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ABSTRACT. We prove that there exists a unique ellipse of minimal eccentri€ityjnscribed in

a parallelogram, . We also prove that the smallest nonnegative angle between equal conjugate
diameters ofv; equals the smallest nonnegative angle between the diagonals of B. We also prove
that if £y, is the unique ellipse inscribed in a rectangle, which is tangent at the midpoints

of the sides ofR, then E}; is the unique ellipse of minimal eccentricity, maximal area, and
maximal arc length inscribed iR. Let B be any convex quadrilateral. In previous papers, the
author proved that there is a unique ellipse of minimal eccentrigity,inscribed in B, and a
unique ellipseF, of minimal eccentricity circumscribed about B. We defined b to be bielliptic

if £y and Ep have the same eccentricity. In this paper we show that a parallelogram, b, is
bielliptic if and only if the square of the length of one of the diagonals of B equals twice the
square of the length of one of the sides of D.
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2 ALAN HORWITZ

1. INTRODUCTION

In [1] the author proved numerous results about ellipses inscribed in convex quadrilaterals, P.
In particular, we proved that there exists a unique ellipsaiofmal eccentricity, F;, inscribed
in B. In this paper, we discuss in detail the special case of ellipses inscribed in parallelograms.
In particular, in § 2 we give a direct proof(see Proposifion 2.3) that there is a unique eflipse,
of minimal eccentricityinscribedin any given parallelogram, B. Our main result in this regard
is to give a geometric characterization Bf for parallelograms(see Theorém|2.4), where we
prove that the smallest nonnegative angle between equal conjugate diaméiersopfals the
smallest nonnegative angle between the diagonals of B. Similar results are known for the unique
ellipse, £ 4, of maximal areainscribed in a parallelogram, B(see, for examgle, [5]). Then the
equal conjugate diameters bBf, areparallel to the diagonals of P. It is not too hard to prove this
by proving the corresponding result for the unit square and then using an affine transformation.
This approach works because of the affine invariance of the ratios of corresponding areas. Since
the eccentricity is not affine invariant, we cannot reduce the problem of the minimal eccentricity
ellipse inscribed in a parallelogram to ellipses inscribed in squares.

In §[3 we discuss ellipses inscribed in rectangles. We prove(see Theoiem 3.1)Ehaisif
the unique ellipse inscribed in a rectangle,which is tangent at theidpointsof the sides of
R, thenFE), is the unique ellipse of minimal eccentricity, maximal area, and maximal arc length
inscribed inR. While parts of Theorern 3.1 are known, this overall characterization appears to
be new. Of course, it then follows by affine invariance that the unique ellipse of maximal area
inscribed in a parallelogram, B, is tangent at the midpoints of the sides of B. The other parts of
Theorenj 3.l do not hold in general for parallelograms, however.

In ([2], Proposition 1) the author proved that there is a unique ellipgg,of minimal ec-
centricity circumscribed about any convex quadrilateral, . Also, lin [2] the author defined B
to be bielliptic if E; and E, have the same eccentricity. Irf B 4 we show(Thedrer 4.1) that a
parallelogram, D, is bielliptic if and only if the square of the length of one of the diagonals of
b equals twice the square of the length of one of the sides of D.

The following general result about ellipses is essentially what appears in [8], except that the
cases withA = B were added by the author.

Lemma 1.1. Let ¢ and b denote the lengths of the semi—-major and semi—minor axes, re-
spectively, of the ellipséy, with equationAz? + By? + 2Cxy + Dx + Ey + F = 0, with
A,B,AB — C% AE? + BD? + 4FC? — 2CDE — 4ABF > 0. Then

AE? + BD? + 4FC?* —2CDFE — 4ABF

(1.1) a’ =
2(AB — C?) (A +B-\/(B-AP+ 402)
and
1.2) b AE? + BD? + 4FC? — 2CDFE — 4ABF

2(AB — C?) (A +B+/(B— AP+ 4C2>'

2. MINIMAL ECCENTRICITY

Lemma 2.1. Let Z be the rectangle with verticés, 0), (1,0), (0, k),and (I, k), wherel, k > 0.
(A) The general equation of an ellipsg, inscribed inZ is given by

(2.1) k22?4 1%9? — 21 (k — 2v) 2y — kv — 2120y + *0? = 0,0 < v < k.
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The corresponding points of tangencylofre

2.2) (%’o) (0, v), <é (k—v),k) ,and (1, k — v).

(B) If @ and b denote the lengths of the semi—major and semi—minor axes, respectivély, of
then

2 (L —
(2.3) a® = 20 (k —v)v and
K24+ 12— /(2 + 2)2 — 162 (k — v) v
2o 22 (k —v)v

K242 4 /(R +12)2 — 1602 (k —v) v
Proof. Let S be the unit square with vertices, 0), (0,1), (1,0), and(1,1). The mapl'(z,y) =

1 1 . :

7% Ey) mapsZ onto.S andV onto an ellipse]’ (V). Denote the points of tangency Bf(¥)
with S by Ty = (¢,0), T2 = (0,w), T3 = (s,1),andTy = (1,u), where{t, w, s,u} C (0,1). We
may assume that the general equatioi’ ¢¥) has the formdz2+ By?+2Cxy+ D+ Ey+F =
0 with A, B > 0. SinceT (V) passes thru the points of tangency, we have the equations

(2.4) At* + Dt+F = 0,Buw’*+ FEw+F =0
As? +B+2Cs+Ds+E+F = 0,A+Bu*+2Cu+D+FEu+F =0
. 2Ax +2Cy+ D
Usingy = — v (1)) = v (Ty) = 0 and the fact that the tangentsZatand at
gy 2By+20x+Ey(1) y' (T3) gentsia
T, are vertical, we also have the equations
(2.5) 2t + D = 0,2Bw+E =0

2As+2C+D = 0,2Bu+2C+ E =0.
Solving (2.4) and[(2]5) foB thru F, s, t, andu in terms of A andw yields
s=u=1—-wt=w,B=AC=24Aw—A,D=—-2Aw, E = 24w, F = Auv*.
The equation of" (¥) is thenz? + y? + 2(2w — 1)zy — 2wz — 2wy + w? = 0. The corre-
sponding points of tangency @f (¥) are thus(w, 0), (0, w), (1 — w, 1), (1,1 — w). To obtain
. . 1 1 . . .
the corresponding equation &f, replacer by 77 andy by zY After simplifying that yields
k2x? + 1Py? + 2kl(2w — 1)zy — 2k*lwx — 2kl2wy + k%?w? = 0. The corresponding points of
tangency ofl areT!(w,0) = (lw,0), T~1(0,w) = (0, kw), T (1 —w,1) = (1 (1 —w), k),
and7-1(1,1 —w) = (I,k (1 —w)). Now letv = kw to obtain [2.1) an-Z)- 3) follows
easily from Lemma I]1] (7].1), and (1. 2.

We now prove a version of Lemma 2.1 for parallelograms.

Proposition 2.2. Let D be the parallelogram with vertic&s = (0,0), P = (,0),Q = (d, k),
andR = (I +d, k), wherel,k > 0,d > 0.
(A) The general equation of an ellipsg, inscribed in D is given by
(2.6) k2® + (k(d+1)* — 4dlv) y* — 2k (kd — 2lv + ki) zy
—2k* vz + 2klv (d — 1)y + kI*v* = 0,0 < v < k.

(B) If a andb denote the lengths of the semi—major and semi—minor axes, respective)y, of
then
b? m(v) + [Adlv — k ((d+1)* + k*)] v/m(v)

2.7 — =1
(2.7) a? * 8k212 (k — v) v ’
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where
(2.8) m(v) = 160° (d* + k*) v* — 8k (dk® + d* + 21d* + I*d + 2k*) v
R ((d+ 1)+ k%),
Remark 2.1. To be more precise, (A) means that any ellipseribedin B has an equation of

the form [2.6) for som@® < v < k, and that any conic with an equation of the fofm |2.6) for
somel < v < k defines an ellipsenscribedin b.

Proof. Let Z be the rectangle with verticés, 0), (0, k), ({,0), and(l, k). The mapl'(z,y) =
(:p — %y, y) maps b onta”Z. By Lemm , the general equationof V) is given by | ),

2
with x replaced byr — %y andy remaining the same. That yields <x - %y) + 1%9% —
d d
20 (k — 2v) (:c — —y) y—2lkv [z — —y | — 220y + >0* = 0, and some simplification gives

(A+B) — \/(B A)2+4C2
To prove (B), by Lemm ) a =
) Prove &2 ) 'B% (A+B)+ (B - A7 +4C°

[(A +B)—J(B- A2+ 402
(A+B)2—(B— A2+ 402)
¥ (A+B)*+(B—A)?+4C*—2(A+ B)\/(B— A)? +4C?

, Or

(2:9) a2 A(AB = C?)

Let

(2.10) A = K B=Fkd+1)*—4dlv,C = —k (kd — 2lv + kl),
D = —2k*lv,E =2klv(d—1), andF = ki*v*.

(2.9) and|[(2.1)0) then yield (3.7m

Proposition 2.3. Let b be a parallelogram in they plane. Then there is a unique ellipgé;,
of minimal eccentricity inscribed in .

Proof. By using an isometry of the plane, we may assume that the vertices of D are
(0,0),P = (1,0),Q = (d,k),andR = (I + d, k), wherel,k > 0,d > 0. Let E denote any
ellipse inscribed in B and let andb denote the lengths of the semi—-major and semi—minor
axes, respectively, of. Let

m(v) + [4dlv — k ((d + 1)* + k*)] v/m(v)

(2.11) glv) = =mr :

(o) 8Wg( v)

By .) of Proposmorl?h = —. We shall now minimize the eccentricity by maximizing

, Or equivalently by maX|m|2|ng( ). Now ¢'(v) =0 «<—
(k—v)v [m’(v) + [4dlv — k ((d+1)* + k%)]

m’(v) I~
m + 4dl m(v)] —

[m(v) + [4dlv — k ((d+1)* + k%)] m(v)} (k—2v)=0
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<
(k —v)v [2\/m(v)m’(v) + [Adlv — & ((d+ )2 + k)] m/(v) + 8dlm(v)] -
2(k — 2v)y/m(v) [m(v) + [4dlv — k ((d+1)* + k?)] \/m(v)} =0
<

2 (k —v)vy/m(v)m'(v) + (k — v) v ([4dlv — k ((d+1)* + k*)] m/(v) + 8dlm(v))
—2(k — 2v)/m(v)m(v) — 2(k — 2v)m(v) [4dlv — k ((d +1)* + k*)] =0

<~
(k—v)v ([4dlv — k ((d+1)> + k*)] m/(v) + 8dlm(v)) —
2(k — 20)m(v) (4dlv — k ((d+1)* + k) =
[2(k = 2v)m(v) — 2v (k — v) m'(v)] v/ m(v)
<~
(2.12) — 2K +P+d)v—kQ2dl+k + 1 +d*)]n) =

[ddlv —k ((d+ 1)+ k)] [2(K* + P+ d*) v —k (2dl + k> + P + d*)] /m(v),
wheren(v) = m(v) + 8k*1* (k — v) v. If

2(K+P+d°)v—k(2dl+ Kk + 1+ d*) #0,
then by [2.1R)g'(v) =0 =

m(v) _ —TL(U)
ddiv — & ((d+ )2 + &2)

(4dlv — k ((d+1)* + k2))* m(v) — n?(v) = 0

—641%%k* (v — k)* =0,

which implies thaty = 0 or v = k. Since0 < v < k by assumption, that yields no solution.
Thusg'(v) = 0, and hencé’(v) = 0, ifand only if2 (k? + 12 + d?) v—k (2dl + k* + 1*> + d°) =
0 < v =uv, Where

1 (d+1)*+k?
2.13 = —k——F——.
(2.13) SRy R e
It follows easily from I'Hospital’s Rule thaﬂir(r)1+g(v) = liIlgl_ g(v) = —81*k?, which implies

that lim+ h(v) = lir]? h(v) = 0. Sinceh(v) > 0 for 0 < v < k, h attains its’ global maximum
v—0 v—k~
atv. and the eccentricity is minimized when= v.. =

Theorem 2.4.: Let E; denote the unique ellipse of minimal eccentricity inscribed in a par-
allelogram, B, in thery plane. Then the smallest nonnegative angle between equal conjugate
diameters off’; equals the smallest nonnegative angle between the diagonals of b.
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Proof. As in the proof of Proposition 2.3, by using an isometry of the plane, we may assume
that the vertices of b ar® = (0,0),P = (1,0),Q = (d,k), andR = (I + d, k), where

[,k > 0,d > 0. The diagonals of D ar®, = OR andD, = P(Q. We find it convenient to
define the following variables:

(2.14) G = (d+1)?+k H=(d-1)>*+k,
J = B4 P+dI1=07-d k.

There are three cases to considers 0, I = 0(which implies that b is a rhombus), add< 0.
Assume first thaf > 0. Thend? + k? < 2, which implies thatl < [ as well, and the lines

containingD, and D, have equationg = H—d:c andy = l(:c — 1), respectively. Let

¢ denote the smallest nonnegative angle betwBerand D-. We use the formulaan ¢ =

M2 = wherem; = K < = K Some simplification gives
Tpe— =g ST g P 9

2k
(2.15) tan ¢ = Tl

Let £, denote the the unique ellipse from Proposifior] 2.3 of minimal eccentricity inscribed in
b, and letL and L’ denote a pair obqual conjugate diameters of; . Let a andb denote
the lengths of the semi—major and semi—minor axes, respectively;.ok is known(see, for
example,[[7]) that. and L’ make equal acute angles, on opposite sides, with the major axis of
E;. Letf denote the acute angle going counterclockwise from the major akistwfone of the

. : T b
equal conjugate diameters, which implies thatd = —. We shall show thatan? 20 = tan? ¢,

2
which will then easily yield2d = ¢. By ) of PropositioZZ—2 = h(v.), whereh(v) is
given by [2.11) and. is given by [2.1B). Thus

tan® = \/h (v).

By (2.13),
1. 2dl + 12 + d? + k2
4dlv, — k ((d D? + k) = 4di-k —k((d+D?2+E%) =
E((d+1?*+ k) (d=1*+k)  kGH

k2 412 + d? J
1 (d+1)*+ Kk 1 (d+1)?+ k?
(k—v)= ke k= ko | =
velb v = ok 2 KA+ P
1 d—1)?+k* TE*((d+1)*+ k) (d=1)*+ k2
4 (B2 +124ad%)° 4 (K2 + 12 +d?)
1 k*GH
4 g2’

and by (2.8), after some simplification,
1 (d+1)*+k?
o) =m (G ) =
K2 ((d+ 12+ k) ((d— D> + k) (k2 — P+ d®)°  K*GHI?
(k2 + 12 4 d2)? RV
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K*GHI?> KkGHkVGHIY\ 4J* e
Henceg(v.) = = 3 5 ) sag — Y (I - V@ﬁ) which implies,
by (2.11), that
1(1-VGVH)
(2.16) h(v) =1+ ——00

Sincel? — GH = (I2 — d® — k2)* — (d+ 1)* + k?) ((d — 1)% + k%) = —4I2k? < 0, we have
I? < GH, which implies thatl — GV H < 0 and thus

(2.17) h(o) < 1.
2tan®  2y/h(v.)
1 —tan?0  1—h(v.)
2622 + 1 (1~ VGVH) —_ )
k2l2 12 (I _ \/@\/ﬁ)2 ==
K22 + | (1 . \/é\/ﬁ)
(1~ @ﬁ)z |

 which implies thattan®20 — — (") _

(1= h(v))’

Now tan 20 =

8k212

By (2.15),tan? 20 = tan? ¢ <=

2k212 + 1 (I— \/@\/ﬁ) B 4K212

272
k=l P (I B \/a\/ﬁ>2 IE

421 1 21 <I _ \/5\/ﬁ> - (I _ \/éx/ﬁ)Q

4k*1* + 217 —2IVGH = I* — 2IVGH + GH
= AR 412 = GH < AR+ (P —d2— k) = (d+ D)2+ k) ((d— 1%+ k2),
which holds for alld, k,1 € . Thustan®20 = tan? ¢, and sincetan 20 > 0 andtan¢ > 0
by (2.15) and[(2.17), it follows thatin 26 = tan ¢. Now suppose that = 0. One still has

d—1 <0, but nowyp = g One can letf = 0 in (2.16) above by using a limiting argument.

Thush (v.) = 1, which gives20 = g We omit the proof in the case whén< 0. m

Example 2.1.Letd = 2,1 = 5, andk = 4, so that D is the parallelogram with vertices, 0),

(2,4), (7,4), and(5,0). The minimal eccentricity of all ellipses inscribed in M ~

- 65 + /65
0.78 and is attained with) = 5 The equation of’; is 129622 — 531y? + 4464xy — 180002 —
13500y + 62500 = 0. The common value @ and ¢ equalstan—! 8 ~ 82.9°.
Remark 2.2. Theoren| 2.4 does not extend in general to any convex quadrilateral irythe
plane. For example, consider the convex quadrilateral with vertieey, (1,0), (0,1), and
(4,2). Using the formulas from_[1], one can show that there are two ellipsesibedin B

which satisfy20 = ¢, but neither of those ellipses is the unique ellipse of minimal eccentricity
inscribedin b.
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Remark 2.3. A somewhat similar result for the ellipse of maximal area inscribed in a parallel-
ogram, or the ellipse of minimal area circumscribed about a parallelogram, is proveén in [6].

If b is a convex quadrilateral in they plane, the line segmenk;, thru the midpoints of the
diagonals of b plays an important role—it is the precise locus of centers of ellipses inscribed in
D. Let L be the line containing . There is strong evidence that the following is true.

Conjecture 2.5. Theorenj 24 holds for any convex quadrilateral, B, with the property that one
of the diagonals of D is identical with.

The details of a proof of this conjecture along the lines of the proof of Theprem 2.4
look messy. It is also possible that there is a similar characterizatioh' fdor any convex
quadrilateral in the:y plane. Such a characterization would perhaps involve the angles between
each diagonal of b and betweérand each diagonal of B. However, we have not found such a
result which works with any examples.

3. RECTANGLES

The results in this paper have focused on ellipses of minimal eccentricity inscribed in a par-
allelogram. We now discuss ellipses of minimal eccentricity, maximal area, and maximal arc
length inscribed in rectangles. While some of the results in the following theorem are known,
the overall characterization appears to be new.

Theorem 3.1.Let Z be a rectangle in they plane. Then there is a unique ellipse inscribed in
Z which is tangent at the midpoints of the four sideZpiwhich we call the midpoint ellipse,
E\;. Ey has the following properties:

(A) E)y is the unigue ellipse of minimal eccentricity inscribedZin

(B) E), is the unique ellipse of maximal area inscribed4dn

(C) E), is the unigue ellipse of maximal arc length inscribedin

Proof. By using a translation, we may assume that the verticeg& afe O = (0,0), P =
. 1 . .
(1,0),Q = (0,k),andR = (I, k), wherel, k > 0. Lettingv = 51{: in ) shows the existence

of an ellipse inscribed it which is tangent at the midpoints of the four sidesZofThe fact
that such an ellipse is unique follows easily and we omit the proof. Now leenoteany
ellipse inscribed inZ and leta andb denote the lengths of the semi—-major and semi—minor
axes, respectively, af. To prove (A), as earlier we minimize the eccentricity by maximizing

b v K2+ 12— (k24122 - 1612 (k —
—- By (2.3), - = il V(E £ D) (k=v)v = 8I?7(v),0 < v < k, where
a a2+ P2+ /(k2+12)?2— 1612 (k—v)v

v(k —v)
(K + )2 4+ 80(v — k) + (k2 + ) /(2 + 2)° + 16020 — k)

A simple computation yields

T(v) =

8(k2+12)12 (k—2v)

/ j—
T(v) = \/(k2+l2)2+16l2v(v—k)((k2+l2)2+8l2v(v—k)+(k2+12)\/(k2+12)2+1612v(v—k)) '

1 . .
Thus7'(v) =0 <— v = §k. Sincer(0) = 7(k) = 0 andr(v) > 0for 0 < v < k, 7 attains

its’ global maximum ab = §k and the eccentricity is minimized whén= F,,. That proves
(A). To prove (B), we maximize the area &f wab, by maximizinga?%. By (2.3) again,
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4(k—v)2 1402
(V2R R H161202— 16120k — (k2+12) ) (VIAF 212K+ KA+ 161202 — 16120k+ (k2-+12) )
4k —v)’ 1?12 k)
=——FFF—=—(k—v)v.
16 (k—wv)l?v 4

a’b?

It follows immediately that?b? attains its’ global maximum at = %k which proves (B). To
prove (C), the arc length of is given by
/2
(3.2) L=2 / [a2 + b* — (a2 — b2) cos 225] Y2 g,
0
The proof we give is very similar to the proof in_([4]) that the ellipse of maximal arc length

inscribed in a square is a circle. Indeed, what makes the proof worik in ([4]) isthat® does
not vary asktl varies over all ellipses inscribed in a square. For the rectaagle,

a2+b2:2l2(k‘—v)v( L + - )

K24H12— /(K2 +12)2=1612(k—v)v  k2+12+4/ (k2+12)2—1612(k—v)v

2(k2412) 1,5 5
U16lzv(k—v) - ZL (k +1 ) ’

which of course does not vary &svaries over all ellipses inscribed . Now

= 2% (k —v)

a2 — b2 = 4(k—0)PoVIA4212 k2 + k14161202 — 16120k
(k2+12—\/l4+212k2+k4+16l2v2—1612vk)(k2+l2+\/l4+2l2k2+k4+16l2v2—1612vk)

o, VIE 2R R 1620 — 1650k _ 1

=4k —v) 16 (k —v) [?v T4 Blv).
whereg(v) = (k2 + 12)> — 16{2v (k — v). Hence by),
/2
1/2
L = L) = %/ [k2 + 1?2 — \/B(v) cos Qt} dt. As in (J[4]), splitting the integral up and

0
making a change of variable gives

w/4

L(v) = / [(/{:2 + 12— \/B(v) cos 2t> + </<:2 + 12+ v/B(v) cos 2t>} 2 dt.

0
Letp = k% + 1? andu(v,t) = /B(v) cos 2t, which gives

w/4

(3.2) L(v) = / [(p— (o, )2 + (p+ ulv, £))/2] dt.

0
L L 1
Now £ attains its global minimum oif0, k) whenv = §k;. Thus, for each) < ¢t < %
1 : o : 1 :
u(v,t) > u (ﬁk,t), with equality if and only ifv = §k. Also, the functionf(z) = (p —
2)Y2 4 (p + x)"/? is strictly decreasing fob < = < p(see ([4])). Hence, for eadh< t < T

(p — u(v, )2 + (p + u(v,t))? < (p—u (%k,t))l/2 +(p+u (%k,t))lﬂ, again with
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equality if and only ifv = %k Thus by )L(v) attains its’ unique maximum of), &) when
1

= —k.
V=3 ]

Remark 3.1. Showing that there is a unique ellipse of maximal arc length inscribed in a general
convex quadrilateral and/or characterizing such an ellipse appears to be a very nontrivial prob-
lem. Even for parallelograms it appears to be difficult sinte- 1> does not remain constant

in general ad” varies over all ellipses inscribed in a given parallelogram. Numerical evidence
suggests strongly that the ellipse of minimal eccentricity inscribed in a parallelogramma@, is

the ellipse of maximal arc length inscribed in B.

4. BIELLIPTIC PARALLELOGRAMS

Let B be a convex quadrilateral. In_{[1], Theorem 4.4) the author proved that there is a
unique ellipseF;, of minimal eccentricitynscribedin B. In ([2], Proposition 1) we also proved
that there is a unique ellipsé;,, of minimal eccentricitycircumscribedabout . In [2] the
author defined P to be bielliptic it/; and Ex have thesame eccentricity This generalizes
the notion of bicentric quadrilaterals, which are quadrilaterals which have both a circumscribed
and an inscribed circle. In[2] we gave an example of a bielliptic convex quadrilateral which
is not a parallelogram and which is not bicentric. Of course every square is bicentric. For
parallelograms we prove the following.

Theorem 4.1. A parallelogram, D, is bielliptic if and only if the square of the length of one of
the diagonals of B equals twice the square of the length of one of the sides of .

Proof. We prove the case when B ot a rectangle, in which case the proof below can be
modified to show that D is bielliptic if and only if it's a square, which certainly satisfies the
conclusion of Theorefn 4.1. Then, by using an isometry of the plane, we may assume that the
vertices of b ar&) = (0,0), P = (1,0),Q = (d, k), andR = (I + d, k), whered, k,[ > 0. Itis

not hard to show that

2

k
4.1) kuz?® + ky* — 2udxy — klux + [ud(l + d) — kQ] y=00<u<— pp

is the general equation of an ellipse passing thru the vertices of B. We leave the details to the
reader. By Lemmp 1] 1, it follows that

b? h(w) — VK21 — u)? + 4d?u?
J— f— u) = =
a? k:(u - 1 )+ k21— ) + 4d?u?
2
( (u+1) \/kzl—u)2+4d2u2>
du (k2 — ud?) '
2
Differentiating with respect ta, it follows thath/(u) = 0,0 < u < ¥l if and only if u =
k2 (R R —dVE TR o
Yk Substituting yields= e+ 7 , and simplifying gives
b? k2
4.2 l-==1-h|{——=] =
@2 o= m)
(PR ETR) PR -
k2 (d* + k?) B k2
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for the unique ellipse of minimal eccentricity;,, circumscribed about B. As in the proof of
Theorenj 2.)4, there are three cases to consifler:0,1 = 0,1 < 0, wherel = > — d? — k2.

2
Assume first thal > 0. Then by ((2.16) in the proof of Theor.4(see (2.15%),: h(ve) =
I (I - \/GJE)

1+ TSI for the unique ellipsel’;, of minimal eccentricity inscribed in B. Setting
the eccentricities of’; and £, equal is equivalent to

VETE-—a 1(VGVH-1)
2 W
Then (4.) holds if and only ifi2d (V& + 12 — d) = I (VGVIE 1) =
VGVHI =APd (VB + k2 —d) + I? <
GHI? — (424 (VE+ 2 —d) + )" =0 —

41 (G —21%) (H — 21%) (2d® + k* — 2dVd? + k?)
= 0 <= one of the following equations holds:

(4.3) 2d

(4.4) 2l —T = 0
(4.5) 2l —1 = 0
(4.6) <\/d2+k2—d>2 _—

Sincek > 0 by assumption,[ (4]6) cannot hold. Also, since we have assumed that,
(4.4) cannot hold either. Thus the eccentricitiesthfand E are equal if and only if[ (4]5)
holds. Similarly, it is not hard to show that if < 0, then the eccentricities of; and Eo
are equal if and only if4) holds. Now the diagonals of B &%¢= OR and D, = PQ,
and thus the squares of the lengths of one of the diagonaIEDqﬁa = (I +d)* + k* and

|D,s|> = (I — d)? + k2. The squares of the lengths of the sides |m’_é2|2 = d* + k* and
|OP|* = 2. Now | D, | = 2[0Q" <= (I4+d)2+k* = 22+2k* <= K*+d>—2dI—1? = 0,
which is M). Similarly| D, |* = 2 |ﬁ]2 — (I+d)*+k* =21 < d*+2dl-1*+k* =0,
which is (4.5). One can easily check than,|* = 2[0Q|” or |Do* = 2[0Q]” is equivalent

to (4.4) or [4.5) as well. Finally suppose that= 0. Letting / approachD in (2.16) shows that
the unique e2llipseEI, of minimal eccentricity inscribed in D is a circle, which has eccentricity
0. Butl — % =01in if and only ifd = 0. In that case b is a square, which satisfies the
conclusion of Theorein 4.1 since D is also inscribed in a cirale.

Remark 4.1. In the proof above|D;|* + |Dy|* = 2(d? +1? + k?) = 2 |W\2 + 2 \@\2 for
any parallelogram, B, and not just a bielliptic parallelogram. Hence if, pzam? =2 ]W 2,
then it follows automatically thatD,|* = 2|0Q)|".

Example 4.1.Let! = 6, k = 2v/2, andd = 2. ThenI = 24 > 0, and the common eccentricity
of E; and E is v/3 — 1. The squares of the lengths of one of the diagonalgamnd24, and

the squares of the lengths of the sides&@and36. v = g\/i yields the ellipseF;, of minimal
eccentricity inscribed in B, andv/22? + 14v/2y? + 4ay — 36v/2x — 72y + 811/2 = 0 is the
equation ofE;. u = E yields the ellipseF, of minimal eccentricity circumscribed about D,
and/2z? + 2v/2y? — 2zy — 612z = 0 is the equation of,.
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Remark 4.2. Some results about areas of ellipses inscribed in parallelograms were proven
by the author in[[B]. In particular, we prove that i is any ellipse inscribed in a convex

quadrilateral, b, the#p%g < % and equality holds if and only if b is a parallelogram and

E is tangent to the sides of b at the midpoints. We also prove that the foci of the unique ellipse
of maximal area inscribed in a parallelogram, D, lie on the orthogonal least squares line for the
vertices of .
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