical
form of a matrix is uniquely determined by the structure of its zero and nonzero entries.

Shuai Liu et al.[32] analyzed algebraic requirements for the controllability of the multiagent
network system with directed graph from two perspectives: leader-follower network attribute
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and coupling input disturbance, based on the Jordan form of the system matrix. Kameleh et
al.[21] proposed a novel technique for figuring out the order of minimal realization based on
the controllability and observability of Jordan canonical form systems. Yedavalli [35, 36} 37]
discussed the stability robustness of linear systems in the time domain. The relationship be-
tween controllability, observability, transfer matrix, and minimal realizations is established by
the canonical decompositions of state space equations. Four state space forms that are typically
applied in modern control theory the phase variable form (controller form), the observer form,
the modal form, and the Jordan form can be utilized to generate the state space model of a
continuous-time dynamic system.

In this article, we will explain the quickest method for obtaining the Jordan interval matrix,
which is closest to the diagonal. We discuss a real life application of Jordan canonical form on
predator - prey models. Numerical examples are provided to explore the theory developed in
this paper.

2. PRELIMINARIES

We recall some basic notions and notation on closed and bounded intervals in R [14].
Let IR = {a = [a*,a"] : a® < @Y and a”,aV € R} be the set of all closed and bounded
intervals. If a* = aY, then a is a degenerate interval.
The intervals are identified with an ordered pair (m, w) defined as follows: Leta = [a, aV] C
al +a¥ aV —al
R. Define m(a) = (T) and w(a) = (T) and hence a can be uniquely ex-
pressed as (m(a), w(a)). Conversly, when ( (@), w(a)) is known, then m(a) — w(a) = a* and
m(a) +w(a) = aY of [a*, aV] and hence given (m(a), w(a)), the interval [a”, a"] is unique.

Note: If m(a) = 0, then a is said to be a zero interval. In particular, if m(a) = 0 and w(a) = 0,

then @ = [0, 0]. If m(a) = 0 and w(a) # 0, then @ = 0. It is to be noted that if @ = [0, 0], then

a ~ 0, but the converse need not be true. If @ 5 0, then & is said to be a non-zero interval. If
m(a) > 0 then @ is said to be a positive interval and is denoted by @ > 0 .

3. INTERVAL MATRICES

We recall some basic notions and notation on interval matrices [14]. A classical matrix is

a rectangular array of elements of a field F. When matrix entries are inaccurate or unclear,

we use Interval matrices, where each entry is a closed and bounded interval in R. An interval
B &11 &171

matrix is expressed as A = = (dj;), where each a;; = [a];,al}]. We use
am1 -~ Qmn

E™ " to denote the set of all equivalence classes of (m x n) interval matrices. By m(A)

we denote a matrix whose entries are the corresponding midpoints of the entries of A.  i.e)

B m(dn) m(&ln) B
m(A) = . The width of an interval matrix A is the matrix of widths
m(am1) . m(Amn)
N w(&u) w(dln)
of its interval elements defined as w(A) = which is always non-
W(am1) o W(Amn)

negative .
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0 0
O to denote the null interval matrix
0 0
1 .. 0
Also we use I to denote the identity interval matrix | ... 1 ...
0 1
Remark 3.1. Let X = (Zy,T9,%3, -+ ,%,)" is a interval column vector whose components

are closed and bounded intervals. We use IR" to denote the set of all n-dimensional interval
vectors. By m(x) we denote a column vector whose entries are the corresponding midpoints
of the entries of x. i.e) m(X) = (m(Z1), m(Z2), m(Z3), - ,m(&,))" and the width of interval
vector is defined by w(X) = (w(&1), w(Z2), w(¥3), -+ ,w(¥,))". An interval vector is said to
be non-negative if all of its components are non-neagative.

Definition 3.1. [[15]] Determinant of an interval matrix A is an interval in TR and is defined by
det(A) = |A| = <\m(21)\, min w(A)> :
w(a;;)#0
Remark 3.2. For an interval matrix A, |m(A)| = m(]A]).

Definition 3.2. [15] An Interval matrix A € M,(IR) is said to be non-singular if m(A) is
non-singular, (i.e) if |m(A)| # 0.

Remark 3.3. For an interval matrix A, |A| 5 0 if [m(A)| # 0.

Definition 3.3. [15] If |A| & 0, then the inverse of A exist and is defined by

A7t = (), i () ),

w(ag;)7#0
Remark 3.4. For an interval matrix A, (m(A))~' = m(A™1).

Definition 3.4. A square interval matrix fl~is called Nilpotent if AF ~ 0 for some £ < n. A
smallest positive integer k that gives A* ~ 0 is called the nilpotent index of A.

Definition 3.5. Suppose A = [A\", \Y] is an interval eigenvalue of A. A (j x j) Jordan block
corresponding to A is the (j x j) square matrix which is a square interval matrix in which all

the leading diagonal entries are )\, all super diagonal entries are 1 and all other entries are 0.
For example,

(1 x 1) Jordan block is [ A
(2 x 2) Jordan block is

—

Ot Ot 3t D>
O Mt = T

1x

N——

(3 x 3) Jordan block is

St OO
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M 10 0

0 X 1 - 0

o o 0 N I 0
(7 x j) Jordan block is | ) ]
i

0 0 0 by

4. PROCEDURE FOR FINDING THE JORDAN CANONICAL FORM (JCF) OF INTERVAL
MATRICES

Let A be a (n x n) real interval matrix. The Jordan canonical form of A will exist iff A
has ’n’ interval eigenvalues over IR. So we assume that, A has’n’ interval eigenvalues say
A g, A

Suppose an interval eigenvalue )\ is repeated k times say with A.M = k and G.M = Il <
k). Then the interval eigenvalue A has *I” Jordan blocks which are determined by aping the
technique we have in the case of matrices over R.

The k generalized eigenvectors are determined for the eigenvalue A which are made to form
an (n x k) matrix and the smallest absolute value of the non-zero entries of this (n x k) matrix
will give us the k£ generalized interval eigenvectors corresponding to A

This process is repeated for all interval eigenvalues to get an (n x n) interval matrix S of
generalized interval eigenvectors and this S is invertible. Using the interval matrix arithmetic
operation [[14], it is easy to check that, S~*AS gives the Jordan form of A.

In numerical problems on interval matrices, we will be mainly interested in the JCF rather
than finding S and the JCF through S. So in such cases, we calculate m; = n(fl ~ N )j ,
j=12,--- and my = 0 always.

Using this m;, we calculate b; = 2m; — m;y1 —m;_1,7 = 1,2,---, where b; is the number
of (j x j) Jordan blocks for the eigenvalue A

This process uniquely determines the JCF for a given(real) interval matrix A, provided A has
n interval eigenvalues.

We begin with an example to demonstrate how the Jordan form, or closest-to-diagonal form,
of an interval matrix is constructed, when it exists. This approach is explained below:

Example 4.1. Find the Jordan Canonical Form of an interval matrix

. [-1,7] [1,1] [0,2]
A= [04] [-1,5] [-1,3]
[-7,-5] [-3,-3] [-6,2]

31 1
Solution: Consider the midpoint matrix m(A) = [ 2 2 1
-6 -3 -2
The eigenvalues of m(fl) are 1,1, 1
2 1 1
Therefore eigenvalue 1 is repeated three times and (m(A) —I) = 2 1 1
-6 -3 -3

Which implies, rank of (m(A) — I) is 1 and nullity of (m(A) — I) is 2.
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1
Thus, the corresponding eigenvectors of m(\) = 1 are m(v;) = 1 |, and m(v3) =
-3
—1
1
1

To construct a Jordan basis, we need to know that m(A) has two linearly independent eigen-
vectors, so that the Jordan basis will have two Jordan blocks. Next to find the generalized

0
eigenvector, we must solve (m(A) — I)m(v,) = m(vy). Then we get m(v3) = [ 0 |. There-
1
fore, the Jordan basis of m(A) is {(1,1,—3)%, (0,0, 1)%, (—1,1,1)'}
3 4 0 1
Also consider the width matrix w(A) = | 2 3 2
1 0 4
The eigenvalues of w(fl) are 3, 3, 5. All the eigenvalues are positive, so choose minimum
0 1
positive eigenvalue 3. For w(j\) = 3, the corresponding eigenvectorsare | 1 | and | 0
0 —1
We first need to form the (3 x 2) matrix whose columns are eigenvectors corresponding to
0 1
w\) =3. Letw*=[1 0
0 —1

Choose an eigenvector pairing number[14]
Now the interval eigenvalues of the given interval matrix A are:
This is justified because we are interested in minimising vagueness or error. The generalized
interval eigenvectors of the given interval matrix A are computed with the eigenvector pairing

number 1 as follows:
Case 1: The interval eigenvector corresponding to the interval eigenvalue (1, 3) is

1 [0, 2]
< 1|, 1> = [0,2]
-3 (—4, 2]

Case 2: The interval eigenvector corresponding to the interval eigenvalue (1,3) is

0 [—1,1]
< 0 ,1> = | [-1,1]
1 [0,2]

Case 3: The interval eigenvector corresponding to the interval eigenvalue (1, 3) is
-1 [—2,0]
< al 1> (o2
1 [0, 2]
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Therefore the interval eigenvalues of A are A\; = [—2,4] , Ay = [~2,4] and A3 = [—2, 4] the
[0, 2] [—1,1]
corresponding generalized interval eigenvectors are 7, = 0,2] |,02=[[-1,1] | and
[—4, —2] [0, 2]
[_27 0]
v3 = [0,2] | respectively.
[0,2]

An invertible interval matrix S is obtained by writing the generalized interval eigenvectors of
A as columns.

- [072] [_171] [_270]
S = (1 g ﬁ3)3><3 = [0, 2] [-1,1] [0,2]
[_47 _2] [Oa 2] [Oa 2]
) {1t 10
Letm(s—l).m(A).m(S):5 4 2 2
-1 10
3 1 1 1 0 -1
2 2 1 1 0 1
-6 -3 -2 -3 1 1
110
=(0 1 0
0 01

Also w(S) = — w(S~") and hence

—_ = =
—_ = =
—_ = =

max < min wS’fl, min wfl, min w(S) $ = max 1,11} =1
{w(%j)ﬂ) ( )w(fli;‘#O ( )U}(gij)#O ( >} { !

Now $71A5 = <m(S_1).m(A).m(S),

max{wmin w(S7Y), min w(A), min w(g)}>

(8:5)70 w(dij)7#0 " w(3;;)#0
[0,2] [0,2] O .
~( 0 o2 0 |=7
o 0 [0,

Hence S'AS ~ J. By applying the pairing technique [14], we are able to diagonalize the
given real interval matrix similar into Jordan diagonal form.

5. AN APPLICATION ON DYNAMICAL SYSTEM

System of first order interval linear differential equations can mathematically represent a
wide range of real-world problems. Such a system can be resolved using the Jordan form.
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Consider a system of first order interval linear differential equations in n differentiable functions

dy, (t . . -

DU o (0) + valt) + -+ i)
dys(t o . .

yfhf =a2171(t) + Qo2P2(t) + - - - + Q20 Un(t)
dygs(t) . o o

- / ) 4 - agndin(t

5.1) i az171(t) + aseya(t) + + A3, G (1)
dg,(t) . . .. -

IE) (1) + oal1) -+ (1)

with interval initial conditions 7, (0), 72(0) - - - ,,(0) and the co-efficients @,;; € IR. We express
the above system in matrix form as,

dy(t <. . - - < - - - - -
9YUW) . Ay (t) subject to §(0) = Fo, where A = (as;) and 3(t) = (1), Go(t) -+ Gu(t))".
Here yj is the initial interval vector.
3
The solution of this system is given by, ¥ (¢) = e'y,, where ¢4 ~ n+tA—|— A2+ 1 A3

an infinite series of (n x n) interval matrices. So, to find the solution of system we must

to compute e'4.

Theorem 5.1. Let A be an (n x n) interval matrix. Suppose A has n interval ezgenvalues over
IR, then there is a diagonalizable matrix D on IR™™ and a nilpotent matrix N on IR™*™

such that
(5.2) Ax~D+ N
(5.3) DN ~ ND

The diagonalizable interval matrix D and the nilpotent matrix N are uniquely determined by

1' and 1} and each of them is a polynomial in A.

Proof. Itis proved that A~ D+ N where D is diagonalizable and N is nilpotent, where D and
N not only commute but are polynomials in A. Now suppose that we also have A~ D + N
where D’ is diagonalizable, N’ is nilpotent and D'N’ ~ N’D’. We shall prove that D ~ D’
and N ~ N’ and hence D and N are > unique. Since D’ and N’ commute with one another and
A~ D'+ N, we see that D' and N’ commute with A. Thus D’ and N’ commute with | any
polynomial in A Hence, they commute with D and with N. Now we have D+ N ~ D'+ N' ~
A. Therefore D — D' ~ N' — N

All four of these interval matrices D,D’,N,N’ commute with one another. Since D and D’
are both diagonalizable and they commute, they are simultaneously diagonalizable and hence
(D - D' ) is diagonalizable. Also, since N and N’ are both nilpotent and they commute the
matrix (N’ — N) is nilpotent. Thus, the interval matrix D— D’(=~ N’— N is both diagonalizable
and nilpotent and hence must be equivalent to the zero interval matrix . That is,

D—D'~N —N~0Oand D~ D’ and N’ ~ N. Hence uniqueness. i
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5.1. Properties.

(D) If /1 ~ diag(a1, Gz, - * + Any) is a diagonal interval matrix. Then

et & diag(e'™, 2 ... elinn)
2) e~ I,
N N - ~ . . 2.
(3) If A is nilpotent, then A* ~ 0 for some positive integer k. So !4 ~ I,, + tA + EAQ
3 ) k—1 <o) ’
D A3 ... Alk—
Tyt T T o)

4) esfie“X ~ (D4 where s and t are real numbers.
(5) e” is non-singular, and (e4)~! ~ e,

(6) If AB ~ BA, then ef‘ie{§ = 6A+B.~

(7) If B~ P 'AP, then ¢® ~ P~1eAP.

&11 a12 ... DY a’ln
Aoy Gy -+ -+ dop
Definition 5.1. Let A = | : : Do : | . Suppose A has n real interval eigenval-
gLnl g’/nl Tttt gLnn
ues. Let A be one such real interval eigenvalues repeating p times. Then
A1 0 0
0 A 1 - 0
. 0 0 X 1 0f. , ,
J=1 . . | is called the (p x p) Jordan interval block. In this case we
-1
0 0 O D
can prove that
eit teAt ﬁef\t - eit
2! (p—1)!
0 At At P At
0 e te e
(p—2)!
Jt 0 0 Mt Mt tr Mt
e =10 0 e te e
(p—3)!
R téit
0 0 0 et

Definition 5.2. Let .J be (p x p) Jordan interval block. We define the exponential of Jordan
interval block as follows:

3

ej—<e () min w(j)>

w(Js5)#0
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Example 5.1. Solve the system of interval differential equations

WD) — (9,1 30(0) + (-11) Blt) + (1,130
54 G0 — (0,00 50(0) + (2,1) (6) + {0, 13s(0)
) (0,00 3() + (0,0) lt) + {3 135 (1)
(1,1)
with5(0) = [ (1,0.5)
(1,0.75)
) (2,1) (=1,1) (1,1)
Solution: A matrix form of the above system is given by, A = | (0,0) (2,1) (1,0)
(0,0) (0,0) (3,1)

2
Consider the midpoint matrix m(A) = [ 0
0

1
1
3
1 1 0
The generalized eigenvectors of m(fl) are 0) , (—1 and | 1
1
0

0 0 1
Also consider width matrix of w(A) = 1 0]. The eigenvalues of w(A) are 1,1, 1.
0 01
All the eigenvalues are positive, so choose minimum positive eigenvalue 1. For w(j\) =1, the
1 0
corresponding eigenvectors are [ 0 | and | 1 |. Here we need to form the (3 x 2) matrix
0 -1
whose columns are eigenvectors corresponding to w(\) = 1.
1 0
Letw* = [0 1 |.Now choose an eigenvector pairing number,
0 —1

p=min{|w;| /wi; #0,i=1,2,--- ,n;j=1,2,--- k} =1.

Therefore, the interval eigenvalues of A are [1,3], [1,3] and [2, 4]. The corresponding general-
[0, 2] 0,2 [—1,1]
ized interval eigenvectors are | [—1,1] |, | [-2,0] | and | [0,2] | respectively.
[_171] [_171] [0’2}
An invertible interval matrix S is obtained by writing the generalized interval eigenvectors of
[072] [072] [_1’ 1]

Aas columns. S = () 7y 73)4,4 = | [=1,1] [-2,0] [0,2] | and
[_171] [_171] [072]
i 0,2] 10,2 [-2,0] ) . . 210
St =1|[-1,1 [-2,0] [0,2] |.Letm(S~).m(A).m(S)=[0 2 0
—1,1] [-1,1] [0,2] 00 3
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Also w(S) = — w(S~1) and hence

—_ = =
—_ = =
—_ = =

max{ min w(S7!), min w(A), min w(g)}:max{l,l,l}zl

w(3i5)7#0 w(@iz)7#0 w(8;5)70
Now ST'AS = {m(571).m(A).m(S),
maX{w< i (5 vwaij?¢ow<f‘>’w£:3&ow<g>}>
210 (2,1) (1,1) (0,1)
=(lo 20 >: <, (2,1) (0,1) | ~ J
003 (0,1) (0,1) (3,1)
(2,1) (0,1) (0,1) (0,1) (1,1) (0,1)
Let J=D+N=|(0,1) (2,1) (0,1)] + [(0,1) (0,1) (0,1)
(0,1) (0,1) (3,1) (0,1) (0,1) (0,1)

(5.5) = <m(15>-m(€tj>-m(15‘l)-m(y(O)%

max < Imin w]s, min w(J), min w]5_1, min w(y(0 }>
{w(ﬁijﬁéO ( ) w(ji;) 70 () w(pij)#0 ( )w(yzy)#) (Y( ))
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e {_min w(P),_min w(J),_pin (P, min wi50)]

(Piz)#0 w(ji;)#0 w(Pij )70 w(Pij )70
1 11 1 11 111 1
= max { min 1 1 1], min 1 1 1], min 1 1 1], min 0.5
w0\ 1 1) wGA\q 1 1) @A\ 1 1) wEIF0\ 75

=max{1,1,1,0.5}
=1

From equation (5.5]), we get,

Hence the solution is ¢, (t) = e gy (t) = (0,1) t and §3(t) = 311,

6. AN APPLICATION TO CONTINUOUS EVOLUTION SYSTEM

Consider a system of interval linear equations that models the predator and the prey as two
different species. The prey is the predator’s food. In this case, we assume that the predator
solely eats its prey. So, if there had been no prey, the predator species would have disappeared.
On the other hand, if there were no predator species, the prey species would have increased
significantly (according to the Malthusian law). This system can be modelled by an almost
interval linear system. A specific forest is the habitat of two species: foxes and chickens. The
chicken serves as the food that foxes consume to survive. Assume that the chicken would have
grown 20% more per time unit if the foxes were not present. The number of foxes would have
reduced by 40% in each time unit if the chicken did not exist.

Let us look at how this can be used to analyze continuous models of system evolution using
the Jordan form. We take into account population fluctuations at various points in time where
a significant temporal difference occurs. It is frequently helpful to assume that the state s is
defined for all time ¢ by the function s(¢), and that information on state changes is provided in

.. ds o o : : .
terms of the derivative o especially if the time interval involved is extremely short or if the

change in the population is extremely small relative to the time frame. Let F'(¢) and C(t) be the
population of foxes and chickens at time ¢ respectively. This situation can now be replaced by,

@ = — [0.38,0.42]F(t) + [0.46, 0.54] C'(t)
(6.1) a
%f) = —p(t) +[0.18,0.22] C(t)

Let p is a predation rate that denotes the average number of chickens consumed each unit

time by each fox. Here we assume that p = [0.15,0.17] and the initial population (gESD =
(95, 105]
[993,1007] )
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The above system can be written in matrix form as

dy(t) . © (2[0.38,0.42] [0.46,0.54]\ - fat
Z—t = Ay(t), where A = <—{0.15,0.17% %0.18,0.22})’3#) - (é( )) and

(195,105
y0) = ([993, 1007])'
< (040 050 -

Solution: Consider the midpoint matrix m(A) = 0.16 020 |- The eigenvalues of m(A)

. . 1 1
are 0, —0.2000 and the corresponding eigenvectors are ( 0.80 ) ( 0.40 )

Also consider the width matrix w(A) = ( 88? 883 > The eigenvalues of w(A) are 0,

0.04. Choose minimum positive eigenvalue 0.040 and the corresponding eigenvector is ?

By applying the pairing techniques [14], the unique interval eigenvalues of the given interval
matrix A are A, = [—0.04, 0.04] and Ay = [—0.24, —0.16] and the corresponding interval eigen-
vectors of the given interval matrix A are v = <[—O[§6,2]180]> and vy = ([_0[8672]1 40])
respectively .

[0,2] [0, 2]
[—0.20,1.80] [-0.60,1.40
[—2,0]  [1.50,3.50] >

An invertible matrix P = ( ]) is obtained by using columns as

) . p—1 _
interval eigenvectors and P~ = ( [1,3] [-3.50,—1.50]

Now we compute J = P 'AP = <m(]51).m(fl).m(15), max{ (Ipi)n#ow(Pfl),
w(Pij

min w(A), min w(]s)}>
w(ag;)7#0 w(piz)#0

/{0 0 N m (1]

“\\o —020) MG \1 1)

e 0.04 min (11

wiay)#0 \0-01 0.02) " w(jzo0 \1 1

_ <<8 —002O> , max {1,0.01, 1}>

_ /(0 0 1)~ -1,
0 —0.20)° -1,

Then e/t = <<é 6—(?.2015) ,1> = ([E)ﬂ] [e—0-20t —[_1121—]0'2“ + 1})'

The general solution is

1] [—1,1]
1] [—1.20,0.80])

y(t) = ¢13(0) = P P7y(0)
= (m(P).m(e).m(P~).m(3(0)),

max 4 min wlf’,min wj,min wp_l,min w~0}>
{w(ﬁij)?éo ( >w(3ij);£0 ( )w(fh‘j)#) ( )w(gij)5£0 (Y()
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(1) = ( (2400 = 2300¢ 02 11
Y 1920 — 9200200 | »10AXq it gy )

: 1 g
min min min
w(d;;)7#0 (1 1) w(piz)#0 ( ) w(@is)70 <7) }>

2400 — 2300 0-20¢
<< 1920 — 9206020t> maX{1717175}>

(2400 — 2300e~-20  5)
(1920 — 920¢~0-20t 5>

Thus, the population of foxes and chickens at time ¢ are

(2400 — 2300e 2% 5)

(2400 — 2300e~°2%) — 5, (2400 — 2300e~ %) + 5]
2395 — 2300e "2, 2405 — 2300e "]

(1920 — 920e 2% 5)

[

=|

E(t)

C(t)

(1920 — 920e~2%) — 5, (1920 — 920e"2") + 5]
1915 — 920e 2% 1925 — 920~ %-2%]

7. RESULTS AND DISCUSSION

Figure [T] and table [7.1] depicts the population of foxes and chickens over a period of time ¢.

3 000

2500
20005

1500S /
10005 /
500 :/

Population

1920 — 920 % ¢~020¢ _ 5
2400 — 2300 + =02 _ 5
1920 — 920 % ¢~ 02 1+ 5

2400 — 2300 % ¢ 020 1 5

‘__
o2 W
o

Time

Figure 1: Population of Fox F(t) and Chicken C(t) upto 100 years

AJMAA, Vol. 20 (2023), No. 2, Art. 8, 17 pp. AJMAA


https://ajmaa.org

JORDAN CANONICAL FORM OF INTERVAL MATRICES AND APPLICATIONS

Table 7.1: Population of Foxes F(t) and Chickens C(t) upto t = 65 years

SNo | t F(t) C(t)  [SNo| t F(t) c(t)
[ [0 [95105] | [995,1005] | 8 |35 |[2393,2403] | [1914,1924]
2 5 | [1549,1559] | [1577,1587] 9 40 | [2394,2404] | [1915,1925]
3|10 [2084,2094] | [1790,1800] | 10 |45 | [2395,2405] | [1915,1925]
4 15| [2280,2290] | [1869,1879] | 11 |50 | [2395,2405] | [1915,1925]
5 20 | [2353,2363] | [1898,1908] | 12 |55 |[2395,2405] | [1915,1925]
6 25 | [2380,2390] | [1909,1919] | 13 | 60 | [2395,2405] | [1915,1925]
7 30 | [2389,2399] | [1913,1923] | 14 |65 |[2395,2405] | [1915,1925]

15

We observed that, after a long period of time (t — oo), we have e~%2% — (). The population

of foxes and chickens becomes F'(t) = [2395,2405] and C(t) = [1915,1925]. In this case, the
predation rate p = [0.15,0.17] is modest where F'(t) and C(t) both fall within certain ranges.
Therefore, this is an instance of "stable limiting populations" that coexist peacefully and in
equilibrium with one another.

8. CONCLUSION

The hall mark of this article is that the JCF obtained through the interval arithmetic opera-
tions in the pairing technique is unique. The easiest technique to get the Jordan interval matrix,
which is closest to the diagonal form is explained in this article. A significant theorem that
we established is used to compute the exponential of A. Furthermore by applying the Jordan
Canonical form of interval matrices, we discussed the solution of system of interval linear dif-
ferential equations and continuous evolution system. We conclude with a numerical illustration
that demonstrates how continuous evolution systems might be used and analyzed.
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