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2 T. MATSUURA AND S. SAITOH

1. INTRODUCTION AND MAIN RESULTS

We give simple approximate solutions for the inhomogenous wave equation,

(1.1) Oeu(w,t) = O?u(x,t) — Auu(z,t) =g on R"™ (c>0)

for any L,(R™) functiong in the class of the functions of theorder Sobolev Hilbert spadd®
on the whole real spad®™(n > 2,s > 2, s > n/2). In this paper, we use the notation

¥ = (21,29, Ty 1), Ty =t

and similarly
p=(p,p.) € R"

This equation is, of course, fundamental and has many applications to mathematical sciences.
Recently, in[[1], [5], [6], we were able to obtain surprisingly simple and practical approxi-
mates of real inversion formulas for the Gaussian convolution equation by using the theory of
reproducing kernels and with the ideas of best approximations and generalized inverses. Fur-
thermore, we illustrated there numerical experiments by using computers and we can realize
that we were able to obtain practical real inversion formulaslin [1]. There, we used the method

of the Tikhonov regularization and the theory of reproducing kernels.

In this paper, by the same method, we shall examine the prgblém 1.1 for the wave equation
on multidimensional spaces. We are, in particular, interested in their numerical experiments
by using computers. Furthermore, we shall establish error estimates for our solytions
because practical dagecontain errors and noises[in JL.1.

We recall them order Sobolev Hilbert spacE™ comprising functiong” on R™ with the
norm

11 7

14

. _in: . Z I/—'/ 0" F(x) 2d
) = mCu rilrel -l Jge \ OxP 0z - - - Oxlr "

v=0 1,72,y >0

Here, of course,
rn+reo+---4+nr, ="r.
This Hilbert space admits the reproducing kernel
1 1 ,
(1.3) K(z,y) = / eT=v)Eqe
D)= Gy e T TP

as we see easily by using Fourier’s transform (cf. [3], page 58). Note that the Sobolev Hilbert
spaceH ¢ admitting the reproducing ker[@.s for = s can be defined for any positive number
s(s > n/2) in terms of Fourier integralg’, of I’

PO = s | P

as follows:
| F]

b= [ QP+ IER) e

Our results are stated as follows:
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Theorem 1.1.Letn > 2,s > 2 ands > n/2. For any functiory € L,(R") and for any\ > 0,
the best approximate functidry , , in the sense

. 2 _ 2
Jnf ANF I+ 1lg = BeF Il e}

(14) = A||P1>>\k,s,g| %JS + ||g - DCF;\(,S,QH%Q(RH)
exists uniquely andy, , | is represented by

(15) Fiao@) = [ o(€)Quus - a)ag

for

1 _p% 4 02 pl 2 efip-(ff:r:)dp
Qs —x) = / (2 | |)2 20,/ [2)2°
2m)" Jrn Allp? +1)° + (=p7 + P )
If, for ' € H* we consider the functiofC].F')(x) and we take it ag, then we have the
result: as\A — 0
(1.6) Fy.,— F,
uniformly.

When the practical data contain errors or noises, we need error estimates for the approxi-
mate solutiof 1]5. Following the idea of weighted convolution inequaliti€s in [4], we obtain

Theorem 1.2.In the representation of the approximate solufior] 1.5, we obtain the estimate

(1.7) / NER (@) < ng;—lj”‘(é?i / 19(&) 2l de.

The estimatg 1|7 implies that fgs containing errors and noises,

F(S — n/Z) 1 2

* * 2 2,1¢

/n |FA,5,9(I) - F)x,s,gg(x” dr < 2”“—1“(5)}/" l9(&) — 95(¢)] elf! d§.
Meanwhile, in Theorerh 1.1 we wish to take a smalin order to obtain a true solutiof'.
Therefore, for

| 16t€) - sto)Peag < 5

we wish to take) and )\ as follows:
6 —0

and 5
The integral weight/¢”* will be acceptable, because the functigrendg,; decay exponentially
or we can assume that they have compact supports.

In terms of the Sobolev norm, we obtain

Theorem 1.3.Letd > 0 and letg, g5 satisfy

lg — 9gsllLmmy < 6.

Then, we have
)

“F;:,s,g(; - F)ts,g| e < m
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2. BACKGROUND THEOREMS
We shall use the following two general theorems.

Theorem 2.1.([5,2]) Let Hx be a Hilbert space admitting the reproducing ker#é{p, ¢) on
asetl. LetL : Hy — 'H be a bounded linear operator ol into H. For A > 0 introduce
the inner product i i and call it Hg, as

(2.1) (i Joie, = M Ty + (Lfr Ly

then Hy, is the Hilbert space with the reproducing kern€l(p, ¢) on £ and satisfying the
equation

(2.2) K(-,q) = (M + L"L)K,(-, 9),
whereL* is the adjoint ofL : Hy — H.

Theorem 2.2.([5,2]) Let Hk, L, H, E and K, be as in Theorein 2.1. Then, for aky- 0 and
for anyg € H, the extremal function in

: 2 2
(2.3) inf (NSl + 1LF = gl
exists uniquely and the extremal function is represented by
(2.4) frg®) = (g, LEA(-, D))y

which is the member df - attaining the infimum if 2]3.

3. PROOF OF THEOREM [L.1]

First, of course, we have the inequality, for a positive constént 0,

(3.1) ICFIIL, ey < M| F|

that is, the operatdr], is a bounded linear operator froff® into L,(R™). Then we can see
directly that

2 .
Hs»

Ky(z,y;0.)

30 1 etp(z—y) y
82) = @ o T T T
satisfies the functional equatipn .2 in our situation; that is, it is the reproducing kernel for the
Hilbert space with the norm square
MIF (s + 1BF 17, gen)-

In particular, we thus obta[n 1.5 from Theorgm|2.2.
In order to prove the resyli 1.6, as we see ffonp 1.3, note that any mdmbeH* is repre-
sented uniquely by a functidf in the form

1 i
(33) F@) = o | P
satisfying
1 1 ,
BT . Ty FP <
and
(3.4) 171 = e [ e O P
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Then, we insert thi¢" in[1.1 and we have the functigfl,. F)(z). Then, we set it ag(¢) in
and we obtain, directly

Fy o ()
1 (_77% + 02|77’|2)2@if"’7
3. - |
59) (2m)" /R AL+ 02 + (=2 + 2[n/|2)2) (1 + ynp)sF(")dn

From[3.3 an@ 315 we thus obtain the desired résult 1.6.

4. PROOF OF THEOREM [L.2]

As in the proof of the weighted convolution inequalitieslin [4], we obtain directlypfer 2

/ | ;\ksg(x)|
R?’L ™

S/Rn g [P @l - o)Pdcda

:/ e de | |g(¢)PeTde | |Qx(€)1PdE
Rn Rn R

n/ S a— i
<wr [ eretie po |y

iy [ laordta

5. PROOF OF THEOREM [L.3]

We first have

(=p2 +p')?)
A(Ipl? + 1)% + (=p2 + [p'[?)?’
Nss®) = 3(p) Cra i) :
Alpl* +1)* + (=pi + A[p'[?)?

It follows that

- e oy (Gs(0) = () (=pn + ')
Fhoa®) = BaslV) =30 500+ (ot +

Hence, we obtain

(1 + ) |(Fy o (0) — B (o)) < 195(p) — a;|3|+(1; pl)*
_ 19s() —9)I*
4\

Integrating the latter inequality ov@&™ we obtain the desired result.
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6. LIMITING PROPERTIES

Our solutior] 1.5 will give a practical formula for the wave equation. We will show experi-
mental results by using computer. There, we will see that in order to overcome the difficulty in
the equation, we must take a very smadind we must calculate the intedral|1.5 very accurately.
Computer programs help us to calculate the integral for a very small

Meanwhile, for any\ > 0, we shall define a linear mapping

M, : Ly(R") — H®

by M, (g) = Fy .- Now, we consider the composite operatis\/, , and M, ;[1.. Using
Fourier’s integrals, it can be shown that, fiore H*,

MO = o [ {Fe)

2 20 0(2\2 —ip(E—1)

P 4 co|p'|?)ce™® dp

(6.1) / : 2 s’ . 2 1 2[,|2 Q}df
re AP +1)° + (=7 + AP )

and forg € Ly(R"),

1
o)) = o [ fa©

(Rt e
©-2) Lo S T gt
Setting

_ 1 (=pp + Elp'P)?e )
M=) = G T+ T

in[6.1J and 6.R, we have
(6.3) M OF)e) = [ FOMe -, (Fe )
and
6.4) CMg)0) = [ g(©Baule— e, (g € L(R").
Then we obtain that
(6.5) lim Ay (z — €) = 8z — ).
(6.6) lim My, O, = 1
and
(6.7) lim O,M,, = I.

A—0

The precise meaning pf 6.3 and]6.6 is given as follows:
ForanyF' € H*®

(6.8) lim (M) O F)(z) = F()

uniformly onR™(cf. [7], Section 3). The precise meaning 0f|6.4 6.7 is given as follows:
For anyg € R(O.) + R(O.)*
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lim 0. My.9 = g
in Lo(R™)(cf. [7]).
7. NUMERICAL EXPERIMENTS

Now we give experimental result to see the behaviour of
lim 0. M)

A—0
on Ly(R?) \ R(O.). Here, if we considey(x) = x|_; 1)(71) X x[_11)(72) theng € Ly(R?) \
R(O.). See Figures|1/5.
Similarly, if we considerF () = e~l*(n = 2) then € H*. We see from Figured € - [L0
that
}\ir%(DcM)\7sF)(a:) = F(x).

In all cases, we assume that
n=2 (zr=(x1,x2) = (x,1))

and
c=1.
Further, space; = z is the right hand side direction and time = ¢ is the deep direction.
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77 L7 LI~ L7
B o e e e

Figure 1: For g(z1,x2) = x[_1,1(®1) X X[—1,1)(%2) ON R?, the figures oty 5 ,(z1,22) and U FY , (w1, 22)
for A = 10°.
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Figure 2: For g(z1,x2) = x(_1,1(®1) X X[—1,1)(%2) ON R?, the figures oty 5 ,(z1,22) and U FY , (w1, 22)
for A =101
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Figure 3: For g(z1,72) = x(_1,1(®1) X X[—1,1)(%2) ON R?, the figures oty 5 ,(z1,22) and U FY , (w1, 22)
for A\ =102 '
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Figure 4: For g(z1,72) = x[_1,1(®1) X X[—1,17(%2) ON R?, the figures oty 5 ,(z1,22) and U FY , (w1, 22)
for A\ =107%.
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Figure 5: For g(z1,72) = x(_1,1)(®1) X X[—1,1)(%2) ON R?, the figures oty 5 ,(z1,22) and U FY , (w1, 22)
for A =107°.

AJMAA Vol. 1, No. 1, Art. 7, pp. 1-18, 2004 AJMAA


http://ajmaa.org

ANALYTICAL AND NUMERICAL SOLUTIONS OF THEINHOMOGENOUSWAVE EQUATION 13
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Figure 6: Forg(zy,x2) = e~(@i+23) onR2, the figures o} 5 , (1, 22) @ndOIFY 5 (21, 22) fOr A = 109,
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Figure 7: Forg(zy,z2) = e~ (#1173 onR2, the figures of} , (w1, 22) and O Fy 5 (21, x3) for A = 1071,
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Figure 8: Forg(zy,z2) = e~ (#1173 onR2, the figures of} , (w1, 22) and . Fy 5 (21, x2) for A = 1072,
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%
LRAZS

Figure 9: Forg(zy,z2) = e~ (*1+73) onR2, the figures of (w1, 22) and O Fy 5 (21, x3) for A = 1074,
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Figure 10: Forg(z1,z2) = e~ @i+72) onR2, the figures oy, ,(x1,22) and O Fy , (21, 22) for A = 107°.
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