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ABSTRACT. In this paper, we first show the conditions under which an operator on a Hilbert
spaceH can be represented as sum of two unitary operators. Then, it is concluded that a Riesz
basis for a Hilbert spaceH can be written as a sum of two orthonormal bases. Finally, the study
proves that ifA is a normal maximal partial isometry on a Hilbert spaceH and if{ek}∞k=1 is an
orthonormal basis forH, then{Aek}∞k=1 is a 1-tight frame forH.
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2 J. BARADARAN AND Z. GHORBANI

1. I NTRODUCTION

This section provides preliminaries from operators theory which will be needed them. Nor-
mally, B(H, K) consists of all bounded operators from a Hilbert spaceH to a Hilbert spaceK,
B(H) denotes for whichH = K, andI ⊆ N. Throughout the paper,H denotes a separable
Hilbert space.
Recall that an operatorT ∈ B(H) is an isometry if for allx ∈ H, ||Tx|| = ||x||, and is a
partial isometry if it is an isometry on the orthogonal complement of its kernel. Also, we define
a unitary operator as a linear transformation which is a surjective isometry.

Definition 1.1. A maximal partial isometry, either itself or its adjoint is isometry.

The followings facts can be found in any standard text of operators theory (for example, see
[5]).

Lemma 1.1. U ∈ B(H) is surjective if and only ifU∗ is bounded below.

Theorem 1.2. (Polar Decomposition) If T ∈ B(H, K), then
(i) it has a decomposition asT = V P such that
1- V ∈ B(H, K) is a partial isometry.
2- P ∈ B(H) is a positive operator.
3- kerV = kerP .
(ii) Let T = UA be an another decomposition as product of partial isometryU and positive
operatorA such thatkerU = kerA. ThenU = V andP = A = |T |.
(iii) If T = V |T |, then|T | = V ∗T .

Corollary 1.3. If T = V P is the polar decomposition ofT , then
(i) V is isometry if and only ifT is injective.
(ii) V ∗ is isometry if and only ifImT is dense.

Proof. The proofs are based on the facts that:

kerP = kerT ∗T = kerT

and also
kerV ∗ = (ranV )⊥ = (kerT )⊥.

It is known from operators theory that every separable Hilbert spaceH has an orthonormal
basis, and ifU ∈ B(H) is a unitary operator and{ek}∞k=1 is an orthonormal basis forH, then
{Uek}∞k=1 is an orthonormal basis forH. The next theorem which can be found in any text of
operators theory characterizes all orthonormal bases of a Hilbert spaceH with one basis.

Theorem 1.4. Let {ek}∞k=1 be an orthonormal basis for a Hilbert spaceH. Then orthonormal
bases forH are precisely the sets{Uek}∞k=1, whereU is a unitary operator onH.

2. FRAMES AND PRELIMINARIES

Frames were first utilized in 1952 by Duffin and Schaeffer [7]. The theory of frames plays
significant roles in applied mathematics, science, and engineering today. The feature of a basis
{fk}∞k=1 in a Hilbert spaceH is that every elementf ∈ H can be represented as an (infi-
nite)linear combination of the elementsfk as follows:

(2.1) f =
∞∑

k=1

ck(f)fk,
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where the coefficientsck(f) are unique.
The frames are an extension of bases in Hilbert spaces. In fact, a frame is a sequence{fk}∞k=1

in H which it allows every elementf ∈ H can be written as in the relation (2.1), whereas the
coefficients are not unique. So, a frame need not a basis.

Definition 2.1. A frame for a Hilbert space H is a family of vectorsF = {fk}k∈I in H such that
there are constantsA andB > 0 satisfying:

A||f ||2 ≤
∑
k∈I

| < f, fk > |2 ≤ B||f ||2, ∀ f ∈ H.

The constants A and B are called lower and upper frame bounds, respectively, and they are
not unique. If only the right-hand side inequality is assumed, it is called a B-Bessel sequence.
If A = B, it is said to be an A-tight frame.
For any Bessel sequenceF = {fk}k∈I the pre-frame (synthesis) operator is defined by

T : l2(I) −→ H, T ({ck}) =
∑
k∈I

ckfk.

The analysis operator forF is T ∗ and is given byT ∗f = {< f, fk >}k∈I . The frame operator
is S = TT ∗ and it satisfies:SF f =

∑
k∈I < f, fk > fk, ∀f ∈ H.

It is a fact that ifF = {fk}k∈I is anA-tight frame with the frame operatorS, thenS = AI,
so for eachf , we havef = 1

A

∑
k∈I < f, fk > fk.

The next lemma can be seen in [4] gives some important properties of the frame operatorsS
andS−1:

Lemma 2.1. Let {fk}∞k=1 be a frame with the frame operatorS and frame boundsA, B. Then
the following holds:
(i) S is bounded, invertible, self-adjoint, and positive.
(ii) {S−1fk}∞k=1 is a frame with the frame operatorS−1 and frame boundsB−1, A−1.
(iii) If A, B are the optimal frame bounds for{fk}∞k=1, then the boundsB−1, A−1 are optimal
for {S−1fk}∞k=1.

The frame{S−1fk}∞k=1 is called the canonical dual frame of{fk}∞k=1. It is well-known that
the definition of a frame has several equivalents. It can be considered an equivalence relation
between the frames and surjective operators; that is, if we have a theorem about frames, then we
have a theorem about surjective operators and vice versa. The first theorem states an equivalent
on frames. The second theorem characterizes the frames for a Hilbert spaceH and it is similar
to the definition of a Riesz basis. All the following theorems can be found in [4].

Theorem 2.2. A sequence{fk}∞k=1 in H is a frame forH if and only if there is a bounded
surjective operatorU : l2(N) → H such that for allk, Uek = fk, where{ek}∞k=1 is an
orthonormal basis forH.

Theorem 2.3. Let {ek}∞k=1 be an arbitrary orthonormal basis forH. The frames forH are
precisely the family{Uek}∞k=1, whereU : H → H is a bounded surjective operator.

Proof. Suppose that{δk}∞k=1 is the canonical basis forl2(N), {ek}∞k=1 is an orthonormal basis
for H, andφ : H → l2(N) is the isometric isomorphism of the formφek := δk.
If {fk}∞k=1 is a frame, then the pre-frame operatorT is a bounded surjective operator, thus by
Theorem 2.2 the family{Uek}∞k=1 is a frame.
In other words, ifUek = fk andU is a bounded surjective operator, then we have

∞∑
k=1

| < f, fk > |2 =
∞∑

k=1

| < f, Uek > |2 = ||U∗f ||2, ∀ f ∈ H.
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SinceU is bounded and surjective, again by Theorem 2.2 the sequence{fk}∞k=1 is a frame.

A special example of a frame (in fact, the motivation behind the definition) is an orthonormal
basis for a Hilbert spaceH or isomorphism images of orthonormal bases which are Riesz bases.
Theorem 1.4 characterized all orthonormal bases in terms of unitary operators acting on a single
orthonormal basis. The definition of a Riesz basis appears by weakening the condition on the
operator of it theorem:

Definition 2.2. A Riesz basis for a Hilbert spaceH is a family of the form{Uek}∞k=1, where
{ek}∞k=1 is an orthonormal basis forH andU : H −→ H is a bounded bijective operator.

The next theorem shows that a Riesz basis is a frame, in fact, a Riesz basis is a basis.

Theorem 2.4. If {fk}∞k=1 = {Uek}∞k=1 is a Riesz basis forH, then there exist constantsA, B >
0 such that

A||f ||2 ≤
∞∑

k=1

| < f, fk > |2 ≤ B||f ||2, ∀ f ∈ H.

The largest possible value for the constantA is 1
||U−1||2 , and the smallest possible value forB is

||U ||2.

3. M AIN RESULTS

In this section, we first show the conditions under which an operator on a Hilbert spaceH
can be represented as sum of two unitary operators. Then, it is concluded that a Riesz basis can
be shown as sum of two orthonormal bases, whereas a frame cannot be shown as sum of two
orthonormal bases. First, we prove a fact on operators.

Proposition 3.1. Let T ∈ B(H) be a self-adjoint positive operator. ThenI + T is a bounded
invertible operator onH.

Proof. We know that for anyh ∈ H,

||(I + T )h||2 = < (I + T )h, (I + T )h >

= ||h||2+ < h, Th > + < Th, h > +||Th||2,
since two the middle terms of the last relation are nonnegative, hence for allh ∈ H, we

get ||(I + T )h|| ≥ ||h||; that is,I + T is bounded below, so by Lemma 1.1 it is injective and
(I + T )∗ = I + T is surjective.
On the other hand, the inequality||(I + T )h|| ≥ ||h||, ∀h ∈ H implies that

||(I + T )−1h|| ≤ ||(I + T )(I + T )−1h|| = ||h||.
Therefore,I + T is invertible inB(H).

Example 3.1. If φ = {ϕi}i∈I is a frame forH, thenφ + (−φ) is not a frame.

The next corollary shows that the summation of a frame and its canonical dual is a frame.

Corollary 3.2. If φ = {ϕi}i∈I is a frame (Riesz basis) forH with the frame operatorS, then
{(I + S)ϕi}i∈I is a frame (Riesz basis) as well.

Similarly, the sequence{ϕi + S−1ϕi}i∈I is a frame (Riesz basis) forH.

If {ϕk}k∈I is a frame forH andT ∈ B(H), then{Tϕk}k∈I need not a frame. For example,
if {ek}∞k=1 is an orthonormal basis forH andT = 0.

AJMAA, Vol. 17 (2020), No. 1, Art. 9, 8 pp. AJMAA

https://ajmaa.org


OPERATORSON FRAMES 5

If {ϕk}k∈I is a frame forH with upper and lower boundsA andB, respectively, andT ∈
B(H) is surjective, then for anyh ∈ H, we get∑

k∈I

| < h, Tϕk > |2 =
∑
k∈I

| < T ∗h, ϕk > |2

≥ A||T ∗h||2 ≥ AC||h||2,
where the last inequality holds by Lemma 1.1.
On the other hand, it is clear that∑

k∈I

| < h, Tϕk > |2 =
∑
k∈I

| < T ∗h, ϕk > |2

≤ B||T ∗h||2 ≤ B||T ||2||h||2.
Therefore,{Tϕk}i∈I is a frame.
We now assume that{Tϕk}k∈I is a frame forH with the frame operatorU , then by definition
for all f ∈ H, we obtain

Uf =
∑
k∈I

< f, Tϕk > Tϕk

= T (
∑
k∈I

< T ∗f, ϕk > ϕk) = TU(T ∗f).

That is,U = TUT ∗. SinceU is invertible, so it is concluded thatT is surjective. Now we can
summarise the above discussion as follows:

Proposition 3.3. Let {ϕk}k∈I be a frame for a Hilbert spaceH with lower and upper frame
boundsA andB, respectively, andT ∈ B(H). Then the family{Tϕk}k∈I is a frame forH if
and only ifT is surjective.

Corollary 3.4. Let{ϕk}k∈I be a frame forH andT ∈ B(H). Then the family{ϕk + Tϕk}k∈I

is a frame if and only ifI + T is surjective.

Lemma 3.5. Every positive operatorP ∈ B(H) with ||P || ≤ 1 can be represented as:

P =
1

2
(U + U∗),

whereU = P + i
√

1− P 2 is a unitary operator.

Proof. The proof on based of the definitionU is clear.

Proposition 3.6. If A ∈ B(H) is invertible, then it can be written as a linear combination of
two unitary operators.

Proof. Suppose thatA = V P is the polar decomposition ofA. SinceA is injective, so by
Corollary 1.3 the operatorV is an isometry, in fact,V is a unitary. We now take

Ṕ =
2P

3||P ||
.

Because of́P is a positive operator and||Ṕ || ≤ 1, hence by the previous lemma we can write
Ṕ = 1

2
(U + U∗), whereU is a unitary operator. Therefore,

A =
3||P ||

4
(V U + V U∗),

and the operatorsV U andV U∗ are unitary.
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Proposition 3.7. There exists a frame (not a Riesz basis) for a Hilbert spaceH so that it cannot
be shown as a sum of two orthonormal bases.

Proof. We consider the orthonormal basis{ek}∞k=1 for H and for fixedm ∈ N, we define the
sequence{fk}∞k=1 by

f1 = f2 = ... = fm = 0 and fm+k = mek, k = 1, 2, ....

Hence, for anyh ∈ H, we get
∞∑

k=1

| < h, fk > |2 =
∞∑

k=1

| < h, mek > |2

= m2

∞∑
k=1

| < h, ek > |2 = m2||h||2.

Thus, the sequence{fk}∞k=1 is a m-tight frame forH.
We now assume that there are two orthonormal bases{gk}∞k=1 and{hk}∞k=1 and also nonzero
scalersα andβ such that for eachk, we havefk = αgk + βhk. Then the relationαgk + βhk =
fk = 0, for k = 1, 2, ...m results that

span{gk}m
k=1 = span{hk}m

k=1.

This relation alone with
span{gk}∞k=1 = span{hk}∞k=1 = H

yields that
span{gk}∞k=m+1 = span{hk}∞k=m+1 6= H.

On the other hand, since the sequences{gk}∞k=1, {hk}∞k=1, and{ek}∞k=1 are orthonormal bases,
so we have

span{gk}∞k=m+1 = span{ek}∞k=1 = H.

But, two these the last relations contradict each other, so the proof completes.

Proposition 3.8. The frameΦ = {ϕk}k∈I is a Riesz basis for a Hilbert spaceH if and only if it
can be represented as a sum of two orthonormal bases.

Proof. Let Φ = {ϕk}k∈I be a Riesz basis forH, henceUek = ϕk, whereU ∈ B(H) is a
bijective operator. By Proposition 3.6 we can writeU = c(U1 + U2) and eachUi is unitary. So,
ϕk = c(U1ek + U2ek) and by Theorem 1.4,{Uiek}k∈I is an orthonormal basis forH.
Conversely, ifϕk = c(fk + gk) is a frame and{fk}k∈I , {gk}k∈I are orthonormal bases forH.
Hence, by Theorem 1.4 we havefk = U1ek andgk = U2ek, where{ek}k∈I is an orthonormal
basis forH andUi is a unitary operator onH. Thus,ϕk = c(U1 + U2)ek andc(U1 + U2) is a
bounded bijective operator, therefore{ϕk}k∈I is a Riesz basis.

Proposition 3.9. If {fk}∞k=1 = {Uek}∞k=1 is a Riesz basis for a Hilbert spaceH with the frame
operatorS, then we haveS = UU∗.

Proof. We know thatSf =
∑

k∈I < f, fk > fk, ∀ f ∈ H. On the other hand, since{ek}∞k=1

is an orthonormal basis forH, so for everyf in H, we can writef =
∑

k∈I < f, ek > ek, hence

Uf =
∑
k∈I

< f, ek > Uek =
∑
k∈I

< f, ek > fk.

Thus, we obtain

UU∗f =
∑
k∈I

< U∗f, ek > fk =
∑
k∈I

< f, Uek > fk =
∑
k∈I

< f, fk > fk.

Therefore, we conclude that for allf ∈ H, Sf = UU∗f and the proof is complete.
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Proposition 3.10. If A ∈ B(H) is a normal maximal partial isometry and{ek}∞k=1 is an ortho-
normal basis forH, then{Aek}∞k=1 is a 1-tight frame forH.

Proof. Because ofA is normal, so for allh ∈ H, we have||Ah|| = ||A∗h||.
If A∗ is isometry, then we get

||h||2 = ||A∗h||2 =
∞∑

k=1

| < A∗h, ek > |2

=
∞∑

k=1

| < h, Aek > |2, ∀ h ∈ H.

If A is isometry, then for allh ∈ H, we obtain

||h||2 = ||Ah||2 = ||A∗h||2 =
∞∑

k=1

| < h, Aek > |2.

Therefore, in each case it concludes that

∞∑
k=1

| < h, Aek > |2 = ||h||2, ∀ h ∈ H,

that is,{Aek}∞k=1 is a 1-tight frame.

Corollary 3.11. If A ∈ B(H) is a unitary and{ek}∞k=1 is an orthonormal basis forH, then
{Aek}∞k=1 is a 1-tight frame.

Proposition 3.12. Let T ∈ B(H) so thatT ∗ be an isometry. Let{ϕk}k∈I be a frame for a
Hilbert spaceH with lower and upper boundsA and B, respectively. Then{Tϕk}k∈I is a
frame with lower and upper boundsA andB||T ||2, respectively.

Proof. The proof is based on which for allh ∈ H,we have

A||h||2 = A||T ∗h||2 ≤
∑
k∈I

| < T ∗h, ϕk > |2 =
∑
k∈I

| < h, Tϕk > |2

and also ∑
k∈I

| < h, Tϕk > |2 =
∑
k∈I

| < T ∗h, ϕk > |2

≤ B||T ∗h||2 ≤ B||T ||2||h||2.

Corollary 3.13. Let T ∈ B(H) such thatT ∗ be an isometry. Let{ek}∞k=1 be an orthonormal
basis forH. Then{Tek}∞k=1 is a 1-tight frame.
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