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ABSTRACT. Let § and p be non-negative real numbers. Let F be the real or complex number
field and A a normed algebra over F. If a mapping ¢: A — F satisfies

|(zy) — d(@)(y)| < dllz["lyll”  (z,y € A),
then we show that ¢ is multiplicative or |¢(z)| < (1 4+ 1+ 46 )||=[|’/2 for all z € A. If, in
addition, ¢ satisfies
6z +y) — d(z) = s < 6(ll=I” + lyl]”)  (z,y € A)

for some p # 1, then by using Hyers-Ulam-Rassias stability of additive Cauchy equation [22]],
we show that ¢ is a ring homomorphism or |¢(z)| < 26|z||”/|2 — 2P| for all z € A; In other
words, ¢ is a ring homomorphism, or an approximately zero mapping. The results of this paper
are inspired by Th.M. Rassias’ stability theorem.
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1. INTRODUCTION

The stability problem of functional equations was first raised by S. M. Ulam (cf. [30, Chapter
VI]). “For what metric groups G is it true that an e-automorphism of G is necessarily near to a
strict automorphism? (An e-automorphism of G means a transformation f of G into itself such
that p(f(x-y), f(x)- f(y)) < eforall x,y € G.)” D. H. Hyers [10] gave an affirmative answer
to the problem as follows.

Theorem A. Let Fy and F; be two real Banach spaces and € > 0. If a mapping f: E1 — FE,
satisfies
If(z+y) = flz) = fly)ll <e

forall x,y € E\, then there exists a unique additive mapping I': £y — FE such that

[f(z) = T(x)] <e
forall x € Ey. If, in addition, the mapping R > t — f(tx) is continuous for each fixed x € F,
then T’ is linear, where R is the real number field.

This result is called the Hyers-Ulam stability of the additive Cauchy equation g(x + y) =
g(x) + g(y). Here we note that Hyers [10] calls any solution of this equation a “linear" function
or transformation. Hyers considered only the bounded Cauchy difference f(z+y)— f(x)—f(y).

T. Aoki [1] introduced an unbounded one and obtained the stability of an additive mapping,
which generalizes a result [10, Theorem 1] of Hyers. Th.M. Rassias [22], who independently
introduced the unbounded Cauchy difference, was the first to prove the stability of the linear
mapping between Banach spaces. The concept of Hyers-Ulam-Rassias stability originated from
Rassias’ paper [22] for the stability of the linear mapping. Rassias [22] generalized Hyers’ result
as follows:

Theorem B. Let Iy and E5 be two real Banach spaces, € > 0 and 0 < p < 1. If a mapping
f: By — Es satisfies

1 (& +y) = f(z) = W)l < e(ll=]” + llyll”)

forall x,y € E, then there is a unique additive mapping T': Ey — FEs such that

2e
15(2) = T < 5=

forall x € Ey. If, in addition, the mapping R > t — f(tx) is continuous for each fixed x € F,
then T is linear.

[l][”

This result is, what is called the Hyers-Ulam-Rassias stability of the additive Cauchy equation
g(x +y) = g(z) + g(y). The result of Hyers is simply the case where p = 0. Thus, the result
of Rassias is a generalization to the case where 0 < p < 1. It should be mentioned that it
allows the Cauchy difference to be unbounded. During the 27th International Symposium on
Functional Equations, Rassias raised the problem of whether a similar result holds for 1 < p.
Z. Gajda [6, Theorem 2] proved that Theorem [B|is valid for 1 < p. In the same paper [6,
Example], he also gave an example showing that a similar result to the above does not hold for
p = 1. Later, Th.M. Rassias and P. Semrl [23, Theorem 2] gave another counter example for
p = 1. Note that if p < 0, then [|0]” is obviously meaningless. However, if we assume that
10]|” means oo, then with minor changes in the proof given in [22], we can prove that the result
is also valid for p < 0. Thus, the Hyers-Ulam-Rassias stability of the additive Cauchy equation
holds for all p € R\ {1}.

J. A. Baker [4] considered the stability of the multiplicative Cauchy equation f(zry) =
f(x)f(y): If 6 > 0 and ¢ is a complex-valued function on a semigroup S such that:
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|p(zy)—o(z)p(y)| < dforall x,y € S, then ¢ is multiplicative, or [p(x)| < (1 + 1+ 49)/2
forallz € S.

Taking Rassias’ result [22] into account, it seems natural to consider the unbounded multi-
plicative Cauchy difference ¢(xy) — ¢(z)¢(y). Let F be the real, or complex number field and
A anormed algebra over F.

We consider the functionals ¢: A — T satisfying

(1.1) |6(zy) = d(x)b(y) < Sll=lPPllyll”  (z,y € A)

for some 6 > 0 and p > 0.

When ¢ satisfies (I.1) for p = 1, ¢ is said to be J-multiplicative. The stability of o-
multiplicative linear functionals has been studied by many authors [14, (15, [16} 24, 29]. More-
over, stability results [28]] for almost additive J-multiplicative functionals are also known.

In this paper, we shall prove that a Baker type stability result holds for ¢: A — T satisfying
(L.1) for some 6 > 0 and p > 0. If, in addition, ¢ is almost additive in the sense

0(z +y) — o(z) — o) < o([l«” + lwll") (.5 € A),

then we show that ¢ is a ring homomorphism, that is, ¢ is both additive and multiplicative, or
lo(x)| < (14++/1+40)||z||”/2 for all z € A. As a corollary, by using Rassias’ result [22], we
will prove that if p # 1, then ¢ is a ring homomorphism, or |¢(x)| < 26||x||”/|2 — 2P| for all
x € A. The Hyers-Ulam-Rassias stability of ring homomorphisms was obtained by R. Badora
[3]], which is a generalization of a result [5] of D. G. Bourgin.

2. MAIN RESULTS

Theorem 2.1. Let IF be the real or complex number field and A a normed algebra over F. If a
functional ¢: A — T satisfies

(2.1) [o(zy) — o(z)d(y)| < ofl=||” lyl”  (=,y € A)
for some 6 > 0 and p > 0, then ¢ is multiplicative or
1+ \/ 1446
[p(z)] < (e
forall x € A.

To prove Theorem [2.1] we need the following lemma, which we will also use to prove Theo-

rem

Lemma 2.2. Let F be the real or complex number field and A a normed algebra over F. Let
¢: A — F be a functional such that (2.1) holds for some 6 > 0 and p > 0. If there exists a
constant k with 0 < k < oo such that |¢(z)| < k||x||” for every x € A, then

1+ \/ 1+46
2.2) ¢(z)] < [Edls
forall x € A.
Proof. Set
sup |¢()| ifp=0
€A
m= |¢()]
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then m < k < oo by hypothesis. Note that if p # 0, then ¢(0) = 0 since |¢(z)| < k||z||”. Thus,
we have |¢(z)| < m||z||” for all z € A. It follows from @.1)) that |p(z2) — ¢(x)?| < 6|z,
and so
|p(2)* < 8l + |(2?)|
< S| +ml| 2|
< (0 +m)||*

for all z € A. This implies that m* < & + m. Now it is obvious that m < (14 /1 +44§)/2,
and so we have (2.2) forall x € A. 1

It should be mentioned that the following proof is based on those of [27, Proposition 2.2] and
[28, Theorem 4].

Proof of Theorem 2.1} Suppose that ¢ is not multiplicative, that is, there are a,b € A such that
o(ab) # ¢(a)p(b). Take x € A arbitrarily. It follows from (2.1) that

[9(x)] |¢(ab) — ¢(a)p(D)]
< [p(z)d(ab) — ¢(z(ab))| + |p(x(ab)) — d(za)g(b)|
+ |p(za)p(b) — ¢(x)d(a)d(b)]|

< o(flz )" [labl” + [[zal/” 01" + [|z]|” lall”|o(b)])

< ollall” lbI" + [oB)]) 217,
and hence
ollall” (2[|b]” + |o(b)])
= Z50) — (o)

Since x € A was arbitrary, Lemma [2.2] yields that

1—1—\/1—1—45H I
—_— :'U
2

[Eel i

()] <

for all x € A, and the proof is complete.

Remark 2.1. One can also consider a mapping ¢ between two normed algebras .4 and B such
that

lp(zy) — d(@)oW)Il < ollz”[lyl"  (z,y € A)
for some 6 > 0 and p > 0. If, in addition, the norm || - || of B satisfies

(2.3) I£gll = 1lAIHgll (f,9 € B),

then we see that the above proofs work well. Thus we have that a result similar to Theorem [2.1]
holds for a mapping ¢ between normed algebras A and B with the property (2.3)). On the other
hand, the norm condition is quite restrictive. In fact, if B is a unital real normed algebra,
then (2.3) implies B = R, or B = C, or B is the quaternion field. It seems that the result was
proved first by S. Mazur [19]. Moreover, some generalizations are obtained (cf. [2]). Although
the above result is well-known, if B is a unital commutative complex Banach algebra, then we
can give a simple proof, which is essentially due to I. Gelfand, D. Raikov and G. Shilov [7,
Theorem 1 of §10]. Indeed, let f € B\ {0}. Take a boundary point A of the spectrum f(Mz)
of f, where My denotes the maximal ideal space of B and f denotes the Gelfand transform of
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f. Let e be a unit element of B and N the set of all natural numbers. If {\, }nen € C\ f(Mp)
converges to A, then f — \,e is invertible, and so

1
_>\n ! 2
ICf = Ane) ™"l o o)
1

Z|/\_>\n|—>oo (n — o0).
Thus, it follows from 2.3) that || f — A\,.e]| — 0 as n — oo. Set
(f = ne) ™!

N T WSk

then ||g,|| = 1 for all n € N, and so we get

[(f = Ae)gnll < I(f = Ane)gull + [[(An — A)gall
=|f = el + A=A =0 (n — 00).

Since ||gn|| = 1, (2.3)) shows that f — Ae = 0, proving B = C.

Theorem 2.3. Let F be the real, or complex number field and A a normed algebra over F. If
¢: A — Fis a functional such that

(2.4) |6(zy) — d(x)o()] < dllzl” [yl (z,y € A)
(2.5) 6(x +y) — o(x) — o) < o([l=l]” + [lylI")  (z,y € A),
for some 6 > 0 and p > 0, then ¢ is a ring homomorphism, or
1+ \/ 1446
(2.6) ()] < "
forall x € A.

Proof. Suppose that ¢ is not a ring homomorphism. We will show that holds for all x € A.
There are two possibilities for ¢. If ¢ is not multiplicative, then by Theorem [2.1] we have (2.6).
If ¢ is not additive, then we will show that |p(x)| < P (x € A) for some constant k with
0 < k < oo. Indeed, if ¢ is not additive, then there exist a, b € A such that

¢(a+b) = p(a) + o(b).
For each = € A, it follows from (2.4)) and (2.5)) that

|0(2)]|6(a +b) — d(a) — H(b)]
< [p(x)d(a+b) — ¢(xa+ xb)| + [p(xa + xb) — ¢(xa) — ¢(xD)]
+¢(za) — ¢(x)¢(a)| + [p(xd) — ¢(2)¢(b)]
< O([l]” la+ bl + llwall” + [l<bl” + [l ]” [lall” + l=]” [|6]")
< 0(fla+bl1” + 2[lall” + 2[|6l1") [,

which implies that
S+ 0P -+ 20all” +200P) |,
NS Tt 5) o) o] !

for all z € A, as claimed. It follows from Lemma [2.2] that (2.6)) holds for all x € A, and so the
proof is complete. 1
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Corollary 2.4. Let IF be the real, or complex number field and A a normed algebra over F. If a
functional ¢: A — F satisfies (2.4) and (2.5)) for some 6 > 0 and p > 0 with p # 1, then ¢ is a
ring homomorphism, or

26

p

[p(x)] <

forall x € A.
Proof. Since ¢ is approximately additive in the sense of (2.5)), it follows from [22] that there
exists a unique additive mapping 7': A — T such that

20
|2 — 27|

for all x € A. Suppose that ¢ is not a ring homomorphism. Then, by Theorem we have
(2.6) for every = € A. It follows from (2.7) that

2.7 |9(x) = T(z)| <

(el

(2.8) T(2)] < |p(z)| + jz]|” < Ell]”

22|
for all x € A, where

_1+VIFd 2

B 2 12 —2r|

We show that 7'(x) = 0 for every z € A. To do this, take = € A arbitrarily. Set s =
|1 —p|/(1 — p), then s = £1. By (2.8)), we have, for each natural number n, that

T(n*z)| < klln*z]|? = n*kl|z|?.

k

On the other hand, since 7 is additive, it is easy to see that 7'(n°z) = n*T(z) for every n. It
follows that

1T(z)| < n*®VE|z||P — 0 (asn — o0)
since s(p — 1) = —|1 — p| < 0. Since = € A was arbitrary, we have T'(z) = 0 for every = € A.
By 2.7), we have |¢(z)| < 24|z /|2 — 2P| forall x € A. 1
Remark 2.2.
(i) Setp(x) = (1++/1 + 49)x/2 for every x € R. Itis obvious that ¢(z+y) = ¢(z)+¢(y)
and

¢(ry) — o(2)oly) = —dxy
hold for every =,y € R, and so ¢ satisfies the conditions (2.4) and (2.5) for p = 1.

Although ¢ is additive, we see that ¢ is not multiplicative unless 6 = 0.
(ii) Let p > 0. Set ¢(x) = | sinz|? for z € R. Since |sinz| < |z| for every z € R, we have

|9(xy) — ¢(x)d(y)| < [sin(zy)[” + |sinz[?[siny]” < 2z[” [y[”
for all x,y € R. First, let us consider the case when p < 1. Since
[z +yl” < |z’ + 1yl (2,9 €R),
we also have that
|0(x +y) = o(x) = ¢(y)| < [sin(z +y)|P + |sinz]” + [siny[’
<z +yl" + =" + |y[” < 2(|z” + [yl?)
for all z,y € R. Although ¢ is neither additive nor multiplicative, ¢ satisfies (2.4]) and

(2.5) for o = 2.
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We next consider the case when p > 1. In this case, we see that

@+ yl” < 277 (|2 + [y ]P)

holds for all z, y € R, and so we have

|6(z +y) — ¢(x) — o) < (2" + ) (J2f” + [yI”)

for all z, y € R. This implies that ¢ satisfies (2.4) and (2.3)) for § = 2P~ + 1.
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