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2 T. MATSUURA AND S. SAITOH

1. I NTRODUCTION AND MAIN RESULTS

We give simple approximate solutions for the inhomogenous wave equation,

(1.1) �cu(x, t) = ∂2
t u(x, t)− c2∆xu(x, t) = g on Rn (c > 0)

for anyL2(R
n) functiong in the class of the functions of thes order Sobolev Hilbert spaceHs

on the whole real spaceRn(n ≥ 2, s ≥ 2, s > n/2). In this paper, we use the notation

x′ = (x1, x2, ..., xn−1), xn = t

and similarly

p = (p′, pn) ∈ Rn.

This equation is, of course, fundamental and has many applications to mathematical sciences.
Recently, in [1], [5], [6], we were able to obtain surprisingly simple and practical approxi-

mates of real inversion formulas for the Gaussian convolution equation by using the theory of
reproducing kernels and with the ideas of best approximations and generalized inverses. Fur-
thermore, we illustrated there numerical experiments by using computers and we can realize
that we were able to obtain practical real inversion formulas in [1]. There, we used the method
of the Tikhonov regularization and the theory of reproducing kernels.

In this paper, by the same method, we shall examine the problem 1.1 for the wave equation
on multidimensional spaces. We are, in particular, interested in their numerical experiments
by using computers. Furthermore, we shall establish error estimates for our solutionsu(x, t),
because practical datag contain errors and noises in 1.1.

We recall them order Sobolev Hilbert spaceHm comprising functionsF on Rn with the
norm

‖F‖2
Hm

(1.2) =
m∑

ν=0

mCν

ν∑
r1,r2,...,rn≥0

ν!

r1!r2! · · · rn!

∫
Rn

(
∂νF (x)

∂xr1
1 ∂xr2

2 · · · ∂xrn
n

)2

dx.

Here, of course,

r1 + r2 + · · ·+ rn = ν.

This Hilbert space admits the reproducing kernel

(1.3) K(x, y) =
1

(2π)n

∫
Rn

1

(1 + |ξ|2)m
ei(x−y)·ξdξ

as we see easily by using Fourier’s transform (cf. [3], page 58). Note that the Sobolev Hilbert
spaceHs admitting the reproducing kernel 1.3 form = s can be defined for any positive number
s(s > n/2) in terms of Fourier integralŝF , of F

F̂ (ξ) =
1

(2π)n/2

∫
Rn

e−iξ·xF (x)dx,

as follows:

‖F‖2
Hs =

∫
Rn

|F̂ (ξ)|2(1 + |ξ|2)sdξ.

Our results are stated as follows:
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Theorem 1.1.Letn ≥ 2, s ≥ 2 ands > n/2. For any functiong ∈ L2(R
n) and for anyλ > 0,

the best approximate functionF ∗
λ,s,g in the sense

inf
F∈Hs

{
λ‖F‖2

Hs + ‖g −�cF‖2
L2(Rn)

}
(1.4) = λ‖F ∗

λ,s,g‖2
Hs + ‖g −�cF

∗
λ,s,g‖2

L2(Rn)

exists uniquely andF ∗
λ,s,g is represented by

(1.5) F ∗
λ,s,g(x) =

∫
Rn

g(ξ)Qλ,s(ξ − x)dξ

for

Qλ,s(ξ − x) =
1

(2π)n

∫
Rn

(−p2
n + c2|p′|2)e−ip·(ξ−x)dp

λ(|p|2 + 1)s + (−p2
n + c2|p′|2)2

.

If, for F ∈ Hs we consider the function(�cF )(x) and we take it asg, then we have the
result: asλ → 0

(1.6) F ∗
λ,s,g → F,

uniformly.

When the practical datag contain errors or noises, we need error estimates for the approxi-
mate solution 1.5. Following the idea of weighted convolution inequalities in [4], we obtain

Theorem 1.2. In the representation of the approximate solution 1.5, we obtain the estimate

(1.7)
∫

Rn

|F ∗
λ,s,g(x)|2dx ≤ Γ(s− n/2)

2n+2Γ(s)

1

λ

∫
Rn

|g(ξ)|2e|ξ|2dξ.

The estimate 1.7 implies that forgδ containing errors and noises,∫
Rn

|F ∗
λ,s,g(x)− F ∗

λ,s,gδ
(x)|2dx ≤ Γ(s− n/2)

2n+2Γ(s)

1

λ

∫
Rn

|g(ξ)− gδ(ξ)|2e|ξ|
2

dξ.

Meanwhile, in Theorem 1.1 we wish to take a smallλ in order to obtain a true solutionF .
Therefore, for ∫

Rn

|g(ξ)− gδ(ξ)|2e|ξ|
2

dξ ≤ δ,

we wish to takeδ andλ as follows:
δ → 0

and
δ

λ
→ 0.

The integral weighte|ξ|
2

will be acceptable, because the functionsg andgδ decay exponentially
or we can assume that they have compact supports.

In terms of the Sobolev norm, we obtain

Theorem 1.3.Let δ > 0 and letg, gδ satisfy

‖g − gδ‖L2(Rn) ≤ δ.

Then, we have

‖F ∗
λ,s,gδ

− F ∗
λ,s,g‖Hs ≤ δ

2
√

λ
.
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2. BACKGROUND THEOREMS

We shall use the following two general theorems.

Theorem 2.1. ([5,2]) Let HK be a Hilbert space admitting the reproducing kernelK(p, q) on
a setE. LetL : HK → H be a bounded linear operator onHK intoH. For λ > 0 introduce
the inner product inHK and call itHKλ

as

(2.1) 〈f1, f2〉HKλ
= λ〈f1, f2〉HK

+ 〈Lf1, Lf2〉H,

thenHKλ
is the Hilbert space with the reproducing kernelKλ(p, q) on E and satisfying the

equation

(2.2) K(·, q) = (λI + L∗L)Kλ(·, q),
whereL∗ is the adjoint ofL : HK → H.

Theorem 2.2. ([5,2]) Let HK , L,H, E andKλ be as in Theorem 2.1. Then, for anyλ > 0 and
for anyg ∈ H, the extremal function in

(2.3) inf
f∈HK

(
λ‖f‖2

HK
+ ‖Lf − g‖2

H

)
exists uniquely and the extremal function is represented by

(2.4) f ∗λ,g(p) = 〈g, LKλ(., p)〉H
which is the member ofHK attaining the infimum in 2.3.

3. PROOF OF THEOREM 1.1

First, of course, we have the inequality, for a positive constantM > 0,

(3.1) ‖�cF‖2
L2(Rn) ≤ M‖F‖2

Hs ;

that is, the operator�c is a bounded linear operator fromHs into L2(R
n). Then we can see

directly that
Kλ(x, y; �c)

(3.2) =
1

(2π)n

∫
Rn

eip·(x−y)

λ(|p|2 + 1)s + (−p2
n + c2|p′|2)2

dp

satisfies the functional equation 2.2 in our situation; that is, it is the reproducing kernel for the
Hilbert space with the norm square

λ‖F‖2
Hs + ‖�cF‖2

L2(Rn).

In particular, we thus obtain 1.5 from Theorem 2.2.
In order to prove the result 1.6, as we see from 1.3, note that any memberF ∈ Hs is repre-

sented uniquely by a functionF in the form

(3.3) F (x) =
1

(2π)n

∫
Rn

eix·η

(1 + |η|2)s
F(η)dη

satisfying
1

(2π)n

∫
Rn

1

(1 + |η|2)s
|F(η)|2dη < ∞

and

(3.4) ‖F‖2
Hs =

1

(2π)n

∫
Rn

1

(1 + |η|2)s
|F(η)|2dη.

AJMAA, Vol. 1, No. 1, Art. 7, pp. 1-18, 2004 AJMAA

http://ajmaa.org


ANALYTICAL AND NUMERICAL SOLUTIONS OF THEINHOMOGENOUSWAVE EQUATION 5

Then, we insert thisF in 1.1 and we have the function(�cF )(x). Then, we set it asg(ξ) in 1.5
and we obtain, directly

F ∗
λ,s,g(x)

(3.5) =
1

(2π)n

∫
Rn

(−η2
n + c2|η′|2)2eix·η

(λ(1 + |η|2)s + (−η2
n + c2|η′|2)2)(1 + |η|2)s

F(η)dη.

From 3.3 and 3.5 we thus obtain the desired result 1.6.

4. PROOF OF THEOREM 1.2

As in the proof of the weighted convolution inequalities in [4], we obtain directly, forp = 2
andρ2 ≡ 1 ∫

Rn

|F ∗
λ,s,g(x)|2dx

≤
∫

Rn

e−|ξ|
2

dξ

∫
Rn

∫
Rn

|g(ξ)|2e|ξ|2|Qλ,s(ξ − x)|2dξdx

=

∫
Rn

e−|ξ|
2

dξ

∫
Rn

|g(ξ)|2e|ξ|2dξ

∫
Rn

|Qλ,s(ξ)|2dξ

≤ πn/2

∫
Rn

|g(ξ)|2e|ξ|2dξ · 1

4λ(2π)n

∫
Rn

dp

(|p|2 + 1)s

=
Γ(s− n/2)

2n+2Γ(s)

1

λ

∫
Rn

|g(ξ)|2e|ξ|2dξ.

5. PROOF OF THEOREM 1.3

We first have

F̂ ∗
λ,s,gδ

(p) = ĝδ(p)
(−p2

n + c2|p′|2)
λ(|p|2 + 1)s + (−p2

n + c2|p′|2)2
,

F̂ ∗
λ,s,g(p) = ĝ(p)

(−p2
n + c2|p′|2)

λ(|p|2 + 1)s + (−p2
n + c2|p′|2)2

.

It follows that

F̂ ∗
λ,s,gδ

(p)− F̂ ∗
λ,s,g(p) =

(ĝδ(p)− ĝ(p))(−p2
n + c2|p′|2)

λ(|p|2 + 1)s + (−p2
n + c2|p′|2)2

.

Hence, we obtain

(1 + |p|2)s|(F̂ ∗
λ,s,gδ

(p)− F̂ ∗
λ,s,g(p))|2 ≤ |ĝδ(p)− ĝ(p)|2(1 + |p|2)s

4λ(|p|2 + 1)s

=
|ĝδ(p)− ĝ(p)|2

4λ
.

Integrating the latter inequality overRn we obtain the desired result.
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6. LIMITING PROPERTIES

Our solution 1.5 will give a practical formula for the wave equation. We will show experi-
mental results by using computer. There, we will see that in order to overcome the difficulty in
the equation, we must take a very smallλ and we must calculate the integral 1.5 very accurately.
Computer programs help us to calculate the integral for a very smallλ.

Meanwhile, for anyλ > 0, we shall define a linear mapping

Mλ,s : L2(R
n) → Hs

by Mλ,s(g) = F ∗
λ,s,g. Now, we consider the composite operators�cMλ,s andMλ,s�c. Using

Fourier’s integrals, it can be shown that, forF ∈ Hs,

(Mλ,s�cF )(x) =
1

(2π)n

∫
Rn

{
F (ξ)

·
∫

Rn

(−p2
n + c2|p′|2)2e−ip·(ξ−x)dp

λ(|p|2 + 1)s + (−p2
n + c2|p′|2)2

}
dξ(6.1)

and forg ∈ L2(R
n),

(�cMλ,sg)(x) =
1

(2π)n

∫
Rn

{
g(ξ)

·
∫

Rn

(−p2
n + c2|p′|2)2e−ip·(ξ−x)dp

λ(|p|2 + 1)s + (−p2
n + c2|p′|2)2

}
dξ.(6.2)

Setting

∆λ,s(x− ξ) =
1

(2π)n

∫
Rn

(−p2
n + c2|p′|2)2e−ip·(ξ−x)

λ(|p|2 + 1)s + (−p2
n + c2|p′|2)2

dp

in 6.1 and 6.2, we have

(6.3) (Mλ,s�cF )(x) =

∫
Rn

F (ξ)∆λ,s(x− ξ)dξ, (F ∈ Hs)

and

(6.4) (�cMλ,sg)(x) =

∫
Rn

g(ξ)∆λ,s(x− ξ)dξ, (g ∈ L2(R
n)).

Then we obtain that

(6.5) lim
λ→0

∆λ,s(x− ξ) = δ(x− ξ),

(6.6) lim
λ→0

Mλ,s�c = I

and

(6.7) lim
λ→0

�cMλ,s = I.

The precise meaning of 6.3 and 6.6 is given as follows:
For anyF ∈ Hs

(6.8) lim
λ→0

(Mλ,s�cF )(x) = F (x)

uniformly onRn(cf. [7], Section 3). The precise meaning of 6.4 and 6.7 is given as follows:
For anyg ∈ R(�c) +R(�c)

⊥
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lim
λ→0

�cMλ,sg = g

in L2(R
n)(cf. [7]).

7. NUMERICAL EXPERIMENTS

Now we give experimental result to see the behaviour of

lim
λ→0

�cMλ,s

on L2(R
2) \ R(�c). Here, if we considerg(x) = χ[−1,1](x1) × χ[−1,1](x2) theng ∈ L2(R

2) \
R(�c). See Figures 1 - 5.

Similarly, if we considerF (x) = e−|x|
2
(n = 2) thenF ∈ Hs. We see from Figures 6 - 10

that
lim
λ→0

(�cMλ,sF )(x) = F (x).

In all cases, we assume that

n = 2 (x = (x1, x2) = (x, t))

and
c = 1.

Further, spacex1 = x is the right hand side direction and timex2 = t is the deep direction.
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Figure 1: For g(x1, x2) = χ[−1,1](x1) × χ[−1,1](x2) on R2, the figures ofF ∗
λ,2,g(x1, x2) and�cF

∗
λ,2,g(x1, x2)

for λ = 100.
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Figure 2: For g(x1, x2) = χ[−1,1](x1) × χ[−1,1](x2) on R2, the figures ofF ∗
λ,2,g(x1, x2) and�cF

∗
λ,2,g(x1, x2)

for λ = 10−1.
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Figure 3: For g(x1, x2) = χ[−1,1](x1) × χ[−1,1](x2) on R2, the figures ofF ∗
λ,2,g(x1, x2) and�cF

∗
λ,2,g(x1, x2)

for λ = 10−2.
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Figure 4: For g(x1, x2) = χ[−1,1](x1) × χ[−1,1](x2) on R2, the figures ofF ∗
λ,2,g(x1, x2) and�cF

∗
λ,2,g(x1, x2)

for λ = 10−4.
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Figure 5: For g(x1, x2) = χ[−1,1](x1) × χ[−1,1](x2) on R2, the figures ofF ∗
λ,2,g(x1, x2) and�cF

∗
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for λ = 10−6.
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∗
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∗
λ,2,g(x1, x2) for λ = 10−4.

AJMAA, Vol. 1, No. 1, Art. 7, pp. 1-18, 2004 AJMAA

http://ajmaa.org


ANALYTICAL AND NUMERICAL SOLUTIONS OF THEINHOMOGENOUSWAVE EQUATION 17

0

1

2

3 0

1

2

3

-0.4

-0.2

0

0.2

0.4

0

1

2

0

1

2

3 0

1

2

3

0

0.25

0.5

0.75

1

0

1

2

Figure 10: Forg(x1, x2) = e−(x2
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∗
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