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ABSTRACT. We prove that there exists a unique ellipse of minimal eccentricity,EI , inscribed in
a parallelogram, Ð. We also prove that the smallest nonnegative angle between equal conjugate
diameters ofEI equals the smallest nonnegative angle between the diagonals of Ð. We also prove
that if EM is the unique ellipse inscribed in a rectangle,R, which is tangent at the midpoints
of the sides ofR, thenEM is the unique ellipse of minimal eccentricity, maximal area, and
maximal arc length inscribed inR. Let Ð be any convex quadrilateral. In previous papers, the
author proved that there is a unique ellipse of minimal eccentricity,EI , inscribed in Ð, and a
unique ellipse,EO, of minimal eccentricity circumscribed about Ð. We defined Ð to be bielliptic
if EI andEO have the same eccentricity. In this paper we show that a parallelogram, Ð, is
bielliptic if and only if the square of the length of one of the diagonals of Ð equals twice the
square of the length of one of the sides of Ð.
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2 ALAN HORWITZ

1. I NTRODUCTION

In [1] the author proved numerous results about ellipses inscribed in convex quadrilaterals, Ð.
In particular, we proved that there exists a unique ellipse ofminimal eccentricity, EI , inscribed
in Ð. In this paper, we discuss in detail the special case of ellipses inscribed in parallelograms.
In particular, in § 2 we give a direct proof(see Proposition 2.3) that there is a unique ellipse,EI ,
of minimal eccentricityinscribedin any given parallelogram, Ð. Our main result in this regard
is to give a geometric characterization ofEI for parallelograms(see Theorem 2.4), where we
prove that the smallest nonnegative angle between equal conjugate diameters ofEI equals the
smallest nonnegative angle between the diagonals of Ð. Similar results are known for the unique
ellipse,EA, of maximal area inscribed in a parallelogram, Ð(see, for example, [5]). Then the
equal conjugate diameters ofEA areparallel to the diagonals of Ð. It is not too hard to prove this
by proving the corresponding result for the unit square and then using an affine transformation.
This approach works because of the affine invariance of the ratios of corresponding areas. Since
the eccentricity is not affine invariant, we cannot reduce the problem of the minimal eccentricity
ellipse inscribed in a parallelogram to ellipses inscribed in squares.

In § 3 we discuss ellipses inscribed in rectangles. We prove(see Theorem 3.1) that ifEM is
the unique ellipse inscribed in a rectangle,R, which is tangent at themidpointsof the sides of
R, thenEM is the unique ellipse of minimal eccentricity, maximal area, and maximal arc length
inscribed inR. While parts of Theorem 3.1 are known, this overall characterization appears to
be new. Of course, it then follows by affine invariance that the unique ellipse of maximal area
inscribed in a parallelogram, Ð, is tangent at the midpoints of the sides of Ð. The other parts of
Theorem 3.1 do not hold in general for parallelograms, however.

In ([2], Proposition 1) the author proved that there is a unique ellipse,EO, of minimal ec-
centricity circumscribed about any convex quadrilateral, Ð. Also, in [2] the author defined Ð
to be bielliptic if EI andEO have the same eccentricity. In § 4 we show(Theorem 4.1) that a
parallelogram, Ð, is bielliptic if and only if the square of the length of one of the diagonals of
Ð equals twice the square of the length of one of the sides of Ð.

The following general result about ellipses is essentially what appears in [8], except that the
cases withA = B were added by the author.

Lemma 1.1. Let a and b denote the lengths of the semi–major and semi–minor axes, re-
spectively, of the ellipse,E, with equationAx2 + By2 + 2Cxy + Dx + Ey + F = 0, with
A, B, AB − C2, AE2 + BD2 + 4FC2 − 2CDE − 4ABF > 0. Then

(1.1) a2 =
AE2 + BD2 + 4FC2 − 2CDE − 4ABF

2(AB − C2)
(
A + B −

√
(B − A)2 + 4C2

)
and

(1.2) b2 =
AE2 + BD2 + 4FC2 − 2CDE − 4ABF

2(AB − C2)
(
A + B +

√
(B − A)2 + 4C2

) .

2. M INIMAL ECCENTRICITY

Lemma 2.1. LetZ be the rectangle with vertices(0, 0), (l, 0), (0, k),and(l, k), wherel, k > 0.
(A) The general equation of an ellipse,Ψ, inscribed inZ is given by

(2.1) k2x2 + l2y2 − 2l (k − 2v) xy − 2lkvx− 2l2vy + l2v2 = 0, 0 < v < k.
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The corresponding points of tangency ofΨ are

(2.2)

(
lv

k
, 0

)
, (0, v),

(
l

k
(k − v) , k

)
, and(l, k − v).

(B) If a and b denote the lengths of the semi–major and semi–minor axes, respectively, ofΨ,
then

a2 =
2l2 (k − v) v

k2 + l2 −
√

(k2 + l2)2 − 16l2 (k − v) v
and(2.3)

b2 =
2l2 (k − v) v

k2 + l2 +
√

(k2 + l2)2 − 16l2 (k − v) v
.

Proof. Let S be the unit square with vertices(0, 0), (0, 1), (1, 0), and(1, 1). The mapT (x, y) =(
1

l
x,

1

k
y

)
mapsZ ontoS andΨ onto an ellipse,T (Ψ). Denote the points of tangency ofT (Ψ)

with S byT1 = (t, 0), T2 = (0, w), T3 = (s, 1), andT4 = (1, u), where{t, w, s, u} ⊆ (0, 1). We
may assume that the general equation ofT (Ψ) has the formAx2+By2+2Cxy+Dx+Ey+F =
0 with A, B > 0. SinceT (Ψ) passes thru the points of tangency, we have the equations

At2 + Dt + F = 0, Bw2 + Ew + F = 0(2.4)

As2 + B + 2Cs + Ds + E + F = 0, A + Bu2 + 2Cu + D + Eu + F = 0

Usingy′ = −2Ax + 2Cy + D

2By + 2Cx + E
, y′ (T1) = y′ (T3) = 0 and the fact that the tangents atT2 and at

T4 are vertical, we also have the equations

2At + D = 0, 2Bw + E = 0(2.5)

2As + 2C + D = 0, 2Bu + 2C + E = 0.

Solving (2.4) and (2.5) forB thruF, s, t, andu in terms ofA andw yields

s = u = 1− w, t = w, B = A, C = 2Aw − A, D = −2Aw, E = −2Aw, F = Aw2.

The equation ofT (Ψ) is thenx2 + y2 + 2(2w − 1)xy − 2wx − 2wy + w2 = 0. The corre-
sponding points of tangency ofT (Ψ) are thus(w, 0), (0, w), (1 − w, 1), (1, 1 − w). To obtain

the corresponding equation ofΨ, replacex by
1

l
x andy by

1

k
y. After simplifying that yields

k2x2 + l2y2 + 2kl(2w − 1)xy − 2k2lwx− 2kl2wy + k2l2w2 = 0. The corresponding points of
tangency ofΨ areT−1(w, 0) = (lw, 0), T−1(0, w) = (0, kw), T−1(1− w, 1) = (l (1− w) , k),
andT−1(1, 1 − w) = (l, k (1− w)). Now let v = kw to obtain (2.1) and (2.2). (2.3) follows
easily from Lemma 1.1, (1.1), and (1.2).

We now prove a version of Lemma 2.1 for parallelograms.

Proposition 2.2. Let Ð be the parallelogram with verticesO = (0, 0), P = (l, 0), Q = (d, k),
andR = (l + d, k), wherel, k > 0, d ≥ 0.

(A) The general equation of an ellipse,Ψ, inscribed in Ð is given by

k3x2 +
(
k(d + l)2 − 4dlv

)
y2 − 2k (kd− 2lv + kl) xy(2.6)

−2k2lvx + 2klv (d− l) y + kl2v2 = 0, 0 < v < k.

(B) If a andb denote the lengths of the semi–major and semi–minor axes, respectively, ofΨ,
then

(2.7)
b2

a2
= 1 +

m(v) + [4dlv − k ((d + l)2 + k2)]
√

m(v)

8k2l2 (k − v) v
,
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4 ALAN HORWITZ

where

m(v) = 16l2
(
d2 + k2

)
v2 − 8lk

(
dk2 + d3 + 2ld2 + l2d + 2k2l

)
v(2.8)

+k2
(
(d + l)2 + k2

)2
.

Remark 2.1. To be more precise, (A) means that any ellipseinscribedin Ð has an equation of
the form (2.6) for some0 < v < k, and that any conic with an equation of the form (2.6) for
some0 < v < k defines an ellipseinscribedin Ð.

Proof. Let Z be the rectangle with vertices(0, 0), (0, k), (l, 0), and(l, k). The mapT (x, y) =(
x− d

k
y, y

)
maps Ð ontoZ. By Lemma 2.1, the general equation ofT (Ψ) is given by (2.1),

with x replaced byx − d

k
y andy remaining the same. That yieldsk2

(
x− d

k
y

)2

+ l2y2 −

2l (k − 2v)

(
x− d

k
y

)
y − 2lkv

(
x− d

k
y

)
− 2l2vy + l2v2 = 0, and some simplification gives

(2.6). To prove (B), by Lemma 1.1, (1.1) and (1.2),
b2

a2
=

(A + B)−
√

(B − A)2 + 4C2

(A + B) +
√

(B − A)2 + 4C2
=[

(A + B)−
√

(B − A)2 + 4C2
]2

(A + B)2 − ((B − A)2 + 4C2)
, or

(2.9)
b2

a2
=

(A + B)2 + (B − A)2 + 4C2 − 2(A + B)
√

(B − A)2 + 4C2

4(AB − C2)
.

Let

A = k3, B = k(d + l)2 − 4dlv, C = −k (kd− 2lv + kl) ,(2.10)

D = −2k2lv, E = 2klv (d− l) , andF = kl2v2.

(2.9) and (2.10) then yield (2.7).

Proposition 2.3. Let Ð be a parallelogram in thexy plane. Then there is a unique ellipse,EI ,
of minimal eccentricity inscribed in Ð.

Proof. By using an isometry of the plane, we may assume that the vertices of Ð areO =
(0, 0), P = (l, 0), Q = (d, k), andR = (l + d, k), wherel, k > 0, d ≥ 0. Let E denote any
ellipse inscribed in Ð and leta andb denote the lengths of the semi–major and semi–minor
axes, respectively, ofE. Let

g(v) =
m(v) + [4dlv − k ((d + l)2 + k2)]

√
m(v)

(k − v) v
,(2.11)

h(v) = 1 +
1

8k2l2
g(v).

By (2.7) of Proposition 2.2,h(v) =
b2

a2
. We shall now minimize the eccentricity by maximizing

b2

a2
, or equivalently by maximizingg(v). Now g′(v) = 0 ⇐⇒

(k − v) v

[
m′(v) +

[
4dlv − k

(
(d + l)2 + k2

)] m′(v)

2
√

m(v)
+ 4dl

√
m(v)

]
−[

m(v) +
[
4dlv − k

(
(d + l)2 + k2

)]√
m(v)

]
(k − 2v) = 0
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⇐⇒

(k − v) v
[
2
√

m(v)m′(v) +
[
4dlv − k

(
(d + l)2 + k2

)]
m′(v) + 8dlm(v)

]
−

2(k − 2v)
√

m(v)
[
m(v) +

[
4dlv − k

(
(d + l)2 + k2

)]√
m(v)

]
= 0

⇐⇒

2 (k − v) v
√

m(v)m′(v) + (k − v) v
([

4dlv − k
(
(d + l)2 + k2

)]
m′(v) + 8dlm(v)

)
−2(k − 2v)

√
m(v)m(v)− 2(k − 2v)m(v)

[
4dlv − k

(
(d + l)2 + k2

)]
= 0

⇐⇒

(k − v) v
([

4dlv − k
(
(d + l)2 + k2

)]
m′(v) + 8dlm(v)

)
−

2(k − 2v)m(v)
(
4dlv − k

(
(d + l)2 + k2

))
=

[2(k − 2v)m(v)− 2v (k − v) m′(v)]
√

m(v)

⇐⇒

−
[
2
(
k2 + l2 + d2

)
v − k

(
2dl + k2 + l2 + d2

)]
n(v) =(2.12)[

4dlv − k
(
(d + l)2 + k2

)] [
2
(
k2 + l2 + d2

)
v − k

(
2dl + k2 + l2 + d2

)]√
m(v),

wheren(v) = m(v) + 8k2l2 (k − v) v. If

2
(
k2 + l2 + d2

)
v − k

(
2dl + k2 + l2 + d2

)
6= 0,

then by (2.12),g′(v) = 0 ⇒ √
m(v) =

−n(v)

4dlv − k ((d + l)2 + k2)

⇒

(
4dlv − k

(
(d + l)2 + k2

))2
m(v)− n2(v) = 0

⇒
−64l4v2k4 (v − k)2 = 0,

which implies thatv = 0 or v = k. Since0 < v < k by assumption, that yields no solution.
Thusg′(v) = 0, and henceh′(v) = 0, if and only if2 (k2 + l2 + d2) v−k (2dl + k2 + l2 + d2) =
0 ⇐⇒ v = vε, where

(2.13) vε =
1

2
k
(d + l)2 + k2

k2 + l2 + d2
.

It follows easily from l’Hospital’s Rule thatlim
v→0+

g(v) = lim
v→k−

g(v) = −8l2k2, which implies

that lim
v→0+

h(v) = lim
v→k−

h(v) = 0. Sinceh(v) ≥ 0 for 0 < v < k, h attains its’ global maximum

atvε and the eccentricity is minimized whenv = vε.

Theorem 2.4. : Let EI denote the unique ellipse of minimal eccentricity inscribed in a par-
allelogram, Ð, in thexy plane. Then the smallest nonnegative angle between equal conjugate
diameters ofEI equals the smallest nonnegative angle between the diagonals of Ð.
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6 ALAN HORWITZ

Proof. As in the proof of Proposition 2.3, by using an isometry of the plane, we may assume
that the vertices of Ð areO = (0, 0), P = (l, 0), Q = (d, k), and R = (l + d, k), where
l, k > 0, d ≥ 0. The diagonals of Ð areD1 = OR andD2 = PQ. We find it convenient to
define the following variables:

G = (d + l)2 + k2, H = (d− l)2 + k2,(2.14)

J = k2 + l2 + d2, I = l2 − d2 − k2.

There are three cases to consider:I > 0, I = 0(which implies that Ð is a rhombus), andI < 0.
Assume first thatI > 0. Thend2 + k2 < l2, which implies thatd < l as well, and the lines

containingD1 andD2 have equationsy =
k

l + d
x andy =

k

d− l
(x − l), respectively. Let

φ denote the smallest nonnegative angle betweenD1 andD2. We use the formulatan φ =
m2 −m1

1 + m1m2

, wherem1 =
k

d− l
< m2 =

k

l + d
. Some simplification gives

(2.15) tan φ =
2kl

I
.

Let EI denote the the unique ellipse from Proposition 2.3 of minimal eccentricity inscribed in
Ð, and letL andL′ denote a pair ofequalconjugate diameters ofEI . Let a and b denote
the lengths of the semi–major and semi–minor axes, respectively, ofEI . It is known(see, for
example, [7]) thatL andL′ make equal acute angles, on opposite sides, with the major axis of
EI . Letθ denote the acute angle going counterclockwise from the major axis ofEI to one of the

equal conjugate diameters, which implies thattan θ =
b

a
. We shall show thattan2 2θ = tan2 φ,

which will then easily yield2θ = φ. By (2.7) of Proposition 2.2,
b2

a2
= h(vε), whereh(v) is

given by (2.11) andvε is given by (2.13). Thus

tan θ =
√

h (vε).

By (2.13),

4dlvε − k
(
(d + l)2 + k2

)
= 4dl

1

2
k
2dl + l2 + d2 + k2

k2 + l2 + d2
− k

(
(d + l)2 + k2

)
=

−k ((d + l)2 + k2) ((d− l)2 + k2)

k2 + l2 + d2
= −kGH

J
,

vε (k − vε) =
1

2
k
(d + l)2 + k2

k2 + l2 + d2

(
k − 1

2
k
(d + l)2 + k2

k2 + l2 + d2

)
=

1

4
k2
(
(d + l)2 + k2

) (d− l)2 + k2

(k2 + l2 + d2)2 =
1

4

k2 ((d + l)2 + k2) ((d− l)2 + k2)

(k2 + l2 + d2)2 =

1

4

k2GH

J2
,

and by (2.8), after some simplification,

m (vε) = m

(
1

2
k
(d + l)2 + k2

k2 + l2 + d2

)
=

k2 ((d + l)2 + k2) ((d− l)2 + k2) (k2 − l2 + d2)
2

(k2 + l2 + d2)2 =
k2GHI2

J2
.
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Henceg(vε) =

(
k2GHI2

J2
− kGH

J

k
√

GHI

J

)
4J2

k2GH
= 4I

(
I −

√
G
√

H
)

, which implies,

by (2.11), that

(2.16) h (vε) = 1 +
I
(
I −

√
G
√

H
)

2k2l2

SinceI2 − GH = (l2 − d2 − k2)
2 − ((d + l)2 + k2) ((d− l)2 + k2) = −4l2k2 < 0, we have

I2 < GH, which implies thatI −
√

G
√

H < 0 and thus

(2.17) h (vε) < 1.

Now tan 2θ =
2 tan θ

1− tan2 θ
=

2
√

h (vε)

1− h (vε)
, which implies thattan2 2θ =

4h (vε)

(1− h (vε))
2 =

2k2l2 + I
(
I −

√
G
√

H
)

k2l2
8k4l4

I2
(
I −

√
G
√

H
)2 =

8k2l2
2k2l2 + I

(
I −

√
G
√

H
)

I2
(
I −

√
G
√

H
)2 . By (2.15),tan2 2θ = tan2 φ ⇐⇒

8k2l2
2k2l2 + I

(
I −

√
G
√

H
)

I2
(
I −

√
G
√

H
)2 =

4k2l2

I2

⇐⇒
4k2l2 + 2I

(
I −

√
G
√

H
)

=
(
I −

√
G
√

H
)2

⇐⇒

4k2l2 + 2I2 − 2I
√

GH = I2 − 2I
√

GH + GH

⇐⇒ 4k2l2 + I2 = GH ⇐⇒ 4k2l2 + (l2 − d2 − k2)
2

= ((d + l)2 + k2) ((d− l)2 + k2),
which holds for alld, k, l ∈ <. Thustan2 2θ = tan2 φ, and sincetan 2θ > 0 andtan φ > 0
by (2.15) and (2.17), it follows thattan 2θ = tan φ. Now suppose thatI = 0. One still has

d − l < 0, but nowφ =
π

2
. One can letI = 0 in (2.16) above by using a limiting argument.

Thush (vε) = 1, which gives2θ =
π

2
. We omit the proof in the case whenI < 0.

Example 2.1. Letd = 2, l = 5, andk = 4, so that Ð is the parallelogram with vertices(0, 0),

(2, 4), (7, 4), and(5, 0). The minimal eccentricity of all ellipses inscribed in Ð is
65−

√
65

65 +
√

65
≈

0.78 and is attained withv =
50

9
. The equation ofEI is 1296x2− 531y2 +4464xy− 18000x−

13500y + 62500 = 0. The common value of2θ andφ equalstan−1 8 ≈ 82.9◦.

Remark 2.2. Theorem 2.4 does not extend in general to any convex quadrilateral in thexy
plane. For example, consider the convex quadrilateral with vertices(0, 0), (1, 0), (0, 1), and
(4, 2). Using the formulas from [1], one can show that there are two ellipsesinscribed in Ð
which satisfy2θ = φ, but neither of those ellipses is the unique ellipse of minimal eccentricity
inscribedin Ð.
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Remark 2.3. A somewhat similar result for the ellipse of maximal area inscribed in a parallel-
ogram, or the ellipse of minimal area circumscribed about a parallelogram, is proven in [6].

If Ð is a convex quadrilateral in thexy plane, the line segment,Z, thru the midpoints of the
diagonals of Ð plays an important role–it is the precise locus of centers of ellipses inscribed in
Ð. Let L be the line containingZ. There is strong evidence that the following is true.

Conjecture 2.5. Theorem 2.4 holds for any convex quadrilateral, Ð, with the property that one
of the diagonals of Ð is identical withL.

The details of a proof of this conjecture along the lines of the proof of Theorem 2.4
look messy. It is also possible that there is a similar characterization forEI for any convex
quadrilateral in thexy plane. Such a characterization would perhaps involve the angles between
each diagonal of Ð and betweenL and each diagonal of Ð. However, we have not found such a
result which works with any examples.

3. RECTANGLES

The results in this paper have focused on ellipses of minimal eccentricity inscribed in a par-
allelogram. We now discuss ellipses of minimal eccentricity, maximal area, and maximal arc
length inscribed in rectangles. While some of the results in the following theorem are known,
the overall characterization appears to be new.

Theorem 3.1.LetZ be a rectangle in thexy plane. Then there is a unique ellipse inscribed in
Z which is tangent at the midpoints of the four sides ofZ, which we call the midpoint ellipse,
EM . EM has the following properties:

(A) EM is the unique ellipse of minimal eccentricity inscribed inZ.
(B) EM is the unique ellipse of maximal area inscribed inZ.
(C) EM is the unique ellipse of maximal arc length inscribed inZ.

Proof. By using a translation, we may assume that the vertices ofZ are O = (0, 0), P =

(l, 0), Q = (0, k), andR = (l, k), wherel, k > 0. Lettingv =
1

2
k in (2.2) shows the existence

of an ellipse inscribed inZ which is tangent at the midpoints of the four sides ofZ. The fact
that such an ellipse is unique follows easily and we omit the proof. Now letE denoteany
ellipse inscribed inZ and leta andb denote the lengths of the semi–major and semi–minor
axes, respectively, ofE. To prove (A), as earlier we minimize the eccentricity by maximizing
b2

a2
. By (2.3),

b2

a2
=

k2 + l2 −
√

(k2 + l2)2 − 16l2 (k − v) v

k2 + l2 +
√

(k2 + l2)2 − 16l2 (k − v) v
= 8l2τ(v), 0 < v < k, where

τ(v) =
v(k − v)

(k2 + l2)2 + 8l2v(v − k) + (k2 + l2)
√

(k2 + l2)2 + 16l2v(v − k)
.

A simple computation yields

τ ′(v) =
8(k2+l2)l2(k−2v)√

(k2+l2)2+16l2v(v−k)
�
(k2+l2)2+8l2v(v−k)+(k2+l2)

√
(k2+l2)2+16l2v(v−k)

� .

Thusτ ′(v) = 0 ⇐⇒ v =
1

2
k. Sinceτ(0) = τ(k) = 0 andτ(v) ≥ 0 for 0 < v < k, τ attains

its’ global maximum atv =
1

2
k and the eccentricity is minimized whenE = EM . That proves

(A). To prove (B), we maximize the area ofE, πab, by maximizinga2b2. By (2.3) again,
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a2b2 = − 4(k−v)2l4v2

(
√

l4+2l2k2+k4+16l2v2−16l2vk−(k2+l2))(
√

l4+2l2k2+k4+16l2v2−16l2vk+(k2+l2))

=
4 (k − v)2 l4v2

16 (k − v) l2v
=

l2

4
(k − v) v.

It follows immediately thata2b2 attains its’ global maximum atv =
1

2
k, which proves (B). To

prove (C), the arc length ofE is given by

(3.1) L = 2

π/2∫
0

[
a2 + b2 −

(
a2 − b2

)
cos 2t

]1/2
dt.

The proof we give is very similar to the proof in ([4]) that the ellipse of maximal arc length
inscribed in a square is a circle. Indeed, what makes the proof work in ([4]) is thata2 + b2 does
not vary asE varies over all ellipses inscribed in a square. For the rectangle,Z,

a2 + b2 = 2l2 (k − v) v

(
1

k2+l2−
√

(k2+l2)2−16l2(k−v)v
+ 1

k2+l2+
√

(k2+l2)2−16l2(k−v)v

)
= 2l2 (k − v) v

2(k2+l2)
16l2v(k−v)

=
1

4

(
k2 + l2

)
,

which of course does not vary asE varies over all ellipses inscribed inZ. Now

a2 − b2 = 4(k−v)l2v
√

l4+2l2k2+k4+16l2v2−16l2vk

(k2+l2−
√

l4+2l2k2+k4+16l2v2−16l2vk)(k2+l2+
√

l4+2l2k2+k4+16l2v2−16l2vk)

= 4 (k − v) l2v

√
l4 + 2l2k2 + k4 + 16l2v2 − 16l2vk

16 (k − v) l2v
=

1

4

√
β(v),

whereβ(v) = (k2 + l2)
2 − 16l2v (k − v). Hence by (3.1),

L = L(v) =
1

2

π/2∫
0

[
k2 + l2 −

√
β(v) cos 2t

]1/2

dt. As in ([4]), splitting the integral up and

making a change of variable gives

L(v) =

π/4∫
0

[(
k2 + l2 −

√
β(v) cos 2t

)
+
(
k2 + l2 +

√
β(v) cos 2t

)]1/2

dt.

Let p = k2 + l2 andu(v, t) =
√

β(v) cos 2t, which gives

(3.2) L(v) =

π/4∫
0

[
(p− u(v, t))1/2 + (p + u(v, t))1/2

]
dt.

Now β attains its global minimum on(0, k) when v =
1

2
k. Thus, for each0 < t <

π

4
,

u(v, t) ≥ u

(
1

2
k, t

)
, with equality if and only ifv =

1

2
k. Also, the functionf(x) = (p −

x)1/2 + (p + x)1/2 is strictly decreasing for0 < x < p(see ([4])). Hence, for each0 < t <
π

4
,

(p − u(v, t))1/2 + (p + u(v, t))1/2 ≤ (p − u

(
1

2
k, t

)
)1/2 + (p + u

(
1

2
k, t

)
)1/2, again with
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equality if and only ifv =
1

2
k. Thus by (3.2),L(v) attains its’ unique maximum on(0, k) when

v =
1

2
k.

Remark 3.1. Showing that there is a unique ellipse of maximal arc length inscribed in a general
convex quadrilateral and/or characterizing such an ellipse appears to be a very nontrivial prob-
lem. Even for parallelograms it appears to be difficult sincea2 + b2 does not remain constant
in general asE varies over all ellipses inscribed in a given parallelogram. Numerical evidence
suggests strongly that the ellipse of minimal eccentricity inscribed in a parallelogram, Ð, isnot
the ellipse of maximal arc length inscribed in Ð.

4. BIELLIPTIC PARALLELOGRAMS

Let Ð be a convex quadrilateral. In ([1], Theorem 4.4) the author proved that there is a
unique ellipse,EI , of minimal eccentricityinscribedin Ð. In ([2], Proposition 1) we also proved
that there is a unique ellipse,EO, of minimal eccentricitycircumscribedabout Ð. In [2] the
author defined Ð to be bielliptic ifEI andEO have thesame eccentricity. This generalizes
the notion of bicentric quadrilaterals, which are quadrilaterals which have both a circumscribed
and an inscribed circle. In [2] we gave an example of a bielliptic convex quadrilateral which
is not a parallelogram and which is not bicentric. Of course every square is bicentric. For
parallelograms we prove the following.

Theorem 4.1. A parallelogram, Ð, is bielliptic if and only if the square of the length of one of
the diagonals of Ð equals twice the square of the length of one of the sides of Ð.

Proof. We prove the case when Ð isnot a rectangle, in which case the proof below can be
modified to show that Ð is bielliptic if and only if it’s a square, which certainly satisfies the
conclusion of Theorem 4.1. Then, by using an isometry of the plane, we may assume that the
vertices of Ð areO = (0, 0), P = (l, 0), Q = (d, k), andR = (l + d, k), whered, k, l > 0. It is
not hard to show that

(4.1) kux2 + ky2 − 2udxy − klux +
[
ud(l + d)− k2

]
y = 0, 0 < u <

k2

d2

is the general equation of an ellipse passing thru the vertices of Ð. We leave the details to the
reader. By Lemma 1.1, it follows that

b2

a2
= h(u) =

k(u + 1)−
√

k2(1− u)2 + 4d2u2

k(u + 1) +
√

k2(1− u)2 + 4d2u2
=(

k(u + 1)−
√

k2(1− u)2 + 4d2u2
)2

4u (k2 − ud2)
.

Differentiating with respect tou, it follows thath′(u) = 0, 0 < u <
k2

d2
, if and only if u =

k2

k2 + 2d2
. Substituting yields=

(
d2 + k2 − d

√
d2 + k2

)2
k2 (d2 + k2)

, and simplifying gives

1− b2

a2
= 1− h

(
k2

k2 + 2d2

)
=(4.2)

1−
(
d2 + k2 − d

√
d2 + k2

)2
k2 (d2 + k2)

= 2d

√
d2 + k2 − d

k2
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for the unique ellipse of minimal eccentricity,EO, circumscribed about Ð. As in the proof of
Theorem 2.4, there are three cases to consider:I > 0, I = 0, I < 0, whereI = l2 − d2 − k2.

Assume first thatI > 0. Then by (2.16) in the proof of Theorem 2.4(see (2.14)),
b2

a2
= h(vε) =

1+
I
(
I −

√
G
√

H
)

2k2l2
for the unique ellipse,EI , of minimal eccentricity inscribed in Ð. Setting

the eccentricities ofEI andEO equal is equivalent to

(4.3) 2d

√
d2 + k2 − d

k2
=

I
(√

G
√

H − I
)

2k2l2
.

Then (4.3) holds if and only if4l2d
(√

d2 + k2 − d
)

= I
(√

G
√

H − I
)
⇐⇒

√
G
√

HI = 4l2d
(√

d2 + k2 − d
)

+ I2 ⇐⇒
GHI2 −

(
4l2d

(√
d2 + k2 − d

)
+ I2

)2
= 0 ⇐⇒

4l2 (G− 2l2) (H − 2l2)
(
2d2 + k2 − 2d

√
d2 + k2

)
= 0 ⇐⇒ one of the following equations holds:

− 2dl − I = 0(4.4)

2dl − I = 0(4.5) (√
d2 + k2 − d

)2

= 0.(4.6)

Sincek > 0 by assumption, (4.6) cannot hold. Also, since we have assumed thatI > 0,
(4.4) cannot hold either. Thus the eccentricities ofEI andEO are equal if and only if (4.5)
holds. Similarly, it is not hard to show that ifI < 0, then the eccentricities ofEI andEO

are equal if and only if (4.4) holds. Now the diagonals of Ð areD1 = OR andD2 = PQ,
and thus the squares of the lengths of one of the diagonals are|D1|2 = (l + d)2 + k2 and
|D2|2 = (l − d)2 + k2. The squares of the lengths of the sides are

∣∣OQ
∣∣2 = d2 + k2 and∣∣OP

∣∣2 = l2. Now |D1|2 = 2
∣∣OQ

∣∣2 ⇐⇒ (l+d)2+k2 = 2d2+2k2 ⇐⇒ k2+d2−2dl−l2 = 0,

which is (4.4). Similarly,|D1|2 = 2
∣∣OP

∣∣2 ⇐⇒ (l+d)2+k2 = 2l2 ⇐⇒ d2+2dl−l2+k2 = 0,

which is (4.5). One can easily check that|D2|2 = 2
∣∣OQ

∣∣2 or |D2|2 = 2
∣∣OQ

∣∣2 is equivalent
to (4.4) or (4.5) as well. Finally suppose thatI = 0. LettingI approach0 in (2.16) shows that
the unique ellipse,EI , of minimal eccentricity inscribed in Ð is a circle, which has eccentricity

0. But 1 − b2

a2
= 0 in (4.2) if and only ifd = 0. In that case Ð is a square, which satisfies the

conclusion of Theorem 4.1 since Ð is also inscribed in a circle.

Remark 4.1. In the proof above,|D1|2 + |D2|2 = 2 (d2 + l2 + k2) = 2
∣∣OP

∣∣2 + 2
∣∣OQ

∣∣2 for

anyparallelogram, Ð, and not just a bielliptic parallelogram. Hence if, say,|D1|2 = 2
∣∣OP

∣∣2,
then it follows automatically that|D2|2 = 2

∣∣OQ
∣∣2.

Example 4.1.Let l = 6, k = 2
√

2, andd = 2. ThenI = 24 > 0, and the common eccentricity
of EI andEO is

√
3− 1. The squares of the lengths of one of the diagonals are72 and24, and

the squares of the lengths of the sides are12 and36. v =
3

2

√
2 yields the ellipse,EI , of minimal

eccentricity inscribed in Ð, and4
√

2x2 + 14
√

2y2 + 4xy − 36
√

2x − 72y + 81
√

2 = 0 is the

equation ofEI . u =
1

2
yields the ellipse,EO, of minimal eccentricity circumscribed about Ð,

and
√

2x2 + 2
√

2y2 − 2xy − 6
√

2x = 0 is the equation ofEO.
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12 ALAN HORWITZ

Remark 4.2. Some results about areas of ellipses inscribed in parallelograms were proven
by the author in [3]. In particular, we prove that ifE is any ellipse inscribed in a convex

quadrilateral, Ð, then
Area(E)

Area(Ð)
≤ π

4
, and equality holds if and only if Ð is a parallelogram and

E is tangent to the sides of Ð at the midpoints. We also prove that the foci of the unique ellipse
of maximal area inscribed in a parallelogram, Ð, lie on the orthogonal least squares line for the
vertices of Ð.
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