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ABSTRACT. The notion of non-autonomous discrete dynamical systems is well studied in the
literature. On the other hand, a similar idea exists in literature for continuous dynamical systems
with the name switch dynamical systems. In this article, we interpret a non-autonomous dynam-
ical system as a switch system and describe how the dynamics of a non-autonomous dynamical
system can be better understood using the notion of switch.
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2 FAIZ IMAM AND SHARAN GOPAL

1. I NTRODUCTION

A continuous dynamical system on a topological spaceX, is the action of a semigroup{f t :
t ∈ R andt ≥ 0} onX, where eachf t is a continuous self map onX (or the group{f t : t ∈ R},
if eachf t is a homeomorphism) such thatf 0 is the identity map andf t+s = f t ◦ f s, for every
t and s. Now, instead of considering this one-parameter family of maps, if we have more
than one such family, say{f t

i : t ∈ R andt ≥ 0}, i ∈ {1, 2, ..., k} and consider the action of
different families at different instances of time, then we obtain a new notion of dynamics, called
a continuous switch dynamical system. This idea of “action of different functions at different
instances" is explained more precisely using a “switch function".

A continuous dynamical system arises naturally from the first order autonomous system of
ordinary differential equations. Now, lethi : Rn → Rn be aC1-map with bounded derivative
for eachi ∈ {1, 2, ..., k}. Consider the initial value problems

(1.1)

d

dt
x(i)(t) = hi(x

(i)), t ∈ R,

x(i)(0) = x0.

As it is well known, for eachi ∈ {1, 2, ..., k}, if φi(t, x0) is the solution map of (1.1), then
f t

i (x) = φi(t, x) gives a continuous dynamical system.
Letσ : R → {1, 2, ..., k} be a piecewise constant function i.e.,σ has finitely many discontinu-

ities in any bounded interval and on the interval between any two consecutive discontinuities,σ
is constant. The functionσ is called aswitch functionand its discontinuities are calledswitches.
For eachi ∈ {1, 2, ..., k}, let Ji = σ−1(i), which is a union of intervals, the endpoints of each
of which are the consecutive switches ofσ. Note thatR is the disjoint union ofJi’s.

Now, consider the following system.

(1.2)
ẋ(t) = hσ(t)(x), t ∈ R,

x(0) = x0.

By a solutionφ(t, x0) of this system (1.2), we meanφ(t, x0) = φi(t, x0), wherei ∈ {1, 2, ..., k}
is the unique index such thatt ∈ Ji andφi(t, x0) is the solution of (1.1) for the respective value
of i. These solutions of (1.2) corresponding to all values ofx0 give rise to a continuous switch
dynamical system in the following way.

For eachi ∈ {1, 2, ..., k}, consider the one-parameter family of functions,Fi = {f t
i : t ∈ R},

wheref t
i (x) = φi(t, x). The triplet (Rn, {F1,F2, ...,Fk}, σ) is called acontinuous switch

dynamical system. The trajectory of a pointx ∈ Rn in this system is given by(xt)t∈R, where
xt = f t

σ(t)(x). Continuous switch dynamical systems are studied by many people in literature
with main focus on stability (see, for instance [1], [3], [4] and [7]).

A non-autonomous discrete dynamical system(NDS), on the other hand, is defined as a topo-
logical spaceX together with a sequence(fn)n≥1 of continuous self maps. In this system, the
trajectory of a pointx ∈ X is defined as(xn)n≥0, wherexn = fn(xn−1) for everyn ≥ 1 and
x0 = x. The theory of NDS has an extensive literature (see [5], [6], [8] and [9]).

In this article, we interpret the dynamics of an NDS in the form of a switch system. We call
it as a discrete switch dynamical system which will be defined in the next section followed by a
discussion on other concepts of NDS using the idea of a switch.

The paper is organised as follows. Throughout this paper, in most of the instances, a discrete
switch dynamical system will be referred to as aswitch systemwhereas a discrete dynamical
system will be called ausual system. In the next section, we introduce the terminology related
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to study of switch systems. We prove some results on periodicity, transitivity, recurrent points,
conjugacy and minimality in Section 3. Then, in Section 4, we study switch systems of circle
rotations. Here again, we discuss the periodicity of these switching rotations on the circle.

2. TERMINOLOGY

We now develop terminology for switch systems. Most of the concepts defined here for
switch systems are generalizations of the corresponding notions in usual systems. However,
there are instances, where a switch system(X, F, σ) has a particular property with no usual
individual system(X, f) for f ∈ F having it. For instance, Example 3.1 gives a switch system
(X, {f1, f2}, σ) with X = [0, 2] ∪ [4, 6], in which the pointx = 1 is recurrent but it is recurrent
neither in(X, f1) nor in (X, f2). We now begin with definitions of a switch system and the
trajectory of a point in it.

Definition 2.1. Let X be a topological space,F = {f1, f2, ..., fk} be a family of continuous
self maps onX andσ : N → {1, 2, ..., k} be any map. The triplet(X, F, σ) is called adiscrete
switch dynamical system. For each pointx in X, the trajectory(xn)n≥0 of x is defined asx0 = x
andxn = fσ(n)(xn−1) for everyn ∈ N. The mapσ is called the switch function or simply as
the switch of the system(X, F, σ).

In a usual system(X, f), the trajectory of a pointx ∈ X is defined as(fn(x))n∈N0 i.e, thenth

term in the trajectory ofx is given byfn(x). In a switch system, thenth term of the trajectory
of x is given byxn = f(σ(n))f(σ(n−1))...f(σ(1))(x) i.e., the switchσ specifies which function to
apply at thenth time.

We assume that, in all the switch systems that are considered in this paper, the switchσ
is surjective andσ−1(i) is an infinite set for everyi ∈ {1, 2, ..., k}, i.e., eachfi in F occurs
infinitely many times in every trajectory. As a convention, we defineσ(0) = 0 andfσ(0)(x) = x,
for everyx ∈ X.

Definition 2.2. A switch functionσ is said to be a periodic function with a periodu, if σ(nu +
l) = σ(l) for every1 ≤ l ≤ u and for everyn ∈ N.

We will now define various dynamical notions for switch systems.

Definition 2.3. Let (X, F, σ) be a switch system.

(1) A pointx ∈ X is called a periodic point, if there is anm ∈ N such thatxnm+l = xl for
every0 ≤ l < m and for everyn ∈ N. Each such positive integerm is called a period
of x and the least among them is called the least period ofx.

(2) A pointx ∈ X is called a fixed point, ifxn = x for everyn ∈ N.
(3) Let x ∈ X. An elementy ∈ X is called anω-limit point of x, if there is a sequence

(nm) of positive integers such that(nm) → ∞ and(xnm) → y. The set of allω-limit
points ofx is denoted byω(x). Further, ifx ∈ ω(x), thenx is called a recurrent point.

(4) (X, F, σ) is called topologically transitive, if there is anx ∈ X such that{xn : n ∈ N0} =
X.

(5) A subsetV ⊂ X is called invariant, if for everyx ∈ V , xn ∈ V for everyn ∈ N.
(6) A closed non-empty invariant subsetV of X is called a minimal set, ifV does not

contain a proper closed, non-empty and invariant set. IfX itself is a minimal set, then
(X, F, σ) is a called a minimal switch system.

We now define the notion of topological conjugacy. In usual dynamical systems,(X, f) is
said to be topologically conjugate to(Y, g) if there is a homeomorphismh : X → Y such
thath ◦ f = g ◦ h. It follows that for every term(fn(x)) in the trajectory of a pointx ∈ X,
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we haveh(fn(x)) = gn(h(x)). However, for switch systems, we need to ensure this as a part
of the definition. After the following definition, we will simply use the wordsconjugacyand
conjugateinstead oftopological conjugacyandtopologically conjugaterespectively.

Definition 2.4. Let (X, F1, σ1) and(Y, F2, σ2) be two switch dynamical systems. If there is a
homeomorphismh : X → Y such that for anyx ∈ X, h(xn) = (h(x))n for everyn ∈ N, where
(xn) and((h(x))n) are the trajectories ofx andh(x) in (X, F1, σ1) and(Y,F2, σ2) respectively,
thenh is called a topological conjugacy from(X, F1, σ1) to (Y,F2, σ2). In such a case, the two
switch systems are said to be topologically conjugate.

3. M AIN RESULTS

In this section, we state and prove some results about the periodicity, transitivity,ω-limit
points, conjugacy and minimality. The following theorem gives a sufficient condition for ex-
istence of periodic points in a switch system. In a usual system(X, f), for a pointx ∈ X,
if fm(x) = x for somem ∈ N, thenx is a periodic point, but in a switch system(X, F, σ),
xm = x does not imply thatx is periodic. However, ifσ is a periodic function with the same
integerm as a period, then we prove in the following theorem thatx is a periodic point.

Theorem 3.1. Let (X, F, σ) be a switch dynamical system, whereσ is a periodic function with
a periodm ∈ N. If x ∈ X such thatxm = x, thenx is periodic in(X, F, σ).

Proof. It is enough to prove thatxn = xn(mod m) for everyn ∈ N. If m = 1, thenσ(n) = σ(1)
for everyn ∈ N i.e.,σ is a constant function. ThenF consists of only one function, sayf and
we have a usual dynamical system(X, f). Thenx1 = x is same as saying thatf(x) = x and
hencex is periodic (in fact, a fixed point).

Now, consider the case wherem > 1. It is obvious thatx1 = x1(mod m). Suppose that
xn = xn(mod m) for somen ∈ N. We now claim thatxn+1 = xn+1(mod m). We haven =
rm + l for some0 ≤ l < m, so thatxn = xl. Then,n + 1 = rm + l + 1 would imply that
σ(n + 1) = σ(l + 1) and thus,xn+1 = fσ(n+1)(xn) = fσ(l+1)(xl) = xl+1. If 0 ≤ l ≤ m − 2,
thenl + 1 = n + 1(mod m) and thus we havexn+1 = xn+1(mod m). In casel = m− 1, we have
xn+1 = xl+1 = xm. Since it is given thatxm = x, it follows thatxn+1 = x = x0 = xn+1(mod m).
Hence, by induction, we conclude thatx is periodic in(X, F, σ).

In the following proposition, we characterize the fixed points of a switch system(X, F, σ) in
terms of fixed points of the usual individual systems,(X, fi), whereF = {f1, f2, ..., fk}.

Proposition 3.2. Let (X, F, σ) be a switch system, whereF = {f1, f2, ..., fk}. An element
x ∈ X is a fixed point in(X, F, σ) if and only ifx is a fixed point in(X, fi) for every1 ≤ i ≤ k.

Proof. Supposex is a fixed point in(X, fi) for eachi. Thenx1 = fσ(1)(x) = x. Further, if
xn = x for somen ∈ N, thenxn+1 = fσ(n+1)(xn) = fσ(n+1)(x) = x. Thus, by induction,
xn = x for everyn ∈ N and hencex is a fixed point in(X, F, σ).

Now, assume thatx is a fixed point in(X, F, σ). Fix anfi ∈ F for some1 ≤ i ≤ k. We know
thatσ−1(i) is an infinite subset ofN. Choose anr ∈ σ−1(i). Then, using the hypothesis that
xn = x for everyn ∈ N, we getfi(x) = fσ(r)(x) = fσ(r)(xr−1) = xr = x.

Thus,x is a fixed point offi.

In literature, a usual dynamical system is said to be topologically transitive, if it has a dense
forward orbit. Notice that we have adopted the same definition for topological transitivity to
switch systems. Under certain mild conditions on a usual dynamical system(X, f), it can
be proved that, if for any two non-empty open setsU andV in X, there existsx ∈ U with
fn(x) ∈ V for somen ∈ N, then(X, f) is topologically transitive (See Proposition 2.2.1, [2]).
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Here we prove a similar result for switch systems assuming the same conditions. The proof
given here uses the ideas, similar to those used in proving the above mentioned result for usual
dynamical systems in [2].

Theorem 3.3. Let X be a second countable locally compact Hausdorff space. If for any two
non-empty open setsU andV in X, there exists anx ∈ U such thatxn ∈ V for somen ∈ N,
then(X, F, σ) is topologically transitive.

Proof. Fix an open setV in X. DefineV ′ =
∞⋃

n=1

f−1
σ(1)f

−1
σ(2)...f

−1
σ(n)(V ). If U is any non-empty

open set inX, then it is given that there is anx ∈ U with xn ∈ V for somen ∈ N. Now,
xn ∈ V implies thatfσ(n)(fσ(n−1)(...(fσ(1)(x))...)) ∈ V and thusx ∈ V ′ ∩ U . Since this is true
for any non-empty open setU , it follows thatV ′ is dense inX.

Choose a countable basis forX, say{Vi : i ∈ N}. For eachVi, defineV ′
i =

∞⋃
n=1

f−1
σ(1)f

−1
σ(2)..

..f−1
σ(n)(Vi). It follows from the above discussion thatV ′

i is dense inX for eachi. Thus, the set

Y =
∞⋂
i=1

V ′
i is intersection of countably many open dense sets inX. SinceX is locally compact

and Hausdorff, it is a Baire space. ThereforeY 6= ∅.
Now, choosey ∈ Y . Theny ∈ V ′

i for eachi ∈ N. This implies thaty ∈ f−1
σ(1)f

−1
σ(2)...f

−1
σ(n)(Vi)

and thusyn ∈ Vi for somen ∈ N. Thus,{yn : n ∈ N0} ∩ Vi 6= ∅ for eachi ∈ N. Since
{Vi : i ∈ N} is a basis forX, we get{yn : n ∈ N0} = X. Thus,(X, F, σ) is transitive.

We now turn our attention towards the study of recurrent points andω-limit points. The
following example shows that a pointx ∈ X can be a recurrent point in(X, F, σ) without being
a recurrent point in any individual usual system(X, fi) for i ∈ {1, 2, ..., k}. In other words,

ωF(x) 6⊂
k⋃

i=1

ωfi
(x), whereωF(x) andωfi

(x) are theω− limit sets ofx in (X, F, σ) and(X, fi)

respectively.

Example 3.1.LetX = [0, 2] ∪ [4, 6]. Definef1, f2 : X → X as

f1(x) =

{
x + 4, if x ∈ [0, 2],
x
2

+ 2, if x ∈ [4, 6],
andf2(x) =

{
x
2
, if x ∈ [0, 2],

x− 4, if x ∈ [4, 6].

Consider the switch system(X, F, σ), whereF = {f1, f2} andσ : N → {1, 2}, defined as

σ(n) =

{
1, if n is odd,
2, if n is even.

Letx = 1. Then the trajectory ofx is given by

xn =

{
1, if n = 0 or n is even,
5, if n is odd.

.

Thus,(xn2m) → 1 and hence,x = 1 is a recurrent point in(X, F, σ). However,x = 1 is a
recurrent point neither in(X, f1) nor in (X, f2), becauseωf1(1) = {4} andωf2(1) = {0}.

However, we can ensure that, ify ∈ ω(x) in (X, F, σ), then y ∈ R(fi) for somei ∈
{1, 2, ..., k}, whereR(fi) is the range offi. This is proved in the following theorem.

Theorem 3.4. If y ∈ ω(x) in (X, F, σ) for somex ∈ X, then y ∈ R(fi) for somei ∈
{1, 2, ..., k}, whereR(fi) is the range offi.

Proof. By definition, for everym ∈ N, there is annm ∈ N such thatxnm ∈ B(y, 1
m

) and
(nm) → ∞. In other words,fσ(nm)(xnm−1) ∈ B(y, 1

m
) and thusR(fσ(nm)) ∩ B(y, 1

m
) 6= ∅
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for everym ∈ N. Sinceσ can take only finitely many values, there is ani ∈ {1, 2, ..., k}
such thatσ(nm) = i for infinitely manym. We now claim thaty ∈ R(fi). For anyε > 0,
there is anN ∈ N such thatB(y, 1

N
) ⊂ B(y, ε). Sinceσ(nm) = i for infinitely manym,

there is aK ∈ N such thatK > N and σ(nK) = i. ThenB(y, 1
K

) ⊂ B(y, ε) and thus
R(fi) ∩B(y, ε) = R(fσ(nK)) ∩B(y, ε) ⊃ R(fσ(nK)) ∩B(y, 1

K
) 6= ∅. Hence the claim.

The following example is another instance to show the difference between usual and switch
dynamical systems. Here, the switch systems(X, F1, σ1) and(Y,F2, σ2) are conjugate but the
mapf2 ∈ F1 is not conjugate to any of the maps inF2 = {g1, g2}.

Example 3.2.LetX = Y = R. Define mapsf1, f2, g1 andg2 onR as follows

f1(x) =

{
x + 1, if x ≥ 0
1− x, if x < 0

, f2(x) =

{
x + 4, if x ≥ 0
4, if x < 0

g1(x) =

{
x + 1

2
, if x ≥ 0

1
2
− x, if x < 0

, g2(x) =

{
x + 2, if x ≥ 0
2− x, if x < 0

.

Consider the switch systems(X, F1, σ1) and(Y,F2, σ2), whereF1 = {f1, f2}, F2 = {g1, g2}

andσ1(n) = σ2(n) =

{
1, if n is odd
2, if n is even

. Let us denoteσ = σ1 = σ2.

Now, defineh : X → Y ash(x) = x
2
. We now show thath is a conjugacy from(X, F1, σ1)

to (Y,F2, σ2).
For anyx ∈ X, note that

(3.1) h(f1(x)) = g1(h(x)) =

{
x
2

+ 1
2
, if x ≥ 0

1
2
− x

2
, if x < 0

and

(3.2) h(f2(f1(x))) = g2(g1(h(x))) =

{
x
2

+ 5
2
, if x ≥ 0

5
2
− x

2
, if x < 0

.

We now prove thath(xn) = (h(x))n for everyn ∈ N using induction. The above calculations
show that the statement is true forn = 1 andn = 2. Assume now thath(xk) = (h(x))k for
everyk ≤ n.
If n is even, then

h(xn+1) = h(fσ(n+1)(xn))
= h(f1(xn))
= g1(h(xn))
= g1((h(x))n)
= gσ(n+1)((h(x))n)
= (h(x))n+1.

If n is odd, then

h(xn+1) = h(fσ(n+1)(xn))
= h(fσ(n+1) ◦ fσ(n)(xn−1))
= h(f2 ◦ f1(xn−1))
= g2 ◦ g1(h(xn−1))
= g2 ◦ g1((h(x))n−1)
= gσ(n+1) ◦ gσ(n)((h(x))n−1)
= (h(x))n+1.
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Hence,h is a conjugacy from(X, F1, σ1) to (Y,F2, σ2).
However,f2 is not conjugate to any of the mapsg1 and g2. For, if αi : (X, f2) → (Y, gi),

i=1,2 is a conjugacy, thenf2(−1) = f2(−2) = f2(−3) = 4 would imply thatgi(αi(−1)) =
gi(αi(−2)) = gi(αi(−3)) = αi(4), which is a contradiction because a point inY has at most
two pre-images under any of the mapsg1 andg2.

However, it can be observed that ifh is a conjugacy from(X, F1, σ1) to (Y,F2, σ2), then for
anyx ∈ X, h ◦ fσ1(1)(x) = h(x1) = (h(x))1 = gσ2(1) ◦ h(x). Thus,(X, fσ1(1)) and(Y, gσ2(1))
are conjugate. Hence, we have the following proposition.

Proposition 3.5. If (X, F1, σ1) and(Y,F2, σ2) are two conjugate switch systems, then(X, fσ1(1))
and(Y, gσ2(1)) are conjugate (usual) dynamical systems.

The following theorem can be easily proved using the definition of conjugacy. So, we state it
without giving an explicit proof.

Theorem 3.6.Leth be a conjugacy from(X, F1, σ1) to (Y,F2, σ2) and letx ∈ X. Then,
(i) x is periodic if and only ifh(x) is periodic.
(ii) x is recurrent if and only ifh(x) is recurrent.
(iii) (X, F1, σ1) is transitive if and only if(Y,F2, σ2) is transitive.
(iii) (X, F1, σ1) is minimal if and only if(Y,F2, σ2) is minimal.

Finally, we have the following theorem, which ensures the existence of a minimal set in a
switch system on a compact space. The same is true for a usual system also (see Proposition
2.1.2, [2]). In fact, the proof given in [2] for usual systems, also holds for the following theorem.
So, we simply state the theorem and omit the proof.

Theorem 3.7. Let (X, F, σ) be a switch system. IfX is compact, thenX contains a minimal
set.

4. SWITCHING ROTATIONS ON S1

This section deals with a switch dynamical system(X, F, σ), whereX = S1 andF is a family
of rotations onS1. We consider the circleS1 as[0, 1]/∼, where only the end points0 and1 are
identified under the equivalence relation∼. In a usual dynamical system(S1, Rα), whereRα

denotes the rotationx 7→ x + α(mod 1), the set of periodic points is either empty or the entire
spaceS1, depending upon whetherα is irrational or rational respectively. We prove a similar
result for switch systems of rotations also.

Theorem 4.1. Let k ∈ N and for each1 ≤ i ≤ k, let αi ∈ R and definefi : S1 → S1 as
fi(x) = x + αi(mod 1). Let F = {f1, f2, ..., fk} and σ be any switch function. Then in the
switch system(S1, F, σ), the set of periodic points,P (F) is either empty orS1. If P (F) = S1,

thenσ is a periodic function and there existsri ∈ Z for each1 ≤ i ≤ k such that
k∑

i=1

riαi ∈ Z.

Proof. SupposeP (F) 6= ∅ andx ∈ S1 is periodic with periodm ∈ N. Thenxnm+l = xl for
every0 ≤ l < m andn ∈ N. In particular,xnm = x0 for everyn ∈ N. This is the same as

x0 +
nm∑
i=1

ασ(i)(mod 1) = x0 and then it follows that

(4.1)
nm∑
i=1

ασ(i) ∈ Z

for everyn ∈ N.
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Proceeding along the same lines, for any0 ≤ l < m, we havexnm+l = xl, or

(x0 +
nm∑
i=1

ασ(i) +
nm+l∑

i=nm+1

ασ(i))(mod 1) = (x0 +
l∑

i=1

ασ(i))(mod 1).

Hence, we have
nm+l∑

i=nm+1

ασ(i) −
l∑

i=1

ασ(i) ∈ Z, or
l∑

i=1

(ασ(nm+i) − ασ(i)) ∈ Z.

Since this is true for any0 ≤ l < m, it is easy to show by induction thatασ(nm+l) − ασ(l) ∈ Z,
for every0 ≤ l < m. This implies thatfσ(nm+l) = fσ(l) and thusασ(nm+l) = ασ(l) for every
0 ≤ l < m. Therefore,σ is a periodic function with a periodm.

In view of (4.1), we obtain
nm∑
i=1

ασ(i) ∈ Z for everyn ∈ N. Moreover, it follows that, for any

y ∈ S1, n ∈ N and0 ≤ l < m,

ynm+l = (y0 +
nm∑
i=1

ασ(i) +
nm+l∑

i=nm+1

ασ(i))(mod 1)

= (y0 +
nm+l∑

i=nm+1

ασ(i)(mod 1))

= (y0 +
l∑

i=1

ασ(i))(mod 1)

= yl.

The last equality follows because,σ is periodic.
Thus,y is periodic and henceP (F) = S1.

Finally, the expression
nm∑
i=1

ασ(i) ∈ Z can be written as
k∑

i=1

riαi ∈ Z, by making some re-

arrangements and also taking someri’s to be 0, if necessary.

Theorem 4.2.LetF be a family of rotations onS1 as described in the above theorem. Ifσ is a
periodic function, then(S1, F, σ) is either minimal or every point in it is a periodic point.

Proof. Let σ(nm + l) = σ(l) for everyn ∈ N and for every1 ≤ l ≤ m andx ∈ S1. Then, for

anyn ∈ N, xnm = x0 + nβ, whereβ =
m∑

i=1

ασ(i).

If β ∈ Q, thenqβ ∈ Z for someq ∈ N and thusxqm = x0. Sinceqm is also a period forσ, it
follows from Theorem 3.1, thatx is a periodic point. Thus, by Theorem 4.1, every point inS1

is periodic.
If β ∈ R \ Q, then{x0 + nβ(mod1) : n ∈ N} = S1 and thus{xn : n ∈ N} = S1. Hence,

(S1, F, σ) is a minimal system.
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