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2 R. SUPPER

1. INTRODUCTION

The subharmonic functions under study in this article are defined on the Euclidean open unit
ball By ¢ RY (with N € N, N > 2). They grow according to two different patterns. For
instance, such a functianis said to have a Bloch—type growth if:

(1.1) 3N € R such that My, (u) := sup (1 — |z*)* u(x) < +oo

rEBN
where| .| denotes the Euclidean norm " (the setX, will be defined explicitely later).
Another kind of growth for: is described through the Bloch—type growth of the functign (u)
defined onBy by the following formula, with3 and~ fixed reals:

A (Fa)@= [ (=Rl u) (1= @@ de Vae By

Bn
denoting by®, an involution of By which will be explicited in the next section. The function
u Is said to have a growth of the second kind if:

(1.3) Ja € R suchthat My, , (u) := My, (Fp,(u)) < +o0
(see Sectiop|2 for the precise definitions of the 3&ts , andxy,).

The purpose of the paper is to study the links between the growth of two such funetions
andg and the growth ofju. Given sets£, 7 andg of the kind X, or ), 3,, we consider the
application:

E—F
U gu

and investigate the following questions:
—If g € G, does there exist then a constéanht> 0 such that

Mz(gu) < C Mg(u) Vu ?
— Does the converse hold?

e In the casef = &,, F = &,4, andG = X, Propositions 5]1 and 5.2 provide positive
answers to both above questions (see Seftion 5 for the exact statements).

e In the casef = X, F = V,3+2, aNdG = )V, 3, 100, positive answers also hold: see
Proposition§ 54 arjd 5.5 in Sectign 5 for the precise assumptions.

e For the cas€ = ), s, andF = X, 42N, S€E Sectiop|4:
Theore studies the situation where- Xy and the parameters [, ~ fulfill:
N+1 N+1 N+1
(L4 —f-—T—<a<pr——, f>-"——, y2-a 7>max(a,-1-H)
Theorenﬂz studies the situation whére- X, v _, ., and
1 N N

1. > — > —1—— —.
TheorenEp studies the situation whére- X, i,

N+1 N -1

2 2

e In the case& = ), 3, andF = YV, 44, Propositiorj 31 brings an affirmative answer to the
first question, withy € X. Theorems$ 3]2, 3|3 ad 3.4 provide situations where the converse
of Propositiory 3.1 partly holds: given a functigndefined onBy, for which there exists some

and
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constanC' such that\ly, ,, , (gu) < C My, , (u) Vu, Theorem$ 3]2, 3|3 apd 3.4 obtain some

N > X such thayy € X,,. For positive functiong moreover exceedingl — |z|?)~*" on some
sector issued from the origin, Theorém|3.5 brings a restriction’on

N -1

in situation |(1.4) : X:)\+T N<A+p8+7+1
. . N N
in situation |(1.5) : X:)\+E—1+a X’<)\+7—5
. . N -1 N -1
msﬂuaﬂon@): A’:)\+T+a X’<>\+7—T

(see Sectiop|3 for all details).

Since the set&’, and), s, do not even have the structure of vector space, it is not surprising
that the situation studied here is more delicate than the similar questions involving spaces of
holomorphic functions in the unit disk C C, such as the Bloch spaé®, the Dirichlet space
D, (a special case of Bergman space when 1) and the spac&M O A.. for instance. Using
the above notation§ (1.1) arjd (1.3), with= 2 andx = z € D = By, the classical norms on
these spaces are denoted as follows:

feB, <= |lflls, = [fO)]+ M, (If']) < +o0 (7> 0)

feD. = |fllp, = Myg,o(|f*) < +o0 (r>1)

feBMOA, <= ||flluoa, = FO)* + My, o, (If]") <+00  (7>0)
modifying here the notation (.2) and (1.3) with(z) now replaced by, (z) = {==.

Givenh an analytic function inD, such linear applications gs— hf between these spaces
have been studied by various authors: see for instance [8], [4] p.[197, [10].

A related question is the continuity (with respect to the above norms) of the operator

I f = In(f)
defined by:

(In(f))(z) = /OZ h(¢) £(¢) d¢ Vz e D.

Some examples of known results:

e Givenr > 1, the continuity off, : B, — B, is equivalent to the boundednesshobn D, in
other words:h € H* (proved in[9] p.138).

o If 1 < p < A, then the operatal, : BMOA, — B, is bounded if and only it € B)_,,1;
(seel8] p.1050).

e Givenl < p < A, itis proved in[8] p.1059-1060 thdf, : D, — D, is bounded if and only
|f h 6 BlJr%()\iu).

Since|f’|, | f|? and|f’|* are subharmonic functions aB, (see [2] p.46), the question na-
turally occured whether the preceeding results had some kind of an analog for subharmonic
functions onBy (N > 2) with a growth described by (1.1) dr (1.3).

AIJMAA Vol. 9, No. 1, Art. 9, pp. 1-16, 2012 AJMAA


http://ajmaa.org

4 R. SUPPER

2. VARIOUS RELATIONS BETWEEN THE SETS X AND Y, 5. -
Definition 2.1. Given\ € R, let X, be the set of all functions : By — [—o0, +oo] satisfying
My, (u) := sup (1 — |z|))*u(z) < +o0.

TEBN
Let X7 = {u € X\ : uw(By) C [0,+00[}. Let SX) denote the subset of all subharmonic
u € X,. Finally, letSX7 = SX,\ N ).

Remark 2.1. Obviously X, C &), for A < p, with My, (u) < My, (u) Vu € X).
If A\ < 0thenSX{ = {0} (see Proposition 6.2 of [6]).

Definition 2.2. Givena € R, 3 € R, v > 0, let), 3, denote the set of all measurable functions
u: By — [—o0, +00] satisfying:

My, , (u):= sup (1 — !a|2)a/B (1= |z|>)P u(z) (1 = |®4(x)|?)" dx < +o0

a€ByN

with ¢, : By — By the involution defined by:

3,(r) = LD Z V0P Qule)

1—(z,a)
where:
- (z,a)
<SL’,CI,> :;xj aj , Pa<x) = W and Qa('r) :ZE—Pa(l’)
for everyz = (21, 2s,...,2y5) € RY anda = (a1, as,...,ay) € R, with P,(x) = 0 when

a = 0. As above, we similarly defir@’fm (resp.SV., 5.+) the subset of all non-negative (resp.

«

subharmonic) functions € V. s, and finallySY, ; , = SVa5, NV, 5.

Remark 2.2. In Proposition 3.1 of [6], it was proved th&)} , € SX7 ;. .

Leta’ > o, 3" > fandy’ >y > 0,theny,;  C V7 .  with My, (u) < My, ,_(u) for
everyu € J; 5 _, since

(1 —laf)* <

(1= [z < (1= 2"

(1= [@a(2)*)" < (1= [®o(2)]?)

Ifa+ 8 < —-Nora< —v, thenS_’)/;@7 = {0} (see Propositions 6.3 and 6.4 of [6]).

N
—~
—_
|

2
[\
~—
R

Proposition 2.1. (i) Given3 > —% —1,vy>1suchthat3 + v > —1,leta > v - G+ %
There existd(, > 0 such that:

My, 5. (1) < Ko M, (u) VAER Yu € Xy,
(i) Given > —&H 4 > Lsuch thats + v > —1, leta > v — 3. There existds’ > 0 such

that:
Mya’Mm(u) < K’ M)()\(UJ) VAeR Yu € &).

Thus, in both casesY\ C YV, 15

Remark 2.3. The constanté#(, and K’ respectively stem from Lemmps b.2 6.3 which are
postponed in annex: at the end of the paper, Sefiion 6 gathers several technical results which
will be repeatedly used throughout the proofs in Section$[d, 3, #land 5.
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Proof. In order to establish Propositipn 2.1, let us consider the following, which is available for
anya € By:

(1 Jaf?)° / (1~ PP Pu() (1 — |Da(x)P)de <

— |z]2)8+Y
< M () (1= o) [ %d

according to the next formula (see [5] pp.25—-26.0r [1] p.115):
1—1al*) (1 — |z
(1= (z,a))?
Proof of (i) Lemmd 6.2 is applied withl = 2y > 0 andT = 5 + v > —1, since

2<AL<29+2(B+1)+N=N+2(T+1).

1 @, ()2 = ¢

VxGBN VGGBN.

The above integral is thus majorized By (1 — |a|?) 2. The result follows since

1 — 2\a+3
o ()

S U DRSS
aeBy (1 —|al?)7*2

Proof of (ii) Lemmd 6.8 is applied with" = 5+~ > —1, A =2y > 0,7 > 0 andP = 0 which
fulfil 1 < A4+ P <2y+28+N+1=N+1+2T. Itleads to:

(= f)" KK )
/BN (1= (z,a))* = (1—la)s (@ —laP) Va € By
(A = |aP)**?

hence the conclusion sincaip

=1.1
acBy (1 —lal?)”

Example 2.1.Givena > 1, 3 > —1 — £ andy > %, the functiorw defined onBy by:
v(z) = (1 [a]?) 270! Vz € By
belongs taSYy ; with My, , (v) = K.

The growth ofv will be studied during the proof of Theorgm B.3 in Secfipn 3.

Example 2.2. Givena € By and parametersy, (3, v in configuration(1.4)), the functionf,
defined byf, (z) = (1 — (z,a))"""'"%/ Vz € By belongs taSY} ;_ and

N+1

My, ;. (fa) < KL= la*)*= =~
with K the constant from Lemna 6.3.
This property off, will be established during the proof of Theorgm|3.2 just below.
Example 2.3. With parametersy, 3, ~ in configuration(1.6)), the functionu defined by

N4+1

uw(z) = (1—|z|*)" =2 - Vx € By
belongs taSY/ ,_ and My, , (u) = K’

a8,y

This will be shown in the proof of Theorem 3.4.
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3. PRODUCTS gu WHEN 4 € Y, 5, AND g HAS A BLOCH—-TYPE GROWTH .

Proposition 3.1. Givena € R, f € R,y > 0and X € R, letg € &), such thatMy, (¢) > 0.
Then
My, s, (90) < Ma,(9) My, , (u)  YueVi5,

Proof. We have(1l — |z|?)*g(z) u(z) < My, (g) u(z) sinceu(z) > 0 Vx € By. Thus the
required majorization follows from/y, (¢) > 0. 1

Theorem 3.2.Given\ € R, § > =& o €] — & — g M+l 4 gl andy > max(a, —1 — 3)
such thaty > —a, letg be a non— negatlve subharmonic function definedgn satisfying:

(3.1) 4C >0 My, .5 (gu) <C My, , (u) Vu e Sy!
Theng € X,

By
+ 8L
Remark 3.1. Obviouslyy > |«a| andy > « imply v > 0.
Definition 3.1. GivenR €0, 1[{ andy € R, letQ,, = Q,(R) be defined by, = 27*if 4 <0
and
Q, — (%)# it 11> 0,
1—Jaf?

Definition 3.2. Given By, letR, = R —F—.
@€ PN 1+ R|a|

ball B(a,R,) ={z € By : |zt —a| < R.}.
Remark 3.2. Thus, through Lemma 6.1 from the last section:

Let V, denote the volume of the open

(3.2) (1—la])* < Q, (1 — |z|*)" Vo € B(a,R,) VYa € By
Proof. In order to demonstrate Theor¢m|3.2, let be given By and f, defined by
1
fa(l’) = W VI' € BN,

with A = N + 1 4 23. The subharmonicity of the functiof), follows from Lemmd 6.4 since
A > 0. We next show thaf, € ), 3,. For anyb € By, the following holds:

To(fa) = (1 pf2)° / (1~ 2?)° fulx) (1 — [ By(a)]?)" di

L — z?)

2\a+y (
= (1= / 0w (1~ (@ o)s

Lemma[ 6.8 now applies witlhk = N +1+23 > 0, P =2y > 0andT = g+ > —1
whichverify A+ P = N+1+28+2y=N+1+4+2T > N+1—-2 > 1. The choice
T=a+yisallowed sincev+v > 0,a+v < ¥ 4+ g+ =24 o+ 4 <y 44 = Pand
PA—y N _goqyta ForallaeBNandbeBN,thlsleadsto.

K K
<]b a) < (1 — b2 a A+P = A+
o= A= (I —laP)> (A =[oP)" (1 —la?)™=""

where the constarft” stems from Lemm@a6.3. Thus

K
M. o) = sup JS(fa) <
yaﬂ-,’y(f ) beBI])V b(f ) (1 _ ’a‘2)A%P77
and -
Mya,mr)\ﬁ (g fa) < Aipi‘r Ya € By.
(1 —laf?)"2
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Given R €]0, 1|, the subharmonicity o provides:
Vagla) < / g(z)dx Va € By
B(a,Rq)

with V, andB(a, R,) as in Definitior] 3.2. Nowy(z) > 0 V2 € By hence the estimatioh (3.2)
wherey = X — 2 |eads to:

_N+1 N(1+R N _N41
@3 (-l g < T o Jya 7t
Moreovery + 8 + 2 > o + y > 0 hence, again through Lemral.1:
1 — 2 “H—ﬁ-l—%
1< (o 2zl
1 —(z,a)
and gy g
2 \ AN
L < (9 1+ R 1— |z 2 '
“\ 1-R1-—(x,a)
Thus
_ A+y+08
2\ AL 2\ +B+ N (1—z[*)
(L W7 gla) < Q1 a8 [ O

where the constar is independant from andx. Now

N+1 N+1 A+ P
’y—i—ﬁ—i—T:a—l—’y—i-ﬁ—i-T—a:a—l—’y—i- 9

_7"
whence
N-1
(1—la*)** 7= g(a) <

1— |$|2)/\+7+ﬁ

<@ oy e [ G g gt <

A+4+P

<Q(L—laf) = 71— W)“/B (1= [ fu(z) g(2) (1 |@q(@)[*)" da
because off > 0 on By. Finally

(1= a7 gla) <Q (1 — o)
foralla € By. 1

A+P

=7 Mya,ﬁ+)\,q (g fa) S Q CK

Theorem 3.3.Givena > 3,3 > -1 -5,y > Jand\ € R, letg : By — [0,+oc[ be a
subharmonic function satisfyil@. Theng € X\, v ).

Remark 3.3. Theorenf 32 did not include the case where [—1 — 5, —XF]. Even when
g el — & —I the interval — 2 — 3, &4 4 ] did not contain the value = 1.

Proof. In order to establish Theorgm B.3, lét= 4 + 1 + 3 and letu be defined by
1

(1= [2[%)#

This functionu is subharmonic inBy since H > 0, according to Lemmp 6.4. It moreover

belongs tqV, s, since:

u(x) = Va € By.

(1 — [a?) =

(=) (1= fafute) (1= @) do = (1= o) [ G

AIJMAA Vol. 9, No. 1, Art. 9, pp. 1-16, 2012 AJMAA


http://ajmaa.org

8 R. SUPPER

and this integral is equal t&, (1 — |a\2)_7_% for all a € By according to Lemm@.z applied
with A =2y > N > 2andl = f—H+vy = -5 —1++ > —1which fulfil: N+2(T+1) = A.
Finally

WhenceMy, .., (gu) < C Kp.

Let R €]0, 1[ be fixed. For any: € By, it follows from the estimatior| (3]2), together with
the subharmonicity and positivity @f that:

(L= 1) Vi) <@y | R R O

N N1+ RN
(a2 gy < MU o [ e ) gt o
on It B(a,Ra)

Again Lemmd 6.[1 provides:
A+ Y 1 / 1—]@\2 ! 1_’37‘2 ! 2\ A+
(1—=la)*>"g(a) <@ (1= [ u(z) g(x) do
B(a,Ra) > >

1—(z,a

with a constan)’ > 0 independant froma andz. In other words:
(1= la)5 "2 ga) < Q'(1 - Ia!2)"‘/( )(1 = [e) P u(a) g(z) (1 - |@a()[*) da
B(a,Rq
Asu(z)g(z) > 0Vz € By, the abovefy , . ... is majorized by, ..., so that:
(1= [a*)**2 71 g(a) < Q' My, ., (gu) < Q' C Ky
for eacha € By. 1
Theorem 3.4.Givena > 0, 3 > —&H, > Xl and\ € R, letg : By — [0,400] be a
subharmonic function satisfyir@). Theng LIV S e
Proof. GivenJ = 3 + 3, letu denote the function defined by:
u(z) = (1 — |z|*)~7 Va € By.
Lemmd 6.4 implies the subharmonicity@&ince.J > 0. Besides that:

N+1

(=1 [ (= oY ula) (1= (@) do = (1= a2y [ (11__|<|)>> dz
= (1 Py ﬁ

= K'(1—l|a|*)* Va € By

according to Lemmp 6|3 applied here with= 7 = 0, A = 2y > 0 and7 =y — £H > —1
(the conditionl < A = N + 1+ 2T is fulfilled by these parameters, because of 1/2). Thus
My, , (u) = K’ sincea > 0.

With R €]0,1][ anda € By fixed, it now follows from [(3.B) and Lemnja 6.1 that:

(1~ a2 g(a) < Q" B@,Ra)< L= "“1)7 = '”1)7(1 PP () o) o

1—(z,a 1—(z,a

< Q" [ (= (2P ule) gla) (1 - [Da(2)?) da

By
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sinceg > 0 on By. Here@"” denotes a constant depending onlyR®nV, A and~. Finally
(1= a5+ g(a) < Q"My, ., (gu) < Q" C K’
foralla € By. 1

Definition 3.3. Let Sy denote the unit sphere & anddo the area element ofiy. Letoy

denote the area dfy, for information:oy = % (seel2] p.29).

Theorem 3.5.Lete €]0,0x[ and E a measurable subset &fy with o(E,) > ¢ Vr € [0, 1],
whereE, = {n € Sy : ry € E}. Letg : By — [0, 00| be a measurable function.
(i) Given parameters: > 1, 3> —1 — &, ~ > Z and\ € R, if the functiong satisfies

g(z) > (1 - |$|2)_A_7+% Vr € E,
then there does NOT exist any constant- 0 such that
My, , 5, (qu) < C My, , (u) Vu e SYy7

a8,y

(ii) The same conclusion holds whefw) > (1 — |z|?)* %1 vz € E, witha, 3,y and ) as
in Theoreni 312.

(iii) The same conclusion holds whetiz) > (1 — |z]?) "2 "2 Vz € E, with parameters
fulfilling: o >0, 3 > -2+ 4 > N-land) € R.

Proof. Each of these three results is to be established ab absurdo: let us suppose on the contrary

that (3.1) holds.
Proof of (i)Let H = & + 3+ 1 > 0 andv the function defined oy by v(z) = (1 — |z[*)~ 7.
Thusv € SY7 ,_ asitwas shown in the proof of Theor3.3. If there existed SGme0 such

By
that My, , . (gu) < C' My, ,_(u) for all functionsu € SY7 ;_, it would apply in particular

to the functionv and we should havély, , ., (gv) < +oo.
Having fixed some € By, the following integrals should then be finite too:

(1— |x|2)ﬂ+,\—(x+7—%)—H+w

/B(l — [z A g(x) v(x) (1 — |[Po(2)*) dz > (1 — |“|2)V/E (1= (z,a))® "
g2+ 5 -H
=1~ |a|2)7/E (1(1 _’ <‘x>, a))2 de
> w [E (1 —[af*) " de

since0 < 1 — (z,a) < 2foralla € By andz € By. But the last integral diverges since

/ dx S /1TN1dT
—_— g —_—
pl—|z>~ " Jy 1-1r2

with r = |z| anddx = r¥~1 dr do. Now the contradiction follows.

Proof of (ii) If, for some constant’, the estimation\ly, ., (gu) < C My, , (u) was valid
forallu € Sy ;_, then it would hold in particular withk = f, € SY7 ;_ defined as in the

AIJMAA Vol. 9, No. 1, Art. 9, pp. 1-16, 2012 AJMAA


http://ajmaa.org

10 R. SUPPER

proof of Theoren 312f,(z) = (1 — (z,a)) V"% Yz € By (with a fixed in By). Thus we
should havelly, .., (g fa) < +oo and the following integrals should be finite too:

(1 . |x|2)[3+)\—(>\+ﬂ+'y+1)+v

[ A=Y g(a) o) (1= @) P o > (1= oy [ S s

_(—laPy [ de

— 9ON+1+26+2y 5 1— |x|2
The last integral diverges, hence a contradiction.
Proof of (jii). The functionv defined byv(z) = (1 — |z|*)™/ Vo € By, with J = £ + 3,
belongs taS‘yaM (see the proof of Theore@A). Reasoning ab absurdo as in both previous

cases, we should havdy, , , (gv) < +oo, hence the finiteness of the following integral
(with a € By fixed):

(1- |x‘2)ﬁ+/\—(/\+v—%+%)—J+v ; (1- |x’2)ﬁ+%_%_J ]
\/E (1 o <x7a>>27 v /E (1 — <x’a>>2’7 v
1 dx
> = [
4 Jo 1=z

dx

which diverges, thus a contradiction arisgs.

4. A SITUATION WHERE THE PRODUCTS gu HAVE A BLOCH—-TYPE GROWTH .

GivenR €]0,1[ andg € X, with My, (g) > 0, we already know from Proposition 3.1 6f [6]
and Corollary 3.2 of [6] that:

N (14+ RN
MX>\+Q+,6+N(QU) < a % Qﬁ MXA( )Myaﬂ’,y(ll,) Yu € Syaﬁ,y

(for o and@;, see the notations of Definitions B.2 3.3).

Theorem 4.1. With «, 3, v and A as in Theorem 3]2, lej be a non—negative subharmonic
function defined o, satisfying:

(4.1) AC" >0 My, ois.n(gu) < C" My, , (u) Vu e Sy
Theng € X,

By
+N;1.

Remark 4.1. This conclusion cannot be deduced directly from Thedrem 3.2 of the previous
section and Proposition 3.1 ofl [6] which asseffs/*ﬁ7 CSXx” together with

My, () < C" My, , (v)

for some constant” independant from < Sy* . This result cannot be used here (with
v = gu and replaced by3 + \) because the subharmonlcnyg)andu does not compulsorily
imply the subharmonicity ofju, as the following counterexample points out: withand u
defined byg(z) = 1+ x; > 0 andu(z) =1 —z; > 0Vz = (21, 29,...,xy) € By, We have
(Au)(z) = (Ag)(z) =0 > 0 but

Algu)(z) = 6%(1 —1%)=-2<0 Vi € By.
However this function: belongs tQy, s, since

a+B+N

u(z) <2 < NT2HI0 L () Vx € By
with f, € )V, 3~ asin the proof of Theore@ 2. The previous majoration merely follows from
0<1—(z,a) <2, hence; < ;——, thus(; )N+1+25 < fo(x) Vx € By.

AIJMAA Vol. 9, No. 1, Art. 9, pp. 1-16, 2012 AJMAA
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Proof. Having fixed R €]0, 1[, the proof of Theorem 4.1 will make use of the same notations
(Va, B(a, Ra), fa, Qu, A, P andr) as the proof of Theorefn 3.2. We have for ang By:

N1, N1,
(1—|a’2))\+ >+ Vég(a) < Q)H_NQI—FQ/B( R)(l—‘xP))ﬂ- 5+ g(x)dx

< L(1—|al? 5+N2“/
N ( ’a‘ ) B(a,Rs) (1 - <x7a>)N+1+25

where the constart depends only oV, R, 5 and\ + a. The above integral is merely

/B ) o) e S Mo eV

<C'My, , (fo)Va
C'KYV,
(1~ [aP) "
C'KYV,

T (1= o)

(1- ‘I|2>A+%+a+ﬂ+%

g(x)dx

<

with K from Lemmd 6.B. Finally(1 — |a[2)*" "2 g(a) < L C' K for everya € By. &
Theorem 4.2.Givena > 1, 3> -1 — &, v > JandX € R, let g be a subharmonic function
(on By) satisfying. Theng € i ¥ 1o

Proof. Letu € SV ;_ be defined byi(z) = (1 - |z|2)~2 ~1~% as in the proof of Theorem 3.3.
With the same notations as in the proof of Theofen 3.2, the subharmonigitiafis to:

Vagla) < / g(x)de = / (1— |$|2)%+1+ﬁg(1’) u(z) dx
B(a,Ra) B(a,Rq)
= / (1 _ ‘x’2)>\+a+[5+N g(x) u<x> (1 _ ‘x|2)—)\—a7%+1 dx
B(a,Ra)

AN
< My, o (g0) / (1— [e2) A3+ g
B(a,Rq)

CA—a_ N
<My ) [ Qg (-l

B(a,Ra)
= Qun 1.0 C'Ko(1—[a>)™"2*V,  Vae By.
)\+2 14+«
Th“SMXH%,Ha (9) < Qrsxy 140 O Ko with K, from Lemml

Theorem 4.3.Givena > 0, > =%, v > =L and ) € R, let g be a subharmonic function
(on By) satlsfylng. Theng € XH%M.

Proof. With this choice of parameters, the function = — (1 — |z[2)~"2 —? belongs to the
setsyiﬂ7 (see the proof of Theore@A). Nawis subharmonic hence:

N—-1

Vagla) < /( )(1 — |x)MIN o) u(a) (1 — |z) 2 da
B(a,Rq

N—-1

< C'My,, (u) Q/\+a+% (1= la)? 772 W, Va € By.
Finally MXH#m (9) < C'K' Q)1 , With K' from Lemml

AIJMAA Vol. 9, No. 1, Art. 9, pp. 1-16, 2012 AJMAA


http://ajmaa.org

12 R. SUPPER

5. PRODUCTS gu WHEN u HAS A BLOCH—TYPE GROWTH .
Proposition 5.1. Let A € R, g € &), and two realsy < (. If My, (g) > 0 then
My, ,(gu) < My, (9) Mx, (u) Vu e X

Proof. For anyx € By, the following holds:(1 — |z[?) < (1 — |z|?)* sincel — |z|*> € [0, 1][.
Now (1 — |z|?)* g(x) u(z) < My, (9) u(z) because ofi(z) > 0. This leads to:

(1= [2[)7 g(2) u(@) < M, (9) (1 = |2]*)"u(z)
sinceu(z) M, (g) > 0. The required majorization follows frod/, (g) > 0. n

Proposition 5.2. Given two realsae > ( > 0, let ¢ denote a function defined aBy and
satisfying:

3C >0 3xeR suchthat My, (qu) < C My, (u) Yue SX].
Theng € X, with My, (g) < C.

Proof. For anyxr € By, we have:g(z) = (1 — |z|*)? g(x) u(z) whereu(x) = (1 — |z|?)~".
Obviouslyu € X, with Mx_(u) < 1. Moreoveru is subharmonic irBy since > 0, according
to Lemmd6.4 in the next section. Thus

(1— |z g(z) < Mx,,,(gu) < C
foreachx € By. 11

Corollary 5.3. Given\ € Randa > 0, a functiong : By — [0, 400 belongs taX, if and
only if:

3C >0 suchthat My, (gu) < C My, (u) Vue SXY.
In particular g is majorized onBy if and only if:
3C >0 suchthat My, (gu) < C My, (u) Vue SXY.
Proposition 5.4. Givena € R, f € R,y > 0and\ € R, letg € y;m. Then
Myaﬁﬂﬁ(gu) <My, ,_ (9) M, (u) Vu € X\ such that My, (u) > 0.
Proof. The hypothesig(z) > 0 implies:
(1= [2)" P u(z) g(z) < My (u) (1 = |2*)7 g(x) Yz € By.

Multiplying by (1 — |a]?)*(1 — |®,(z)|?)” > 0 and integrating oveBy do not modify the

inequality. But evaluating theup —bound requires that/x, (v) > 0. »
a€ByN

Proposition 5.5. Givena € R, 3 € R, v > 0and X > 0, let g be a function defined oBy,
satisfying:

3C >0 suchthat My, ., (gu) < C My, (u) Vu e SX7T.
Theng € Vu5-

Proof. Let u € X, be given by:u(z) = (1 — |z|*)™* V2 € By. Its subharmonicity follows
from A > 0 (see Lemm@ 6]4). Then

(1= |2[*)?g(z) = (1 = [2[*)*g(2) u(z) ~ Va € By.
HenceMy, , (g9) = My, , ., (gu) < C sinceMy, (u) = 1. &
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6. ANNEX: SOME TECHNICAL AUXILIARY RESULTS

Lemma 6.1. Givena € By and R €]0, 1], let R, and B(a, R,) be as in Definitio 3]2. Then
the following holds for any € B(a, R,):
1< 1—(x,a) - 1+R
2 1 —|z|? 1-R
1 —(z,a)

1
< =<2
2 1 —|al?

and
1-R _1— |z
< < 2.

1+R =~ 1—|a]®> —
Moreover the volumé&, of B(a, R,) satisfies:

ON ON R N
— N~ v A2 \N
Va_NR“_N(l—i-R) (1=lal")

with o 5 as in Definitior 3.3.
Proof. Cauchy—Schwarz inequality leads to:
- 1—]af

1+ |z 2

1= (r,a) > 1— o] =

Seel[6] and[[7] for the other resultg.

Lemma 6.2. GivenA > 0andT > —1, let

(1—[=[*)"
I = —d Ya € By.

= [ Gl vee B
f2<A<N+2(T+1)then

Lo

IA’T(CL) < K(] (1_—|a‘2) Ya € BN
where
(T +1) /2

[(3)

If A= N +2(T + 1), then equality holds in the above formula.

Ky =

Proof. Without any restriction, it may be assumed that (|al,0,0,...,0). Polar coordinates
in RY providex; = r cosf; with r = |z, 6, €]0,#[if N > 3 andf, €]0,2x[if N = 2. Let
do™) be the area element on the unit sphéxeof RY. Now do™) = (sin 6,)V-2df, do™¥-1
(polar formulas are more detailed in[11] p.15), thus

1 — T N1 dr dg™)
[AT<)_/ ( )

(1 —a|r cos 91)

6.1) ; / / Y rN=1 (sin 6,)N2df, dr
: = oN-1

1— la|r cos )4

whenN > 3 (the caseV = 2 will be studied later). Fos v, see Definition 3]3. Let = r cos 6;.
From the known expansion

;— PEEA) 4] )
(= Jals)" ~ 2= AT(4)
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we obtain:

A)
Iyr(a) =0on-1 E'EI’_I— la |e/ / (1 — )T N1 5" (sin 6,)N2d6, dr.
leN

With ¢ = r sin 6;, this double integral turns intf[,, s*tV2(1 — s* — t*)Tds dt where
H={(s,t) e R*:t>0, s> +t* < 1}.
This integral has been computed|in [6], whence
I'(2k + A) P D(k+3H DA T(T + 1)'

JAAMZUNJg%ﬂ%wdﬂxm(L 2T(S +k+T+1)

The duplication formula/7 I'(2z) = 227! T'(2) (2 + 3) (see [8] p.3), applied successively
with 22 = 2k + A and2z = 2k + 1, leads to:
2471 (k + 4)T(k + 4H)
Tar(@) = o) KIT(A)

keN
The functionl is increasing orl, +oo[ andl < k+ 4 < & + k+ T + 1 thus
T(k+4)<TE& +k+T+1),
with equality in the casel = N + 2(T" + 1). It follows that:
24D T(T + 1) T(4H) 3 T(k+ 4
2T(A) kIT (4

keN

L(AFH (T +1)
2T(E +k+T+1)

|af**

| |2k

Iyr(a) <on-y

Now % ON-1 F(%) = 7T(N_1)/2 and

2T v
L) I(g)

2

through duplication formula applied with: = A. Hence the conclusion follows in the case
N > 3. WhenN = 2, we have

7 / /27T — )T rdf, dr
ar(a 1—|a|r cos 61)4

but the inner integral is equal to

2/7r (1 —7r2)Trdb,
o (L—1la|r coshp)4

so that the above formulas, from (6.1) on, all still hold, singe= 2. §

Lemma 6.3. GivenA > 0, P > 0and7 > —1 satisfyingl < A+ P < N + 1+ 2T, let

Lapr(a b)—/ (1= |o[)" dv  Ya€B Vb€ B
AT gy (= (@ @) (1= (2, 5))7 " "
and7 a number satisfing both
P_A<T<P and OSTSA—;P.

Then there exist& > 0 such that:
K
Iapr(a,b) < — Ya € By Vb € By.
(I—lal)™277(1 = o)
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This result remains valid witl? = 0 andr = 0, replacing K" by
(T +1)
r(434)
With P = 7 = 0, equality holds in the above majoration when moreaver A = N + 1+ 2T.

w|z

K = T

Proof. See Theorem 4.1 of [6] and Proposition 5.1/0f [6].

. D(T+1)T(P—7) 1o/ A—P N1
For informationk’ = 2+47! i i D(45E + 1) 777 L

Lemma 6.4. GivenA > 0, P > 0 anda € By, let f be the function defined ol by
1
flz) =

(1= (z,a))A(1 = [z[*)"
Thenf is subharmonic inBy.

Vx € By.

Proof. For anyj € {1, 2, ..., N}, the following holdsvz € By:
Ofa, |

@ fa = A(A+1)d%(1 —A-2(1 2P

5.2 (@) = A4+ Daj(1 = (,0))" (1 — |2) 7"+

J

a; A (1 — (2,a)) ™71 = |2[)™" + 2P 2;(1 — (2,0)) (1 = [a]) 7

+ 4AP£L‘jaj(1 — (x,a))_A_l(l o |ZL’|2)_P_1 + 2P(1 _ <1’,CL>)_A(1 B |;p|2)_P_1_|_
+AP(P 1) 2 (1 (a,0)) A1~ o)

Hence
B la? A(A+1) 4AP(x,a)
A= T a0 =Ry T a0 — Ry
2PN AP(P +1)|x|?

_|_

(1= {z a)A(T— 2P T (L= (z,a)A(1 — [2P)7+
(AN@) 2 (1= (20041 = |af2) P | Al — sl + 45k

R R g (e L T

The subharmonicity of follows. x
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