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ABSTRACT. In this paper we prove the following theorem: Let X be a nonempty compact
convex set in a locally convex Hausdorff topological vector space, D be the set of its extremal
points and F, T : X ( X two Kakutani maps; if for each nonempty finite subset A of D and
for any x ∈ coA, F (x) ∩ coA 6= ∅, then F and T have a coincidence point. The proof of this
theorem is given first in the case when X is a simplex, then when X is a polytope and finally in
the general case. Several reformulations of this result are given in the last part of the paper.
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2 MIRCEA BALAJ

1. INTRODUCTION AND PRELIMINARIES

A multimap (or simply a map) F : X ( Y is a function from a set X into the power set 2Y

of Y , that is a function with the values F (x) ⊂ Y for x ∈ X . Given a map F : X ( Y , the
set {(x, y) ∈ X × Y |y ∈ F (x)} is called the graph of F and the map F− : Y ( X defined by
F−(y) = {x ∈ X|y ∈ F (x)} for y ∈ Y , is called the (lower) inverse of F ; the sets F−(y) are
called also the fibers of F . For A ⊂ X let F (A) = ∪{F (x) : x ∈ A}.

Assume that X and Y are topological spaces. A map F : X ( Y is said to be upper
semicontinuous (u.s.c.) if for each closed subset B of Y the set {x ∈ X : F (x) ∩ B 6= ∅}
is closed in X . If Y is a convex set in a topological vector space, a map F : X ( Y is
called a Kakutani map if it is u.s.c. with nonempty compact convex values. Let us denote by
K(X, Y ) = {F : X ( Y |F is Kakutani map}.

In the sequel, we shall use the following conventions and notations. Real Hausdorff topolog-
ical vector spaces are abbreviated as t.v.s. and real locally convex Hausdorff topological vector
spaces as l.c.s. If A is a set in a t.v.s., the standard abbreviations coA and A denote the convex
hull of A and the closure of A, respectively.

The famous Kakutani-Fan-Glicksberg fixed point theorem [10, 5, 7] asserts that if X is a
compact convex subset of a l.s.c., then any map F ∈ K(X,X) has a fixed point. Lassonde [12]
extends this result proving that if X is as above, any map F : X ( X which can be factorized
by a finite number of Kakutani maps has a fixed point. As a consequence of Lassonde’s result,
if F ∈ K(X, Y ) and T− ∈ K(Y,X) (X convex set in a l.c.s. and Y convex set in a t.v.s.) then
F and T have a coincidence point, that is, there exists x0 ∈ X such that F (x0) ∩ T (x0) 6= ∅.

Simple examples show that in general two maps F, T ∈ K(X, Y ) have no coincidence point.
However two such maps have a coincidence point if Y is a l.c.s., X is a compact convex subset
of Y , and for each x ∈ X , (F (x)− T (x)) ∩ [∪λ>0(X − x)] 6= ∅ (see [6]).

The aim of this paper is to prove the following coincidence theorem:

Theorem 1.1. Let X be a compact convex set in a l.c.s., D be the set of its extremal points and
F ∈ K(X,X). Suppose that for each non-empty finite subset A of D and for any x ∈ coA,
F (x)∩coA 6= ∅. Then for any T ∈ K(X,X) there is a point x0 ∈ X such that F (x0)∩T (x0) 6=
∅.

The case when X is a polytope endowed with the Euclidean topology is treated in Section 2.
The proof of Theorem 1.1 is given in Section 3. In the same section we give several reformula-
tions of Theorem 1.1.

2. FINITE DIMENSIONAL CASE

If X, Y are two topological spaces a continuous function f : X → Y is called universal [9]
if for any continuous function g : X → Y there exists x0 ∈ X such that f(x0) = g(x0).

Lemma 2.1. Let ∆ = [v0v1 . . . vn] be a simplex. Any continuous function f : ∆→ ∆ satisfying

(2.1) f([vi0vi1 . . . vik ]) ⊂ [vi0vi1 . . . vik ]

for each face [vi0vi1 . . . vik ] of ∆ (0 ≤ k ≤ n), is universal.

Proof. Let g : ∆→ ∆ be a continuous function. For each t ∈ ∆, let λ0(t), λ1(t), . . . , λn(t) be

its barycentric coordinates. Then, λi(t) ≥ 0, 0 ≤ i ≤ n,
n∑
i=0

λi(t) = 1 and t =
n∑
i=0

λi(t)vi.

For 0 ≤ i ≤ n, consider the following closed set

Mi := {t ∈ ∆ | λi(g(t)) ≤ λi(f(t))}.

AJMAA, Vol. 7, No. 1, Art. 12, pp. 1-7, 2010 AJMAA

http://ajmaa.org


A COINCIDENCE THEOREM FOR TWO KAKUTANI MAPS 3

We show that for any face [vi0vi1 . . . vik ] of ∆ (0 ≤ k ≤ n)

(2.2) [vi0vi1 . . . vik ] ⊂ ∪kj=0Mij .

Suppose to the contrary that for some face [vi0vi1 . . . vik ] there exists a point

t ∈ [vi0vi1 . . . vik ] \ ∪kj=0Mij .

Since t /∈ ∪kj=0Mij , λij(f(t)) < λij(g(t)) for 0 ≤ j ≤ k. If i /∈ {i0, i1, . . . , ik}, by (2.1),
λi(f(t)) = 0, hence in this case, λi(f(t) ≤ λi(g(t))). It follows the following contradiction:

1 =
n∑
i=0

λi(f(t)) <
n∑
i=0

λi(g(t)) = 1,

which proves that (2.2) holds. By the Knaster-Kuratowski-Mazurkiewicz theorem [11] there

exists a point t0 ∈ ∩ni=0Mi. Then λi(g(t0)) ≤ λi(f(t0)) for 0 ≤ i ≤ n, and since
n∑
i=0

λi(g(t0)) =

n∑
i=0

λi(f(t0)) = 1, we infer that λi(g(t0)) = λi(f(t0))) for all i, hence f(t0) = g(t0).

Remark 2.1. For a point t ∈ ∆ let us denote by car∆t the carrier of t, that is the lowest-
dimensional face of ∆ that contains t. It is easily seen that condition (2.1) is equivalent to the
following: f(t) ∈ car∆t, for each t ∈ ∆.

For topological spaces X and Y , a map F : X ( Y is said to be closed if its graph is a
closed subset of X × Y . For convenience we summarize the following facts (see [1]):

Lemma 2.2. (i) If F : X ( Y is u.s.c. with closed values and Y is regular, then F is closed.
(ii) If F : X ( Y is closed and Y is compact Hausdorff, then F is u.s.c.

Theorem 2.3. Let ∆ = [v0v1 . . . vn] be a simplex and F ∈ K(∆,∆). Suppose that for each face
[vi0vi1 . . . vik ] of ∆ (0 ≤ k ≤ n) and any point t ∈ [vi0vi1 . . . vik ], F (t) ∩ [vi0vi1 . . . vik ] 6= ∅.
Then any map T ∈ K(∆,∆) has a coincidence point with F , that is, there exists t̂ ∈ ∆ such
that F (t̂) ∩ T (t̂) 6= ∅.

Proof. For p = 1, 2, . . . let Σp be a simplicial subdivision of ∆ of mesh lower than 1/p. Let
V p be the set of vertices of Σp. We shall define two functions fp, gp : ∆ → ∆, first on V p and
then on all points of ∆. For each vp ∈ V p choose a point yp ∈ F (vp) ∩ car∆v

p and a point
zp ∈ T (vp) and define fp(vp) = yp and gp(vp) = zp.

We extend fp and gp to all points of ∆ by extending them to each of the simplices of Σp.
Let σ ∈ Σp and vp0, v

p
1, . . . , v

p
n its vertices. Each point t ∈ σ can be written uniquely as t =∑n

j=0 λ
p
jv
p
j , where λpj ≥ 0,

∑n
j=0 λ

p
j = 1. Put

(2.3)
{
fp(t) =

∑n
j=0 λ

p
jfj(v

p
j ) =

∑n
j=0 λ

p
jy
p
j ,

gp(t) =
∑n

j=0 λ
p
jgj(v

p
j ) =

∑n
j=0 λ

p
jz
p
j .

It is easily seen that fp, gp are well defined and continuous for all of the points in ∆. We need
only observe that, if t ∈ σi ∩ σj , i 6= j, then the value of fp (resp., gp) computed for t viewed as
a point in σi is equal to the value of fp (resp., gp) for t viewed as a point in σj .

Note also that if t is an arbitrary point in ∆ and σ is a simplex in Σp that contains t, then
fp(t) ∈ carσt ⊂ car∆t. By Lemma 2.1, there exists a point tp ∈ ∆ such that

fp(t
p) = gp(t

p) =: up
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Let [vp0v
p
1 . . . v

p
n] be a simplex in Σp that contains the point tp. Thus, from (2.3), for some

λpj ≥ 0 with
∑n

j=0 λ
p
j = 1, we have

(2.4) up =
n∑
j=0

λpjy
p
j =

n∑
j=0

λpjz
p
j .

Without loss of generality we may assume that: limp→∞ t
p = t̂ ∈ ∆, limp→∞ u

p = û ∈ ∆,
and for each j ∈ {0, 1, . . . , n}, limp→∞ y

p
j = ŷj ∈ ∆, limp→∞ λ

p
j = λ̂j .

For any j ∈ {0, 1, . . . , n}

‖vpj − t̂‖ ≤ ‖vpj − tp‖+ ‖tp − t̂‖

≤ 1

p
+ ‖tp − t̂‖ → 0, when p goes to infinity;

therefore, limp→∞ v
p
j = t̂.

By Lemma 2.2 (i) the graph of F is closed in ∆×∆. Consequently, from vpj → t̂, ypj → ŷj ,
ypj ∈ F (vpj ), it follows that ŷj ∈ F (t̂) for each j ∈ {0, 1, . . . , n}. By (2.4) û =

∑n
j=0 λ̂j ŷj , and

since F (t̂) is convex, û ∈ F (t̂). Similarly, it follows that û ∈ T (t̂), hence û ∈ F (t̂) ∩ T (t̂).

If D = {x0, x1, . . . , xn} is a finite set in a vector space, then X := coD is called a polytope.
Let ∆ = [v0v1 . . . vn] be any n-simplex.

We define a function ϕ : ∆→ X in this way:

if t =
n∑
i=0

λivi ∈ S (λi ≥ 0,
n∑
i=0

λi = 1),

then ϕ(t) =
n∑
i=0

λixi.

Clearly ϕ is continuous and the following Lemma can be easily proven.

Lemma 2.4. For each convex subset C of X , ϕ−1(C) is convex.

The proof of the next lemma is also elementary.

Lemma 2.5. Let X be a topological compact space and Y a Hausdorff one. If f : X → Y is a
continuous function, then the inverse f−1 is a u.s.c. map with compact values.

By means of the function ϕ defined above we can extend Theorem 2.3 from simplices to
polytopes.

Theorem 2.6. Let X = co{x0, x1, . . . , xn} be a polytope (endowed with the Euclidean topol-
ogy) and F ∈ K(X,X). Suppose that for each nonempty finite subset A of {x0, x1, . . . , xn}
and any x ∈ coA, F (x) ∩ coA 6= ∅. Then any map T ∈ K(X,X) has a coincidence point with
F .

Proof. Considering ∆ and ϕ as above we define the maps F̃ , T̃ : ∆ ( ∆ by

F̃ = ϕ−1 ◦ F ◦ ϕ, T̃ = ϕ−1 ◦ T ◦ ϕ.

Since the composite of finitely many u.s.c. maps is u.s.c, taking also into account Lemmas
2.4 and 2.5, it readily follows that F̃ , T̃ ∈ K(∆,∆).
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Let [vi0vi1 . . . vik ] be a face of ∆ and t =
∑k

j=0 λjvij be a point of this face (λj ≥ 0,∑k
j=0 λj = 1). We prove that F̃ (t) ∩ [vi0vi1 . . . vik ] 6= ∅. Let

x := ϕ(t) =
k∑
i=0

λjxij .

By hypothesis, there exists a point y ∈ F (x) ∩ co{xi0 , xi1 , . . . , xik}. If y =
∑k

j=0 µjxij
(µj ≥ 0,

∑k
j=0 µj = 1), let u :=

∑k
j=0 µjvij .

Then
u ∈ ϕ−1(y) ∩ co{vi0 , vi1 , . . . , vik}

⊂ ϕ−1(F (ϕ(t))) ∩ co{vi0 , vi1 , . . . , vik},
hence F̃ (t) ∩ co{vi0 , vi1 , . . . , vik} 6= ∅.

By Theorem 2.3, there exist t0, u0 ∈ ∆ such that u0 ∈ F̃ (t0) ∩ T̃ (t0). Then ϕ(u0) ∈
F (ϕ(t0)) ∩ T (ϕ(t0)), hence F and T have a coincidence point.

3. THE PROOF AND REFORMULATIONS OF THEOREM1.1

Let X be a convex set in a vector space. A point x ∈ X is an extremal point of X if there is
no way to express x as a convex combination λy+ (1− λ)z such that y, z ∈ X and 0 < λ < 1,
except by taking y = z = x. Throughout in this section, X stands for a nonempty compact
convex set in a l.c.s. and D for the set of its external points.

We proceed now to prove Theorem 1.1. Let V be a base of closed convex symmetric neigh-
borhoods of the origin of the space and V ∈ V arbitrarily fixed. According to Krein-Milman
theorem (see [4, p. 65]), coD is dense in X and since X is compact there is a finite set
{y1, . . . , yk} ⊂ coD such that X ⊂ ∪ki=1(yi + V ).

Let {x0, x1, . . . , xn} ⊂ D such that {y1, . . . , yk} ⊂ C := co{x0, x1, . . . , xn}. Then X ⊂
C + V . Consider the maps F̃ , T̃ : C ( C defined by

F̃ (x) = (F (x) + V ) ∩ C, T̃ (x) = (T (x) + V ) ∩ C, for all x ∈ C.
For each x ∈ C we have T (x) ⊂ X ⊂ C+V and, since V is symmetric, (T (x)+V )∩C 6= ∅;

hence T̃ (x) 6= ∅.
Now, let A be a subset of {x0, x1, . . . , xn} and x ∈ coA. Since F (x) ⊂ F (x) + V , by

hypothesis we get
∅ 6= F (x) ∩ coA ⊂ F̃ (x) ∩ coA.

Theorem 2.6 applied to the maps F̃ and T̃ gives points xV , yV ∈ C such that yV ∈ F̃ (xV ) ∩
T̃ (xV ). Thus, for each basis element V there exist xV , yV ∈ X such that yV ∈ (F (xV ) + V ) ∩
(T (xV ) + V ). Since X is compact we may assume that xV → x0 ∈ X , yV → y0 ∈ X . From
yV ∈ F (xV )+V , it follows that there exists zV ∈ V such that yV −zV ∈ F (xV ). Then yV −zV
also converges to y0 and since the graph of F is closed in X × X , it follows that y0 ∈ F (x0).
In the same way one obtains that y0 ∈ T (x0), hence x0 is a coincidence point for F and T .

Theorem 3.1. Let F, T : X → X be two closed maps with nonempty convex fibers. Suppose
that for each nonempty finite subset A of D, coA ⊂ F (A). Then there exists x0 ∈ X such that
F (x0) ∩ T (x0) 6= ∅.

Proof. The maps F, T being closed, F−, T− are also closed, and therefore u.s.c. and compact-
valued by Lemma 2.2 (ii). By hypothesisF−, T− have nonempty convex values, henceF−, T− ∈
K(X,X).
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Let A be a nonempty finite subset of D and y ∈ coA. By hypothesis there is a point x ∈ coA
such that y ∈ F (x). Hence, x ∈ F−(y) ∩ coA.

Then F− and T− satisfy all the requirements of Theorem 1.1, and hence there exist x0, y0 ∈
X such that x0 ∈ F−(y0)∩T−(y0). Therefore, y0 ∈ F (x0)∩T (x0) and the proof is complete.

The next reformulation of Theorem 1.1 could be compared with von Neumann’s intersection
theorem [13].

Theorem 3.2. Let M and N be two closed subsets of X ×X such that for each x ∈ X the sets
Mx = {y ∈ X : (x, y) ∈ M} and Nx = {y ∈ X : (x, y) ∈ N} are nonempty and convex.
Suppose that for each nonempty finite subset A of D and for each x ∈ coA, coA ∩Mx 6= ∅.
Then M ∩N 6= ∅.

Proof. Define the maps F, T : X ( X by

F (x) = Mx and T (x) = Nx.

Since M and N are closed, the maps F and T are closed, hence they are u.s.c. and compact-
valued, by Lemma 2.2 (ii). By hypothesis, it follows on the one hand that for each x ∈ X ,
F (x) and T (x) are nonempty convex sets and on the other hand that for each nonempty finite
set A ⊂ D and each x ∈ coA we have F (x)∩ coA 6= ∅. By Theorem 1.1 there exist x0, y0 ∈ X
such that y0 ∈ F (x0) ∩ T (x0), that is (x0, y0) ∈M ∩N .

Finally we restate Theorem 1.1 as an analytic alternative that could be compared with many
other such results (see [2, 3, 8, 14]).

Theorem 3.3. Let f, g : X ×X → R be two real-valued functions satisfying:
(i) f is lower semicontinuous and g is upper semicontinuous on X ×X;

(ii) for each x ∈ X , f(x, ·) is quasiconvex and g(x, ·) is quasiconcave.
Then for any real numbers α, β at least one of the following situations holds:

(a) there exist a nonempty finite subset A of D and x0 ∈ coA such that f(x0, y) > α for all
y ∈ coA;

(b) there exists x0 ∈ X such that g(x0, y) < β for all y ∈ X;
(c) there exists (x0, y0) ∈ X ×X such that f(x0, y0) ≤ α and g(x0, y0) ≥ β.

Proof. Suppose that (a) and (b) do not hold and define the maps F, T : X ( X by

F (x) = {y ∈ X : f(x, y) ≤ α} and T (x) = {y ∈ X : g(x, y) ≥ β}.

By (i) it follows that the maps F and T are closed, hence by Lemma 2.2 (ii) they are u.s.c.
and compact-valued. By (ii), F and T have convex values. Since (a) does not hold, for each
nonempty finite subset A of D and for any x ∈ coA there exists y ∈ coA such that f(x, y) ≤ α,
i.e., y ∈ F (x0) ∩ coA. Since (b) does not hold, for each x ∈ X , T (x) is nonempty.

Applying Theorem 1.1 we get (x0, y0) ∈ X × X such that y0 ∈ F (x0) ∩ T (x0), whence
f(x0, y0) ≤ α and g(x0, y0) ≥ β. Hence (c) holds and the proof is complete.

Corollary 3.4. Let f, g : X ×X → R be two real functions satisfying conditions (i) and (ii) in
Theorem 3.3 and

(iii) g(x, y) ≤ f(x, y) fora all (x, y) ∈ X ×X .
Then

inf
x∈X

max
y∈X

g(x, y) ≤ max
A⊂D

sup
x∈coA

min
y∈coA

f(x, y),

where the maximum on the right-hand side is taken over all nonempty finite subsets A of D.
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Proof. First let us observe that since f is l.s.c. on X ×X , then for each x ∈ X f(x, ·) is also
l.s.c. function of y on X and therefore its minimum min

y∈coA
f(x, y) on the compact set coA exists.

Similarly we can prove that max
y∈X

g(x, y) exists for each x ∈ X .

Let

(3.1) α := max
A⊂D

sup
x∈coA

min
y∈coA

f(x, y) andβ := inf
x∈X

max
y∈X

g(x, y).

We may assume that α, β ∈ R. By (3.1) it follows that cases (a) and (b) in Theorem 3.3
cannot take place. Consequently, by Theorem 3.3, there exists (x0, y0) ∈ X × X such that
f(x0, y0) ≤ α and g(x0, y0) ≥ β. Taking into account (iii) we obtain

β ≤ g(x0, y0) ≤ f(x0, y0) ≤ α,

and the proof is complete.
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