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ABSTRACT. We consider the problem of finding the optimal curve of given length linking two
points in a plane such as it encloses a maximal area. We show that if the curve is not described by
a single-valued function, its determination does not necessarily imply to work with a parametric
representation of the curve. We show that a simpler approach is at hand – and, who knows? –
this might well be the method Queen Dido used.
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1. I NTRODUCTION

It would be difficult to find a text on the calculus of variations that does not introduce this
beautiful area of applied mathematics with three classical problems. The first goes back to
Johann Bernouilli who, in 1696, offered it as a challenge to his contemporaries: find, in a
vertical plane, the curve joining two points A and B such that a bead slide frictionless from A
to B in minimum time. Johann himself, his brother Jakob, Leibniz, L’Hospital, Newton, von
Tschirnhaus solved the problem by subtle physical and geometrical considerations, discovering
that the optimal curve, called a brachistochrone, was an arc of a cycloid. However, none of those
leading mathematicians were able at that time to solve analytically the problem of extremizing
a functional as simple as

∫ b

a
f(x, y, y′)dx.

Nearly half a century went by before the genius of Euler came up, in 1744, with differential
equations that constituted necessary conditions for the optimization not only of the integral just
mentioned, but of much more complex functionals (notably involving constraints, higher order
derivatives, or double integrals). One of Euler’s illustrations constitutes the second classical
problem always presented in texts: find the continuously differentiable curve that joins two
pointsA andB, such that rotating the curve around the abscissa generates a surface of minimum
area. Euler showed that in a large part of(x, y) space, the solution was a catenary.

The third problem goes back much further in time; it is intimately linked to the legend of the
foundation of Carthago by Queen Dido, nearly three thousand years ago, as Virgil relates for us
in his Aeneid. Dido, offered to define between two points a curve of given length delimiting a
maximal area for her future city, found that the optimal curve was an arc of a circle.

The reader going through the solutions given to these three problems will not fail to notice
that the third one – the oldest one – receives by far the shortest shrift1. In particular, the task
of identifying the constants resulting from the relevant differential equations is systematically
left to the reader, sometimes with hardly encouraging warnings such as: "this identification
involves some work", or: "the equations are quite messy"... To the best of our knowledge, the
only author who took pains to go through the whole process is Mark Kot, in his excellent text
[7]; see his neat, subtle exposition in pp. 186-189.

Such a rather frigid approach by most authors to a complete solution in their introduction
may be explained by the fact that Dido’s challenge presents two complications not shared by
the other problems. The first is that it involves a new constraint, in addition to the fact that the
solution has to go through two fixed points: the curve has a fixed length. The second difficulty
stems from the nature of the curve: while the optimal curve resulting from the first two problems
can always be expressed as a single-valued functiony = f(x), this seems not to be the case in
Dido’s problem where, depending on the initial conditions, the curve needs to be expressed in
parametric form, or so it appears.

We will show that Dido’s problem can be made simpler and that its solution can always be
obtained without a parametric framework, thus leading in all cases to a straightforward identifi-
cation of the relevant constants. To do this we will rely on and extend the very clear exposition
given by Mark Kot in the case where the optimal curve is a single valued functiony = f(x)
(see [7], pages 120-122).

Let us then go back some 3000 years in time and, with the Aeneid in hand, set our imagination
free.

1For example, see Akhiezer [1], Bliss [2], Clegg [3], Elsgolc [4], Forsyth [4], Gelfand and Fomin [5], Weinstock
[8].
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2. QUEEN DIDO ’ S FOUNDATION OF CARTHAGO : THE TRUE STORY .

After Queen Dido, a Phoenician refugee, had been thrown by a frightful storm on the shores
of Tunisia, she asked King Hiarbas to sell her a piece of his land for a fixed amount of gold.
Mocking her, the king answered that he would oblige provided that the area of the plot would
be delimited by a bull’s skin. A wicked individual, Hiarbas told Dido that, in addition, the plot
of land would have to follow the coastline from pointA to B (see Figure 1). To the horror of
her companions, Dido accepted the deal.

Cutting a bull’s hide into extraordinarily slim slices, Dido realized not only that the thread she
managed to form could follow the shoreline fromA to B, but that she still had at her disposal a
lengthl larger than the straight line distance betweenB andA.

What was then at stake for Dido was to figure out the shape she would give to the remaining
part of her string. She addressed her companions as follows:

"First, use the straight lineBA as an abscissa, oriented South-North; at its midpoint, consider
the perpendicular as the ordinate, oriented East-West. The coordinates ofA andB are(a, 0)
and(−a, 0) .

Let us maximize, in this system of axes, the areaS equal to

(2.1) S [y] =

∫ a

−a

y(x)dx

under the three constraintsy(a) = 0, y(−a) = 0, and

(2.2)
∫ a

−a

√
1 + y′2dx = l.

Denote the integrands ofS and l as F (x, y, y′) and G(x, y, y′) respectively; the augmented
integrand,ϕ(x, y, y′)≡ F (x, y, y′)+λG(x, y, y′), whereλ designates a constant to be identified,
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is in this case

(2.3) ϕ(y, y′, λ) = y + λ
√

1 + y′2,

leading to

(2.4)
∂ϕ

∂y
− d

dx

∂ϕ

∂y′
= 1− λ

d

dx

y′√
1 + y′2

= 0,

which integrates into

(2.5) x = λ
y′√

1 + y′2
+ C1

or, rearranging and squaring:

(2.6) (x− C1)
2 = λ2 y′2

1 + y′2
,

equivalent to

(2.7) y′2
[
λ2 − (x− C1)

2] = (x− C1)
2 .

Separating the variables,

(2.8) (dy)2 =
(x− C1)

2

λ2 − (x− C1)
2 (dx)2 ,

we have

(2.9) dy =
± (x− C1)√
λ2 − (x− C1)

2
dx.

Let us setu = λ2 − (x− C1)
2 ; thendx = du/(−2(x− C1)) and

(2.10) dy = ±1

2
u−1/2du.

Therefore

(2.11) y = ±u1/2 + C2 = ±
√

λ2 − (x− C1)
2 + C2

and

(2.12) (y − C2)
2 = λ2 − (x− C1)

2 ,

or

(2.13) (y − C2)
2 + (x− C1)

2 = λ2,

the equation of a circle centered atC1, C2, with radiusλ.”
Dido now just needed to identify the constantsC1, C2, andλ. She explained to her compan-

ions that since the circle had to go throughA(a, 0) andB (−a, 0), its center must be located
on the mediator ofAB, i.e. at some pointC2 to be determined on the ordinate. This implied
C1 = 0.

Denotingα the acute angle between radiusC2A and the ordinate, Dido promised her audience
that deriving the value ofα from the constrained parametersa andl would be key to pin down
the center of the optimal circle, as well as its radius. She defined the size ofa as exactly one
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Phoenician length unit; the lengthAB was then2a = 2, and the remaining length of the cord,
which had turned out to be 10% larger thanAB, wasl = 2.2. She first wrote equations

(2.14) αλ =
l

2
and

(2.15)
a

λ
= sin α.

As soon as Dido, usingλ = l/ (2α) , wrote down on her wax tablet

(2.16)
2a

l
α = sin α,

a feeling of embarrassment seized her small audience, everyone realizing that this equation,
transcendental, had no algebraic solution; only numeric methods could apply. But all worries
soon abated when they saw their Queen holding, miraculously saved from their wreckage, a
beautifully accurate trigonometric table, from which she promptly computed the solution as
α = 0.749.

Dido had hardly scribbled on her diagram the resulting ordinate of the circle’s center

(2.17) C2 = −a/ tan α = −1.076

and its radius

(2.18) λ = l/ (2α) = 1.469

when one of her companions raised yet more concern: “With all due respect, he said, how would
Your Majesty determine those results if the lengthl of the string left at our disposal exceeded
π? I can see that if the string describes exactly half of a circle betweenA andB, it implies that
its lengthl must be equal toπ. But if l exceedsπ, the corresponding larger arc of circle is not a
single-valued functiony(x) any more. How would we then proceed?”

“Your concern is perfectly justified” the Queen answered with the faintest of smiles; “I my-
self gave some thought to this issue. First, I was tempted to express our optimal curve para-
metrically, as I remembered my excellent teachers in Alexandria advising me to do in such
circumstances; but I just realized that in this case it was simpler to proceed as follows. Ifl > π,
simply interchange the axes.AB becomes the ordinate, now oriented North-South, and its me-
diator becomes the abscissa, oriented East-West (see Figure 2). The coordinates of pointsA and
B are now(0,−a) and(0, a) respectively. Cally(x) the new function we want to determine.
What we now want to maximize is the integral

(2.19) Φ [y] =

∫ d

0

y(x)dx

whered is the abscissa of a point located on the abscissa; this point is still free, but can be
determined together with the solution. The new constraints are

(2.20)
∫ d

0

√
1 + y′2dx = l/2,

together withy(0) = a. “The augmented integrand of the functional still remains

(2.21) ϕ(x, y, y′) = y + λ
√

1 + y′2.

Formally, the problem can thus be expressed with the same equations, and the solution of

(2.22)
∂ϕ

∂y
− d

dx

∂ϕ

∂y′
= 1− λ

d

dx

y′√
1 + y′2

= 0,

AJMAA, Vol. 20 (2023), No. 1, Art. 1, 7 pp. AJMAA

https://ajmaa.org


6 OLIVIER DE LA GRANDVILLE

is still

(2.23) (y − C2)
2 + (x− C1)

2 = λ2,

where C1, C2, andλ are new constants to be identified.
“From the symmetry of the problem we now haveC2 = 0. The center of the optimal circle

will be located on the abscissa, at a pointC1 to be determined. Denote asα the acute angle
between the rayC1B and the abscissa. The constrained valuesl anda are now linked toα by

(2.24) λ(π − α) =
l

2
and

(2.25)
a

λ
= sin α.

Fromλ = l/ [2 (π − α)] and (2.25), we now have

(2.26)
2a

l
(π − α) = sin α.

“This time, said the Queen, instead of consideringl = 2.2, let us take the much largerl = 6.
Solving numerically (2.26) givesα = 0.8627, from which the radius of the circle is

(2.27) λ = l/ [2 (π − α)] = 1.316,

and the abscissa of its center is

(2.28) C1 = λ cos α = 0.856,

so that the maximum area we could obtain, additional to the area between the coastline andAB,
is equal to

(2.29) (π − α)λ2 + aC1 = 4.805 Phoenician length units squared,
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which can be verified, added the Queen, if we determine the upper bound of integrationd as
C1 + λ = 2.173 and compute

(2.30) 2Φ [y] = 2

∫ d

0

y(x)dx = 2

∫ d

0

√
λ2 − (x− C1)

2dx = 4.805.”

Following the Queen’s last words, you could almost hear a collective sigh of relief from her
retinue.

This is how, nearly 3000 years ago, Carthago was founded. You might very well read or
hear other stories: do not fall for them; they are just legends. Of course, in the account we
give here, there are a few details that historians might still want to discuss. True, we do not
yet have irrefutable proof that Dido, as a young student in Alexandria, did take a course on the
calculus of variations or on optimal economic growth theory, fascinating as these topics may be.
Nevertheless, if one day you visit Tunisia, and if your steps take you to Carthago, why wouldn’t
you want to locate pointsA andB on the Tunisian seashore?
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