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ABSTRACT. This paper proposes a new algorithm to find a common element of the fixed point
set of a finite family of demimetric mappings and the set of solutions of a general split varia-
tional inclusion problem in Hilbert spaces. The algorithm is based on the viscosity approxima-
tion method, which is a powerful tool for solving fixed point problems and variational inclusion
problems. Under some conditions, we prove that the sequence generated by the algorithm con-
verges strongly to this common solution.
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2 P. FRTEL AND R. SHUKLA

1. INTRODUCTION

In 1976, Rockafellar[[16] studied the inclusion problem of finding
(1.1) nt e Y740),

whereY is a maximal monotone set-valued mapping, the author has devised a method called
the proximal point method to tackle the inclusion problém]|(1.1) in a Hilbert spacver the

years, due to its practical uses in various fields such as science, engineering, management, and
social sciences, the inclusion problem has been extended and generalized in many ways, as
seen in references![3,/4,115, 17| 11,12, 1,18/ 12, 74, 13]. Supposrd>:; be two real Hilbert

spaces, and let, : 3¥; — 2> andy, : ¥; — 22 be maximal monotone mappings. Then the

split variational inclusion problem is to find a poimte ¥, in such a way that

0 € x1(p) ando € x, T (n),

whereY : 3¥; — X, is a bounded linear mapping.
There are a number of iterative algorithms available to for finding the solution of split varia-
tion inclusion problem. 112012, Byrneet. alintroduced a one step algorithm as

gn—i—l = ‘])>\<1 [Cn + ET* (J)>\<2 - [) T(Cn)] )

wheree € <0, HTQ—T”> and proves some convergence results to solve split variational inclusion

problem. In the context of a Hilbert space, Kazmi and Rizvi [5] presented a two-step algorithm
aimed at discovering a shared solution for both the split variational inclusion problem and the
fixed point of nonexpansive mappings, as follows:

€y = T C, + €T (T2 = )Y (C)],
Cn+1 = 5nF(Cn) + (1 - 5”)A<€n)

WhereY : ¥; — 3, is a bounded linear mapping,: ¥; — X; a nonexpansive mapping and
I' : ¥ — ¥, is a contraction mapping. 12023, Pan and Wang [10] introduced general split
variational inclusion problem for finding a poigte >2; in such a way that

N N
¢ e[ xi'(0), andY(¢) € ()E71(0),
=1 i=1

wherey, : 1 — X1, 5; 0 ¥y — Yo, ¢ = 1,2,... N are two families of maximal monotone
mappings. They introduced an inertial viscosity iterative approach for addressing the general
split variational inclusion problem and the fixed point problem associated with nonexpansive
mappings. More recently, in the year 2023, Mebtal [9] introduced a new mapping termed

the {-demimetric mapping, defined as follows:

Definition 1.1. A mappingA : ¥; — X, is said to b&-demimetric with respect td/-norm,
where¢ € (—oo, 1) if F(A) # 0 such that

(= ¢ (1= M) = 5= OIIT — )R, ¥C € B, e F(A).

Building upon the research conducted(in/[5, 9, 10], we introduce an algorithm and establish
the strong convergence of the generated sequence to a common solution for the general split
variational inclusion problem and the set of fixed points associated with a finite famgly of
demimetric mappings.
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2. PRELIMINARIES

Let £ be a nonempty closed convex subset of a real Hilbert spacge, .)) andA : € — &£
a mapping. A point’ € £ is said to be a fixed point of if A(¢") = ¢'. The set of all fixed
points of A will be denoted byF'(A).

Lemma 2.1.[8] Lety : 3, — 2% be a set valued maximal monotone mapping ane 0, the
following hold:
(i) for eachs > 0, the resolvent mappingg is a single valued and firmly nonexpansive
mapping;
(i) D(J3) =1, F(J5) = x7(0) = {¢ € D(x),0 € x(O)};
(i) (1 — J3) is a firmly nonexpansive mapping;
(iv) suppose thak~'(0) # 0, then for all¢ € X1,7 € x*(0) and ||.J5(¢) — n||2 << -
> = [|75¢) - ¢||
(v) supposethay~'(0) # 0, thenforall¢ € £, € x'(0) and(¢ — J3(¢), J5(¢) —n) >
0.

Lemma 2.2. [10] Assume thab:; and X, are two Hilbert spaces. L€eT 21 — Y, be
a linear and bounded mapping with its adjoifft. let x, : ¥, — ¥, Z; 1 o — X,
1 = 1,2,... N are two families of maximal monotone mappings. Jlﬁtand J“Z be the re-

solvent mappings of, and =;, respectively. Suppose that# () and 3, > 0, >\ > 0. Then
for anyn € X, n is a solution of general split variational inclusion problem if and only if

JXZ [77 A TH ([ — J“Z> T(n)} =1.

Lemma 2.3.[9] LetA : ¥; — 3 is &-demimetric mapping with respect fd-norm, where
£ € (—oo,1)andF(A) # 0. LetP = (1 —~)I +~vA, wherey € (—oo, 00) withy € (0,1 —¢],
thenP : 3; — > IS a quasi nonexpansive mapping.

Lemma 2.4.[20]. Let{II,} be a sequence of nonnegative real numbers such that
where{o,,} C (0,1), {V,} is sequence iR such that

(a) 2_:1 Op =
(b) lim sup¥,, <0.

ThenIl,, — 0.

Lemma 2.5.[7]. Suppos€Tl’, } be a sequence of real numbers that does not decrease at infinity,
in the sense that there exists a subsequgte} of {T', } which satisfied",, < I, for all
j > 0. Also consider the sequence of integérén)} defined by

7(n) = max{k <n:Ty < T}
Then{r(n)} is a nondecreasing sequence verifyitigh 7(n) = oo and, for alln > ny, it
holds thatl’;(,,) < I';(,,)4+1 and we havd’,, < FT(n)H.n_)OO
Lemma 2.6.[19] Let{(,,} and{n,,} be bounded sequences in a Banach spaseich that

G = (L= B)n, + BnC, VR > 1,
where{,,} is areal sequence ifd, 1) with 0 < 11m 1nf5 < limsup £, < 1. If limsup(||n,,,—

Ball =[G = Call) < 0, then lim [1n, — ¢, = 0.
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Lemma 2.7. [6] Suppose that thér, } is a sequence of nonnegative real numbers satisfying
o, < Tni+1 V1 € N, where{n;} is a subsequence ¢f}. Then,3 a nondecreasing sequence
{l;} ¢ Nin such away that; — oo, j € N, we have

Ty, < Ty andT; < 740
In fact,l; = max{k < j: 7y < Tit1}

Lemma 2.8. [10] Assume that; and Y, are two real Hilbert spaces. Suppo%¥e: ¥; — Y,
be a linear and bounded operator with its adjoilit. Lety, : ¥, — Xy, Z; : o — 3o,
1 =1,2,..., N are two families of maximal monotone mappings. Supdé;and JE; be the
resolvent mapping of; and =;, respectively. Suppose that the solution@a$ nonempty and
B; > 0,\; > 0. Then for any(' € ¥y, ¢! is a solution of general split variational inclusion

problem if and only if/}’ [CT — T (I — JE;) T(CT)} = ¢t

3. MAIN RESULT

Now, we consider the following general split variational inclusion problem of finding a point

¢ € ¥ such that
N

N
¢e ()X '(0), andY(¢) € [)Z71(0),
=1 1=1
wherey, : ¥ — ¥ andz; : ¥y — Y, =1,2,... N are two families of maximal monotone
mappings. We denote the solution set of general split variational inclusion problém by

Theorem 3.1. Let 31, ¥, be Hilbert spaces an@ : ¥; — ¥; a bounded linear mapping
with its adjoint Y*. Supposey; : X1 — Yy andZ; @ ¥y — 3o, ¢ = 1,2,... N are two
families of maximal monotone mappings. L]gt and JEZ be the resolvent mappings of
and =;, respectively. Let : ¥; — X; be a contraction mapping with coefficiemte (0, 1)
and A; : X; — X; a finite family of¢-demimetric mappings with € (—oo, 1) such that

I — A; is demiclosed at origin for all = 1,2,... N and (| F(A;)(© # (. Supposga,,},
=1

{0n} {7int € (0,1) and {3, .}, {\in} are sequences of_positive real numbers. For any given
Co, ¢; € Xy We define sequence as follows

My = Cn + Qn(gn - Cn—l)?
Cpp1 = anF (¢,) + (1= ) [0n () + (1 = 6n) A (w00)]-

M=

where,A,, = % (1 — qu)I + g, \;. If the sequence defined (§.1) satisfying the following
=1

conditions:
(i) Letthe parametef,, chosen as

en _ min {9, ‘|Cn_€gn71||} If Cn 7& Cnfla
0 otherwise,

whered > 0, ¢, is a positive real sequence such that= o(«,,);

(i) lim o, =0, Y o, = 00,0, C [a,b] C (0,1);
n—00 n=0
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(”I) Zo’yi,n - 1’71‘,11 C [Ca d] - (07 1)a )‘i,n € <07 ﬁ)!
then the sequencf(,} converges strongly to an eleme(it € ﬁ F(A) (O, where¢" =
i=1
P .
_mlFtAimeF(C )

Proof. Let (' € ﬁ F(A;) N O, then we have' = Jg‘;’n({’*), T = JiﬁnT(g*) andA;(¢h) =

¢". Now -
N 2
e = ¢l = || > i3, |10 = AT (1 =I5 ) Tm)| = ¢!
=1
(3.2) <> = 2T (175 ) 1] 1|
=1

From Lemml we can say th%? [I — i, T* (I — JE? ) T} is nonexpansive, and hence

M= A (1= 75 ) T00) —¢f||

T = T (1= 75 ) )] ¢ <
= lln, = ¢+ 22, |0 (1= J5: ) *(ma)
+ 2\ <nn — ¢t <J§;n - I> T(nn)>
= lm, = ¢12+ 22, (U5, = 1) T, 07" (J5, = 1) T(1,) )

+2\in <T(77n —¢h), <JBE:TL - I> T(n”)>

2

|

i (135, 0] -
< lln, = P+ A2 TR || (J5, = 1) Tna)
2000 (Xl = <)+ (5 = 1) ) = (J5, = 1) T(n,),

(J5, 1) T(n.)

2

— llm, = ¢TI+ AU || (75, = 1) Y| = 2% || (J5, = 1) TO1)
+ 2 (J5 X(0,) = 0, (T5, = 1) T(n,)
<l = ¢ = @i = A2 || (5 = 1) T(1,)
= 2
= = G+ X QY12 = 2) || (75, = 1) X()
AJMAA
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Now
N _ 2
oo = €2 < D e ||, [0 = Ain T (1= J5 ) T(1)] = ¢
=1
N
(3.9 <= WP+ 3 i Qe 1P = 2) [ (750, = 1) Y|
=1

11, = ¢t = 11C0 4 0n(C = Coa) — €T
< 1€ = CH 4 0nllCn — Gl

On
Qp

whereC'is a constant and > 0. Now defined,, = 6, @, + (1 — d,,)A,(w,), then we have

19, = C1| < Snll@n — Tl + (1 = 6,) | An(em) — ¢
(3.4) < Sull@n = M+ (1= 6n)[|l@n — (M| = [l@n — (T

Now

1¢n1 — ¢TIl = llamF (€,) + (1= o) — ¢
< anllF(C,) = ¢TIl + (1= ) 9 — ¢l
< anpllC, = M+ (1= an) lwn — ¢
= anpllC, — Tl + (1= ) lIm,, = ¢
< anpl|C, = P+ (1= an){lI¢, = ¢l + anC}
<[1—an(1=p)l¢, = ¢TI+ anC

C C
<max{ ¢, — (M = ¢ < Smax |G — (Ml — ¢
1—p 1—p

It implies the sequencf,,} is bounded and hence the sequerices @, )}, {V.}, {n,}, {wn}
are bounded as well. Since the sequefigg is bounded andln,, — ¢'|| < ||, — ¢'|| + @ C,
there exists a constaat, such that

(3.5) 7, = ¢'M? < 116 = ¢TI+
Now, using [(3.B), we get
2

N
Il = ¢ < lima = I+ 3 vandhin Ol T2 = 2) | (5, = 1) T(0,)

i=1

2
+ Oan’l.

N
(3.6) <16 = ¢+ D i anl TIE = 2)|| (75, = 1) T ()
=1

AJMAA Vol. 21(2024), No. 2, Art. 8, 13 pp. AIMAA


https://ajmaa.org

FIXED POINT PROBLEMS AND VARIATIONAL INCLUSIONSUSING VISCOSITY APPROXIMATIONS 7

Now

<

55 e (1 72 v

= 2" (1= 5 ) X(n,) - gTHQ

< (@ =y + 20T (J5 = 1) T(m,) = ¢')

=2 e+ 2 (55, = 1) T = ¢+ Sl — 2

1 - 2
> [ = ¢t == (5, = 1) T + |

1 = 2 1
_ _ At ) * N + A2
=5 =T+ 2T (5, = 1) Y|+ 5l = ¢
1 * = 2
-2 ’wn—nn—)\mT (JBM —1) T(n,)
1 1 1 s 2
= Sl = ¢+ 5l = 12+ 522 |0 (U5, = 1) T()

+ (m, = T (U5, = 1) Y0,)) = Slln = 1
1 % =, 2 * =
1 1 1 . [ 1=,
= Sl = ¢+ 5 lm, = CI12 = Sl = mall2 + (0 = ¢ xia X" (J5, = 1) T(0,))

1 1 1 L=
< Slln = M2+ 5l = ¢TI = Sl = mall2 + Nawlln = M | X* (I52, = 1) T(0,)

Now we get

oo, — 1|2 < iv T = (1= 75 ) T =<
=1

— |

1 1
< Sllwn = P+ Sl = ST = 5l = al?

N
3 il =1 (75, - 1) T)
=1

Simplifying above equation and applyirig (3.5) we get

lwn = ¢T1% < IS, = ¢IP = llewn =m0 1®

+ oan'l.

N
(3.7) +23 " v Aiallma = e (5 = 1) T01,)
=1
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Further
92 = CHIP < Woaon + (1= 8)Au(n) 1P
= (0~ ¢ G+ (1= 8)A (@) — ¢
= 2 a1 = ) () = P+ S0 — ¢TI
= Sl = ¢ = u (1= 8)An) + 1P
= 8 — ¢+ (1= 8) (M) = I + 5119 — ¢TI
= 216000 = @) + (1= 52) (0 — An() P
= 8@~ P (1= 6 (o) —
F (1= ) — ¢ Anln) = )+ 50— P = 82100 — wal?
1

- 5(1 - 6%)2”1% - An(wn>H2 — 0n(1 = 6n) (V0 — @n, Un — Ap(wn))

1 1
Hﬁn - CTHQ < 5531“7371 - CTHQ + 5(1 - 5n)2l|wn - CTHQ +0n(1 — 5n)||wn - CT”Q
1 1 1
210, = G = 28210, = =l = 20 = 6,200, = Al P

1 1 1 1
_t A2 Lt o2 L2 . 2_ 2(1_ 2 _A 2
2”1971 ¢ “ + 2”wn ¢ H 25n|‘79n wn” 2( 571) Hﬁn n<wn)H
It implies

38)  [19n = MNP < llwn = CTIP = o109 — @l = (1 = 0)? (19 — Au(ea) 1.

Also

= HCn - CT + en(gn - Cn—l)”2

<o = P+ 0301¢0 = Caal? + 26,016 = CTIIIC, — Gl
(3.9) <G = <P+ OallC = G 1€,
for someCs.
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Now we have
€01 = NP = llanF (Co) + (1 = @) — T2
< {ank (Co) + (1= an)dn — ¢ Gy = 1)
= (1= ) (¥ = " Gy = ¢ + an(F(G,) = F(C), Coan = ¢T)
+ an(F (CT) CT Cog1 — CT>

11— n
< = 0 = P + G = I+ S 10PNG = G+ i — TP
onlF (€ Gons =€)
< s = I + =522 0 = P+ S22, — P

+an(F (¢ = ¢h G — <*>.
After simplifying the above equation and applying (3.8), 3.8) (3.9) we get
1Cnss = CTIP < (1= an) 19 = CIP + np?|IC, = CTIIP + 2000 (CT) = T, Gy = €T)
< (1= an) (16, = CIP + 0nllCs = CumalICo) + anp?[IG, = ¢TI
+ 200, (F (€N = ¢1, ¢y = ¢T)
=1 = an(1 = p)]IC, = CTNI* + 200 (F (¢1) = ¢, ¢y =€)
(310) (1= @) e, ~ (O

n

Further, using[(3]4) and (3.6) we also have
1€ns1 = CTIP < (1= an) 19 = CIP + np?|IC, = CTIIP 4 2000 (CT) = 1, Gy = €T)

N
< (1—an) (HCn — TP+ Y i Kaal TP = 20 (s, = DY ()17 + OénCH)

=1
+ anp2“Cn - CTHz + 2an<F(CT) - d? Cn+1 - CT>
= [1 = an(1 = p)IIC, = 1P + 200 (F (¢") = ¢F G — CF)
(3.11)

(1= ap)anCh + (1 — ap) Z%n in (Ml T2 = 2) H( 5 1) (1)

n

Using (3.4) and[(3]7) we can have
€01 = €T < (1= )19 C*||2+oznp2HC = (M2 4 20 (F () = ¢F G =€)

< (1-ay) (HC = O = o = 425 el 1

=1

T (Jﬁ —1) T(n,)

+anC1) + anp?|| G, = CHIP + 200 (F (¢F) = 7 Gy = €F)

= [1 = an(1 = p)IC, = CTIP 4+ 20 (F (CT) = ¢, G = €T + (1 — )G
(3.12)

T (ngn . 1) ()|

N
~ (1= an)llmn = 12+ 2(1 = ) - Vi Aiallma = ¢l |
=1
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Using [3.8) and[(3]3) and we get

1€nir = ¢TIP < (1 = an)19n = CTIP + np®l1C, = ¢TI + 200 (F (¢ = ¢ Gy — €F)

< (1= an)(llwn = ¢ = 520100 — @all?) + anp?lIS, — ¢TII?

+ 200, (F (¢1) = ¢1, Cpr — ¢T)

< (1= an)([I6, = CTIIP + anCy = 62|00 — wnll?) + anp?[IC, = ¢TI

+ 200, (F (1) = ¢, Gy — C1)

= [1 = an(1 = pP)IIC, = CIP + 20 (F (€T = ¢, G = €1 + (1 — @) anCh
(3.13) — (1= )82 [0 — |,

and

€1 = ¢TI < (1= @) |90 = CTIP + cnp? (¢, = TP+ 200 (F (€T = €T G — )
< (1= ag)([lan = CT? = (1= 8.)2 195 — An(@a)|I?)
+ anp? (1 = NP+ 2000 (¢1) = ¢, Cia =€)
< (1= an)([I¢, = CMIP + anCr = (1= 8,210 — An(@n) ) + anp®(IC,, — ¢TI
+ 20, (F (¢") = ¢! g = ¢T)
= [1 = an(1 = P, = CTII* + 20 (F (CT) = ¢, Copy = C1) + (1 — @) C
(3.14) — (1 = an)(1 = 6,)3|0n — Ap(mn)]?
Now to prove that the sequeng¢, } converges ta' we split the proof in the following two
cases.

Case 1: There exists ay such that|¢,., — ¢'|| < [I¢, — ¢'|| ¥V n > ng. This shows that the
sequence]|¢, — ¢} is convergent. Using condition (i) of (3]11)), (313), (3.14) we
get

2

(75, 1) Y

< 1= (1= ¢ = NP = 1¢nen — CTIP
+ 20, (F(C) = ¢' G — ¢ + (1 — a)anCr — 0,

N
(L= ) Y Yimhin(2 = Ainll T[)
i=1

(1= )0 [0 — @l = [1 = an(l = PG, = CTIIP = [ICaga = ¢
+ 2an<F(CT> - CT, Cn+1 - CT> + (1 - an)ancl e 07

(1= an)(1 = 8,)?[[0n — An(@n)|I* = [1 = (1 = p*)]lIC, = CIIP = [ICpgn — €T
+ 2&n<F(CT> - CTa Cn+1 - CT> + (1 - an)ancl - O
And we get

— 0, Hﬁn - wn” — 0, Hﬁn - An(wn)H — 0.

@15 (5, 1) T
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From (3.12) we get
(1= an)llewn = m,l* < [1 = (@ = PN = CTIP = 1ICpin — ¢TI
+ 2an<F(CT) - CTa Cny1 — CT> + (1 = an)a,Cy

— 0.

N
201 =) 3 il = |1 (5, = 1) X0)
=1

And we get

(3.16) |@n = 1,] — 0.
We also have
From (3.15) and (3.16) we have

1€ = @nll < 11C = Ml + 7 — @l = 0
1€ = Dnll < NICp — @nll + | — Full = 0
(3.18) [An (@) = @nl| < [[An(w@n) = Onll + (|00 = nll — 0.
Now using condition (ii) and (3.17) we have
1Cos1 = Call < [Cna = Onll + 0 = Gl
= llamk (C,) + (1 = an)tn = Onll + (|00 — Gl
(3.19) = an|F (¢n) = Onll + [0 = Gl — 0.
Suppose the sequen¢g, } has a subsequenge,, } such that, — ¢'. From [3.17)
and [3.18) there exists a subsequencenpf} and {w,} satisfyingn, — ¢" and
Wy — ¢', respectively. Since the mappingis bounded and linear, théf(n,) —
T(¢"). Moreover we know th%‘# (Jﬁan — ]> T(n,)|| — 0, which implies thafr(¢) =
J5 Y(¢h), using Lemm8, we g&f € F(A;). Hence¢! € F(A;) N ©O. Then it

follows that
lim Sup<F(CT) - QT, Cn+1 - CT> = hm Sup<F(CT) - CTa ganrl - CT>
n—o0o j—o00

=(rHh-d¢-¢<o

Now applying Lemma 24 t O)weget — ¢F =P, .
pplying 4 (3.10) we ggt — ¢ QF(AMGF(C)

Case 2:If the sequence]¢,..; — (||} is not monotonically decreasing. Then there exists a
subsequence; such that

2 2
Gy = 1| < [[6un = <1 foratlj e
By Lemmg 2.}, there exists a nondecreasing sequenge C N such thatn; — oo
(3.20) 1€, = P < MG = P NG = PP < G = €I

If we follow similarly the proof in Case (1), we get
1S40 = €T < 1= am, (1= pP)]ICm, = €T 4 200, (F (CT) = €1 G =€)

Om,
+ ami(l - ami>a sz - Cmi—l”c%

m;
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and
limsup(F (¢ — ¢, ¢ iq — ¢T) <0,

n—oo

which gives
0 < merr = €T = M1, = <TIP

O,
Cmi - CmileCQ - Hcml - CTH27

m;

using lim 2 |[¢, —¢, [ — 0, we get

+ ami(l - amz')

2 1— oy, 0,

— (M2 < ty _ ot ety 2T Oms Yme
By (3:20) we gef[¢,,.., — ¢'[| — 0. It follows from ||¢; — ¢T[|* < [|¢,, 10 — ¢T|* for
alli € Nthat|¢; — ¢'||> — 0, applying Lemma 2|7 we get — ¢'. Hence sequence
¢, — (', n — oo. It completes the proof.

Cmi - Cmi—l”CQ — 0.
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