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2 R. SUPPER

1. I NTRODUCTION

The subharmonic functions under study in this article are defined on the Euclidean open unit
ball BN ⊂ RN (with N ∈ N, N ≥ 2). They grow according to two different patterns. For
instance, such a functionu is said to have a Bloch–type growth if:

(1.1) ∃λ ∈ R such that MXλ
(u) := sup

x∈BN

(1− |x|2)λ u(x) < +∞

where | . | denotes the Euclidean norm inRN (the setXλ will be defined explicitely later).
Another kind of growth foru is described through the Bloch–type growth of the functionFβ,γ(u)
defined onBN by the following formula, withβ andγ fixed reals:

(1.2) (Fβ,γ(u)) (a) =

∫
BN

(1− |x|2)β u(x) (1− |Φa(x)|2)γ dx ∀a ∈ BN

denoting byΦa an involution ofBN which will be explicited in the next section. The function
u is said to have a growth of the second kind if:

(1.3) ∃α ∈ R such that MYα,β,γ
(u) := MXα(Fβ,γ(u)) < +∞

(see Section 2 for the precise definitions of the setsYα,β,γ andXα).

The purpose of the paper is to study the links between the growth of two such functionsu
andg and the growth ofgu. Given setsE , F andG of the kindXλ or Yα,β,γ, we consider the
application:

E → F
u 7→ gu

and investigate the following questions:
– If g ∈ G, does there exist then a constantC > 0 such that

MF(gu) ≤ C ME(u) ∀u ?

– Does the converse hold?

• In the caseE = Xα, F = Xα+λ andG = Xλ, Propositions 5.1 and 5.2 provide positive
answers to both above questions (see Section 5 for the exact statements).

• In the caseE = Xλ, F = Yα,β+λ,γ andG = Yα,β,γ too, positive answers also hold: see
Propositions 5.4 and 5.5 in Section 5 for the precise assumptions.

• For the caseE = Yα,β,γ andF = Xα+β+λ+N , see Section 4:
Theorem 4.1 studies the situation whereG = Xλ+N−1

2
and the parametersα, β, γ fulfill:

(1.4) −β−N + 1

2
< α ≤ β+

N + 1

2
, β > −N + 1

2
, γ ≥ −α, γ > max(α,−1−β).

Theorem 4.2 studies the situation whereG = Xλ+N
2
−1+α and

(1.5) α ≥ 1

2
, β ≥ −1− N

2
, γ >

N

2
.

Theorem 4.3 studies the situation whereG = Xλ+N−1
2

+α and

(1.6) α ≥ 0, β ≥ −N + 1

2
, γ >

N − 1

2
.

• In the caseE = Yα,β,γ andF = Yα,λ+β,γ, Proposition 3.1 brings an affirmative answer to the
first question, withg ∈ Xλ. Theorems 3.2, 3.3 and 3.4 provide situations where the converse
of Proposition 3.1 partly holds: given a functiong, defined onBN , for which there exists some
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GROWTH AND PRODUCTS OF SUBHARMONIC FUNCTIONS IN THE UNIT BALL 3

constantC such thatMYα,λ+β,γ
(gu) ≤ C MYα,β,γ

(u) ∀u, Theorems 3.2, 3.3 and 3.4 obtain some
λ′ ≥ λ such thatg ∈ Xλ′. For positive functionsg moreover exceeding(1 − |x|2)−λ′′ on some
sector issued from the origin, Theorem 3.5 brings a restriction onλ′′:

in situation (1.4) : λ′ = λ +
N − 1

2
λ′′ < λ + β + γ + 1

in situation (1.5) : λ′ = λ +
N

2
− 1 + α λ′′ < λ + γ − N

2

in situation (1.6) : λ′ = λ +
N − 1

2
+ α λ′′ < λ + γ − N − 1

2

(see Section 3 for all details).
Since the setsXλ andYα,β,γ do not even have the structure of vector space, it is not surprising

that the situation studied here is more delicate than the similar questions involving spaces of
holomorphic functions in the unit diskD ⊂ C, such as the Bloch spaceBτ , the Dirichlet space
Dτ (a special case of Bergman space whenτ > 1) and the spaceBMOAτ for instance. Using
the above notations (1.1) and (1.3), withN = 2 andx = z ∈ D = BN , the classical norms on
these spaces are denoted as follows:

f ∈ Bτ ⇐⇒ ||f ||Bτ := |f(0)|+ MXλ
(|f ′|) < +∞ (τ > 0)

f ∈ Dτ ⇐⇒ ||f ||2Dτ
:= MY0,τ−2,0(|f |2) < +∞ (τ > 1)

f ∈ BMOAτ ⇐⇒ ||f ||2BMOAτ
:= |f(0)|2 + MY0,2τ−2,1(|f ′|2) < +∞ (τ > 0)

modifying here the notations (1.2) and (1.3) withΦa(x) now replaced byϕa(z) = a−z
1−az

.

Givenh an analytic function inD, such linear applications asf 7→ hf between these spaces
have been studied by various authors: see for instance [8], [4] p. 197, [10].

A related question is the continuity (with respect to the above norms) of the operator

Ih : f 7→ Ih(f)

defined by:

(Ih(f))(z) =

∫ z

0

h(ζ) f ′(ζ) dζ ∀z ∈ D.

Some examples of known results:

• Givenτ ≥ 1, the continuity ofIh : Bτ → Bτ is equivalent to the boundedness ofh on D, in
other words:h ∈ H∞ (proved in [9] p.138).

• If 1 < µ < λ, then the operatorIh : BMOAµ → Bλ is bounded if and only ifh ∈ Bλ−µ+1

(see [8] p.1050).

• Given1 < µ < λ, it is proved in [8] p.1059–1060 thatIh : Dµ → Dλ is bounded if and only
if h ∈ B1+ 1

2
(λ−µ).

Since|f ′|, |f |2 and |f ′|2 are subharmonic functions onB2 (see [2] p.46), the question na-
turally occured whether the preceeding results had some kind of an analog for subharmonic
functions onBN (N ≥ 2) with a growth described by (1.1) or (1.3).
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4 R. SUPPER

2. VARIOUS RELATIONS BETWEEN THE SETS Xλ AND Yα,β,γ .

Definition 2.1. Givenλ ∈ R, letXλ be the set of all functionsu : BN → [−∞, +∞[ satisfying

MXλ
(u) := sup

x∈BN

(1− |x|2)λ u(x) < +∞.

Let X+
λ = {u ∈ Xλ : u(BN) ⊂ [0, +∞[}. Let SX λ denote the subset of all subharmonic

u ∈ Xλ. Finally, letSX+
λ = SX λ ∩ X+

λ .

Remark 2.1. ObviouslyXλ ⊂ Xµ for λ < µ, with MXµ(u) ≤ MXλ
(u) ∀u ∈ Xλ.

If λ < 0 thenSX+
λ = {0} (see Proposition 6.2 of [6]).

Definition 2.2. Givenα ∈ R, β ∈ R, γ ≥ 0, letYα,β,γ denote the set of all measurable functions
u : BN → [−∞, +∞[ satisfying:

MYα,β,γ
(u) := sup

a∈BN

(1− |a|2)α

∫
BN

(1− |x|2)β u(x) (1− |Φa(x)|2)γ dx < +∞

with Φa : BN → BN the involution defined by:

Φa(x) =
a− Pa(x)−

√
1− |a|2 Qa(x)

1− 〈x, a〉
∀x ∈ BN ,

where:

〈x, a〉 =
N∑

j=1

xj aj , Pa(x) =
〈x, a〉
|a|2

and Qa(x) = x− Pa(x)

for everyx = (x1, x2, . . . , xN) ∈ IRN anda = (a1, a2, . . . , aN) ∈ IRN , with Pa(x) = 0 when
a = 0. As above, we similarly defineY+

α,β,γ (resp.SYα,β,γ) the subset of all non-negative (resp.
subharmonic) functionsu ∈ Yα,β,γ and finallySY+

α,β,γ = SYα,β,γ ∩ Y+
α,β,γ.

Remark 2.2. In Proposition 3.1 of [6], it was proved thatSY+
α,β,γ ⊂ SX+

α+β+N .
Let α′ ≥ α, β′ ≥ β andγ′ ≥ γ ≥ 0, thenY+

α,β,γ ⊂ Y+
α′,β′,γ′

with MYα′,β′,γ′
(u) ≤ MYα,β,γ

(u) for
everyu ∈ Y+

α,β,γ, since

(1− |a|2)α′ ≤ (1− |a|2)α

(1− |x|2)β′ ≤ (1− |x|2)β

(1− |Φa(x)|2)γ′ ≤ (1− |Φa(x)|2)γ

If α + β < −N or α < −γ, thenSY+
α,β,γ = {0} (see Propositions 6.3 and 6.4 of [6]).

Proposition 2.1. (i) Givenβ ≥ −N
2
− 1, γ ≥ 1 such thatβ + γ > −1, let α ≥ γ − β + 1

2
.

There existsK0 > 0 such that:

MYα,λ+β,γ
(u) ≤ K0 MXλ

(u) ∀λ ∈ R ∀u ∈ Xλ.

(ii) Givenβ ≥ −N+1
2

, γ ≥ 1
2

such thatβ + γ > −1, let α ≥ γ − β. There existsK ′ > 0 such
that:

MYα,λ+β,γ
(u) ≤ K ′ MXλ

(u) ∀λ ∈ R ∀u ∈ Xλ.

Thus, in both cases:Xλ ⊂ Yα,λ+β,γ.

Remark 2.3. The constantsK0 andK ′ respectively stem from Lemmas 6.2 and 6.3 which are
postponed in annex: at the end of the paper, Section 6 gathers several technical results which
will be repeatedly used throughout the proofs in Sections 2, 3, 4 and 5.
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GROWTH AND PRODUCTS OF SUBHARMONIC FUNCTIONS IN THE UNIT BALL 5

Proof. In order to establish Proposition 2.1, let us consider the following, which is available for
anya ∈ BN :

(1− |a|2)α

∫
BN

(1− |x|2)λ+βu(x) (1− |Φa(x)|2)γdx ≤

≤ MXλ
(u) (1− |a|2)α+γ

∫
BN

(1− |x|2)β+γ

(1− 〈x, a〉)2γ
dx

according to the next formula (see [5] pp.25–26 or [1] p.115):

1− |Φa(x)|2 =
(1− |a|2) (1− |x|2)

(1− 〈x, a〉)2
∀x ∈ BN ∀a ∈ BN .

Proof of (i)Lemma 6.2 is applied withA = 2γ > 0 andT = β + γ > −1, since

2 ≤ A ≤ 2γ + 2(β + 1) + N = N + 2(T + 1).

The above integral is thus majorized byK0 (1− |a|2)−γ− 1
2 . The result follows since

sup
a∈BN

(1− |a|2)α+β

(1− |a|2)γ+ 1
2

= 1.

Proof of (ii) Lemma 6.3 is applied withT = β +γ > −1, A = 2γ > 0, τ > 0 andP = 0 which
fulfill 1 ≤ A + P ≤ 2γ + 2β + N + 1 = N + 1 + 2T . It leads to:∫

BN

(1− |x|2)T

(1− 〈x, a〉)A
dx ≤ K ′

(1− |a|2)A
2

=
K ′

(1− |a|2)γ
∀a ∈ BN

hence the conclusion sincesup
a∈BN

(1− |a|2)α+β

(1− |a|2)γ
= 1.

Example 2.1.Givenα ≥ 1
2
, β ≥ −1− N

2
andγ > N

2
, the functionv defined onBN by:

v(x) = (1− |x|2)−
N
2
−β−1 ∀x ∈ BN

belongs toSY+
α,β,γ with MYα,β,γ

(v) = K0.

The growth ofv will be studied during the proof of Theorem 3.3 in Section 3.

Example 2.2. Givena ∈ BN and parametersα, β, γ in configuration(1.4), the functionfa

defined byfa(x) = (1− 〈x, a〉)−N−1−2β ∀x ∈ BN belongs toSY+
α,β,γ and

MYα,β,γ
(fa) ≤ K(1− |a|2)α−N+1

2
−β

with K the constant from Lemma 6.3.

This property offa will be established during the proof of Theorem 3.2 just below.

Example 2.3.With parametersα, β, γ in configuration(1.6), the functionu defined by

u(x) = (1− |x|2)−
N+1

2
−β ∀x ∈ BN

belongs toSY+
α,β,γ andMYα,β,γ

(u) = K ′.

This will be shown in the proof of Theorem 3.4.
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6 R. SUPPER

3. PRODUCTS gu WHEN u ∈ Yα,β,γ AND g HAS A BLOCH –TYPE GROWTH .

Proposition 3.1. Givenα ∈ R, β ∈ R, γ ≥ 0 andλ ∈ R, let g ∈ Xλ such thatMXλ
(g) ≥ 0.

Then
MYα,λ+β,γ

(gu) ≤ MXλ
(g) MYα,β,γ

(u) ∀u ∈ Y+
α,β,γ.

Proof. We have(1 − |x|2)λg(x) u(x) ≤ MXλ
(g) u(x) sinceu(x) ≥ 0 ∀x ∈ BN . Thus the

required majorization follows fromMXλ
(g) ≥ 0.

Theorem 3.2.Givenλ ∈ R, β > −N+1
2

, α ∈]− N+1
2
− β, N+1

2
+ β] andγ > max(α,−1− β)

such thatγ ≥ −α, let g be a non–negative subharmonic function defined onBN , satisfying:

(3.1) ∃C > 0 MYα,λ+β,γ
(gu) ≤ C MYα,β,γ

(u) ∀u ∈ SY+
α,β,γ.

Theng ∈ Xλ+N−1
2

.

Remark 3.1. Obviouslyγ ≥ |α| andγ > α imply γ > 0.

Definition 3.1. GivenR ∈]0, 1[ andµ ∈ R, let Qµ = Qµ(R) be defined by:Qµ = 2−µ if µ ≤ 0
and

Qµ =

(
1 + R

1−R

)µ

if µ ≥ 0.

Definition 3.2. Givena ∈ BN , let Ra = R
1− |a|2

1 + R|a|
. Let Va denote the volume of the open

ball B(a, Ra) = {x ∈ BN : |x− a| < Ra}.
Remark 3.2. Thus, through Lemma 6.1 from the last section:

(3.2) (1− |a|2)µ ≤ Qµ (1− |x|2)µ ∀x ∈ B(a, Ra) ∀a ∈ BN

Proof. In order to demonstrate Theorem 3.2, let be givena ∈ BN andfa defined by

fa(x) =
1

(1− 〈x, a〉)A
∀x ∈ BN ,

with A = N + 1 + 2β. The subharmonicity of the functionfa follows from Lemma 6.4 since
A ≥ 0. We next show thatfa ∈ Yα,β,γ. For anyb ∈ BN , the following holds:

Jb(fa) : = (1− |b|2)α

∫
BN

(1− |x|2)β fa(x) (1− |Φb(x)|2)γ dx

= (1− |b|2)α+γ

∫
BN

(1− |x|2)β+γ

(1− 〈x, a〉)A (1− 〈x, b〉)2γ
dx

Lemma 6.3 now applies withA = N + 1 + 2β > 0, P = 2γ > 0 andT = β + γ > −1
which verify A + P = N + 1 + 2β + 2γ = N + 1 + 2T > N + 1 − 2 ≥ 1. The choice
τ = α + γ is allowed sinceα + γ ≥ 0, α + γ ≤ N+1

2
+ β + γ = A+P

2
, α + γ < γ + γ = P and

P−A
2

= γ − N+1
2
− β < γ + α. For alla ∈ BN andb ∈ BN , this leads to:

Jb(fa) ≤ (1− |b|2)α+γ K

(1− |a|2)A+P
2

−τ (1− |b|2)τ
=

K

(1− |a|2)A+P
2

−τ

where the constantK stems from Lemma 6.3. Thus

MYα,β,γ
(fa) = sup

b∈BN

Jb(fa) ≤
K

(1− |a|2)A+P
2

−τ

and

MYα,β+λ,γ
(g fa) ≤

C K

(1− |a|2)A+P
2

−τ
∀a ∈ BN .
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GivenR ∈]0, 1[, the subharmonicity ofg provides:

Va g(a) ≤
∫

B(a,Ra)

g(x) dx ∀a ∈ BN

with Va andB(a, Ra) as in Definition 3.2. Nowg(x) ≥ 0 ∀x ∈ BN hence the estimation (3.2)
whereµ = λ− N+1

2
leads to:

(3.3) (1− |a|2)λ−N+1
2

+N g(a) ≤ N (1 + R)N

σN RN
Qλ−N+1

2

∫
B(a,Ra)

(1− |x|2)λ−N+1
2 g(x) dx.

Moreoverγ + β + N+1
2
≥ α + γ ≥ 0 hence, again through Lemma 6.1:

1 ≤
(

2
1− |a|2

1− 〈x, a〉

)γ+β+N+1
2

and

1 ≤
(

2
1 + R

1−R

1− |x|2

1− 〈x, a〉

)γ+β+N+1
2

.

Thus

(1− |a|2)λ+N−1
2 g(a) ≤ Q (1− |a|2)γ+β+N+1

2

∫
B(a,Ra)

(1− |x|2)λ+γ+β

(1− 〈x, a〉)2γ+A
g(x) dx,

where the constantQ is independant froma andx. Now

γ + β +
N + 1

2
= α + γ + β +

N + 1

2
− α = α + γ +

A + P

2
− τ ,

whence

(1− |a|2)λ+N−1
2 g(a) ≤

≤Q (1− |a|2)
A+P

2
−τ (1− |a|2)α+γ

∫
B(a,Ra)

(1− |x|2)λ+γ+β

(1− 〈x, a〉)2γ
fa(x) g(x) dx ≤

≤Q (1− |a|2)
A+P

2
−τ (1− |a|2)α

∫
BN

(1− |x|2)λ+β fa(x) g(x) (1− |Φa(x)|2)γ dx

because ofg ≥ 0 onBN . Finally

(1− |a|2)λ+N−1
2 g(a) ≤ Q (1− |a|2)

A+P
2

−τ MYα,β+λ,γ
(g fa) ≤ QC K

for all a ∈ BN .

Theorem 3.3. Givenα ≥ 1
2
, β ≥ −1 − N

2
, γ > N

2
andλ ∈ R, let g : BN → [0, +∞[ be a

subharmonic function satisfying(3.1). Theng ∈ Xλ+N
2
−1+α.

Remark 3.3. Theorem 3.2 did not include the case whereβ ∈ [−1 − N
2
,−N+1

2
]. Even when

β ∈]− N+1
2

,−N
2
[, the interval]− N+1

2
− β, N+1

2
+ β] did not contain the valueα = 1

2
.

Proof. In order to establish Theorem 3.3, letH = N
2

+ 1 + β and letu be defined by

u(x) =
1

(1− |x|2)H
∀x ∈ BN .

This functionu is subharmonic inBN sinceH ≥ 0, according to Lemma 6.4. It moreover
belongs toYα,β,γ since:

(1− |a|2)α

∫
BN

(1− |x|2)βu(x) (1− |Φa(x)|2)γ dx = (1− |a|2)α+γ

∫
BN

(1− |x|2)β−H+γ

(1− 〈x, a〉)2γ
dx
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8 R. SUPPER

and this integral is equal toK0 (1− |a|2)−γ− 1
2 for all a ∈ BN according to Lemma 6.2 applied

with A = 2γ > N ≥ 2 andT = β−H+γ = −N
2
−1+γ > −1 which fulfill: N+2(T +1) = A.

Finally
MYα,β,γ

(u) = K0 sup
a∈BN

(1− |a|2)α− 1
2 = K0.

WhenceMYα,β+λ,γ
(gu) ≤ C K0.

Let R ∈]0, 1[ be fixed. For anya ∈ BN , it follows from the estimation (3.2), together with
the subharmonicity and positivity ofg, that:

(1− |a|2)λ−N
2
−1Va g(a) ≤ Qλ−N

2
−1

∫
B(a,Ra)

(1− |x|2)λ−N
2
−1 g(x) dx

(1− |a|2)λ−N
2
−1+N g(a) ≤ N (1 + R)N

σN RN
Qλ−N

2
−1

∫
B(a,Ra)

(1− |x|2)λ+β u(x) g(x) dx

Again Lemma 6.1 provides:

(1− |a|2)λ+N
2
−1g(a) ≤ Q′

∫
B(a,Ra)

(
1− |a|2

1− 〈x, a〉

)γ (
1− |x|2

1− 〈x, a〉

)γ

(1− |x|2)λ+β u(x) g(x) dx

with a constantQ′ > 0 independant froma andx. In other words:

(1− |a|2)λ+N
2
−1+α g(a) ≤ Q′(1− |a|2)α

∫
B(a,Ra)

(1− |x|2)λ+β u(x) g(x) (1− |Φa(x)|2)γ dx

As u(x) g(x) ≥ 0 ∀x ∈ BN , the above
∫

B(a,Ra)
... is majorized by

∫
BN

..., so that:

(1− |a|2)λ+N
2
−1+α g(a) ≤ Q′ MYα,β+λ,γ

(gu) ≤ Q′ C K0

for eacha ∈ BN .

Theorem 3.4. Givenα ≥ 0, β ≥ −N+1
2

, γ > N−1
2

andλ ∈ R, let g : BN → [0, +∞[ be a
subharmonic function satisfying(3.1). Theng ∈ Xλ+N−1

2
+α.

Proof. GivenJ = N+1
2

+ β, let u denote the function defined by:

u(x) = (1− |x|2)−J ∀x ∈ BN .

Lemma 6.4 implies the subharmonicity ofu sinceJ ≥ 0. Besides that:

(1− |a|2)α

∫
BN

(1− |x|2)βu(x) (1− |Φa(x)|2)γ dx = (1− |a|2)α+γ

∫
BN

(1− |x|2)γ−N+1
2

(1− 〈x, a〉)2γ
dx

= (1− |a|2)α+γ K ′

(1− |a|2)γ

= K ′ (1− |a|2)α ∀a ∈ BN

according to Lemma 6.3 applied here withP = τ = 0, A = 2γ > 0 andT = γ − N+1
2

> −1
(the condition1 ≤ A = N +1+2T is fulfilled by these parameters, because ofγ > 1/2). Thus
MYα,β,γ

(u) = K ′ sinceα ≥ 0.

With R ∈]0, 1[ anda ∈ BN fixed, it now follows from (3.3) and Lemma 6.1 that:

(1− |a|2)λ+N−1
2 g(a) ≤ Q′′

∫
B(a,Ra)

(
1− |a|2

1− 〈x, a〉

)γ (
1− |x|2

1− 〈x, a〉

)γ

(1− |x|2)λ+β u(x) g(x) dx

≤ Q′′
∫

BN

(1− |x|2)λ+β u(x) g(x) (1− |Φa(x)|2)γ dx
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sinceg ≥ 0 onBN . HereQ′′ denotes a constant depending only onR, N , λ andγ. Finally

(1− |a|2)λ+N−1
2

+α g(a) ≤ Q′′MYα,λ+β,γ
(gu) ≤ Q′′ C K ′

for all a ∈ BN .

Definition 3.3. Let SN denote the unit sphere ofRN anddσ the area element onSN . Let σN

denote the area ofSN , for information:σN = 2 πN/2

Γ(N/2)
(see [2] p.29).

Theorem 3.5. Let ε ∈]0, σN [ andE a measurable subset ofBN with σ(Er) ≥ ε ∀r ∈ [0, 1[,
whereEr = {η ∈ SN : rη ∈ E}. Letg : BN → [0, +∞[ be a measurable function.

(i) Given parametersα ≥ 1
2
, β ≥ −1− N

2
, γ > N

2
andλ ∈ R, if the functiong satisfies

g(x) ≥ (1− |x|2)−λ−γ+N
2 ∀x ∈ E,

then there does NOT exist any constantC > 0 such that

MYα,λ+β,γ
(gu) ≤ C MYα,β,γ

(u) ∀u ∈ SY+
α,β,γ.

(ii) The same conclusion holds wheng(x) ≥ (1− |x|2)−λ−β−γ−1 ∀x ∈ E, with α, β, γ andλ as
in Theorem 3.2.

(iii) The same conclusion holds wheng(x) ≥ (1 − |x|2)−λ−γ+N
2
− 1

2 ∀x ∈ E, with parameters
fulfilling: α ≥ 0, β ≥ −N+1

2
, γ > N−1

2
andλ ∈ R.

Proof. Each of these three results is to be established ab absurdo: let us suppose on the contrary
that (3.1) holds.

Proof of (i)Let H = N
2

+ β + 1 ≥ 0 andv the function defined onBN by v(x) = (1− |x|2)−H .
Thusv ∈ SY+

α,β,γ as it was shown in the proof of Theorem 3.3. If there existed someC > 0 such
thatMYα,λ+β,γ

(gu) ≤ C MYα,β,γ
(u) for all functionsu ∈ SY+

α,β,γ, it would apply in particular
to the functionv and we should haveMYα,λ+β,γ

(gv) < +∞.

Having fixed somea ∈ BN , the following integrals should then be finite too:∫
BN

(1− |x|2)β+λg(x) v(x) (1− |Φa(x)|2)γ dx ≥ (1− |a|2)γ

∫
E

(1− |x|2)β+λ−(λ+γ−N
2

)−H+γ

(1− 〈x, a〉)2γ
dx

= (1− |a|2)γ

∫
E

(1− |x|2)β+N
2
−H

(1− 〈x, a〉)2γ
dx

>
(1− |a|2)γ

4γ

∫
E

(1− |x|2)−1dx

since0 < 1− 〈x, a〉 < 2 for all a ∈ BN andx ∈ BN . But the last integral diverges since∫
E

dx

1− |x|2
≥ ε

∫ 1

0

rN−1 dr

1− r2

>
ε

2

∫ 1

0

rN−1 dr

1− r
= +∞

with r = |x| anddx = rN−1 dr dσ. Now the contradiction follows.

Proof of (ii) If, for some constantC, the estimationMYα,λ+β,γ
(gu) ≤ C MYα,β,γ

(u) was valid
for all u ∈ SY+

α,β,γ, then it would hold in particular withu = fa ∈ SY+
α,β,γ defined as in the
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proof of Theorem 3.2:fa(x) = (1 − 〈x, a〉)−N−1−2β ∀x ∈ BN (with a fixed in BN ). Thus we
should haveMYα,β+λ,γ

(g fa) < +∞ and the following integrals should be finite too:∫
BN

(1− |x|2)β+λg(x) fa(x) (1− |Φa(x)|2)γ dx ≥ (1− |a|2)γ

∫
E

(1− |x|2)β+λ−(λ+β+γ+1)+γ

(1− 〈x, a〉)N+1+2β+2γ
dx

≥ (1− |a|2)γ

2N+1+2β+2γ

∫
E

dx

1− |x|2

The last integral diverges, hence a contradiction.
Proof of (iii). The functionv defined byv(x) = (1 − |x|2)−J ∀x ∈ BN , with J = N+1

2
+ β,

belongs toSY+
α,β,γ (see the proof of Theorem 3.4). Reasoning ab absurdo as in both previous

cases, we should haveMYα,β+λ,γ
(g v) < +∞, hence the finiteness of the following integral

(with a ∈ BN fixed):∫
E

(1− |x|2)β+λ−(λ+γ−N
2

+ 1
2
)−J+γ

(1− 〈x, a〉)2γ
dx =

∫
E

(1− |x|2)β+N
2
− 1

2
−J

(1− 〈x, a〉)2γ
dx

≥ 1

4γ

∫
E

dx

1− |x|2

which diverges, thus a contradiction arises.

4. A SITUATION WHERE THE PRODUCTS gu HAVE A BLOCH –TYPE GROWTH .

GivenR ∈]0, 1[ andg ∈ Xλ with MXλ
(g) ≥ 0, we already know from Proposition 3.1 of [6]

and Corollary 3.2 of [6] that:

MXλ+α+β+N
(gu) ≤ N

σN

(1 + R)N−γ

RN (1−R)γ
Qβ MXλ

(g) MYα,β,γ
(u) ∀u ∈ SY+

α,β,γ

(for σN andQβ, see the notations of Definitions 3.2 and 3.3).

Theorem 4.1. With α, β, γ and λ as in Theorem 3.2, letg be a non–negative subharmonic
function defined onBN , satisfying:

(4.1) ∃C ′ > 0 MXλ+α+β+N
(gu) ≤ C ′ MYα,β,γ

(u) ∀u ∈ SY+
α,β,γ.

Theng ∈ Xλ+N−1
2

.

Remark 4.1. This conclusion cannot be deduced directly from Theorem 3.2 of the previous
section and Proposition 3.1 of [6] which asserts:SY+

α,β,γ ⊂ SX+
α+β+N together with

MXα+β+N
(v) ≤ C ′′ MYα,β,γ

(v)

for some constantC ′′ independant fromv ∈ SY+
α,β,γ. This result cannot be used here (with

v = gu andβ replaced byβ + λ) because the subharmonicity ofg andu does not compulsorily
imply the subharmonicity ofgu, as the following counterexample points out: withg andu
defined byg(x) = 1 + x1 ≥ 0 andu(x) = 1 − x1 ≥ 0 ∀x = (x1, x2, ..., xN) ∈ BN , we have
(∆u)(x) = (∆g)(x) = 0 ≥ 0 but

∆(gu)(x) = ∂2

∂x2
1
(1− x2

1) = −2 < 0 ∀x ∈ BN .

However this functionu belongs toYα,β,γ since

u(x) ≤ 2 ≤ 2N+2+2βfa(x) ∀x ∈ BN

with fa ∈ Yα,β,γ as in the proof of Theorem 3.2. The previous majoration merely follows from

0 < 1− 〈x, a〉 < 2, hence1
2

< 1
1−〈x,a〉 , thus

(
1
2

)N+1+2β
< fa(x) ∀x ∈ BN .
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Proof. Having fixedR ∈]0, 1[, the proof of Theorem 4.1 will make use of the same notations
(Va, B(a, Ra), fa, Qµ, A, P andτ ) as the proof of Theorem 3.2. We have for anya ∈ BN :

(1− |a|2)λ+N−1
2

+α Va g(a) ≤ Qλ+N−1
2

+α

∫
B(a,Ra)

(1− |x|2)λ+N−1
2

+α g(x) dx

≤ L (1− |a|2)β+N+1
2

∫
B(a,Ra)

(1− |x|2)λ+N−1
2

+α+β+N+1
2

(1− 〈x, a〉)N+1+2β
g(x) dx

where the constantL depends only onN , R, β andλ + α. The above integral is merely∫
B(a,Ra)

(1− |x|2)λ+α+β+Nfa(x) g(x) dx ≤ MXλ+α+β+N
(fa g) Va

≤ C ′ MYα,β,γ
(fa) Va

≤ C ′ K Va

(1− |a|2)A+P
2

−τ

≤ C ′ K Va

(1− |a|2)β+N+1
2

−α

with K from Lemma 6.3. Finally:(1− |a|2)λ+N−1
2 g(a) ≤ L C ′ K for everya ∈ BN .

Theorem 4.2.Givenα ≥ 1
2
, β ≥ −1− N

2
, γ > N

2
andλ ∈ R, let g be a subharmonic function

(onBN ) satisfying(4.1). Theng ∈ Xλ+N
2
−1+α.

Proof. Let u ∈ SY+
α,β,γ be defined byu(x) = (1−|x|2)−N

2
−1−β as in the proof of Theorem 3.3.

With the same notations as in the proof of Theorem 3.2, the subharmonicity ofg leads to:

Va g(a) ≤
∫

B(a,Ra)

g(x) dx =

∫
B(a,Ra)

(1− |x|2)
N
2

+1+β g(x) u(x) dx

=

∫
B(a,Ra)

(1− |x|2)λ+α+β+N g(x) u(x) (1− |x|2)−λ−α−N
2

+1 dx

≤ MXλ+α+β+N
(gu)

∫
B(a,Ra)

(1− |x|2)−λ−α−N
2

+1 dx

≤ C ′ MYα,β,γ
(u)

∫
B(a,Ra)

Qλ+α+N
2
−1 (1− |a|2)−λ−α−N

2
+1 dx

= Qλ+N
2
−1+α C ′ K0 (1− |a|2)−λ−α−N

2
+1 Va ∀a ∈ BN .

ThusMX
λ+ N

2 −1+α
(g) ≤ Qλ+N

2
−1+α C ′ K0 with K0 from Lemma 6.2.

Theorem 4.3.Givenα ≥ 0, β ≥ −N+1
2

, γ > N−1
2

andλ ∈ R, let g be a subharmonic function
(onBN ) satisfying(4.1). Theng ∈ Xλ+N−1

2
+α.

Proof. With this choice of parameters, the functionu : x 7→ (1 − |x|2)−N+1
2

−β belongs to the
setSY+

α,β,γ (see the proof of Theorem 3.4). Nowg is subharmonic hence:

Va g(a) ≤
∫

B(a,Ra)

(1− |x|2)λ+α+β+N g(x) u(x) (1− |x|2)−λ−α−N−1
2 dx

≤ C ′ MYα,β,γ
(u) Qλ+α+N−1

2
(1− |a|2)−λ−α−N−1

2 Va ∀a ∈ BN .

Finally MX
λ+ N−1

2 +α
(g) ≤ C ′ K ′ Qλ+N−1

2
+α with K ′ from Lemma 6.3.
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5. PRODUCTS gu WHEN u HAS A BLOCH –TYPE GROWTH .

Proposition 5.1. Letλ ∈ R, g ∈ Xλ and two realsα ≤ β. If MXλ
(g) ≥ 0 then

MXλ+β
(gu) ≤ MXλ

(g) MXα(u) ∀u ∈ X+
α .

Proof. For anyx ∈ BN , the following holds:(1− |x|2)β ≤ (1− |x|2)α since1− |x|2 ∈ [0, 1[.
Now (1− |x|2)λ g(x) u(x) ≤ MXλ

(g) u(x) because ofu(x) ≥ 0. This leads to:

(1− |x|2)β+λ g(x) u(x) ≤ MXλ
(g) (1− |x|2)αu(x)

sinceu(x) MXλ
(g) ≥ 0. The required majorization follows fromMXλ

(g) ≥ 0.

Proposition 5.2. Given two realsα ≥ β ≥ 0, let g denote a function defined onBN and
satisfying:

∃C > 0 ∃λ ∈ R such that MXβ+λ
(gu) ≤ C MXα(u) ∀u ∈ SX+

α .

Theng ∈ Xλ with MXλ
(g) ≤ C.

Proof. For anyx ∈ BN , we have:g(x) = (1 − |x|2)β g(x) u(x) whereu(x) = (1 − |x|2)−β.
Obviouslyu ∈ Xα with MXα(u) ≤ 1. Moreoveru is subharmonic inBN sinceβ ≥ 0, according
to Lemma 6.4 in the next section. Thus

(1− |x|2)λg(x) ≤ MXβ+λ
(gu) ≤ C

for eachx ∈ BN .

Corollary 5.3. Givenλ ∈ R andα ≥ 0, a functiong : BN → [0, +∞[ belongs toXλ if and
only if:

∃C > 0 such that MXα+λ
(gu) ≤ C MXα(u) ∀u ∈ SX+

α .

In particular g is majorized onBN if and only if:

∃C > 0 such that MXα(gu) ≤ C MXα(u) ∀u ∈ SX+
α .

Proposition 5.4. Givenα ∈ R, β ∈ R, γ ≥ 0 andλ ∈ R, let g ∈ Y+
α,β,γ. Then

MYα,β+λ,γ
(gu) ≤ MYα,β,γ

(g) MXλ
(u) ∀u ∈ Xλ such that MXλ

(u) ≥ 0.

Proof. The hypothesisg(x) ≥ 0 implies:

(1− |x|2)β+λ u(x) g(x) ≤ MXλ
(u) (1− |x|2)β g(x) ∀x ∈ BN .

Multiplying by (1 − |a|2)α(1 − |Φa(x)|2)γ ≥ 0 and integrating overBN do not modify the
inequality. But evaluating thesup

a∈BN

–bound requires thatMXλ
(u) ≥ 0.

Proposition 5.5. Givenα ∈ R, β ∈ R, γ ≥ 0 andλ ≥ 0, let g be a function defined onBN ,
satisfying:

∃C > 0 such that MYα,λ+β,γ
(gu) ≤ C MXλ

(u) ∀u ∈ SX+
λ .

Theng ∈ Yα,β,γ.

Proof. Let u ∈ Xλ be given by:u(x) = (1 − |x|2)−λ ∀x ∈ BN . Its subharmonicity follows
from λ ≥ 0 (see Lemma 6.4). Then

(1− |x|2)βg(x) = (1− |x|2)β+λg(x) u(x) ∀x ∈ BN .

HenceMYα,β,γ
(g) = MYα,λ+β,γ

(gu) ≤ C sinceMXλ
(u) = 1.
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6. ANNEX : SOME TECHNICAL AUXILIARY RESULTS .

Lemma 6.1. Givena ∈ BN andR ∈]0, 1[, let Ra andB(a, Ra) be as in Definition 3.2. Then
the following holds for anyx ∈ B(a, Ra):

1

2
<

1− 〈x, a〉
1− |x|2

< 2
1 + R

1−R

1

2
<

1− 〈x, a〉
1− |a|2

< 2

and
1−R

1 + R
≤ 1− |x|2

1− |a|2
≤ 2.

Moreover the volumeVa of B(a, Ra) satisfies:

Va =
σN

N
RN

a ≥ σN

N

(
R

1 + R

)N

(1− |a|2)N

with σN as in Definition 3.3.

Proof. Cauchy–Schwarz inequality leads to:

1− 〈x, a〉 ≥ 1− |x| = 1− |x|2

1 + |x|
>

1− |x|2

2
.

See [6] and [7] for the other results.

Lemma 6.2. GivenA > 0 andT > −1, let

IA,T (a) =

∫
BN

(1− |x|2)T

(1− 〈x, a〉)A
dx ∀a ∈ BN .

If 2 ≤ A ≤ N + 2(T + 1) then

IA,T (a) ≤ K0

(
1

1− |a|2

)A+1
2

∀a ∈ BN

where

K0 =
Γ(T + 1)

Γ(A
2
)

πN/2.

If A = N + 2(T + 1), then equality holds in the above formula.

Proof. Without any restriction, it may be assumed thata = (|a|, 0, 0, ..., 0). Polar coordinates
in IRN providex1 = r cos θ1 with r = |x|, θ1 ∈]0, π[ if N ≥ 3 andθ1 ∈]0, 2π[ if N = 2. Let
dσ(N) be the area element on the unit sphereSN of RN . Now dσ(N) = (sin θ1)

N−2dθ1 dσ(N−1)

(polar formulas are more detailed in [11] p.15), thus

IA,T (a) =

∫
BN

(1− r2)T rN−1 dr dσ(N)

(1− |a| r cos θ1)A

= σN−1

∫ 1

0

∫ π

0

(1− r2)T rN−1 (sin θ1)
N−2dθ1 dr

(1− |a| r cos θ1)A
(6.1)

whenN ≥ 3 (the caseN = 2 will be studied later). ForσN , see Definition 3.3. Lets = r cos θ1.
From the known expansion

1

(1− |a| s)A
=

∑
`∈N

Γ(` + A)

`! Γ(A)
(|a| s)`
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we obtain:

IA,T (a) = σN−1

∑
`∈N

Γ(` + A)

`! Γ(A)
|a|`

∫ 1

0

∫ π

0

(1− r2)T rN−1 s` (sin θ1)
N−2dθ1 dr.

With t = r sin θ1, this double integral turns into
∫∫

H
s` tN−2(1− s2 − t2)T ds dt where

H = {(s, t) ∈ IR2 : t ≥ 0, s2 + t2 < 1}.
This integral has been computed in [6], whence

IA,T (a) = σN−1

∑
k∈N

Γ(2k + A)

Γ(2k + 1) Γ(A)
|a|2k Γ(k + 1

2
) Γ(N−1

2
) Γ(T + 1)

2 Γ(N
2

+ k + T + 1)
.

The duplication formula
√

π Γ(2z) = 22z−1 Γ(z) Γ(z + 1
2
) (see [3] p.3), applied successively

with 2z = 2k + A and2z = 2k + 1, leads to:

IA,T (a) = σN−1

∑
k∈N

2A−1 Γ(k + A
2
) Γ(k + A+1

2
)

k! Γ(A)
|a|2k Γ(N−1

2
) Γ(T + 1)

2 Γ(N
2

+ k + T + 1)
.

The functionΓ is increasing on[1, +∞[ and1 ≤ k + A
2
≤ N

2
+ k + T + 1 thus

Γ(k + A
2
) ≤ Γ(N

2
+ k + T + 1),

with equality in the caseA = N + 2(T + 1). It follows that:

IA,T (a) ≤ σN−1

2A−1 Γ(N−1
2

) Γ(T + 1) Γ(A+1
2

)

2 Γ(A)

∑
k∈N

Γ(k + A+1
2

)

k! Γ(A+1
2

)
|a|2k.

Now 1
2
σN−1 Γ(N−1

2
) = π(N−1)/2 and

2A−1 Γ(A+1
2

)

Γ(A)
=

√
π

Γ(A
2
)

through duplication formula applied with2z = A. Hence the conclusion follows in the case
N ≥ 3. WhenN = 2, we have

IA,T (a) =

∫ 1

0

∫ 2π

0

(1− r2)T r dθ1 dr

(1− |a| r cos θ1)A

but the inner integral is equal to

2

∫ π

0

(1− r2)T r dθ1

(1− |a| r cos θ1)A
,

so that the above formulas, from (6.1) on, all still hold, sinceσ1 = 2.

Lemma 6.3. GivenA > 0, P > 0 andT > −1 satisfying1 ≤ A + P ≤ N + 1 + 2T , let

IA,P,T (a, b) =

∫
BN

(1− |x|2)T

(1− 〈x, a〉)A (1− 〈x, b〉)P
dx ∀a ∈ BN ∀b ∈ BN

andτ a number satisfing both

P − A

2
< τ < P and 0 ≤ τ ≤ A + P

2
.

Then there existsK > 0 such that:

IA,P,T (a, b) ≤ K

(1− |a|2)A+P
2

−τ (1− |b|2)τ
∀a ∈ BN ∀b ∈ BN .
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This result remains valid withP = 0 andτ = 0, replacingK by

K ′ =
Γ(T + 1)

Γ(A+1
2

)
π

N
2 .

WithP = τ = 0, equality holds in the above majoration when moreover1 ≤ A = N + 1 + 2T .

Proof. See Theorem 4.1 of [6] and Proposition 5.1 of [6].
For informationK = 2P+A−1 Γ(T+1)Γ(P−τ)

Γ(P ) Γ(A)
Γ(A−P

2
+ τ) π

N−1
2 .

Lemma 6.4. GivenA ≥ 0, P ≥ 0 anda ∈ BN , let f be the function defined onBN by

f(x) =
1

(1− 〈x, a〉)A(1− |x|2)P
∀x ∈ BN .

Thenf is subharmonic inBN .

Proof. For anyj ∈ {1, 2, ..., N}, the following holds∀x ∈ BN :

∂fa

∂xj

(x) = aj A (1− 〈x, a〉)−A−1(1− |x|2)−P + 2P xj(1− 〈x, a〉)−A(1− |x|2)−P−1

∂2fa

∂x2
j

(x) = A(A + 1)a2
j(1− 〈x, a〉)−A−2(1− |x|2)−P +

+ 4AP xjaj(1− 〈x, a〉)−A−1(1− |x|2)−P−1 + 2P (1− 〈x, a〉)−A(1− |x|2)−P−1+

+ 4P (P + 1) x2
j (1− 〈x, a〉)−A(1− |x|2)−P−2.

Hence

(∆f)(x) =
|a|2 A (A + 1)

(1− 〈x, a〉)A+2(1− |x|2)P
+

4AP 〈x, a〉
(1− 〈x, a〉)A+1(1− |x|2)P+1

+

+
2PN

(1− 〈x, a〉)A(1− |x|2)P+1
+

4P (P + 1)|x|2

(1− 〈x, a〉)A(1− |x|2)P+2

(∆f)(x) ≥ (1− 〈x, a〉)−A(1− |x|2)−P
[

A2 |a|2
(1−〈x,a〉)2 −

4AP |a| . |x|
(1−〈x,a〉)(1−|x|2)

+ 4P 2 |x|2
(1−|x|2)2

]
= (1− 〈x, a〉)−A(1− |x|2)−P

(
A |a|

1− 〈x, a〉
− 2P |x|

1− |x|2

)2

≥ 0.

The subharmonicity off follows.
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