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ABSTRACT. In this paper we prove the following theorem: Let X be a nonempty compact
convex set in a locally convex Hausdorff topological vector space, D be the set of its extremal
points and F,T : X — X two Kakutani maps; if for each nonempty finite subset A of D and
for any z € coA, F(x) NcoA # 0, then F and T have a coincidence point. The proof of this
theorem is given first in the case when X is a simplex, then when X is a polytope and finally in
the general case. Several reformulations of this result are given in the last part of the paper.
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2 MIRCEA BALAJ

1. INTRODUCTION AND PRELIMINARIES

A multimap (or simply a map) F' : X —o Y is a function from a set X into the power set 2V
of Y, that is a function with the values F'(x) C Y forx € X. Givenamap F' : X — Y/, the
set {(z,y) € X x Y|y € F(x)} is called the graph of F and the map F'~ : Y —o X defined by
F~(y) ={z € X|y € F(x)} fory € Y, is called the (lower) inverse of I'; the sets F'~ (y) are
called also the fibers of F'. For A C X let F(A) = U{F(z) : x € A}.

Assume that X and Y are topological spaces. A map F' : X —o Y is said to be upper
semicontinuous (u.s.c.) if for each closed subset B of Y the set {z € X : F(z) N B # 0}
is closed in X. If Y is a convex set in a topological vector space, a map F' : X — Y is
called a Kakutani map if it is u.s.c. with nonempty compact convex values. Let us denote by
K(X,Y)={F:X — Y|F is Kakutani map}.

In the sequel, we shall use the following conventions and notations. Real Hausdorff topolog-
ical vector spaces are abbreviated as t.v.s. and real locally convex Hausdorff topological vector
spaces as l.c.s. If A is a set in a t.v.s., the standard abbreviations coA and A denote the convex
hull of A and the closure of A, respectively.

The famous Kakutani-Fan-Glicksberg fixed point theorem [10} 5, [7]] asserts that if X is a
compact convex subset of a l.s.c., then any map F' € K(X, X) has a fixed point. Lassonde [[12]
extends this result proving that if X is as above, any map F': X —o X which can be factorized
by a finite number of Kakutani maps has a fixed point. As a consequence of Lassonde’s result,
if e K(X,Y)and T~ € K(Y, X) (X convex setin al.c.s. and Y convex set in a t.v.s.) then
F and T have a coincidence point, that is, there exists zo € X such that F'(x¢) N T (zq) # 0.

Simple examples show that in general two maps F, 7" € K(X,Y") have no coincidence point.
However two such maps have a coincidence point if Y is a l.c.s., X is a compact convex subset
of Y, and for each x € X, (F(x) — T'(z)) N [Uaso(X — x)] # 0 (see [6]).

The aim of this paper is to prove the following coincidence theorem:

Theorem 1.1. Let X be a compact convex set in a l.c.s., D be the set of its extremal points and
F € K(X,X). Suppose that for each non-empty finite subset A of D and for any x € coA,
F(x)NcoA # 0. Thenforany T € K(X, X) there is a point xq € X such that F(xo)NT (xq) #
0.

The case when X is a polytope endowed with the Euclidean topology is treated in Section
The proof of Theorem [I.1]is given in Section[3] In the same section we give several reformula-
tions of Theorem .1l

2. FINITE DIMENSIONAL CASE

If X, Y are two topological spaces a continuous function f : X — Y is called universal [9]
if for any continuous function g : X — Y there exists xy € X such that f(z¢) = g(xo).

Lemma 2.1. Let A = [vgv; . .. v,] be a simplex. Any continuous function f : A — A satisfying
(2.1 f([vigviy - - v3,]) C [vigvsy -+ - 03]

for each face [v;v;, ... v; ] of A (0 < k < n), is universal.

Proof. Let g : A — A be a continuous function. For each t € A, let A\o(), A1 (?), ..., A\, () be
its barycentric coordinates. Then, \;(t) > 0,0 < i < n, f: Ai(t) =1landt = Zn%)\i(t)vi.

0
For 0 < ¢ < n, consider the following closed set

M= {te A | N(g(t) < N(f(1)}.
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We show that for any face [v;,v;, ... v;, ] of A (0 <k <n)
(2.2) [Vig Vi, - v5,] C US_o M.
Suppose to the contrary that for some face [v;,v;, . .. v;, | there exists a point
t € [vigviy - v ]\ U] oM, .
Since t ¢ UE_ M, , Ay, (f(t)) < Ay, (g(t) for 0 < j < k. If i ¢ {ig, i, ..., i}, by @.1),
Ni(f(t) =0, hence in this case, \;(f ( ) < X\i(g(t))). Tt follows the following contradiction:

1= Z/\z‘(f(t))

which proves that (2.2) holds. By the Knaster-Kuratowski-Mazurkiewicz theorem [11]] there

exists a point tg € NI, M;. Then \;(g(to)) < Xi(f(to)) for 0 < i < n, and since > A\;(g(to)) =
i=0

3

A
3/
/\
Q
~~

~
S—
S—

I
\-H
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S Xi(f(to)) = 1, we infer that \;(g(to)) = \i(f(to))) for all 4, hence f(to) = g(to). B

i=0

Remark 2.1. For a point t € A let us denote by carat the carrier of t, that is the lowest-
dimensional face of A that contains ¢. It is easily seen that condition (2.1]) is equivalent to the
following: f(t) € carat, foreach t € A.

For topological spaces X and Y, amap F' : X —o Y is said to be closed if its graph is a
closed subset of X x Y. For convenience we summarize the following facts (see [1]]):

Lemma 2.2. (i) If F' : X — Y is u.s.c. with closed values and Y is regular, then F is closed.
(i) If F': X — Y is closed and Y is compact Hausdorff, then F is u.s.c.

Theorem 2.3. Let A = [vgvy ... v,| be a simplex and F € K(A, A). Suppose that for each face
[VigViy . vi, ] of A (0 < k < n) and any point t € [v;)v;, ... v;, ], F(t) N [v,v, ... 05, # 0.
Then any map T € K(A, A) has a coincidence point with F, that is, there exists t € A such
that F(t) N T(t) # 0.

Proof. For p = 1,2,... let ¥ be a simplicial subdivision of A of mesh lower than 1/p. Let
VP be the set of vertices of 7. We shall define two functions f,, g, : A — A, first on V* and
then on all points of A. For each v? € V? choose a point y? € F(v?) N carav? and a point
2P € T(v?) and define f,(v?) = yP and g, (vP) = 2P.

We extend f, and gp to all points of A by extending them to each of the simplices of >7.

Let o € XF and vf, v, ..., vP its vertices. Each point ¢ € o can be written uniquely as ¢ =
> o Ajv¥, where A7 > 0, Z] o A; = 1. Put
(23) { fp(t) :Z] =0 %f](v ) Z] O)\gygju

9p(1) :Z] 0 A9 (U ) = Z] 0 i

It is easily seen that f,, g, are well defined and continuous for all of the points in A. We need
only observe that, if t € o; N o;, 7 # j, then the value of f, (resp., g,) computed for ¢ viewed as
a point in o; is equal to the value of f, (resp., g,) for t viewed as a point in ;.

Note also that if ¢ is an arbitrary point in A and o is a simplex in >? that contains ¢, then
fp(t) € car,t C carat. By Lemma there exists a point ¥ € A such that

Fp(@7) = gp(t7) =2 uP
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Let [vv] ... vP] be a simplex in X that contains the point ¢*. Thus, from (2.3)), for some
Af > 0 with 307 A = 1, we have

(2.4) uP = Z )\gyf = Z )\;’z;’.
=0 =0

Without loss of generality we may assume that: lim,_,., ¥ = te A, lim, ;oo u? =1 € A,
and for each j € {0,1,...,n}, lim, ;oo 9} = 35 € A, limy, 00 A} = ).
Forany j € {0,1,...,n}

oy —&ll < flof — &)+ ¢ — ]

IA

1 -
— + ||t — t|| — 0, when p goes to infinity;
p

therefore, lim,,_, vﬁ-’ =t

By Lemma (i) the graph of F'is closed in A x A. Consequently, from vé’ — 1, yf — Uj,
yt € F(uh), it follows that §j; € F({) for each j € {0,1,...,n}. By w=737 \,7;, and
since F'(1) is convex, & € F(t). Similarly, it follows that & € T'(f), hence @ € F/(f) N T(). n

If D = {xy,21,...,2,} is a finite set in a vector space, then X := coD is called a polytope.
Let A = [vgv; ... v, be any n-simplex.
We define a function ¢ : A — X in this way:

then gO(t) = Z AZZL‘Z
i=0

Clearly ¢ is continuous and the following Lemma can be easily proven.
Lemma 2.4. For each convex subset C of X, o' (C') is convex.
The proof of the next lemma is also elementary.

Lemma 2.5. Let X be a topological compact space and'Y a Hausdorffone. If f : X — Y isa
continuous function, then the inverse {1 is a u.s.c. map with compact values.

By means of the function ¢ defined above we can extend Theorem [2.3] from simplices to
polytopes.

Theorem 2.6. Let X = co{xg,x1,...,T,} be a polytope (endowed with the Euclidean topol-
ogy) and F' € K(X, X). Suppose that for each nonempty finite subset A of {xo,x1,...,%n}
and any x € coA, F(x) NcoA # (. Then any map T € K(X, X) has a coincidence point with
F.

Proof. Considering A and ¢ as above we define the maps FT:A—-A by

F=¢'oFop, T=¢p'oTop.

Since the composite of finitely many u.s.c. maps is u.s.c, taking also into account Lemmas
and 2.5} it readily follows that F', T € K(A, A).
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Let [v;,v;, ...v;, | be a face of A and ¢ = Z?:o Ajvi, be a point of this face (A; > 0,
Z?:o A; = 1). We prove that F/(t) N [v;,v;, ... v;,] # 0. Let

k
= (t) = Z AT,
i=0

By hypothesis, there exists a point y € F(x) N co{z;y,xiy, ...,z ). fy = Z?:o [T

k k
(IU'ZT}? 05 ijo lu_] - 1), let U = ijo ,u'jvij'
cn

u € ' (y) Ncofviy, viy, - Vi, }
- QD_I(F((p(t))) N Co{vioavin cee 7Uik}7
hence F'(t) N co{vi,, viy, ..., v } # 0.

By Theorem there exist ty,uy € A such that uy € f(tg) N f(to). Then p(ug) €
F(¢(to)) N T(¢(to)), hence F' and T have a coincidence point. 1

3. THE PROOF AND REFORMULATIONS OF THEOREMI.1]

Let X be a convex set in a vector space. A point x € X is an extremal point of X if there is
no way to express z as a convex combination \y + (1 — A)z suchthaty, 2 € X and 0 < \ < 1,
except by taking y = z = x. Throughout in this section, X stands for a nonempty compact
convex set in a l.c.s. and D for the set of its external points.

We proceed now to prove Theorem Let V be a base of closed convex symmetric neigh-
borhoods of the origin of the space and V' € V arbitrarily fixed. According to Krein-Milman
theorem (see [4, p. 65]), coD is dense in X and since X is compact there is a finite set
{y1,...,yx} C coD suchthat X C U¥_,(y; + V).

Let {zo,z1,...,2,} C D such that {yy,...,yx} C C := co{zg,z1,...,2,}. Then X C
C + V. Consider the maps F', T : C' —o C' defined by

F(z) = (F(x)+V)NnC, T(z)=(T(x)+V)NC, forallz € C.

For each z € C' we have T'(z) C X C C'+V and, since V' is symmetric, (T'(z)+V)NC # 0;
hence T'(z) # 0.
Now, let A be a subset of {xg,z1,...,2,} and z € coA. Since F(z) C F(x) + V, by
hypothesis we get
0 # F(z) NcoA C F(z) N coA.

Theorem [2.6| applied to the maps F' and T gives points zy, yy € C such that yy € F(zy) N
T'(xy). Thus, for each basis element V' there exist 2y, yy € X such thatyy € (F(zy)+ V)N
(T'(xy) + V). Since X is compact we may assume that xy — xy € X, yy — yo € X. From
yy € F(zy)+V, it follows that there exists 2, € V such that yy — 2y € F(xy). Then yy — 2y
also converges to yo and since the graph of F is closed in X x X, it follows that yo € F(x).
In the same way one obtains that y, € T'(z(), hence x is a coincidence point for " and 7.

Theorem 3.1. Let F\'T' : X — X be two closed maps with nonempty convex fibers. Suppose
that for each nonempty finite subset A of D, coA C F(A). Then there exists xo € X such that

Proof. The maps F),'T" being closed, F'~,7~ are also closed, and therefore u.s.c. and compact-
valued by Lemma[2.2|(ii). By hypothesis F'~, T~ have nonempty convex values, hence F'~, T~ €
K(X,X).
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Let A be a nonempty finite subset of D and y € coA. By hypothesis there is a point 2 € coA
such that y € F(x). Hence, x € F~(y) N coA.

Then F'~ and T~ satisfy all the requirements of Theorem and hence there exist g, yy €
X such that xy € F'~(yo)NT~ (yo). Therefore, yo € F'(x¢) NT(x¢) and the proof is complete. §

The next reformulation of Theorem|1.1|could be compared with von Neumann’s intersection
theorem [[13]].

Theorem 3.2. Let M and N be two closed subsets of X x X such that for each x € X the sets
M,={ye X :(rv,y) € M} and N, = {y € X : (z,y) € N} are nonempty and convex.
Suppose that for each nonempty finite subset A of D and for each x € coA, coAN M, # (.
Then M NN # (.

Proof. Define the maps F,T : X —o X by
F(z) =M, and T'(x) = N,.

Since M and N are closed, the maps F' and 7" are closed, hence they are u.s.c. and compact-
valued, by Lemma [2.2] (ii). By hypothesis, it follows on the one hand that for each z € X,
F(z) and T'(x) are nonempty convex sets and on the other hand that for each nonempty finite
set A C D and each = € coA we have F(z) NcoA # (). By Theorem|[I.1|there exist zo, yo € X
such that yo € F'(z) N1 (), thatis (zo,y0) € M N N. 1

Finally we restate Theorem [I.1] as an analytic alternative that could be compared with many
other such results (see [2, 3,8, [14]).

Theorem 3.3. Let f,g : X x X — R be two real-valued functions satisfying:
(1) f is lower semicontinuous and g is upper semicontinuous on X X X;
(ii) for each x € X, f(x,-) is quasiconvex and g(x, ) is quasiconcave.

Then for any real numbers o, B at least one of the following situations holds:

(a) there exist a nonempty finite subset A of D and xy € coA such that f(xg,y) > « for all
Y € coA;

(b) there exists xo € X such that g(xg,y) < B forally € X;

(c) there exists (xg,yo) € X X X such that f(xo,v0) < aand g(xo,y0) > B.

Proof. Suppose that (a) and (b) do not hold and define the maps F,7T : X — X by

Flz)={ye X : f(z,y) <atandT(z) ={y € X : g(z,y) = B}.

By (i) it follows that the maps F and T are closed, hence by Lemma [2.2] (ii) they are u.s.c.
and compact-valued. By (ii), /' and 7" have convex values. Since (a) does not hold, for each
nonempty finite subset A of D and for any = € coA there exists y € coA such that f(z,y) < a,
ie.,y € F(zg) NcoA. Since (b) does not hold, for each z € X, T'(z) is nonempty.

Applying Theorem [1.1| we get (zo,70) € X x X such that yo € F(zo) N T(zo), whence
f(zo,y0) < aand g(xo,y0) > 5. Hence (c) holds and the proof is complete. §

Corollary 3.4. Let f,g: X x X — R be two real functions satisfying conditions (i) and (ii) in
Theorem[3.3 and

(i) g(x,y) < f(z,y) foraall (z,y) € X x X.
Then

inf max g(x < max sup min f(zx
zeX yeX g( y) ACDIECopAyewAf( y)

where the maximum on the right-hand side is taken over all nonempty finite subsets A of D.
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Proof. First let us observe that since f is l.s.c. on X x X, then for each z € X f(x,-) is also
l.s.c. function of y on X and therefore its minimum miril f(x,y) on the compact set coA exists.
YyECco

Similarly we can prove that max g(x,y) exists for each = € X.
ye
Let

3.1 = dj = inf
3.1) 0= 1pax sup min, f(z,y) andf := inf max g(z,y).

We may assume that o, 3 € R. By (3.1) it follows that cases (a) and (b) in Theorem
cannot take place. Consequently, by Theorem there exists (g, o) € X x X such that
f(zo,y0) < aand g(xo,yo) > (. Taking into account (iii) we obtain

B < g(wo, ) < f(x0,%0) <
and the proof is complete.
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