A DETERMINANTAL REPRESENTATION OF CORE EP INVERSE

DIVYA SHENOY PURUSHOTHAMA

Received 25 June, 2022; accepted 16 January, 2023; published 28 March, 2023.

Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal -576104, Karnataka, India.
divya.shenoy@manipal.edu
URL:
https://manipal.edu/mit/department-faculty/faculty-list/divya-shenoy-p.html

AbStract. The notion of Core EP inverse is introduced by Prasad in the article "Core - EP inverse" and proved its existence and uniqueness. Also, a formula for computing the Core EP inverse is obtained from particular linear combination of minors of a given matrix. Here a determinantal representation for Core EP inverse of a matrix A with the help of rank factorization of A is obtained.

Key words and phrases: Generalized Inverse; Core EP inverse; Determinant.
2010 Mathematics Subject Classification Primary 15A09. Secondary 15A15.

ISSN (electronic): 1449-5910

© 2023 Austral Internet Publishing. All rights reserved.

1. INTRODUCTION

1.1. Preliminaries.

Definition 1. (Core-EP inverse) A matrix G is a core-EP inverse of A if G is an outer inverse of A satisfying

$$
C(G)=R(G)=C\left(A^{d}\right)
$$

where d is the index of A.
Manjunatha Prasad and Mohana [3] proved the existence and uniqueness of core EP inverse over a real or complex field.
Theorem 1. Given a square matrix A of index d, the core-EP inverse is unique whenever it exists and is given by

$$
\begin{equation*}
A^{\oplus}=A^{d}\left(A^{* d} A^{d+1}\right)^{-} A^{* d} \tag{1.1}
\end{equation*}
$$

Also it is observed that when the index of the matrix is one, the definition reduces to the definition of Core-EP generalized inverse.
Definition 2. (Core-EP Generalized Inverse) For a square matrix A, the matrix X satisfying the conditions (2), (3) and ($\left.1^{k}\right)$ for $k=1$ is called the core-EP generalized inverse of A and denoted by $A \not{ }^{(}$.

It is given by the formula $A\left(A^{*} A^{2}\right)^{-} A^{*}$. The relation between the core EP inverse of a matrix of index d and the core EP generalized inverse is similar to that of Drazin inverse and group inverse of a matrix A. The following theorem explains the relation between the core EP inverse of a matrix A of index d and the core-EP generalized inverse.
Theorem 2. Let A be a matrix with $\delta(A)=d$.If $G=A \oplus$, the core-EP inverse of A exists, then we have the following:
(1) G^{d} is a core-EP inverse of A^{d}
(2) $G^{d}=\left(A^{d}\right)^{\left\{1,2,3,1^{k}\right\}}$ for $k=1$
(3) If C_{A} is the core part of core-nilpotent decomposition of A then $G=C_{A}^{\left\{1,2,3,1^{k}\right\}}$ for $k=1$.
The following lemma [3] describes the necessary and sufficient conditions for the existence of core-EP generalized inverse in the case of rank one matrix with reference to its rank factorization.
Lemma 1. Let A be a square matrix of rank one and with rank factorization $A=x y^{\star}$, where x and y are suitable column matrices. Then the following statements are equivalent:
(1) $A^{(}{ }^{\oplus}$ exists,
(2) $x^{*} x$ and Trace (A) are non-zero,
(3) $A_{i}^{*} A_{i}$ and $\operatorname{Trace}(A)$ are non-zero, where A_{i} is some ith column of A.

Using this expression a determinantal representation for core-EP generalized inverse $\left(g_{i j}\right)=$ $G=A \bigoplus_{\text {is given by }}$

$$
g_{i j}=\left(\sum_{K}\left(\left|A_{L}^{K}\right|\right)^{2}\right)^{-1}\left(\operatorname{Trace} C_{r}(A)\right)^{-1} \sum_{i \epsilon I j \epsilon J}\left|A_{L}^{I}\right|\left|A_{L}^{J}\right|
$$

A determinantal representation of core EP inverse is given by Kyrchei [2] by defining the right and left core - EP inverse. But in this article the approach is different. We attempted to give the determinantal representation of core EP inverse of a matrix A with the rank factorization of A.

2. Notations

Assume A is an $n \times n$ matrix of rank r. Let $\alpha=\left\{\alpha_{1}, \ldots \alpha_{p}\right\}$ and $\beta=\left\{\beta_{1}, \ldots \beta_{p}\right\}$ be subsets of $\{1,2, \ldots m\}$ and $\{1,2, \ldots n\}$,respectively of the order $1 \leq p \leq \min \{m, n\}$. Then $\left|A_{\beta}^{\alpha}\right|$ denotes the minors of A determined by the rows indexed by α and the columns indexed by β.
For $1 \leq p \leq n$, denote the collection of strictly increasing sequences of p integers chosen from $\{1,2, \ldots n\}$, by
$\mathbb{Q}_{p, n}=\left\{\alpha: \alpha=\left(\alpha_{1}, \ldots, \alpha_{p}\right), 1 \leq \alpha_{1} \leq \ldots \leq \alpha_{p} \leq n\right\}$.
Let $\mathcal{N}=\mathbb{Q}_{r, m} \times \mathbb{Q}_{r, n}$. For fixed $\alpha \in \mathbb{Q}_{k, m}, \beta \in \mathbb{Q}_{k, n}, 1 \leq k \leq r$, let
$\mathcal{I}(\alpha)=\left\{I: I \in \mathbb{Q}_{r, m}, I \supseteq \alpha\right\}, \mathcal{J}(\beta)=\left\{J: J \in \mathbb{Q}_{r, n}, J \supseteq \beta\right\}$, and $\mathcal{N}(\alpha, \beta)=\mathcal{I}(\alpha) \times \mathcal{J}(\beta)$.
If A is a square matrix, the coefficient of $\left|A_{\beta}^{\alpha}\right|$ in the Laplace expansion of $|A|$ is denoted by $\frac{\partial}{\partial\left|A_{\beta}^{\alpha}\right|}|A|$.
$C_{p}(A)$ denotes the $p^{\text {th }}$ compound matrix of A with rows indexed by r-element subsets of $\{1,2, \ldots m\}$, columns indexed by r -element subsets of $\{1,2, \ldots, n\}$, and the (α, β) entry is defined by $\left|A_{\beta}^{\alpha}\right|$.
Also we use the following extension of these notations:
$\mathcal{N}_{r_{k}}=\mathbb{Q}_{r_{k}, m} \times \mathbb{Q}_{r_{k}, n}$, where $r_{k}=\operatorname{rank}\left(A^{l}\right), l \geq k=\operatorname{ind}(A) ;$
For fixed $\alpha, \beta \in \mathbb{Q}_{p, n} .1 \leq p \leq r_{k}$.let
$\mathcal{I}_{r_{k}}(\alpha)=\left\{I: I \in \mathbb{Q}_{r_{k}, m}, I \supseteq \alpha\right\}, \mathcal{J}_{r_{k}}(\beta)=\left\{J: J \in \mathbb{Q}_{r_{k}, n}, J \supseteq \beta\right\}, \mathcal{N}(\alpha, \beta)=\mathcal{I}_{r_{k}}(\alpha) \times \mathcal{J}_{r_{k}}(\beta)$
Also the core EP generalized inverse of a matrix A is denoted by A^{\boxplus} and the core EP inverse is given by $A \oplus$.

3. Results

Expression for group inverse and Drazin inverse in terms of its rank factorizations are well known in the literature [1].
Let A be any square complex matrix with index of A is k, then either $A^{k}=\theta$ (where θ designates the null matrix of appropriate size) or A^{k} can be written as

$$
A^{k}=\prod_{i=1}^{k} B_{i} \prod_{i=1}^{k} G_{k+1-i}
$$

where each of the matrices $B_{1}, B_{2}, \ldots B_{k}$ and $\prod_{i=1}^{k} B_{i}$ has full column rank and each of the matrices $G_{1}, G_{2}, \ldots G_{k}$ and $\prod_{i=1}^{k} G_{k+1-i}$ has full row rank. The matrices B_{i} and G_{k+1-i} are further determined by the conditions that B_{1} and G_{1} satisfy

$$
A=B_{1} G_{1}
$$

and that

$$
G_{i} B_{i}=B_{i+1} G_{i+1}, i=1,2, \ldots k-1
$$

where $G_{k} B_{k}$ is nonsingular. Then an expression for Drazin inverse is given by

$$
A^{d}=\prod_{i=1}^{k} B_{i}\left(G_{k} B_{k}\right)^{-k-1} \prod_{i=1}^{k} G_{k+1-i}
$$

A similar kind of expression is obtained here for core-EP inverse.
Assume that A is a square matrix with index k. Let $A=B_{1} G_{1}$ be a full rank factorization for the matrix A.Then as in the above the expression for core-EP inverse is

$$
A^{\oplus}=\left(B_{1} B_{2} \ldots B_{k}\right)\left(G_{k} B_{k}\right)^{-1}\left(B_{1} B_{2} \ldots B_{k}\right)^{\dagger}
$$

In particular when $k=1$ this expression reduces to the expression for core-EP generalized inverse given by $B_{1}\left(G_{1} B_{1}\right)^{-1} B_{1}^{\dagger}$.
Theorem 3. Let $A \in C_{r}^{n \times n}$ with $l \geq k=i n d(A)$ with an arbitrary full rank factorization $A^{k}=$ $B_{A^{k}} G_{A^{k}}$.Then the core-EP inverse of the matrix can be given by $A^{\oplus}=B_{A^{k}}\left(G_{A^{k}}^{*} A B_{A^{k}}\right)^{-} G_{A^{k}}^{*}$.

Proof. Since $A^{k}=B_{A^{k}} G_{A^{k}},\left(A^{*}\right)^{k}=G_{A^{k}}^{*} B_{A^{k}}^{*}$
Now

$$
\begin{aligned}
A^{\oplus} & =B_{A^{k}} G_{A^{k}}\left(G_{A^{k}}^{*} B_{A^{k}}^{*} A B_{A^{k}} G_{A^{k}}\right)^{\dagger} G_{A^{k}}^{*} B_{A^{k}}^{*} \\
& =B_{A^{k}} G_{A^{k}}\left(G_{A^{k}}\right)^{\dagger}\left(B_{A^{k}}^{*} A B_{A^{k}}\right)^{-1}\left(G_{A^{k}}^{*}\right)^{\dagger} G_{A^{k}}^{*} B_{A^{k}}^{*} \\
& =B_{A^{k}}\left(B_{A^{k}}^{*} A B_{A^{k}}\right)^{-1} B_{A^{k}}^{*}
\end{aligned}
$$

Theorem 4. If A is an $n \times n$ complex matrix of index k, and $A^{k}=B_{A^{k}} G_{A^{k}}$ is an arbitrary full rank decomposition of A^{k}, then

$$
\begin{aligned}
(1)\left(A^{\oplus}\right)^{k} & =B_{A^{k}}\left(G_{A^{k}} B_{A^{k}}\right)^{-1}\left(B_{A^{k}}\right)^{\dagger} \\
(2) A A \oplus & =B_{A^{k}}\left(B_{A^{k}}^{*} B_{A^{k}}\right)^{-1} B_{A^{k}}^{*} \\
(3)\left(A^{\oplus}\right)^{\dagger} & =\left(B_{A^{k}}^{*}\right)^{\dagger}\left(B_{A^{k}}^{*} A B_{A^{k}}\right)\left(B_{A^{k}}\right)^{\dagger}
\end{aligned}
$$

Proof. (1) By Theorem 3 and Lemme 1
$\left(A^{k}\right)^{\oplus}=\left(B_{A^{k}} G_{A^{k}}\right)^{\circledast}=B_{A^{k}}\left(G_{A^{k}} B_{A^{k}}\right)^{-1}\left(B_{A^{k}}\right)^{\dagger}$
(2) From the definition it is clear that

$$
A A^{\oplus}=A^{k}\left(A^{k}\right)^{\dagger}\left(A^{* k}\right)^{\dagger} A^{* k}
$$

Now

$$
\begin{aligned}
A A^{\oplus} & =B_{A^{k}} G_{A^{k}}\left(G_{A^{k}}^{*} B_{A^{k}}^{*} B_{A^{k}} G_{A^{k}}\right)^{\dagger} G_{A^{k}}^{*} B_{A^{k}}^{*} \\
& =B_{A^{k}} G_{A^{k}}\left(G_{A^{k}}\right)^{\dagger}\left(B_{A^{k}}^{*} B_{A^{k}}\right)^{-1}\left(G_{A^{k}}^{*}\right)^{\dagger} G_{A^{k}}^{*} B_{A^{k}}^{*} \\
& =B_{A^{k}}\left(B_{A^{k}}^{*} B_{A^{k}}\right)^{-1} B_{A^{k}}^{*}
\end{aligned}
$$

(3) Since

$$
\begin{aligned}
A \oplus & =B_{A^{k}}\left(B_{A^{k}}^{*} A B_{A^{k}}\right)^{-} B_{A^{k}}^{*} \\
\left(A^{\oplus}\right)^{\dagger} & =\left(B_{A^{k}}\left(B_{A^{k}}^{*} A B_{A^{k}}\right)^{-} B_{A^{k}}^{*}\right)^{\dagger} \\
& =\left(B_{A^{k}}^{*}\right)^{\dagger}\left(B_{A^{k}}^{*} A B_{A^{k}}\right)\left(B_{A^{k}}\right)^{\dagger}
\end{aligned}
$$

Theorem 5. The core-EP inverse of an arbitrary matrix $A \in C_{r}^{n \times n}$ possesses the following determinantal representation

$$
A_{i j}^{\oplus}=\frac{\left.\sum_{(\alpha, \beta) \in \mathcal{N}_{r_{k}}(j, i)} \mid\left(B_{A^{\prime}}\right)^{\beta} \|\left(B_{A l}^{*}\right)\right) \left._{\alpha}\left|\frac{\partial}{\partial a_{j 3}}\right| A_{\alpha}^{\beta} \right\rvert\,}{\left.\sum_{(\gamma, \delta) \in \mathcal{N}_{r_{k}}} \mid\left(B_{A}^{*} l\right)\right)_{\gamma}\left|\left(B_{A^{l}}\right)^{\delta}\right|\left|A_{\delta \delta}^{\gamma}\right|}
$$

where $l \geq k=\operatorname{ind}(A)$ and $r_{k}=\operatorname{rank}\left(A^{l}\right)$.
Proof. Let $A=B G$ be arbitrary full rank factorization of A, and $A^{l}=B_{A^{l}} G_{A^{l}}$ is full rank factorization of A^{l}, where $l \geq \operatorname{ind}(A)$

Now

$$
\begin{aligned}
A^{\oplus} & =B_{A^{l}}\left(B_{A^{l}}^{*} A B_{A^{l}}\right)^{-1} B_{A^{l}}^{*} \\
& =\frac{B_{A^{l}} a d j\left(B_{A^{l}}^{*} A B_{A^{l}}\right) B_{A^{l}}^{*}}{\left|B_{A^{l}}^{*} A B_{A^{l}}\right|}
\end{aligned}
$$

Consider

$$
\begin{aligned}
\left|B_{A^{l}}^{*} A B_{A^{l}}\right| & =\left|B_{A^{l}}^{*} B G B_{A^{l}}\right| \\
& =\sum_{\epsilon \in \mathbb{Q}_{r_{k}, r}}\left|\left(B_{A^{l}}^{*} B\right)_{\epsilon}\right|\left|\left(G B_{A^{l}}\right)^{\epsilon}\right| \\
& =\sum_{\epsilon \in \mathbb{Q}_{r_{k}, r}} \mid\left(B_{A^{l}}^{*} B_{\epsilon)}| |\left(G^{\epsilon} B_{A^{l}}\right) \mid\right.
\end{aligned}
$$

Again by applying Cauchy - Binet formula,

$$
\left|B_{A^{l}}^{*} B G B_{A^{l}}\right|=\sum_{\epsilon \in \mathbb{Q}_{r_{k}}, r}\left(\sum_{\gamma \in \mathbb{Q}_{r_{k}, n}}\left|\left(B_{A^{l}}^{*}\right)_{\gamma}\right|\left|B_{\epsilon}^{\gamma}\right|\right)\left(\sum_{\delta \in \mathbb{Q}_{r_{k}, n}}\left|G_{\delta}^{\epsilon}\right|\left|\left(B_{A^{l}}\right)^{\delta}\right|\right)
$$

Hence

$$
\begin{aligned}
\left|B_{A^{l}}^{*} B G B_{A^{l}}\right| & =\sum_{(\gamma, \delta) \in \mathcal{N}_{r_{k}}}\left|\left(B_{A^{l}}^{*}\right)_{\gamma}\right|\left|\left(B_{A^{l}}\right)^{\delta}\right| \sum_{\epsilon \in \mathbb{Q}_{r_{k}}, r}\left|B_{\epsilon}^{\gamma}\right|\left|G_{\delta}^{\epsilon}\right| \\
& =\sum_{(\gamma, \delta) \in \mathcal{N}_{r_{k}}}\left|\left(B_{A^{l}}^{*}\right)_{\gamma}\right|\left|\left(B_{A^{l}}\right)^{\delta}\right|\left|B^{\gamma} G_{\delta}\right| \\
& =\sum_{(\gamma, \delta) \in \mathcal{N}_{r_{k}}}\left|\left(B_{A^{l}}^{*}\right)_{\gamma} \|\left(B_{A^{l}}\right)^{\delta}\right|\left|A_{\delta}^{\gamma}\right|
\end{aligned}
$$

Now consider $B_{A^{l}} \operatorname{adj}\left(B_{A^{l}}^{*} A B_{A^{l}}\right) B_{A^{l}}^{*}$. If the submatrix of A generated by deleting $i^{\text {th }}$ row of A is denoted by $\left(A^{\{i\}}\right)^{\prime}$ and the $j^{t h}$ column by $\left(A_{\{j\}}\right)^{\prime}$ respectively.
Since $\left(\operatorname{adj}\left(B_{A^{l}}^{*} B G B_{A^{l}}\right)\right)_{i j}=(-1)^{i+j}\left|\left(B_{A^{l}}^{*}\right)^{\{j\}^{\prime}} B G\left(B_{A^{l}}\right)_{\{i\}^{\prime}}\right|$

By Cauchy-Binet theorem

$$
\left(\operatorname{adj}\left(B_{A^{l}}^{*} B G B_{A^{l}}\right)\right)_{i j}=(-1)^{i+j} \sum_{\epsilon^{\prime} \in \mathbb{Q}_{r_{k}-1, r}}\left|G^{\epsilon^{\prime}}\left(B_{A^{l}}\right)_{\{i\}^{\prime}}\right|\left|\left(B_{A^{l}}^{*}\right)^{\{j\}^{\prime}} B_{\epsilon^{\prime}}\right|
$$

Now applying Cauchy- Binet formula for both the determinants,

$$
\begin{aligned}
& \left(\operatorname{adj}\left(B_{A^{l}}^{*} B G B_{A^{l}}\right)\right)_{i j}=(-1)^{i+j} \sum_{\epsilon^{\prime} \in \mathbb{Q}_{r_{k}-1, r}}\left(\sum_{\beta^{\prime} \in \mathbb{Q}_{r_{k}-1, n}}\left|G_{\beta^{\prime}}^{\epsilon^{\prime}}\right|\left|\left(\left(B_{A^{l}}\right)_{\{i\}^{\prime}}\right)^{\beta^{\prime}}\right|\right. \\
& \times\left(\sum_{\alpha^{\prime} \in \mathbb{Q}_{r_{k}-1, n}}\left|B_{\beta^{\prime}}^{\epsilon}\right|\left|\left(\left(B_{A^{l}}^{*}\right)^{\{j\}^{\prime}}\right)_{\alpha^{\prime}}\right|\right.
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
\left(\operatorname{adj}\left(B_{A^{l}}^{*} B G B_{A^{l}}\right)\right)_{i j}=\sum_{t=1}^{r_{k}}\left(P_{A^{l}}\right)_{i t}\left(\operatorname{adj}\left(B_{A^{l}}^{*} B G B_{A}\right)\right)_{t j} \\
=\sum_{\epsilon^{\prime} \in \mathbb{Q}_{r_{k}-1, r}} \sum_{\beta^{\prime} \in \mathbb{Q}_{r_{k}-1, n}}\left|G_{\beta^{\prime}}^{\epsilon^{\prime}}\right|\left(\sum_{t=1}^{r_{k}}(-1)^{t}\left(\left(B_{A^{l}}\right)_{i t} \mid\left(B_{A^{l}}\right)_{\left\{t^{\prime}\right\}}\right)^{\beta^{\prime}} \mid\right) \times\left(\sum_{\alpha^{\prime} \in \mathbb{Q}_{r_{k}-1, n}}(-1)^{j}\left|B_{\epsilon^{\prime}}^{\alpha^{\prime}} \|\left(\left(B_{A^{l}}^{*}\right)^{\{j\}^{\prime}}\right)_{\alpha}\right|\right)
\end{gathered}
$$

If i is contained in the combination β^{\prime} then,

$$
\left.\sum_{t=1}^{r_{k}}(-1)^{t}\left(B_{A^{l}}\right)_{i t} \mid\left(B_{A^{l}}\right)_{\{t\}^{\prime}}\right)^{\beta^{\prime}} \mid=0
$$

If the set β^{\prime} does not contain i, then $i=\beta_{p}$ and the system β^{\prime} is denoted by

$$
\beta^{\prime}=\left\{1 \leq \beta_{1}<\ldots<\beta_{p-1}<\beta_{p+1}<\ldots \leq n\right\}
$$

If the set β denotes the following combination

$$
\beta=\left\{1 \leq \beta_{1}<\ldots<\beta_{p-1}<i=\beta_{p}<\beta_{p+1}<\ldots \leq n\right\}
$$

we obtain the representation for
$\left(B_{A^{l}} \operatorname{adj}\left(B_{A^{l}}^{*} B G B_{A^{l}}\right)\right)_{i j}=$
$\left.\sum_{\epsilon^{\prime} \in \mathbb{Q}_{r_{k}-1, r}}\left(\sum_{\beta \in \mathcal{J}_{r_{k}}(i)}(-1)^{p}\left|G_{\beta \backslash\{i\}}^{\prime}\right|\left|\left(B_{A^{l}}\right)^{\beta}\right|\right) \times\left(\sum_{\alpha^{\prime} \in \mathbb{Q}_{r_{k}-1, n}}(-1)^{j} \mid B_{\epsilon^{\prime}}^{\alpha^{\prime}} \|\left(B_{A^{l}}^{*}\right)^{\{j\}^{\prime}}\right)_{\alpha^{\prime}} \mid\right)$
Continuing in the same way we get the representation for

$$
\left.B_{A^{l}} \operatorname{adj}\left(B_{A^{l}}^{*} B G B_{A^{l}} B_{A^{l}}^{*}\right)_{i j}=\sum_{t=1}^{r_{k}} B_{A^{l}} \operatorname{adj}\left(B_{A^{l}}^{*} B G B_{A^{l}}\right)\right)_{i t}\left(B_{A^{l}}^{*}\right)_{t j}
$$

$=$

$$
\left.\sum_{\epsilon^{\prime} \in \mathbb{Q}_{r_{k}-1, r}}\left(\sum_{\beta \in \mathcal{J}_{r_{k}}(i)}(-1)^{p}\left|G_{\beta \backslash\{i\}}^{\prime}\right|\left|\left(B_{A^{l}}\right)^{\beta}\right|\right) \times\left(\sum_{\alpha^{\prime} \in \mathbb{Q}_{r_{k}-1, n}}\left|B_{\epsilon^{\prime}}^{\alpha^{\prime}}\right| \sum_{t=1}^{r_{k}}\left(B_{A^{l}}^{*}\right)_{t j}| |\left(B_{A^{l}}^{*}\right)^{\{t\}^{\prime}}\right)_{\alpha^{\prime}} \mid\right)
$$

Similarly if j is contained in the combination α^{\prime}, then

$$
\left.\sum_{t=1}^{r_{k}}(-1)^{t}\left(B_{A^{l}}^{*}\right)_{t j} \mid\left(B_{A^{l}}^{*}\right)_{\{t\}^{\prime}}\right)_{\alpha^{\prime}} \mid=0
$$

Otherwise $j=\alpha_{q}$ and

$$
\alpha^{\prime}=\left\{1 \leq \alpha_{1}<\ldots<\alpha_{q-1}<\alpha_{q+1}<\ldots \alpha_{r_{k}} \leq n\right\}
$$

and

$$
\alpha=\left\{1 \leq \alpha_{1}<\ldots<\alpha_{q-1}<j=\alpha_{q}, \alpha_{q+1}<\ldots \alpha_{r_{k}} \leq n\right\}
$$

Therefore the (i, j) th element of $B_{A^{l}} \operatorname{adj}\left(B_{A^{l}}^{*} B G B_{A^{l}}\right) B_{A^{l}}^{*}$ is equal to

$$
\begin{gathered}
\sum_{\epsilon^{\prime} \in \mathbb{Q}_{r_{k}-1, r}}\left(\sum_{\beta \in \mathcal{J}_{r_{k}}(i)}(-1)^{p}\left|G_{\beta \backslash\{i\}}^{\prime}\right|\left|\left(B_{A^{l}}\right)^{\beta}\right|\right) \times\left(\sum_{\alpha \in \mathcal{J}_{r_{k}}(j)}(-1)^{q}\left|B_{\epsilon^{\prime}}^{\alpha \backslash\{j\}} \|\left(B_{A^{l}}^{*}\right)^{\alpha}\right|\right) \\
\sum_{(\alpha, \beta) \in \mathcal{N}_{r_{k}}(j, i)}\left|\left(B_{A^{l}}\right)^{\beta}\right| \mid\left(B_{A^{l}}^{*}\right)_{\alpha}\left(\sum_{\left.\epsilon^{\prime} \in \mathbb{Q}_{r_{k}-1, r}\right)}(-)^{(p+q)}\left|B_{\epsilon^{\prime}}^{\alpha \backslash j\}}\right|\left|G_{\beta \backslash\{j\}}^{\prime}\right|\right. \\
=\sum_{(\alpha, \beta) \in \mathcal{N}_{r_{k}}(j, i)}\left|\left(B_{A^{l}}\right)^{\beta}\right|\left|\left(B_{A^{l}}^{*}\right)_{\alpha}\right| \frac{\partial}{\partial a_{j i}}\left|A_{\beta}^{\alpha}\right|
\end{gathered}
$$

Theorem 6. For a given matrix $A \in C_{r}^{m \times n}$ with core EP inverse of index k with rank factorization $A=B G$ and $A^{k}=B_{A^{k}} G_{A^{k}}$, we obtain the following representations;
(i) $\left(A A^{\oplus}\right)_{i j}=\frac{\sum_{\alpha \in \mathcal{J}_{r_{k}(i), j \notin \alpha}}\left|\left(B_{A k}^{*}\right)_{\alpha}\right| \sum_{t=1}^{r_{k}}\left(B_{A^{k}}\right)_{i t} \frac{\partial}{\partial\left(B_{A k} k_{j t}\right.}\left|\left(B_{A^{k}}\right)^{\alpha}\right|}{\sum_{\gamma \in Q_{r_{k}, n}, n}\left|\left(B_{A}^{*} k\right) \gamma\right|\left(B_{A^{k}}\right)^{\gamma} \mid}$
$=\frac{\sum_{\alpha \in \mathcal{J}_{r_{k}(i), j \notin \alpha}\left(B_{A_{k}}^{*}\right)_{\alpha} \|\left(B_{A^{k}}\right)^{\alpha} \mid}}{\sum_{\gamma \in \mathbb{Q}_{r_{k}, n}, n}\left|\left(B_{A^{k}}^{*}\right)_{\gamma} \|\left(B_{A^{k}}\right)^{\gamma}\right|}\left(1 \leq t \leq r_{k}, 1 \leq j \leq n\right)$
(ii) $\left(A^{\oplus}\left(A^{\oplus}\right)^{\dagger}\right)_{i j}=\frac{\sum_{\alpha \in \mathcal{J}_{r_{k}(i), j \notin \alpha}}\left|\left(\overline{B_{A^{k}}}\right)^{\alpha}\right|\left|\left(B_{A^{k}}\right)^{\alpha}\right|}{\operatorname{Tr}\left(C_{r_{k}}\left(B_{A^{k}}\left(B_{A^{k}}\right)^{*}\right)\right.}, 1 \leq i, j \leq n$
(iii) $\left(\left(A^{\oplus}\right)^{\dagger} A \oplus\right)_{i j}=\frac{\sum_{\alpha \in \mathcal{J}_{r_{k}(i), j \notin \alpha}}\left|\left(\overline{\left(B_{A_{k}}^{*}\right)_{\alpha}}\right) \|\left(B_{A_{k}}^{*}\right)_{\alpha}\right|}{\left.\left.\operatorname{Tr}^{\left(\left(\mid C_{r_{k}}\left(B_{A^{k}}\left(B_{A k}^{*}\right)\right.\right.\right.}\right)\right)}$

Proof. (i) From the definition

$$
\left(A A^{\oplus}\right)_{i j}=B_{A^{k}}\left(B_{A^{k}}^{*} B_{A^{k}}\right)^{-1} B_{A^{k}}^{*}
$$

Since

$$
\left(\left(B_{A^{k}}^{*} B_{A^{k}}\right)^{-1} B_{A^{k}}^{*}\right)_{t j}=\frac{\sum_{\alpha \in \mathcal{J}_{r_{k}}(j)}\left|\left(B_{A^{k}}^{*}\right)_{\alpha}\right| \frac{\partial}{\partial\left(B_{A^{k}}\right)_{j t}}\left|\left(B_{A^{k}}\right)^{\alpha}\right|}{\sum_{\gamma \in \mathbb{Q}_{r_{k}, n}}\left|\left(B_{A^{k}}^{*}\right)_{\gamma}\right|\left|\left(B_{A^{k}}\right)^{\gamma}\right|}
$$

Now for arbitrary $1 \leq i, j \leq n$ we get

$$
\begin{gathered}
\left(A A^{\oplus}\right)_{i j}=\sum_{t=1}^{r_{k}}\left(B_{A^{k}}\right)_{i t}\left(\left(B_{A^{k}}^{*} B_{A^{k}}\right)^{-1} B_{A^{k}}^{*}\right)_{t j} \\
=\frac{\sum_{\alpha \in \mathcal{J}_{r_{k}(i), j \notin \alpha}}\left|\left(B_{A^{k}}^{*}\right)_{\alpha}\right| \sum_{t=1}^{r_{k}}\left(B_{A^{k}}\right)_{i t} \frac{\partial}{\partial\left(B_{\left.A^{k}\right)_{j t}}\right.}\left|\left(B_{A^{k}}\right)^{\alpha}\right|}{\sum_{\gamma \in \mathbb{Q}_{r_{k}, n}}\left|\left(B_{A^{k}}^{*}\right)_{\gamma}\right|\left|\left(B_{A^{k}}\right)^{\gamma}\right|} \\
=\frac{\sum_{\alpha \in \mathcal{J}_{r_{k}}(i), j \notin \alpha}\left|\left(B_{A^{k}}^{*}\right)_{\alpha}\right|\left|\left(B_{A^{k}}\right)^{\alpha}\right|}{\sum_{\gamma \in \mathbb{Q}_{r_{k}, n}} \mid\left(B_{A^{k}}^{*} \gamma_{\gamma}| |\left(B_{A^{k}}\right)^{\gamma} \mid\right.}
\end{gathered}
$$

(ii) Since

$$
\left(A^{\oplus}(A \oplus)^{\dagger}\right)_{i j}=B_{A^{k}}\left(B_{A^{k}}\right)^{\dagger}=B_{A^{k}}\left(B_{A^{k}}^{*} B_{A^{k}}\right)^{-1}\left(B_{A^{k}}\right)^{*}
$$

and also,

$$
\left(\left(A^{\oplus}\right)^{\dagger} A^{\oplus}\right)_{i j}=\left(B_{A^{k}}^{*}\right)^{\dagger}\left(B_{A^{k}}^{*}\right)=B_{A^{k}}\left(B_{A^{k}}^{*} B_{A^{k}}\right)^{-1} B_{A^{k}}^{*}
$$

the proof follows in the same as in (i).

References

[1] R.E. CLINE, Inverses of Rank Invariant Powers of a matrix,SIAM J. NUMER. ANAL. 5, (1968)
[2] I. I. KYRCHEI, Determinantal Representations of the Core Inverse and Its Generalizations with Applications, Journal of Mathematics, 2019, Article ID 1631979, 13 pages, (2019).
[3] K.M. PRASAD, K.S. MOHANA, Core-EP inverse,Linear and Multilinear Algebra 62, (2014), pp.792-802.
[4] P.S.STANIMIROVIC, D.S. DJORDJEVIC, Full-rank and determinantal representation of the Drazin inverse, Linear Algebra and its Applications, 311, (2000), pp.131-151.

