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2 NENAD UJEVIĆ AND IVAN LEKIĆ

1. I NTRODUCTION

In recent years a number of authors have considered weighted integral inequalities. These
inequalities, very often, give error bounds for weighted quadrature formulae. The authors con-
sidered both, 1-dimensional and n-dimensional cases. For example, this topic is considered
in [2]–[7] and [9]-[12]. In many cases obtained error inequalities are generalizations of the
well-known Ostrowski integral inequality.

In this paper we establish a general weighted integration formula and emphasize a particular
case of this formula. We also give few error inequalities for the weighted integration formula
which can be considered (in some sense) as generalizations of the Ostrowski inequality but here
we call more attention to applications of these inequalities. We use Appell-like sequences of
functions to obtain the general integration formula. This further leads to use of the Beta and
Gamma functions. We only briefly sketch possible applications of Bernoulli polynomials in
such formulae. Finally, as illustrative examples of applications we give applications to some
special functions. We consider the Fresnel and Dawson integrals and Error function.

2. M AIN RESULTS

We recall some properties of the Beta function

(2.1) B(α, β) =

∫ 1

0

(1− t)α−1tβ−1dt, α, β > 0,

and the Gamma function

(2.2) Γ(z) =

∫ ∞

0

tz−1e−tdt, z > 0.

We have

(2.3) B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
,

(2.4) Γ(n) = (n− 1)!, n ∈ N,

(2.5) Γ(n +
1

2
) =

1 · 3 · 5 · · · (2n− 1)

2n
Γ(

1

2
) =

(2n− 1)!!

2n
Γ(

1

2
),

(2.6) Γ(
1

2
) =

√
π.

We also define

‖f‖∞ = sup
t∈[a,b]

|f(t)| ,

‖f‖1 =

∫ b

a

|f(t)| dt.

Definition 2.1. We say that the sequence{Qk(t, s)}∞0 forms an Appell-like (or harmonic) se-
quence of functions with respect to the first variablet if

(2.7)
∂Qk(t, s)

∂t
= Qk−1(t, s), Q0(t, s) = 1.

AJMAA, Vol. 5, No. 1, Art. 16, pp. 1-9, 2008 AJMAA

http://ajmaa.org
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Further, we define the functions

(2.8) Pk(t) =

∫ t

a

Qk−1(t, s)w(s)ds, t ∈ [a, b] , k = 1, 2, ...,

wherew(s) is an integrable function. Then we have

P ′
k(t) =

∫ t

a

∂Qk−1(t, s)

∂t
w(s)ds + Qk−1(t, t)w(t)(2.9)

=

∫ t

a

Qk−2(t, s)w(s)ds + Qk−1(t, t)w(t)

= Pk−1(t) + Qk−1(t, t)w(t).

If Qk(t, t) = 0, k ≥ 1, thenP ′
k(t) = Pk−1(t), P0(t) = w(t) and{Pk(t)}∞1 is an Appell-like (or

harmonic) sequence of functions.

Theorem 2.1. Let the sequence{Qk(t, s)}∞0 forms an Appell-like sequence of functions with
respect to the first variablet and letPk(t) be defined by (2.8). Iff ∈ Cn(a, b) then∫ b

a

w(t)f(t)dt =
n∑

k=1

(−1)k+1Pk(b)f
(k−1)(b)(2.10)

+
n∑

k=2

(−1)k+1

∫ b

a

Qk−1(t, t)w(t)f (k−1)(t)dt + R(f),

where

(2.11) |R(f)| ≤
∥∥f (n)

∥∥
∞ ‖Pn‖1 .

Proof. Integrating by parts, we obtain

(−1)n

∫ b

a

Pn(t)f (n)(t)dt = (−1)n
[
Pn(b)f (n−1)(b)− Pn(a)f (n−1)(a)

]
(2.12)

+(−1)n−1

∫ b

a

P ′
n(t)f (n−1)(t)dt.

From (2.12) and (2.9) it follows that

(−1)n

∫ b

a

Pn(t)f (n)(t)dt = (−1)nPn(b)f (n−1)(b)

+(−1)n−1

∫ b

a

Qn−1(t, t)w(t)f (n−1)(t)dt

+(−1)n−1

∫ b

a

Pn−1(t)f
(n−1)(t)dt,

sincePn(a) = 0. In a similar way we get

(−1)n−1

∫ b

a

Pn−1(t)f
(n−1)(t)dt = (−1)n−1Pn−1(b)f

(n−2)(b)

+(−1)n−2

∫ b

a

Qn−2(t, t)w(t)f (n−2)(t)dt

+(−1)n−2

∫ b

a

Pn−2(t)f
(n−2)(t)dt.
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Continuing in this way we get

(−1)n

∫ b

a

Pn(t)f (n)(t)dt =
n∑

k=1

(−1)kPk(b)f
(k−1)(b)(2.13)

+
n∑

k=2

(−1)k−1

∫ b

a

Qk−1(t, t)w(t)f (k−1)(t)dt

+

∫ b

a

w(t)f(t)dt.

We see that (2.13) is equivalent to (2.10). We also have

R(f) = (−1)n

∫ b

a

Pn(t)f (n)(t)dt

such that it is not difficult to see that (2.11) holds, too.

Corollary 2.2. Let the assumptions of Theorem 2.1 hold. IfQk(t, t) = 0, k ≥ 1, then

(2.14)
∫ b

a

w(t)f(t)dt =
n∑

k=1

(−1)k+1Pk(b)f
(k−1)(b) + R(f),

where

(2.15) |R(f)| ≤
∥∥f (n)

∥∥
∞ ‖Pn‖1 .

Remark 2.1. Here we do not consider all possibilities of applications of the above theorem.
We only mention some facts about that. We can choose

Qn(t, s) =
n∑

k=0

ck

(n− k)!
(t− s)n−k,

whereck are arbitrary coefficients. Further, in [8] we can find some Appell (or harmonic)
sequences of polynomials. They can be used for construction of the functionsQk(t, s). For
example,

Qk(t, s) =
(b− a)k

k!
Bk

(
t− s

b− a

)
,

whereBk(t) are Bernoulli polynomials. We haveB′
k(t) = kBk−1(t) andQk(t, t) = (b−a)k

k!
Bk,

whereBk = Bk(0) are Bernoulli numbers (B2k+1 = 0, k ≥ 1). More about this polynomials
and numbers can be found in [1].

Here we emphasize only one application (to special functions) of the above theorem. For that
purpose we need the following variant of Theorem 2.1.

Theorem 2.3.Letf ∈ Cn(a, b) andβ > −1. Then

(2.16)
∫ b

a

(t− a)βf(t)dt =
n∑

k=1

(−1)k+1 Γ(β + 1)

Γ(k + β + 1)
(b− a)k+βf (k−1)(b) + R(f),

where

(2.17) |R(f)| ≤ Γ(β + 1)

Γ(n + β + 1)
(b− a)n+β+1

∥∥f (n)
∥∥
∞ .
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Proof. We define

(2.18) Qk(t, s) =
(t− s)k

k!
andw(s) = (s− a)β.

From (2.8) and (2.18) we have

Pk(b) =

∫ b

a

Qk−1(b, s)(s− a)βds =

∫ b

a

(b− s)k−1

(k − 1)!
(s− a)βds.

If we substituteu = s− a then we get

Pk(b) =

∫ b

a

(b− a− u)k−1

(k − 1)!
uβdu =

(b− a)k−1

(k − 1)!

∫ b

a

(
1− u

b− a

)k−1

uβdu.

We now substitutev = u/(b− a). Then we have

(2.19) Pk(b) =
(b− a)k+β

(k − 1)!

∫ 1

0

(1− v)k−1vβdv.

From (2.19) and (2.1)-(2.4) it follows that

Pk(b) =
(b− a)k+β

(k − 1)!
B(k, β + 1) =

(b− a)k+β

(k − 1)!

Γ(k)Γ(β + 1)

Γ(k + β + 1)
(2.20)

=
Γ(β + 1)

Γ(k + β + 1)
(b− a)k+β.

From (2.14) and (2.20) we see that (2.16) holds. From (2.15) and (2.20) we find that

|R(f)| ≤
∥∥f (n)

∥∥
∞

∫ b

a

∣∣∣∣∫ b

a

(b− s)n−1

(n− 1)!
(s− a)βds

∣∣∣∣ dt

=
∥∥f (n)

∥∥
∞

∫ b

a

|Pn(b)| dt =
Γ(β + 1)

Γ(n + β + 1)
(b− a)n+β+1

∥∥f (n)
∥∥
∞

such that (2.17) holds, too.

Corollary 2.4. Letf ∈ Cn(a, b). Then

(2.21)
∫ b

a

f(t)√
t− a

dt =
n∑

k=1

(−1)k+1 2k(b− a)k− 1
2

(2k − 1)!!
f (k−1)(b) + R(f),

where

(2.22) |R(f)| ≤ 2n

(2n− 1)!!
(b− a)n+ 1

2

∥∥f (n)
∥∥
∞ .

Proof. We use (2.5) and apply Theorem 2.3 withβ = −1/2.

3. APPLICATIONS TO SPECIAL FUNCTIONS

We consider the Fresnel integrals

(3.1) FS(x) =

∫ x

0

sin t2dt andFC(x) =

∫ x

0

cos t2dt,

the Dawson integral

(3.2) D(x) =

∫ x

0

et2dt
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and the Error function

(3.3) Erf(x) =
1

2
√

π

∫ x

0

e−t2dt.

Proposition 3.1. LetFS(x) be defined by (3.1). Then

(3.4) FS(x) = x sin x2Sn(x) + x cos x2Cn(x) + Rn,

where

(3.5) Sn(x) =

[n−1
2 ]∑

j=0

(−1)j 22jx4j

(4j + 1)!!
,

(3.6) Cn(x) =

[n−2
2 ]∑

j=0

(−1)j+1 22j+1x4j+2

(4j + 3)!!

and

(3.7) |Rn| ≤
2nx2n+1

(2n− 1)!!
.

Proof. We substitutea = 0 andf(t) = sin t in (2.21). We have

(3.8) f (2j)(b) = (−1)j sin b,

(3.9) f (2j+1)(b) = (−1)j cos b, j = 0, 1, 2, ...

If k − 1 is even,k = 2j + 1, then (3.8) holds and

(3.10) (−1)k 2k(b− a)k− 1
2

(2k − 1)!!
f (k−1)(b) = −22j+1b2j+ 1

2

(4j + 1)!!
(−1)j sin b.

If k − 1 is odd,k = 2j + 2, then (3.9) holds and

(3.11) (−1)k 2k(b− a)k− 1
2

(2k − 1)!!
f (k−1)(b) = −22j+2b2j+ 3

2

(4j + 3)!!
(−1)j cos b.

From (2.21), (3.10) and (3.11) we get∫ b

0

sin t√
t

dt = −
[n−1

2 ]∑
j=0

22j+1b2j+ 1
2

(4j + 1)!!
(−1)j+1 sin b(3.12)

−
[n−2

2 ]∑
j=0

22j+2b2j+ 3
2

(4j + 3)!!
(−1)j cos b.

We also have

(3.13)
∫ x

0

sin u2du =
1

2

∫ x2

0

sin t√
t

dt.

If we now substituteb = x2 in (3.12) then from (3.13) we see that (3.4) holds. We easily get the
estimate (3.7) from (2.22).
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Proposition 3.2. LetFC(x) be defined by (3.1). Then

(3.14) FC(x) = x cos x2Sn(x)− x sin x2Cn(x) + Rn,

whereSn(x) andCn(x) are defined by (3.5) and (3.6) and

(3.15) |Rn| ≤
2nx2n+1

(2n− 1)!!
.

Proof. The proof is similar to the proof of Proposition 3.1.
We substitutea = 0 andf(t) = cos t in (2.21). We have

(3.16) f (2j)(b) = (−1)j cos b,

(3.17) f (2j+1)(b) = (−1)j+1 sin b, j = 0, 1, 2, ...

If k − 1 is even,k = 2j + 1, then (3.16) holds and

(3.18) (−1)k 2k(b− a)k− 1
2

(2k − 1)!!
f (k−1)(b) = −22j+1b2j+ 1

2

(4j + 1)!!
(−1)j cos b.

If k − 1 is odd,k = 2j + 2, then (3.17) holds and

(3.19) (−1)k 2k(b− a)k− 1
2

(2k − 1)!!
f (k−1)(b) = −22j+2b2j+ 3

2

(4j + 3)!!
(−1)j sin b.

From (2.21), (3.18) and (3.19) we get∫ b

0

cos t√
t

dt = −
[n−1

2 ]∑
j=0

22j+1b2j+ 1
2

(4j + 1)!!
(−1)j cos b(3.20)

−
[n−2

2 ]∑
j=0

22j+2b2j+ 3
2

(4j + 3)!!
(−1)j sin b.

We also have

(3.21)
∫ x

0

cos u2du =
1

2

∫ x2

0

cos t√
t

dt.

If we now substituteb = x2 in (3.20) then from (3.21) we see that (3.14) holds. We get the
estimate (3.15) from (2.22).

Proposition 3.3. LetD(x) be defined by (3.2). Then

(3.22) D(x) =
n∑

k=1

(−1)k+1 2kx2k−1

(2k − 1)!!
ex2

+ Rn,

where

(3.23) |Rn| ≤
2nx2n+1

(2n− 1)!!
ex2

.

Proof. We substitutea = 0 andf(t) = et in (2.21). We have

f (k)(t) = et, k = 0, 1, 2, ...

We also have

(3.24)
∫ x

0

eu2

du =
1

2

∫ x2

0

et

√
t
dt
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and

(3.25) (−1)k 2k(b− a)k− 1
2

(2k − 1)!!
f (k−1)(b) = (−1)k 2kbk− 1

2

(2k − 1)!!
eb.

From (2.21), (3.24) and (3.25) withb = x2 we easily find that (3.22) holds. The estimate (3.23)
follows immediately from (2.22).

Proposition 3.4. LetErf(x) be defined by (3.3). Then

(3.26) Erf(x) =
1

2
√

π

n∑
k=1

2k−1x2k−1

(2k − 1)!!
e−x2

+ Rn

where

(3.27) |Rn| ≤
1

2
√

π

2nx2n+1

(2n− 1)!!
e−x2

.

Proof. The proof is similar to the proof of Proposition 3.3.
We substitutea = 0 andf(t) = e−t in (2.21). We have

f (k)(t) = (−1)ke−t, k = 0, 1, 2, ...

We also have

(3.28)
∫ x

0

e−u2

du =
1

2

∫ x2

0

e−t

√
t
dt

and

(3.29) (−1)k 2k(b− a)k− 1
2

(2k − 1)!!
f (k−1)(b) =

2kbk− 1
2

(2k − 1)!!
eb.

From (2.21), (3.28) and (3.29) withb = x2 we easily find that (3.26) holds. The estimate (3.27)
follows immediately from (2.22).
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