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ABSTRACT. Projected dynamical systems theory represents a bridge between the static worlds
of variational inequalities and equilibrium problems, and the dynamic world of ordinary dif-
ferential equations. A projected dynamical system (PDS) is given by the flow of a projected
differential equation, an ordinary differential equation whose trajectories are restricted to a con-
straint setK. Projected differential equations are defined by discontinuous vector fields and
so standard differential equations theory cannot apply. The formal study of PDS began in the
90's, although some results existed in the literature since the 70’s. In this paper we present a
novel result regarding existence of equilibria and periodic cycles of a finite dimensional PDS
on constraint set€, whose points satisfy a corner condition. The novelty is due to proving
existence of boundary equilibria without using a variational inequality approach or monotonicity
type conditions.
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1. INTRODUCTION

A projected dynamical system is given by the flow of a projected differential equation [7], an
ordinary differential equation whose trajectories are restricted to some constraint Setch
systems naturally arise when optimization and equilibrium problems are placed in a dynamical
context as is often dictated in economics, networking, engineering and other applications (see
[4,/16,17] and the references therein). In particular, the discipline owes much of its development
to the study of variational inequality (VI) problems, which has been ongoing since the 1960s
[2,10,/ 13/ 14, 15].

The formal study of projected dynamical systems began in the early 1990s on Euclidean
spaces, with papers investigating the existence of solutions to initial value problems of pro-
jected differential equations over a variety of constraint $&{8, [9]. The study of projected
differential equations is complicated by the discontinuity of the vector field along the bound-
ary of the constraint se’, which means that much of standard ordinary differential equations
theory does not apply. The study has been extended to Hilbert spaces! (see [4,/5, 7, 11, 12]).
There are existence and uniqueness results for solutions to such equations in the class of ab-
solutely continuous functions over the interi@loc). The study of critical points for projected
dynamical systems, including their stability analyses under various monotonicity conditions,
has similarly been conducted in both finite"”) and infinite dimensional (Hilbert) spaces (see
[6,11,[17]).

In general, the existence of equilibrium points of a PDS is obtained via the well-developed
theory of VIs, due to the fact that all critical points of a PDS can be obtained by solving an
associated VI. The main result of this paper, however, establishes the existence of boundary
equilibrium points for a finite-dimensional PDS without the use of a VI problem, or the use of
monotonicity conditions, or of Lyapunov-type constructions. Instead, we use the geometry of
the constraint set to obtain the result.

The study of periodic behaviour for PDS began only recently with the publicationl of [5],
which considered the existence of periodic cycles under monotonicity conditions; however,
similar results exist in related literature [1]. Here we are interested in finding other approaches
to study the existence of such cycles. In this paper we consider conditions on the constraint set
K under which periodic solutions may not pass through a corner point. We note that sets with
corner points arise frequently in applications. Nonnegativity of investments/resources requires
the setR”. Other constraint sets with corners can appear in game theory, when strategies are
restricted to some form of hypercube [3], or in linear programming problems where the corners
arise at the intersection of linear constraints.

The paper is organized as follows. In Sectign 2, we present a brief overview of convex
cones, projection operators and projected dynamical systems. In Segction 3, we outline a few
useful results from differential inclusion theory as they relate to our consideration of projected
dynamical systems. In Sectipp 4, we state and prove the main results of the paper, and provide
an illustrative example. In Secti¢pf 5, we give a few concluding remarks and possible avenues
for future work.

We note that, while many of the definitions and results used in this paper can be formulated
in spaces other thaR", we limit our considerations here to this space. As such, wg let
denote the standard Euclidean norm &ne) denote the standard Euclidean inner product.

2. CONVEX CONES, PROJECTION OPERATORS AND PROJECTED DYNAMICAL
SYSTEMS

In order to define a projected dynamical system, we assume the reader is familiar with the
concepts of closed convex subsets and con&s'i(see, for examplel [1]). Given a nonempty,
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closed and convex séf, we can associate to each pairite K two closed and convex cones
which are crucial to our understanding of projected dynamical systemsartigent coneand
thenormal cone

Definition 2.1. Thetangent cone(or contingent cong to a pointz* € K is defined to be
1
Tk (") = U S(K —a*).
5>0
Definition 2.2. Thenormal coneto a pointz* € K is defined to be
Nig(z®)={y e R" | (y,xz —2") <0, Vz e K}.

It is known that if K is closed and convex then these cones are polar to one another, i.e.,
Ve Tk(z*),y € Ng(x*),(xz,y) < 0. We now introduce th@rojection operatorandvector
projection operatoy which are the tools by which solutions are restricted to our constraint set
K.

Definition 2.3. Theprojection operator, or closest element mappingPy : R” — K is given
by Pk (z) € K such that

| = Px (@) < llz = yll, Vy € K.

While the projection operator is not differentiable in the classical sense, it does permit a
one-sided directional derivative given by:

Definition 2.4. Thevector projection of a vectorv € R™ at a pointz € K onto K is defined
to be

. Pr(r+dv) -2
(2.1) Mk (z,v) = 511,%1+ 5 :

Application of this concept is significantly simplified by the following result, which can be
found in [19], Lemma 4.6:

Theorem 2.1.Let K C R" be a closed and convex set ang R"™. Then for every € K
Mk (z,v) = Pri@(v).

We now define a projected differential equation and a projected dynamical system. We note
that the accepted convention in the literature is to 4geto denote the vector field, which
is a consequence of how projected dynamical systems have arisen with respect to variational
inequality theory. This is the convention that will be used throughout this paper.

Definition 2.5. Let K C R"™ be a closed and convex set and’ : X — R" be a vector field.
Then theprojected differential equation associated withl’ and—F' is given by

dx(t
) M (a(t), ~Flatr))
To any such equation we can associateitiiteal value problem(IVP)

2.3) dfg)

By a solution to[(2.8) we mean a solution in the following sense.

(2.2)

=g (x(t), —F(z(t))), x(0) =z € K.

Definition 2.6. An absolutely continuous function: [0, co) — R™ such thatc(¢) € K for all

t € [0,00) anddx—(t) = Ik (z(t), —F(z(t))), for almost allt € [0, c0), is called asolution to

the initial value problent (2]3).
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Supposing that solutions tp (2.3) existBn and are uniquely defined for each initial point
x(0) = xq, then we define a PDS as follows:

Definition 2.7. A projected dynamical systemis given by a mappin@ : K x R, — K that
solves the initial value problem

D, (t) = g (P (1), —F (D, (1)), ®.(0) =z € K
where we takeb,(t) := &(x, t).
We now state an important existence and uniqueness result for solutions of PDS (see [7] for
a proof):

Theorem 2.2.Let X be a Hilbert space of arbitrary dimension ardd C X be a non-empty,
closed and convex subset. Let’ : K — X be a Lipschitz continuous vector field ande K.
Then the initial value problem

dx(t) -
o = Ur(a(t), —F(x(1)), 2(0) = o

has a unique absolutely continuous solution on the intefalo).

As we consider in this paper only finite-dimensional Euclidean spaces, w&takeR"™.
It is known that the critical points of projected differential equations can be classified in the
following way:

Proposition 2.3. The pointst* € K satisfying

(2.4) g (z*,—F(z*)) = 0.
coincide with the points* € K satisfying
(2.5) — F(z*) € Ng(z").

We note that, sincé € Ng(x) regardless of the choice af € K, it is always true that if
the vector field—F vanishes at a point* € K thenz* is a critical point. In general, in the
PDS literature the existence of critical points as in Proposjition 2.3 is obtained via the following
result (seel[H, 12, 17] for proofs):

Theorem 2.4.The critical points of[(2]2) coincide with the solutions of the variational inequal-
ity problem:
finda* € K s.t. (F(a"),y —2") >0,Vy € K.

VI theory has numerous existence results for solutions of such problems. The existence of
critical points of PDS follows as a result of Theorem|2.4. In this paper, however, we ask the
guestion of finding different criteria for existence of boundary critical points of PDS without
involving the use of VI theory. We answer this question by considering the geometry of the
constraint sek'.

3. DIFFERENTIAL INCLUSIONS AND VIABLE TRAJECTORIES

In applications, it is often useful to consider the derivative (or the “rate of change” of a
process) to be an element of a set rather than to equal an explicit expression. Such a con-
sideration gives rise mathematically to what is known alfferential inclusion a field with
substantial mathematical literature to date (for a comprehensive introduction to differential in-
clusions and set-valued mappings, see [1] and the references therein). In this section, we show
in brief how a PDS is naturally related to a differential inclusion, and how this relation helps in
the study of a projected dynamics. We state here only those definitions and results which are
directly relevant to the topic at hand.
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We consider throughout the following differential inclusion:

(3.1) (t) € =F(z(t)) — NK(x(t)), a.a.t € [0, 00),
where
(3.2) Ni(z) ={n € Ng(z) | |nll < [|F(z)]]}.

It is known that the solution set of this inclusion contains the specific solution to Equatipn (2.2)
[1]. More explicitly the following theorem follows from a theorem in [1], Ch. 5, taking'(z)
to be a singleton.

Theorem 3.1.Let K C R"™ be a nonempty, closed and convex subset. Then the solutions to the
initial value problem([(2.8) coincide with the viable solutions to the differential inclugion (3.1).

We notice by Theoremn 2.2 that £ is Lipschitz continuous then the solution fo (2.3) is in
fact unique. This result therefore implies the uniqueness of any viable solutipn jof (3.1). (The
definition of aviable trajectoryis given below in Definitiof 3]2.)

Definition 3.1. Let A, B C R™. A set-valued mappingG : A — 27 is a map that associates
to anyxr € A a subseti(x) C B, where by2” we denote the collection of subsetsi®f

Remark 3.1. We are often interested in constructingeighbourhoods around sets rather than
singletons. Given a non-empty subget- R", we take

B(D,e¢) := U B(z,€)
€D
where byB(x, €) we denote the open ball of radiusentered at € R".

The concepts of upper hemicontinuity and upper semicontinuity are well-known for set-
valued mappings and are related by the following theorem (see [1], Ch. 1).

Theorem 3.2.Let A,B C R andG : A — 2P be a set-valued mapping such th@fz)
is convex and compact for eaghe A. Then ifG is upper hemicontinuous at it is upper
semicontinuous at.

The following results give properties of the set-valued mappirg — F(z) — Ny () of the
differential inclusion above (see![7] for a proof):

Theorem 3.3.Let K C R” be a non-empty, closed and convex subset-afd K — R" be a
Lipschitz continuous vector field with Lipschitz constantet L > 0 andz, € K arbitrarily
fixed. Then the set-valued mapping- —F(z) — N (x)

(1) is upper hemicontinuous afi N B(zg, L);

(2) has non-empty, compact and convex values for eaehk’.

Using Theoremp 3|2 afnd 3.3 we obtain:
Theorem 3.4. Assume the hypotheses of Theofem 3.3. Then the set-valued mapping
—F(xz) — Ng(z) is upper semicontinuous dd N B(zo, L).

Remark 3.2. We notice that if, in addition to the hypotheses of Theofem B3C R" is
bounded then the set-valued mapping— —F(z) — Nk () is upper hemicontinuous and
upper semicontinuous o' since we can take, € K fixed andL > 0 large enough so that
K C Bz, L).

The central concept we will be interested in with regards to the inclu§ion (3.1) is that of
viability, which is a generalization of the notion of a solution (see Definjtioh 2.6) to the case of
a set-valued vector field.
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Definition 3.2. Let K C R" be a non-empty subset ant: K — 2%" be a set-valued mapping.
An absolutely continuous trajectonyt) of the differential inclusion:(t) € G(x(t)) is viable
on K if
z(t) € K, Vtel0,00).
The book [1] presents a number of results regarding the existence of viable trajectories. The
following is the one we usel([1], Ch. 4).

Theorem 3.5.Let K C R" be a nonempty and compact subset ahd K — 2" be a proper
upper hemicontinuous map with compact, convex values. Suppose that for. evéfy

G(z) NTk(x) #£ 0.
Then for everyr, € K, there exists a viable trajectory of the differential inclusioft) <
G(z),z(0) = x0, defined o0, co).

We are interested in how this result applies to the¥et) := —F(z)— Nk (z). The following
is essential to our application of Theorgm|3.5 during the proof of the main result of this paper.

Proposition 3.6. Let K C R™ be a non-empty, closed and convex subset. Therg K,
(3:3) [~ F(z) = N (2)] N T (x) # 0.
Proof. From Propositions 2 and 3, Ch. 0, of [1], we have that
Prie(o)(=F(2)) + Py (= F(z)) = —F(z)

with

[ Pricta) (= F @)1 + | Pre(ay (= F () ||* = | ()]
The latter implies tha Py, ) (—F'(x))|| < || F(x)|, which by definition implies that
Prny@)(—=F(z)) € Nk (). SincePr, ) (—F(x)) € Tk(x) trivially, the result follows. O

4. PERIODIC CYCLES ON SETS WITH CORNERS

In this section we considek’ C R" to be a non-empty, compact and convex set which
contains some point(s)* € K satisfying the condition

(4.1) YV vy, vg € Ti(2"), (v1,v9) > 0.

In the most general terms, this condition is a measure of the sharpness of a corner point.
In this section we state and prove several properties of systems on constraint sets with points
satisfying this condition (Lemma 4.2 and Theorem 4.3). The section concludes with a result
(Corollary[4.%) regarding the nature of periodic orbits as they relate to such points.

We note that sets with corner points satisfying this condition arise frequently in applications.
Nonnegativity of investments/resources, for example, often dictates such a condition at the ori-
gin of the constraint set’ = R’}. The condition is also satisfied in game theory when strategies
are typically restricted to some form of hypercube (ité.= [0, 1] wheren is the number of
players|[3]). It is also applicable to linear programming problems where the condition can arise
at the intersection of linear constraints.

The proof of the main result of this paper (Theoifen) 4.3) requires several classical results. We
state Theorern 4.1 in a formulation most suitable for our purposes (see [18]).

Theorem 4.1. [Hyperplane Separation Theoreirgdt C; andC; be closed convex conesliy.
ThenC; andC, intersect only at the origin an@’; does not contain a line through the origin if
and only if there exists an € R", a # 0 such that

(av,x) >0, Ve (C,x#0,and
(a,y) <0, Vy e Ch.
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The proof of the main result utilizes the following lemma.

Lemma 4.2. Let K C R™ be a nonempty, closed and convex subset such that there exists
x* € K satisfying condition[(4]1). Then

Proof. By assumptiony vy, vy € Tk (x*), (v1,v2) > 0. This implies(—wv,v9) < 0. Recalling
the definition of the tangent cone (Definition[2.1), we substityte= = — z* (Wherez € K is
chosen arbitrarily) to get-v,, z—2*) < 0. Since this applies for alt € K, by the definition of
the normal cone (Definition 2.2), we have,, € Nk (z*). Since—v; € —Tk(z*) was chosen
arbitrarily, =Tk (z*) C Ng(z*). O

We now state and prove the main result of this section. This theorem states that if a trajectory
reaches a sufficiently sharp corner point, as defined by condition (4.1), then the corner point is
an equilibrium for this trajectory. The section concludes with Coroflary 4.5 which relates this
theorem to periodic cycles of projected dynamical systems.

Theorem 4.3.Let K C R™ be a nonempty, compact and convex subset-aid K — R" be
a Lipschitz continuous vector field. Suppose there exists K satisfying condition[(4]1) and
a solution to the IVP[(2]3), denotedt), such thatz(0) # z* andz(t*) = z* for somet* > 0.
Thenz(t) = x*,V t > t*.

Proof. Sincex(t) = z*, V't > ¢* implies—F(z*) € Nk (z*) by Propositiorf 2]3, this result is
equivalent to showing that i F'(z*) ¢ Nk (z*) then there exists no trajectory originating in
K\ {z*} that reaches* in finite time.

We will assume-F'(z*) € Nk (x*). This implies that

(4.3) Nic(a) A [~ F(2*) = Nic(a")] = 0.

To see that this is the case, assume the contraiyfr*) N [— F(z*) — Nk (2*)] # 0 we have
that3 ny, ny € Ni(x*) (SinceNg (z*) C Ni(x*)) such that, = —F(z*) — ny, which implies
niy +ny = —F(x*). However, sinceVg (x*) is a cone, this implies-F(z*) € Ng(z*), which
contradicts our assumption.

From Lemma 42 we have thatl'x (z*) C N (z*). This implies by Equatior] (4]3) that

(4.4) — Ti(@”) N [-F(a") - Ng(a)] = 0.

Since—Tx (z*) and—F(z*) — N (z*) are disjoint, both sets are closed, an#l (z*) — Ny (z*)
is bounded, we have thate; > 0 such that

(4.5) — Tx(2") N B(=F(2*) — Nk (z*), &) = 0.

Now consider the sets

—Tk(a*) andC := | J hB(=F(z*) — N(z*), e1).
h>0
The mapping—F(z*) — Nk (z*) is non-empty, closed and convex by Theo@ 3.3, which
implies thatB(—F(z*) — Nk (z*), ¢;) is non-empty, closed and convex. We therefore have that
C'is a closed convex cone. We also see that for any fixed0, —7 («*) and
hB(—F (z*) — Nk (z*), €;) are disjoint since-Tx (z*) is a convex cone, andTx (z*) does
not contain a line through the origin since for all v, € T (z*) we have(vy, v2) > 0. We can
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therefore apply the Hyperplane Separation Theorem (Thelorém 4.1) to show that there exists an
a € R™, a # 0 such that

(4.6) (a, —v) >0,V —ve -Tkg(z"),—v #0, and

(4.7) (o, hB(—F(z*) —n,e)) <0, Vn e NK(I'*) Y h>0,

where we have omitted the points on the boundari of F'(z Ng(z* 61 for S|mpI|C|ty
Since K C R" is non-empty, compact and convex, by Theo Kx(x) is

upper semicontinuous oR’. This means that ¢ > 0, 3§ > 0 such thatv y € B(x ),
—F(y) — Nk(y) € B(—F(x) — Nk(x),€). Takinge := ¢ to be as in Equation (4.5) we have
that3 6, > 0 suchthat/ y € K N B(z*,6,), —F(y) — Nk (y) C B(—F(x*) — Nk (x*), €1). By
Equation [(4.]), after multiplying through by, we have thaty y € K N B(z*, 1),

(4.8) (a, =F(y) —n) <0,Vne NK(y)

We can rewrite Equatiof (4.6) ds,v) < 0, V v € Tx(z*),v # 0. Takingv := z — 2* €
Tk (z*) we have that, for every € K \ {z*},

4.9 (a,x —x*) < 0.
We now taket € K \ {z*} and consider the sét c K of the form
(4.10) K={zeK|{a,z—7) <0}

We may viewK askK with the corner containing* cut out, sincek = K\ {z € K | (o, 2 —
z) > 0}. We would like Equation| (4/8) to hold along: € K | (o, z — %) = 0}, so we have
to guarantee that this slice can occur within the neighbourti®qd, §,). For the application
of the viability theorems used later in this proof, we also need this slice to be able to occur
arbitrarily close tar*. We achieve both of these objectives through the following Proposition,
which uses the same definitions and assumptions as outlined thus far in the proof.

Proposition 4.4. For everys > 0, we can choose @ € K \ {z*} such that
{r € K| {a,x — ) =0} C B(z",9).

Proof. Suppose otherwise. This implies thd > 0 such that & € K \ {z*}, 32 € K such
that(a, x — Z) = 0 butz &€ B(z*, ).

Since this must hold for alt € K \ {z*}, we consider a sequengg,, } such that,, € K
foralln > 0 andz,, — z* asn — oo. For each such,,, there is a corresponding, € K such
that(«, z,, — Z,,) = 0 and||z,, — z*|| > J§ by assumption.

Asn — oo we have(x, Z,) — («,z*) which implies{«, z,,) — («,z*). However, since
K is a bounded set, the Bolzano-Weierstrass Theorem implies that the seduehdeas a
subsequence (which we will also denote fy,}) that converges. Sincf is closed, this
subsequence converges to an elemeatk’. Asn — oo we have thafjz,, —z*|| — ||z —z*| >
d > 0and{a,z,) — (o, z) = (a,z*) wherex € K, i.e. there is a point € K, x # z* such
that(a, z — z*) = 0. This contradicts Equatioh (4.9). Therefore, for evéry 0 we can choose
7 € Ksuchtha{z € K | (o,x — &) = 0} C B(z*,0).

O

We now want to investigate the relationship betwedh(z) — Ny (z) andT (z) for z € K
based on our knowledge @f; (z) for z € K. SincekK is the intersection of two convex sets,

it is convex, and therefore the coffig (z) is well defined. We know thdt-F(z) — N (z)] N

Ti(x) # 0 for all z € K from Equation[(3.8). We notice that for everye K such that
(a,x — &) < 0 we have thal'; (x) = Tk () and therefore

[—F(z) — Ng(2)]NTi(z) #0, Vo € K st {a,z — Z) < 0.
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We now consider: € K such that(a,z — #) = 0. We see that for any such T (z) =
{v € Tg(z) | (a,v) < 0}. From Equation[(4]8) we have thats, > 0 such that for all
y € KNB(z*,6,), (a, —F(y) —n) < 0foralln € Nk(y), and from Prop05|t|o.4 choosing
d < 01, we have that we can choosez K suchthaf{z € K | (o, x — %) = 0} C B(x*,01).
From Equation[(3]3) we therefore have that

[—F(z) — Ng(2)]NTr(z) #0, Vo € K st {a,z — &) = 0.
Together these results imply that, for an appropriate choide of

(4.11) [—F(z) — Ng(2)|NTe(z) #0, Ve K.

We notice thafx is compact since it is the intersection of a compact&eand a closed set,
€ R" [ {a,z—7) < 0}. Since—F'(z) — Nk (z) is upper hemicontinuous al§ by Theorem
, it is upper hemicontinuous dki K, and since Equatloll) holds for alle K,
the V|ab|I|ty Theorem (Theore@ 5) implies that there exists a viable trajectory 6or all
z(0) € K. This trajectory is clearly also viable di sincek ¢ K. By Theore we have
that viable solutions correspond to solutions to the IVP|(2.3), and by Thgorém 2 2 we have that
the solution is unique through every0) € K.
Since by Propositio@A we are free to chodse the definition of X" arbitrarily close taz*
while maintaining the propertl), we can construct getghich include any arbitrary point
x € K butexcluder*. This implies that every solution to the IVP (.3) such thi) # =* must
excludez* on the interval0, co). This is a contradiction, which implies that our assumption
—F(z*) ¢ Ni(z*) was incorrect. Therefore F'(z*) € Nk (x*) and the result follows.
O

An immediate consequence of Theorem| 4.3 is the following Corollary related to periodic
cycles.

Corollary 4.5. Let K C R™ be a nonempty, compact and convex subset-afd: K — R”
be a Lipschitz continuous vector field. Suppose there exists K satisfying condition[(4]1).
Then no periodic cycle can contain the pairit

Proof. By Theoren{ 4.3 we have that any trajectory originating away frdrthat reaches™,
at timet* > 0, must remain at* for all time ¢ > ¢*. However, in order to have a periodic cycle
throughz* there must be,, ¢, > 0 satisfyingt; < t* < t,, such that:(¢;) = z(t5) # «*, which
is a contradiction. The result follows. O

Application of Theorem[4.3/Corollary 4.5
Consider the system

dx
-— = r—a
i ’
d—?; = ar+vy, a>0,
restricted to the sek’ = {(z,y) e R* | —1 < x < 1,-1 < y < 1}. The unconstrained

system has eigenvalu@as= 1 + ai which implies that the origin is a spiral source foralt 0.
Roughly speaking, the parametecontrols the tightness of spiraling.

Clearly, the four corner points satisfy conditipn (4.1) which implies by The¢rem 4.3 that if a
trajectory can reach a corner point, the corner point is a sink, and by Cofollary 4.5 that if there
is a periodic orbit, it excludes the corner points.

We know from Propositioh 2|3 that a point is an equilibrium if and only i (z) € Ng (z).

We considerz* = (1,1) and see that-F(z*) = (1 — a,a + 1) and Ng(z*) = {(z,y) €
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R? | z > 0,y > 0}. This implies that-F(z*) € Ng(x*) for0 < a < 1. Fora > 1 we have
—F(z*) ¢ Ng(z*) and therefore from Theorem 4.3 that no trajectory originating away from
x* can reach:*. The same condition can be easily obtained for each of the other three corner
points.

In Figure[]1 we can see that the system behaves as predicted. In theOrange < 1,
trajectories fall into sinks at the corners; however @ésscaled into the range > 1, the corner

points are no longer sinks, and the system gives rise to periodic orbits which do not enter the
corners.
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Figure 1: The system = z—ay, y = ax+y constrainedtothe sét = {(z,y) e R?|-1 <2 <1,-1<y <1}
with (@)a = 0.5, (b)a =1, (c)a = 1.1, and (d)a = 2.
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5. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new result about existence of boundary equilibria and
periodic cycles of projected dynamical systems. We have obtained this result without the aid of
VI theory or monotonicity results.

The study of projected dynamics is in general made challenging by the discontinuity of the
projected vector field on the boundary of the constrainf&ethis discipline therefore requires
alternative methodology, such as differential inclusions and convex and nonlinear analysis tech-
niques, some of which were used in this work. The study of periodic cycles of projected dynam-
ical systems has only been initiated recently and, consequently, there is significant potential for
original research within this field. The key results contained in Section 4 provide many avenues
for future work. We highlight two of these. The first one concerns finding an alternative ap-
proach which does not require boundedness of thé&'séfthis would allow the result to apply
to a wider class of constraint sets, in particular to the ddhevhich arises in many economic
and finance related problems. The second one concerns the generalization of such results to
spaces other than the finite dimensional spg&ite

It is our feeling that, not only will progress in this field be useful in the theoretical develop-
ment of projected dynamical systems, but it will also find application in fields such as econom-
ics, finance, game theory, epidemiology, etc., where periodic behaviour is commonly observed
in the dynamics despite the imposition of a constraint set.

The authors gratefully acknowledge the support received from the Natural Sciences and En-
gineering Research Council (NSERC) of Canada for this work.
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