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1. I NTRODUCTION

A functionϕ : C → R is said to be convex on a convex subsetC of a real linear spaceX if

(1.1) ϕ (tx + (1− t) y) ≤ tϕ (x) + (1− t) ϕ (y)

holds for allx, y ∈ C and0 ≤ t ≤ 1. It is said to be concave if(1.1) is reversed.
A function ϕ : I × J → R, whereI × J ⊂ R2 andI, J are convex sets, is calledconvex

on the coordinatesif the partial mappingsϕy : I → R defined byϕy (u) = ϕ (u, y) , and
ϕx : J → R defined byϕx (v) = ϕ (x, v) , are convex for ally ∈ J andx ∈ I. Analogously we
define functions which are concave on the coordinates. Obviously, ifϕ : I × J → R is convex
(concave), then it is also convex (concave) on the coordinates, but functions which are convex
(concave) on the coordinates are not necessarily convex (concave) in the standard sense. For
instance, the functionϕ : [0,∞〉2 → R defined by

ϕ (x, y) = xpyq,

wherep, q ≥ 1, is convex on the coordinates, but it is not convex in the standard sense. This
means that the class of convex functions is a proper subclass of the class of functions which are
convex on the coordinates. Analogously, for0 < p < 1 and0 < q < 1 ϕ is concave on the
coordinates, but it is not concave in the standard sense unlessp + q ≤ 1.

The following double inequality

(1.2) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

2
,

wheref : I −→ R is a convex function andI = [a, b] , −∞ < a < b < ∞, is known in
the literature as the Hermite-Hadamard inequality (see for example [4, p. 137]) and beside the
Jensen inequality is one of the two most famous inequalities for convex functions. In paper [1]
Dragomir considered an inequality of Hadamard’s type for functions convex on the coordinates
defined on a rectangle from the planeR2. He proved the following theorem.

THEOREM A . Suppose thatϕ : [a, b] × [c, d] ⊂ R2 → R, where−∞ < a < b < ∞ and
−∞ < c < d < ∞, is convex on the coordinates on[a, b]× [c, d]. Then

ϕ

(
a + b

2
,
c + d

2

)
≤ 1

2

[
1

b− a

∫ b

a

ϕ

(
x,

c + d

2

)
dx +

1

d− c

∫ d

c

ϕ

(
a + b

2
, y

)
dy

]
≤ 1

(b− a) (d− c)

∫ b

a

∫ d

c

ϕ (x, y) dxdy

≤ 1

4

[
1

b− a

∫ b

a

ϕ (x, c) dx +
1

b− a

∫ b

a

ϕ (x, d) dx+

1

d− c

∫ d

c

ϕ (a, y) dy +
1

d− c

∫ d

c

ϕ (b, y) dy

]
≤ ϕ (a, c) + ϕ (a, d) + ϕ (b, c) + ϕ (b, d)

4
.(1.3)

These inequalities are sharp.

The resultas established in [1] were generalized and expanded in [2] but the goal of this paper
is to improve the result stated in Theorem A.
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2. I MPROVEMENT

Let E be a nonempty set andL a linear classof functionsf : E → R having the properties:

(L1) (∀f, g ∈ L) (∀α, β ∈ R) af + βg ∈ L;
(L2) 1 ∈ L (that is if (∀t ∈ E) f(t) = 1 thenf ∈ L);
(L3) (∀f, g ∈ L) (min {f, g} ∈ L ∧max {f, g} ∈ L) (latticeproperty).

We considerpositive linear functionalsA : L → R, that is, we assume:

(A1) (∀f, g ∈ L) (∀α, β ∈ R) A(αf + βg) = αA(f) + βA(g) (linearity)
(A2) (∀f ∈ L) (f ≥ 0 −→ A(f) ≥ 0) (positivity).

If additionally the conditionA(1) = 1 is satisfied, we say thatA is apositive normalized linear
functional.

Obviously,
(
RE,≤

)
(with standard ordering) is a lattice. Also, it can be easily verified that

a subspaceX ⊆ RE is a lattice if and only ifx ∈ X implies |x| ∈ X. This is a simple
consequence of the fact that for everyx ∈ X the functions|x| , x− andx+ can be defined by

|x| (t) = |x (t)| , x+ (t) = max {0, x (t)} , x− (t) = −min {0, x (t)} , t ∈ E,

and
x+ + x− = |x| , x+ − x− = x,

min {x, y} =
1

2
(x + y − |x− y|) , max {x, y} =

1

2
(x + y + |x− y|) .

Recently, in [3], the following theorem was proved.

THEOREM B . LetL satisfy(L1) , (L2) and(L3) on a nonempty setE and letA be a positive
normalized linear functional. Iff : I → R is a continuous convex function and[a, b] ⊆ I then
for all g ∈ L such thatg (E) ⊆ [a, b] andf (g) ∈ L we haveA(g) ∈ [a, b] and

(2.1) f

(
pa + qb

p + q

)
≤ A (f (g)) ≤ pf (a) + qf (b)

p + q
− A (g̃) δf ,

wherep andq are any nonnegative real numbers such that

(2.2) A (g) =
pa + qb

p + q

and g̃, δf are defined by

g̃ =
1

2
1−

∣∣g − a+b
2

1
∣∣

b− a
, δf = f (a) + f (b)− 2f

(
a + b

2

)
.

It can be easily seen that an improvement of the Hermite-Hadamard inequality can be ob-
tained as a special case of Theorem B. SetE = [a, b] andL = R ([a, b]), whereR (E) denotes
the subspace of all (bounded) R-integrable functions on[a, b] (note here thatR ([a, b]) is a lattice
sincef ∈ R ([a, b]) implies|f | ∈ R ([a, b])). If we define

A (f) =
1

b− a

∫ b

a

f(x)dx

andg = idE we can easily see thatA is a positive normalized linear functional and

A (g) = A (idE) =
1

b− a

∫ b

a

xdx =
a + b

2
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which means that forp = q = 1 we have

A (g) =
a + b

2
=

pa + qb

p + q
.

If f : [a, b] → R is a convex function than we havef (g) = f ∈ R ([a, b]) = L and all the
conditions of Theorem B are satisfied, hence we obtain

f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f (a) + f (b)

2
− A (g̃) δf ,

whereδf is defined as in Theorem B and

A (g̃) = A

(
1

2
1−

∣∣idE − a+b
2

1
∣∣

b− a

)
=

1

b− a

∫ b

a

(
1

2
−
∣∣x− a+b

2

∣∣
b− a

)
dx

=
1

b− a

∫ a+b
2

a

(
1

2
−

a+b
2
− x

b− a

)
dx +

1

b− a

∫ b

a+b
2

(
1

2
−

x− a+b
2

b− a

)
dx =

1

4

The condition thatf has to be continuous on[a, b] , which is for an arbitraryA required in
Theorem B for the same reasons as in Jessen’s inequality (see [4, p. 45]), can be omitted in this
special case.

In other words, as a special case of Theorem B we have the following corollary.

Corollary 2.1. If f : [a, b] → R,−∞ < a < b < ∞, is a convex function then

(2.3) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f (a) + f (b)

4
+

1

2
f

(
a + b

2

)
≤ f (a) + f (b)

2

In the following we use(2.3) to obtain an improvement of Theorem A.

Theorem 2.2. Suppose thatϕ : [a, b] × [c, d] ⊂ R2 → R, where−∞ < a < b < ∞ and
−∞ < c < d < ∞, is convex on the coordinates on[a, b]× [c, d]. Then

ϕ

(
a + b

2
,
c + d

2

)
≤ 1

2

[
1

b− a

∫ b

a

ϕ

(
x,

c + d

2

)
dx +

1

d− c

∫ d

c

ϕ

(
a + b

2
, y

)
dy

]
≤ 1

(b− a) (d− c)

∫ b

a

∫ d

c

ϕ (x, y) dxdy

≤ 1

8

[
1

b− a

∫ b

a

(
ϕ (x, c) + ϕ (x, d) + 2ϕ

(
x,

c + d

2

))
dx+(2.4)

1

d− c

∫ d

c

(
ϕ (a, y) + ϕ (b, y) + 2ϕ

(
a + b

2
, y

))
dy

]
≤ ϕ (a, c) + ϕ (a, d) + ϕ (b, c) + ϕ (b, d)

16
+

1

4
ϕ

(
a + b

2
,
c + d

2

)
+

ϕ
(

a+b
2

, c
)

+ ϕ
(

a+b
2

, d
)

+ ϕ
(
a, c+d

2

)
+ ϕ

(
b, c+d

2

)
8

These inequalities are sharp.
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Proof. The idea of the proof is the same as in [1] except that we use(2.3). Sinceϕ is convex on
the coordinates we know thatϕy : [a, b] → R defined byϕy (u) = ϕ (u, y) , andϕx : [c, d] → R
defined byϕx (v) = ϕ (x, v) , are convex for ally ∈ [c, d] andx ∈ [a, b]. By (2.3) we have

ϕy

(
a + b

2

)
≤ 1

b− a

∫ b

a

ϕy(x)dx

≤
ϕy (a) + ϕy (b)

4
+

1

2
ϕy

(
a + b

2

)
for all y ∈ [c, d] , that is

ϕ

(
a + b

2
, y

)
≤ 1

b− a

∫ b

a

ϕ(x, y)dx

≤ ϕ (a, y) + ϕ (b, y)

4
+

1

2
ϕ

(
a + b

2
, y

)
.

Integrating this on[c, d] and dividing by(d− c) we obtain

1

d− c

∫ d

c

ϕ

(
a + b

2
, y

)
dy

≤ 1

(b− a) (d− c)

∫ b

a

∫ d

c

ϕ(x, y)dxdy(2.5)

≤ 1

4

[
1

d− c

∫ d

c

(
ϕ (a, y) + ϕ (b, y) + 2ϕ

(
a + b

2
, y

))]
dy.

In a similar way we get

1

b− a

∫ b

a

ϕ

(
x,

c + d

2

)
dx

≤ 1

(b− a) (d− c)

∫ b

a

∫ d

c

ϕ(x, y)dxdy(2.6)

≤ 1

4

[
1

b− a

∫ b

a

(
ϕ (x, c) + ϕ (x, d) + 2ϕ

(
x,

c + d

2

))]
dx.

Summing(2.5) and(2.6) we obtain

1

2

[
1

b− a

∫ b

a

ϕ

(
x,

c + d

2

)
dx +

1

d− c

∫ d

c

ϕ

(
a + b

2
, y

)
dy

]
≤ 1

(b− a) (d− c)

∫ b

a

∫ d

c

ϕ(x, y)dxdy

≤ 1

8

[
1

b− a

∫ b

a

(
ϕ (x, c) + ϕ (x, d) + 2ϕ

(
x,

c + d

2

))
dx+

1

d− c

∫ d

c

(
ϕ (a, y) + ϕ (b, y) + 2ϕ

(
a + b

2
, y

))
dy

]
which are the second and the third inequality in(2.4) .
By the Hermite-Hadamard inequality (or the left hand side of(2.3)) we also have

ϕ

(
a + b

2
,
c + d

2

)
≤ 1

b− a

∫ b

a

ϕ(x,
c + d

2
)dx
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and

ϕ

(
a + b

2
,
c + d

2

)
≤ 1

d− c

∫ d

c

ϕ

(
a + b

2
, y

)
dy,

hence

ϕ

(
a + b

2
,
c + d

2

)
≤ 1

2

[
1

b− a

∫ b

a

ϕ

(
x,

c + d

2

)
dx +

1

d− c

∫ d

c

ϕ

(
a + b

2
, y

)
dy

]
,

which is the first inequality in(2.4). In the same way, by(2.3), we know that

1

b− a

∫ b

a

ϕ(x, c)dx ≤ ϕ (a, c) + ϕ (b, c)

4
+

1

2
ϕ

(
a + b

2
, c

)
1

b− a

∫ b

a

ϕ(x, d)dx ≤ ϕ (a, d) + ϕ (b, d)

4
+

1

2
ϕ

(
a + b

2
, d

)
1

d− c

∫ d

c

ϕ (a, y) dy ≤ ϕ (a, c) + ϕ (a, d)

4
+

1

2
ϕ

(
a,

c + d

2

)
1

d− c

∫ d

c

ϕ (b, y) dy ≤ ϕ (b, c) + ϕ (b, d)

4
+

1

2
ϕ

(
b,

c + d

2

)
1

b− a

∫ b

a

ϕ(x,
c + d

2
)dx ≤

ϕ
(
a, c+d

2

)
+ ϕ

(
b, c+d

2

)
4

+
1

2
ϕ

(
a + b

2
,
c + d

2

)
1

d− c

∫ d

c

ϕ(
a + b

2
, y)dy ≤

ϕ
(

a+b
2

, c
)

+ ϕ
(

a+b
2

, d
)

4
+

1

2
ϕ

(
a + b

2
,
c + d

2

)
which gives, by addition,

1

b− a

∫ b

a

ϕ(x, c)dx +
1

b− a

∫ b

a

ϕ(x, d)dx +

1

d− c

∫ d

c

ϕ (a, y) dy +
1

d− c

∫ d

c

ϕ (b, y) dy +

2

b− a

∫ b

a

ϕ(x,
c + d

2
)dx +

2

d− c

∫ d

c

ϕ(
a + b

2
, y)dy

≤ ϕ (a, c) + ϕ (a, d) + ϕ (b, c) + ϕ (b, d)

2
+

ϕ
(

a+b
2

, c
)

+ ϕ
(

a+b
2

, d
)

+ ϕ
(
a, c+d

2

)
+ ϕ

(
b, c+d

2

)
2

+

ϕ
(
a, c+d

2

)
+ ϕ

(
b, c+d

2

)
2

+ ϕ

(
a + b

2
,
c + d

2

)
+

ϕ
(

a+b
2

, c
)

+ ϕ
(

a+b
2

, d
)

2
+ ϕ

(
a + b

2
,
c + d

2

)
=

ϕ (a, c) + ϕ (a, d) + ϕ (b, c) + ϕ (b, d)

2
+ 2ϕ

(
a + b

2
,
c + d

2

)
ϕ

(
a + b

2
, c

)
+ ϕ

(
a + b

2
, d

)
+ ϕ

(
a,

c + d

2

)
+ ϕ

(
b,

c + d

2

)
.
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Taking all this into consideration we obtain the last inequality in(2.4) .
If we chooseϕ defined byϕ (x, y) = xy then inequalities(2.4) become equalities which

shows that they are sharp.

Remark 2.1. It is easy to prove (in several steps) using the second inequality in(2.3) that

1

8

[
1

b− a

∫ b

a

(
ϕ (x, c) + ϕ (x, d) + 2ϕ

(
x,

c + d

2

))
dx+

1

d− c

∫ d

c

(
ϕ (a, y) + ϕ (b, y) + 2ϕ

(
a + b

2
, y

))
dy

]
≤ 1

4

[
1

b− a

∫ b

a

ϕ (x, c) dx +
1

b− a

∫ b

a

ϕ (x, d) dx+

1

d− c

∫ d

c

ϕ (a, y) dy +
1

d− c

∫ d

c

ϕ (b, y) dy

]
and

ϕ (a, c) + ϕ (a, d) + ϕ (b, c) + ϕ (b, d)

16
+

1

4
ϕ

(
a + b

2
,
c + d

2

)
+

ϕ
(

a+b
2

, c
)

+ ϕ
(

a+b
2

, d
)

+ ϕ
(
a, c+d

2

)
+ ϕ

(
b, c+d

2

)
8

≤ ϕ (a, c) + ϕ (a, d) + ϕ (b, c) + ϕ (b, d)

4
meaning that(2.4) is in fact an improvement of(1.3) .
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