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ABSTRACT. The notion of non-autonomous discrete dynamical systems is well studied in the
literature. On the other hand, a similar idea exists in literature for continuous dynamical systems
with the name switch dynamical systems. In this article, we interpret a non-autonomous dynam-
ical system as a switch system and describe how the dynamics of a non-autonomous dynamical
system can be better understood using the notion of switch.
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2 FA1Z IMAM AND SHARAN GOPAL

1. INTRODUCTION

A continuous dynamical system on a topological sp&cés the action of a semigroufyf” :
t € Randt > 0} on X, where eaclf’ is a continuous self map o (or the group{ /* : t € R},
if each f? is a homeomorphism) such th#t is the identity map and?*s = f? o £, for every
t ands. Now, instead of considering this one-parameter family of maps, if we have more
than one such family, sayf! : ¢t € R andt > 0}, i € {1,2,...,k} and consider the action of
different families at different instances of time, then we obtain a new notion of dynamics, called
a continuous switch dynamical system. This idea of “action of different functions at different
instances" is explained more precisely using a “switch function”.

A continuous dynamical system arises naturally from the first order autonomous system of
ordinary differential equations. Now, l&t : R* — R" be aC*-map with bounded derivative
for eachi € {1,2, ..., k}. Consider the initial value problems

d
—XT

(1.1) dt
$(Z) (O) = Xy.

D(t) = hi(zD),t € R,

As it is well known, for each € {1,2,...,k}, if ¢;(¢, zo) is the solution map of (1}1), then
fi(x) = ¢,(t, ) gives a continuous dynamical system.

Leto : R — {1,2, ..., k} be a piecewise constant function i&has finitely many discontinu-
ities in any bounded interval and on the interval between any two consecutive discontimuities,
is constant. The functios is called aswitch functiorand its discontinuities are callswvitches
For eachi € {1,2,....k}, let J; = 0~'(i), which is a union of intervals, the endpoints of each
of which are the consecutive switchesoofNote thatR is the disjoint union ofJ;’s.

Now, consider the following system.

x(t) = hg(t) (:U), teR,
z(0) = xo.

By a solutionp(t, z) of this system[(1]2), we meait, zy) = ¢;(¢, zo), wherei € {1,2, ..., k}
is the unique index such that J; andg; (¢, z,) is the solution of[(1]1) for the respective value
of 7. These solutions of (1.2) corresponding to all valuesofive rise to a continuous switch
dynamical system in the following way.

Foreach € {1,2, ..., k}, consider the one-parameter family of functiofs= {f} : t € R},
where fi(x) = ¢,(t,x). The triplet(R™, {F, Fa, ..., Fr},0) is called acontinuous switch
dynamical systemThe trajectory of a point € R" in this system is given byz;):cr, where
Ty = fg(t) (). Continuous switch dynamical systems are studied by many people in literature
with main focus on stability (see, for instance [1], [3], [4] ahd [7]).

A non-autonomous discrete dynamical sys(BiidS), on the other hand, is defined as a topo-
logical spaceX together with a sequendg,,), -, of continuous self maps. In this system, the
trajectory of a point: € X is defined agz,), -, wherez,, = f,(z,_1) for everyn > 1 and
xo = x. The theory of NDS has an extensive literature (5eel[5], [6], [8] and [9]).

In this article, we interpret the dynamics of an NDS in the form of a switch system. We call
it as a discrete switch dynamical system which will be defined in the next section followed by a
discussion on other concepts of NDS using the idea of a switch.

The paper is organised as follows. Throughout this paper, in most of the instances, a discrete
switch dynamical system will be referred to aswitch systemvhereas a discrete dynamical
system will be called asual systemin the next section, we introduce the terminology related

(1.2)
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to study of switch systems. We prove some results on periodicity, transitivity, recurrent points,
conjugacy and minimality in Sectign} 3. Then, in Secfipn 4, we study switch systems of circle
rotations. Here again, we discuss the periodicity of these switching rotations on the circle.

2. TERMINOLOGY

We now develop terminology for switch systems. Most of the concepts defined here for
switch systems are generalizations of the corresponding notions in usual systems. However,
there are instances, where a switch systémg, o) has a particular property with no usual
individual system(X,, f) for f € § having it. For instance, Examgle B.1 gives a switch system
(X, {f1, f2},0) with X = [0, 2] U [4, 6], in which the pointz = 1 is recurrent but it is recurrent
neither in(X, f1) nor in (X, f5). We now begin with definitions of a switch system and the
trajectory of a point in it.

Definition 2.1. Let X be a topological spac§ = {fi, fo, ..., fr} be a family of continuous
self maps onX ando : N — {1, 2, ..., k} be any map. The triplgtX, §, o) is called adiscrete
switch dynamical systerfror each point in X, the trajectory(z,,),,>o of z is defined as, = =
andz, = fom (zn—1) for everyn € N. The mapo is called the switch function or simply as
the switch of the systertiX, §, o).

In a usual systeniX, f), the trajectory of a point € X is defined a$ /" () )nen, i-€, then'”
term in the trajectory of is given by f"(z). In a switch system, the'" term of the trajectory
of z is given byz,, = fom)) fie(m-1))---fleq) (x) i.€., the switchr specifies which function to
apply at then!” time.

We assume that, in all the switch systems that are considered in this paper, theswitch
is surjective andr—'(4) is an infinite set for every € {1,2,...,k}, i.e., eachf; in § occurs
infinitely many times in every trajectory. As a convention, we defift§ = 0 andf, ) (z) = =,
for everyx € X.

Definition 2.2. A switch functione is said to be a periodic function with a periadif o(nu +
l) = o(l) for everyl <! < uand for everyn € N.

We will now define various dynamical notions for switch systems.

Definition 2.3. Let (X, §, o) be a switch system.

(1) A pointz € X is called a periodic point, if there is an € N such thatc,,,,,.; = z; for
every0 < [ < m and for everyn € N. Each such positive integet is called a period
of z and the least among them is called the least periad of

(2) A pointz € X is called a fixed point, if,, = x for everyn € N.

(3) Letz € X. An elementy € X is called anv-limit point of z, if there is a sequence
(n,,) of positive integers such thét,,,) — oo and(z,,, ) — y. The set of allu-limit
points ofz is denoted by (z). Further, ifx € w(z), thenx is called a recurrent point.

(4) (X,§,0)is called topologically transitive, if there is anc X suchthafz, : n € Ny} =
X.

(5) A subset” C X is called invariant, if for every: € V, x,, € V for everyn € N.

(6) A closed non-empty invariant subsétof X is called a minimal set, i/ does not
contain a proper closed, non-empty and invariant seX Ifself is a minimal set, then
(X, 3§, 0) is a called a minimal switch system.

We now define the notion of topological conjugacy. In usual dynamical systexhg)) is
said to be topologically conjugate td, ) if there is a homeomorphisr : X — Y such
thath o f = g o h. It follows that for every tern{f"(x)) in the trajectory of a point € X,
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we haveh(f"(x)) = ¢"(h(x)). However, for switch systems, we need to ensure this as a part
of the definition. After the following definition, we will simply use the wordsnjugacyand
conjugateinstead oftopological conjugacyndtopologically conjugateespectively.

Definition 2.4. Let (X, §1,01) and(Y, §2, 02) be two switch dynamical systems. If there is a
homeomorphism : X — Y such that for any € X, h(x,) = (h(x)), for everyn € N, where
(x,) and((h(x)),) are the trajectories af andh(x) in (X, §1,01) and(Y, §2, 02) respectively,
thenh is called a topological conjugacy frof, §1,01) to (Y, §2, 02). In such a case, the two
switch systems are said to be topologically conjugate.

3. MAIN RESULTS

In this section, we state and prove some results about the periodicity, transitilityjt
points, conjugacy and minimality. The following theorem gives a sufficient condition for ex-
istence of periodic points in a switch system. In a usual syst&ny), for a pointz € X,
if f"(z) = « for somem € N, thenz is a periodic point, but in a switch systefX, §, o),

x,, = x does not imply that: is periodic. However, itr is a periodic function with the same
integerm as a period, then we prove in the following theorem that a periodic point.

Theorem 3.1.Let (X, §, o) be a switch dynamical system, wherés a periodic function with
a periodm € N. If x € X such thatr,, = x, thenz is periodic in(X, §, o).

Proof. It is enough to prove that, = %m0 m) for everyn € N. If m = 1, theno(n) = o(1)
for everyn € N i.e.,o is a constant function. Thep consists of only one function, sgyand
we have a usual dynamical systéi, /). Thenz; = x is same as saying thg{z) = = and
hencer is periodic (in fact, a fixed point).

Now, consider the case where > 1. It is obvious thatr; = (e m). Suppose that
Tpn = Tp(mod m) fOr SOMen € N. We now claim thatr, 1 = Zp41(moa m)- We haven =
rm + [ for some0 < [ < m, so thatz, = x;. Then,n +1 = rm + [ + 1 would imply that
on+1) =o(l+1)and thusg,1 = foms)(@n) = foary(@) = 210 F0 < T <m — 2,
thenl + 1 = n + 1(mod m) and thus we have, ;1 = %+ 1(mod m)- IN Case = m — 1, we have
Tny1 = Ti41 = Ty SiNCe itis given that,, = z, itfollows thatz, .1 = = 20 = Tyt1(mod m)-
Hence, by induction, we conclude thais periodic in(X,§,0). &

In the following proposition, we characterize the fixed points of a switch sy&er§, o) in
terms of fixed points of the usual individual systers, f;), whereg = { f1, fo, ..., fx }-

Proposition 3.2. Let (X, §, o) be a switch system, whe@ = {fi, fo, ..., fr}. An element
x € X is afixed pointin X, §, o) if and only ifz is a fixed point inN X, f;) for everyl <i < k.

Proof. Supposer is a fixed point in(X, f;) for eachi. Thenz, = f,1)(x) = . Further, if
r, = x forsomen € N, thenz,1 = fomi1)(Tn) = fomsn(x) = x. Thus, by induction,
x, = x for everyn € N and hence: is a fixed point in(X, §, o).

Now, assume that is a fixed point in( X, §, o). Fixanf; € § for somel <i < k. We know
thato~!(:) is an infinite subset dN. Choose an € o~!(:). Then, using the hypothesis that
r, = x for everyn € N, we getf;(z) = foo)(2) = for)(Tr—1) = 2, = 2.

Thus,z is a fixed point off;. n

In literature, a usual dynamical system is said to be topologically transitive, if it has a dense
forward orbit. Notice that we have adopted the same definition for topological transitivity to
switch systems. Under certain mild conditions on a usual dynamical systery), it can
be proved that, if for any two non-empty open sEtandV in X, there existse € U with
f™(z) € V for somen € N, then(X, f) is topologically transitive (See Proposition 2.2(1, [2]).
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Here we prove a similar result for switch systems assuming the same conditions. The proof
given here uses the ideas, similar to those used in proving the above mentioned result for usual
dynamical systems in[2].

Theorem 3.3.Let X be a second countable locally compact Hausdorff space. If for any two
non-empty open seté andV in X, there exists am € U such thatz,, € V for somen € N,
then(X, §, o) is topologically transitive.

Proof. Fix an open set’ in X. DefineV’ = U f fa‘(}l)(V) If U is any non-empty

open set inX, then it is given that there is an € U with z,, € V for somen € N. Now,
z, € Vimplies thatf, ) (fom-1)(...(fza)())...)) € V and thusr € V' N U. Since this is true
for any non-empty open sét, it follows thatV” is dense inX.

Choose a countable basis f&r, say{V; : i € N}. For each;, defineV/ = J f(j(ll)f;é)
n=1

0'(2

..f‘(}l)(Vi). It follows from the above discussion thf is dense inX for eachi. Thus, the set

o

Y = (N V/ is intersection of countably many open dense sef§.ilsinceX is locally compact

=1
and Hausdorff, it is a Baire space. Therefotrez ().
Now, choosey € Y. Theny € V/ for eachi € N. This implies thay € f;é)fo_‘é)...fo‘(}l)(w

and thusy,, € V; for somen € N. Thus,{y, : n € No} N V; # ( for eachi € N. Since
{V; :i € N} is a basis forX, we get{y,, : n € No} = X. Thus,(X, §, o) is transitive.g

We now turn our attention towards the study of recurrent pointswafichit points. The
following example shows that a pointe X can be a recurrent point (X, §, o) without being
a recurrent point in any individual usual systéi, f;) for : € {1,2,...,k}. In other words,

k
wz(x) ¢ |J wy,(x), wherewz(x) andwy, () are thew— limit sets ofz in (X, §, o) and(X, f;)

respectivély.

Example 3.1.Let X = [0,2] U [4, 6]. Definefy, fo : X — X as
_fx+4, fzel0,2], |z if z €0,2],
fl(x)‘{ sy 0 ifxe[4,6] a”dfz(‘”—{ v—d4, ifeeld6l.

Consider the switch systefX, §, o), whereF = { f1, fo} ando : N — {1, 2}, defined as
o(n) = { 1, ifnisodd,
2, ifniseven
Letx = 1. Then the trajectory aof is given by
1, ifn=0o0rniseven
":{ 5, if nisodd

Thus,(z,,,,) — 1 and hencegx = 1 is a recurrent point in(X,§, o). Howeverx = 1is a
recurrent point neither ir X, f1) norin (X, f>), becausevy, (1) = {4} andwy, (1) = {0}.

However, we can ensure that, 4f € w(z) in (X,§,0), theny € R(f;) for somei €
{1,2, ..., k}, whereR( f;) is the range off;. This is proved in the following theorem.

Theorem 3.4.1f y € w(z) in (X,F,0) for somex € X, theny € R(f;) for somei €
{1,2,...,k}, whereR(f;) is the range off;.

Proof. By definition, for everym € N, there is am,, € N such thatr,, € B(y,m)

and
(nm) — oo. In other words,f,(,,.)(n,.—1) € By, =) and thusR(fy@,.)) N By, =) # 0
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for everym € N. Sinceo can take only finitely many values, there is ar {1,2,...,k}
such thatr(n,,) = i for infinitely manym. We now claim thaty € R(f;). For anye > 0,
there is anNV € N such thatB(y,%) C B(y,€). Sinceo(n,,) = i for infinitely manym,
there is aK € N such thatX’ > N ando(ng) = i. ThenB(y,+) C B(y,¢) and thus
R(f;) N B(y,€) = R(fotni)) N By, €) D R(fomi)) N By, %) # 0. Hence the claimg

The following example is another instance to show the difference between usual and switch
dynamical systems. Here, the switch systéisg,, 0;) and(Y, §2, 02) are conjugate but the
map f» € §1 is not conjugate to any of the mapsgn = {¢1, g2}

Example 3.2.Let X = Y = R. Define mapgi, f», g1 andg, onR as follows

o+, ifx>0 _fx+4, ifz>0
fl(m){l—x, ifzx <0’ fQ(x){zL, if 2 <0

L ifz>0 2, ifx>0
g1(93)={£f+2 T > gQ(x):{x+ T >

;—z, ifz<0’ 2—x, ifxz<0’

Consider the switch syster¥, 51, 01) and(Y, §2, 02), whereg, = {f1, fo}, §2 = {91, 92}

1, ifnisodd

2, ifniseven
Now, defingx : X — Y ash(r) = 5. We now show thdi is a conjugacy from{ X, 1, 01)

to (Y, 32, 0'2).

Foranyz € X, note that

andoi(n) = o9(n) = . Let us denote = o, = 0s.

(3.1) h(fi(z)) = g1(h(z)) = { g ii :Ii i 8
and
(3.2) h(f2(f1(x))) = g2(g1(h(x))) = { § J_rg :;i i 8 '

We now prove thait(z,,) = (h(x)), for everyn € N using induction. The above calculations
show that the statement is true for= 1 andn = 2. Assume now thai(xz;) = (h(z)) for
everyk < n.

If n is even, then

If nis odd, then

h(@p 1) :h(fa(n-‘rl)(xn))
= h(foms1) © fom)(@n-1))
= h(f20 fi(zn-1))
= g2 0 g1(M(Tn-1))
= 920 g1((h(z))n-1)
= Yo(n+1) © Go(n) ((M(2))n-1)
= (h(m))n+l-
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Hence  is a conjugacy fromt X, §1, 01) to (Y, F2, 02).

However, f, is not conjugate to any of the mapsand g». For, if a; : (X, f2) — (Y, 9),
i=1,2 is a conjugacy, therfo(—1) = fo(—2) = fo(—3) = 4 would imply thatg;(«;(—1)) =
gi(a;(=2)) = gi(a;(—3)) = «;(4), which is a contradiction because a point¥hhas at most
two pre-images under any of the mapgsand g..

However, it can be observed thatifs a conjugacy from{ X, §, 01) to (Y, §2, 02), then for
anyz € X, ho fo,1)(x) = h(x1) = (h(z))1 = gop1) © k(). Thus,(X, fo, 1)) @and (Y, gop(1))
are conjugate. Hence, we have the following proposition.

Proposition 3.5.1f (X, 31, 01) and(Y, §, 02) are two conjugate switch systems, thiéh f,, 1))
and (Y, g»,(1)) are conjugate (usual) dynamical systems.

The following theorem can be easily proved using the definition of conjugacy. So, we state it
without giving an explicit proof.

Theorem 3.6. Leth be a conjugacy fron.X, §1, 01) to (Y, §2, 02) and letz € X. Then,
(i) = is periodic if and only ifa(x) is periodic.

(i) « is recurrent if and only if.(z) is recurrent.

(iii) (X, 31, 01) is transitive if and only i{Y, §2, 02) is transitive.

(iii) (X, 31, 01) is minimal if and only if(Y, §2, 02) is minimal.

Finally, we have the following theorem, which ensures the existence of a minimal set in a
switch system on a compact space. The same is true for a usual system also (see Proposition
2.1.2,[2]). In fact, the proof given in[2] for usual systems, also holds for the following theorem.
So, we simply state the theorem and omit the proof.

Theorem 3.7. Let (X, §, o) be a switch system. K is compact, thernX contains a minimal
set.

4. SWITCHING ROTATIONS ON S!

This section deals with a switch dynamical systef §, o), whereX = S andg is a family
of rotations onS*. We consider the circl€® as|0, 1]/, where only the end pointsand1 are
identified under the equivalence relatien In a usual dynamical systef$!, R,,), whereR,,
denotes the rotation — z + a(mod 1), the set of periodic points is either empty or the entire
spaceS?, depending upon whetheris irrational or rational respectively. We prove a similar
result for switch systems of rotations also.

Theorem 4.1.Letk € N and for eachl < i < k, leta; € R and definef; : St — St as
fi(x) = z + a;(mod 1). LetF = {f1, f2, ..., fx} ando be any switch function. Then in the
switch systeniS!, §, o), the set of periodic points?(F) is either empty oS, If P(F) = S*,

k

theno is a periodic function and there existse Z for eachl < i < k such that) " r;«; € Z.
=1

Proof. SupposeP(§) # 0 andz € S! is periodic with periodn € N. Thenz,,,,; = z; for
every0 <[ < m andn € N. In particular,z,,, = z, for everyn € N. This is the same as

To + Y as)(mod 1) = x¢ and then it follows that
=1

(4.1) Y aop €L
=1

for everyn € N.
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Proceeding along the same lines, for any | < m, we haver,,,,,,; = x;, or

nm-+l l
(:L’o + Z Qg (i) T Z Oég(i))(mOd 1) = (:L’o + Z aa(i))(mod 1).
i=nm+1 1:1
nm-+l
Hence, we have > o, Z Qo) € Z, 0r E(aa (nmti) — Qo(i)) € L.

=nm+1

Since this is true for ang < [ < m, it is easy to show by induction that, .11y — () € Z,
for every0 < | < m. This implies thatf,m+1) = f-@) and thusa,um) = ao() for every
0 <1 < m. Thereforeg is a perlodlc funct|on Wlth a periogh.

In view of ) we obtalnz aq(;) € Zforeveryn € N. Moreover, it follows that, for any

=1
ycS,neNando <l <m,

nm+l

Ynm+1 (yO + Z Qg (5) + Z . aU(i))(mOd 1)
i=nm-+
nm+l

=+ > g (i) (mod 1))

i=nm+1

= (yo + z; Qo)) (mod 1)

=Y.

The last equality follows becausejs periodic.

Thus,y is periodic and hencé’(&) = S
k

Finally, the expressm@ aq) € Z can be written as | r;o; € Z, by making some re-
=1
arrangements and also taklng soryie to be 0, if necessary

Theorem 4.2. Let § be a family of rotations o$! as described in the above theoreme lis a
periodic function, thertS*, §, o) is either minimal or every point in it is a periodic point.

Proof. Leto(nm + [) = o(l) for everyn € N and for everyl <[ < m andz € S'. Then, for
anyn € N, x,,,,, = xo + ns, whereg = Z o (i)

If 5 € Q, thengl € Z for someq € N and thuse,,,, = x¢. Sincegm is also a period fop, it
follows from Theoren 311, that is a periodic point. Thus, by Theordm J.1, every poinsin
is periodic.

If 5 € R\ Q, then{zg+ nB(modl) : n € N} = S and thus{z,, : n € N} = S'. Hence,
(51,5, 0) is a minimal systemg
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