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2 NENAD UJEVIC AND IVAN LEKIC

1. INTRODUCTION

In recent years a number of authors have considered weighted integral inequalities. These
inequalities, very often, give error bounds for weighted quadrature formulae. The authors con-
sidered both, 1-dimensional and n-dimensional cases. For example, this topic is considered
in [2]-[7] and [9]-[12]. In many cases obtained error inequalities are generalizations of the
well-known Ostrowski integral inequality.

In this paper we establish a general weighted integration formula and emphasize a particular
case of this formula. We also give few error inequalities for the weighted integration formula
which can be considered (in some sense) as generalizations of the Ostrowski inequality but here
we call more attention to applications of these inequalities. We use Appell-like sequences of
functions to obtain the general integration formula. This further leads to use of the Beta and
Gamma functions. We only briefly sketch possible applications of Bernoulli polynomials in
such formulae. Finally, as illustrative examples of applications we give applications to some
special functions. We consider the Fresnel and Dawson integrals and Error function.

2. MAIN RESULTS

We recall some properties of the Beta function

(2.1) B(a, B) = /1(1 — )24 dt, o, B> 0,
0

and the Gamma function
2.2 I'(z)= T ~td 0.
(2.2) (2) /0 e tdt, 2 >
We have

_ T(@)I(B)
(2:3) Blof)= TG+ 5
(2.4) I'(n)=(Mm-1)!, ne N,

1, 1:3:-5---(2n—-1) 1 (2n—1)N_1
(2.5) I'(n + 5) = o F(§) = 2—nr(§)7
(2.6) r(;)=va
We also define
1flloe = = HOIE

i1 = [ 150l

Definition 2.1. We say that the sequen¢é) (¢, s)},” forms an Appell-like (or harmonic) se-
guence of functions with respect to the first variabiie

8Qk(t, S)

2.7) >

= Qk—l(tys), Qo(t,s) =1.
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Further, we define the functions

(2.8) P(t) = /t Qr—1(t, s)w(s)ds, t€la,b], k=1,2,..,
wherew(s) is an integrable function. Then we have
(2.9) Pi(t) = / E)Qka—l(ts) (s)ds 4+ Qp—1(t, t)w(t)

- / Qr—2(t, s)w(s)ds + Qr_1(t, t)w(t)

= Pa(t) + Quoa(t, t)w(t).

If Qr(t,t) =0,k >1,thenP/(t) = Py_1(t), Py(t) = w(t) and{ Px(t)}]" is an Appell-like (or
harmonic) sequence of functions.

Theorem 2.1. Let the sequencéQy(t, s)},” forms an Appell-like sequence of functions with
respect to the first variableand letP;(¢) be defined by (2]8). If € C"(a,b) then

n

(2.10) / W FB)dt = S (=1 R () FE )

#3 D [ Qutt () D@t + R,

where
(2.11) O Pl -

Proof. Integrating by parts, we obtain
b
(212)  (=1)" / Po(t)f ™M (t)dt = (=1)" [Po(0) f"V(b) = Pula) f"V(a)]

b
I / P8 £ (1)t
From (2.12) and (2]9) it follows that

(—1)" / ()™ ()t = (—1)"Pn(b)f(”_”(b)

sinceP,(a) = 0. In a similar way we get

b
(_1)n_1/ Pn—l(t)f(n_l)(t)dt = (—1)"‘1Pn_1(b)f("—2)(b)
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Continuing in this way we get
@13 (-1 | PO/ = 3RO

k=1

F3C0 [ Qe o 4

b
+/ w(t) f(t)de.
We see thaf (2.13) is equivalent fo (3.10). We also have
b
R(H = (-1 [ R 0y

such that it is not difficult to see that (2]11) holds, tgo.
Corollary 2.2. Let the assumptions of Theorgm|2.1 holdQ}{t,t) = 0, k > 1, then

b n

(2.14) / w(t) f(dt = S (—1)FB(b) FED0) + R(F),
a k=1

where

(2.15) RO < || 1Pl

Remark 2.1. Here we do not consider all possibilities of applications of the above theorem.
We only mention some facts about that. We can choose

n

Qultss) = 3 gt =9

k=0

wherec, are arbitrary coefficients. Further, inl [8] we can find some Appell (or harmonic)
sequences of polynomials. They can be used for construction of the fun@ighss). For

example,
b—a)” t—s
Qult.s) = | Kl "h (b—a)’

where By (t) are Bernoulli polynomials. We havg),(t) = kBj;_1(t) andQx(t,t) = (b_k‘!‘)kBk,

whereB;, = By (0) are Bernoulli numbersK,,.; = 0, £ > 1). More about this polynomials
and numbers can be found in [1].

Here we emphasize only one application (to special functions) of the above theorem. For that
purpose we need the following variant of Theofenj 2.1.

Theorem 2.3.Let f € C"(a,b) and3 > —1. Then

@16 [ aswa =3 Oy e 4 m),

= (k+8+1)
where
I +1 n 1 n
@247 R < g = o 1]
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Proof. We define

(2.18) Qr(t,s) =
From (2.8) and[(2.18) we have

% b):/ Qk_l(b,s)(s—a)ﬁds:/ %(s—a)ﬁd&

If we substituteu = s — a then we get

Pi(b) = /ab (b ?ka__f;)!“uﬂdu - % /ab <1 - . a>k_1uﬁdu.

We now substitute = «/(b — a). Then we have
bh— )8 ot
%/ (1 — U)k_lfl]ﬁdv.
EENA
From (2.19) and (2]1)-(2.4) it follows that

(2.19) Pi(b) =

(- a) (b= a)"PT(R)T(B+1)
(2.20) P®) = = B S = T Tt a4 1)
LB+ s

I'(k+p8+1)

From [2.14) and (2.20) we see that (2.16) holds. Ffom [2.15) and (2.20) we find that
(n) ’ ’ (b — S)nil Jé;
R < Il [ [ S = aas)

(n—1)!
1 1 n
— |l /IP )| dt = (<f;+) LA T

IN

such that[(2.17) holds, toa.
Corollary 2.4. Let f € C"(a,b). Then

b n k(h— a)k
(2.21) / %dtzg(—l)k“%ﬂk D(b) + R(f),
where
(2.22) RU)| < oo (b= a)™* [ 7]

(2n — 1!
Proof. We use((2.5) and apply Theor¢m|2.3 with= —1/2. &

3. APPLICATIONS TO SPECIAL FUNCTIONS

We consider the Fresnel integrals
(3.1) FS(x) = / sint?*dt and FC(z) = / cost?dt,
0 0
the Dawson integral

(3.2) D(z) = /Om et dt
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and the Error function

(3.3) Erf(z) = ; NG /
Proposition 3.1. Let 'S (x) be defined by (3|1)hen
(3.4) FS(x) = xsina®S,(z) + x cos 2°C(x) + Ry,
where
= o Q2
J
(3.5) Z AT
7=0
( ) 2 22j+1 4542
3.6 _—
= 0 (47 +3)!
and
2N e 2n+1
(3.7) |R,| < 2n =i
Proof. We substitute: = 0 and f(¢) = sint in (2.21). We have
(3.8) fE(b) = (=1) sinb,
(3.9) FEFDB) = (=1) cosb, 7 =0,1,2, ...
If £ —lisevenk =25+ 1, then3.8) holds and
2k (b — &)kfé 92j+1p2j+3% ‘
\k (k=1)(7\ _ _ ;
(3.10) (—1) oo (b) = e (—1)? sinb.
If k£ — 1is odd,k = 2j + 2, then[3.9) holds and
2b(b — a)k2 QUYUEE
B Y e S (2t DS N W S
(3.11) (—1) ok =11 () = I (—1)’ cosb.
From (2.21),[(3.70) and (3..1) we get
b [*2*] 2j+17,2j+3
(3.12) / sty 3 B i sing
0o Vit pr (47 + )N
2] 22j+2b2j+§( )
——— X (—1)? cosb.
S (4 +3)!

We also have

v 1 [* sint
(3.13) / sinu?du = = ——dt.
0 2Jo Vit

If we now substituté = 22 in (3.12) then from([(3.13) we see that (3.4) holds. We easily get the
estimate[(3]7) fron{ (2.22)
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Proposition 3.2. Let 'C(z) be defined by (3|1hen

(3.14) FC(z) = zcos xSy (z) — zsin2?Cp,(z) + Ry,
wheresS,, (z) andC,,(x) are defined by[ (3]5) anfl (3.6) and
3.15 2nx2n+1
. n| < .
(3.19) [Fen] (2n — 1)!!

Proof. The proof is similar to the proof of Propositipn [3.1.
We substitute: = 0 and f(¢) = cost in (2.21). We have

(3.16) fE(b) = (=1)’ cosb,
(3.17) FEHD(B) = (=1)H sinb, j = 0,1,2, ...
If £ — 1lisevenk =25+ 1, then [3.1p) holds and
k(b —a)2 92 +1p2i+3 .
( ) (45 +1)
If £ — 1isodd,k =25 + 2, then [3.1F) holds and
2k (b — a)k—% 92j+2)2j+3 .
C\k k=D(p)y = 27 20 {)ig
(3.19) (—1) ki fEH(0) = @3 (—1)7 sinb.
From (2.21),((3.18) and (3.19) we get
b cost 2] 22iH+1p2i+5 ,
(3.20) —dt = -— ————(—1) cosb
o Vi 2 oY
2] 22j+2b2j+%( Y
——  (—1)’ sinb.
g (45 4+ 3)!
We also have
¥ 1 [* cost
(3.21) / cos u’du = — —dt.
0 2 0 ﬁ

If we now substituteh = 22 in (3.20) then from[(3.21) we see that (3.14) holds
estimate[(3.1]5) fronf (2.22)

Proposition 3.3. Let D(z) be defined by (3]2). Then

n 2kI2k_1 )
.22 D(z) = S
where
2nx2n+1 9
2 < — ",
(3.23) 1l = o —7y°

Proof. We substitute: = 0 and f(¢) = €’ in (2.21). We have
fO)=e k=0,1,2,...
We also have

x 1 x
(3.24) / e du = —/
0 2 0
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and
2k (b — )k z okph—3

k29T A) 2 -1y (k2P 2
oo O = U e

From (2.21),[(3.24) andl (3.25) with= x? we easily find tha{ (3.22) holds. The estimate (8.23)
follows immediately from[(Z2.22)x

Proposition 3.4. Let Er f () be defined by (3]3). Then

1 n 2k—1$2k—1

(3.25) (—1)

2

2 E = w7
(3.26) rf(z) NG 2 (2k—1)!!e + R,
where

1 on 2n+1 9
(3.27) IR,| < T

= 2y (2n — 1)!!
Proof. The proof is similar to the proof of Propositipn [3.3.
We substitute: = 0 and f(¢) = e~"in (2.21). We have

fO@) = (=Dket k=0,1,2,...
We also have

2

(3.28) / Sy = L / S
. e U = = —
0 2 0 \/Z
and
25(b—a)*2 2hF3
C1\k k=-D(p) =
(3.29) Ty TR A Rl T NI

From (2.21),[(3-28) andl (3.29) with= x? we easily find tha{ (3.26) holds. The estimate (8.27)
follows immediately from[(2.22)x
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