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ABSTRACT. We continue the investigation on classes of small sets in a Banach space that give
alternative formulations of the Drop Property. The small sets here considered are the set having
the small ball property, and we show that for sets having non-empty intrinsic core and whose
affine hull contains a closed affine space of infinite dimension the Drop Property can be equiva-
lently formulated in terms of the small ball property.
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1. I NTRODUCTION

Let (X, ‖ ‖) be a reflexive Banach space.
We remind a definition from [3]

Definition 1.1. : Let K be a non-empty class of subsets ofX, and letC be a closed and
convex subset ofX. We shall say thatC ∈ (K)−DP(X) if, for every closedF with F∩C = ∅,
there existsx0 ∈ F such thatD(x0, C) ∩ F ∈ K.

WhenK = X̂ is the class of singletons in2X , we shall simply use the symbolDP(X);
DP(X) has been introduced by D. Kutzarova in [6].
In [8] and [3] it has been shown that some classes of "small" sets playing the role ofK are such
that(K)−DP(X) = DP(X).
More precisely, the equivalence has been shown whenK is the class of compact subsets ofX
in [8], and for the class of microscopic and of scalarly microscopic subsets ofX in [3], where
they are also defined.
In this note we shall consider the class of sets inX having thesmall ball propertyas defined in
[2], and we shall compare it with the classDP(X).

2. PRELIMINARIES

The Drop Property has been equivalently characterized in several ways in [5], [7], [8], [3].
Besides the characterization in term of different classes of small sets of [8] and [3], we shall
need the following equivalence, that has been obtained in [5].

Definition 2.1. Given a closed bounded convex setC, a sequence(xn)n in X \ C such that
xn+1 ∈ D(xn, C), for all n ∈ IN, is called astream.
A stream(yn)n is said adyadic streamif it can be represented by the following inductive formula

y1 =
x + x1

2
andyn =

yn−1 + xn

2
, for n ≥ 2, wherex ∈ X \ C and(xn)n ⊂ C.

In [5] the following result is given:

Theorem 2.1.A bounded, closed and convex setC has the Drop Property iff every stream in
X \ C has a norm converging subsequence.

In this paper we shall continue the investigation of classes of small sets and their role in
defining alternative forms of the Drop Property, and we shall turn our attention to the class of
sets with the small ball property. This class has been introduced and studied in [2].

Definition 2.2. A setC has thesmall ball propertyif for everyε > 0 there exists a sequence
of positive scalarsrn < ε with lim

n
rn = 0 and a sequence of elements(xn)n ⊂ X such that

C ⊂
∞⋃

n=1

(xn + rnX1)

(whereX1 denotes the closed unitary ball of the space).

Among the properties obtained in [2] we quote the following that we shall need in the sequel

Theorem 2.2. A closed, convex and bounded subset ofX has the small ball property iff it is
compact.
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3. COMPARISON

Throughout this sectionC will denote a non empty, bounded, closed and convex set inX.
As mentioned in the Introduction, besides the already defined hyperspaceDP(X) we shall
consider also the hyperspace(K) −DP(X) whereK is the class of sets having theε− small
ball property.
Since singletons clearly have theε−small ball property, it is immediate to note the inclusion

DP(X) ⊂ (K)−DP(X).

In this section we investigate the inverse inclusion. For the sake of simplicity in the sequel we
shall also consider the following notation:

Definition 3.1. The setC is symmetrically compactif for every y ∈ C, every closed and
symmetric subsetV of C − y is compact.

The main result in this section is the following

Theorem 3.1.If C is not symmetrically compact, andC ∈ (K)−DP(X), thenC ∈ DP(X).

Proof. SinceC is not symmetrically compact, there existsx̄ ∈ C such thatC − x̄ contains a
non-compact, closed, symmetric subsetV . As C − x̄ is convex, we can always assume thatV
is convex, and therefore circled.
Also C has the Drop Property iffC − x̄ has the Drop Property, andC ∈ (K)−DP(X) iff
(C − x̄) ∈ (K)−DP(X).
Hence we can replaceC with C − x̄ namely we can assume without loss of generality thatC
contains a non compact, convex, circled setV .
Assume by contradiction thatC 6∈ DP(X).

Claim 1. There exists a dyadic stream inX \ C with no converging subsequences.
Proof. Observe first that, by Theorem 2.1 it is clear that a stream inX \ C with no converging
subsequences certainly exists; our statement is a little more restrictive, for we want the stream
to be dyadic.
We have only two possible cases: ifCo = ∅, the existence of a dyadic stream with no converging
subsequences is proven in [7], Theorem 3. Otherwise supposeCo 6= ∅. Then, the equivalence
between (i) and (ii) in Theorem 7 of [7] shows thatC does not have property (α) (for C does
not have the Drop Property). In this case, then, the existence of the required dyadic stream is
proven in Proposition 1 of [7]. Hence in both cases Claim 1 holds.

Let then the dyadic stream of Claim 1 be defined as

xo ∈ X \ C

xn+1 =
xn + an+1

2
, an ∈ C, n ∈ IN.

We shall now replacean with a suitable choice ofbn ∈ C.

To this aim, consider the following procedure: first pick some positive scalarr1 <
1

2
such that

(xo + 2r1V ) ∩ C = ∅; since0 ∈ C andC is convex,(1−r1)a1 ∈ C for every choice ofr1 <
1

2
;

then chooser1 such that
(1− r1)a1 + xo

2
6∈ C.

Define nowzo = xo, b1 = (1− r1)a1 andz1 =
zo + b1

2
.
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4 C. DONNINI AND A. M ARTELLOTTI

Iterating this procedure, we can construct a decreasing sequence of positive scalars(rn)n such
that

rn ≤
rn−1

2

(
=⇒ rn ≤

1

2n

)
;(3.1)

(zn + 2rn+1V ) ∩ C = ∅;(3.2)

bn = (1− rn)an;(3.3)

zn =
bn + zn−1

2
6∈ C.(3.4)

Claim 2. The dyadic stream(zn)n has no converging subsequences.
Proof. In fact, settingR = diam(C), we have from (3.3) that

‖bn − an‖ = rn‖an‖ ≤
1

2n
R.(3.5)

Thus

‖x1 − z1‖ =
1

2
‖a1 − b1‖ =

R

2
;(3.6)

then from (3.5) and (3.6)

‖x2 − z2‖ ≤
1

2
(‖x1 − z1‖+ ‖a2 − b2‖) ≤

R

4
+

R

8
=

1

4
R

(
1 +

1

2

)
.

By induction then

‖xn − zn‖ ≤
1

2n
R

n∑
k=0

1

2k
,

which implies that(xn)n and(zn)n would have the same converging subsequences.

Let us set

F =
∞⋃

n=1

(
zn +

rn

2
V

)
.

Then clearlyF ∩ C = ∅.

Claim 3. F is closed.
Proof. The proof is rather similar to that of Lemma 1 in [3]: in fact given(tn)n ⊂ F such that

tn → t defineINk =
{

p|tp ∈
(
zk +

rk

2
V

)}
. If INk is infinite for someko then a subsequence

of (tn)n lies in
(
zko +

rko

2
V

)
and thereforet ∈

(
zko +

rko

2
V

)
⊂ F .

We prove now that this is the only possible occurrence, namely that assuming thatINk is finite
for everyk ∈ IN leads to a contradiction.
Indeed ifINk is finite or empty for everyk ∈ IN and we pick

yk =

{
tp(k) if INk 6= ∅ and p(k) = minINk

zk if INk = ∅,

then(yn)n has a subsequence converging tot, and since‖yn − zn‖ ≤
rn

2
, from (3.1) it would

follow that (zn)n has a subsequence converging tot, which contradicts Claim 2.

AJMAA, Vol. 5, No. 2, Art. 8, pp. 1-7, 2009 AJMAA

http://ajmaa.org


THE ε-SMALL BALL DROPPROPERTY 5

Claim 4. For everyt ∈ F , sayt ∈
(
zn +

rn

2
V

)
then(

zn+1 +
rn+1

2
V

)
⊂ D(t, C).

Proof. Note that from Claim 4, there follows thatD(t, C) ∩ F contains a non-compact closed
and convex set; from Theorem 2.2 thenC fails to fulfill the (K)-Drop Property, contradicting
the assumption.

In order to prove the Claim, fixt = zn +
rn

2
v for somev ∈ V . PutW =

V

2
, and writet =

zn + rnw with w ∈ W . To prove that(zn+1 + rn+1W ) ⊂ D(t, C) means that for everyu ∈ W
there existα ∈]0, 1[ anda ∈ C such that

zn+1 + rn+1u = α(zn + rnw) + (1− α)a.

We shall in fact prove that for everyu ∈ W there existsa ∈ C such that

zn+1 + rn+1u =
(zn + rnw) + a

2

which, sincezn+1 =
zn + bn

2
, is equivalent to

bn

2
+ rn+1u =

rnw + a

2
.

Therefore we have to show that for everyu ∈ W,

2rn+1u− rnw + bn ∈ C.(3.7)

Since

2rn+1u = rn

(
2rn+1

rn

)
u =

2rn+1

rn

rnu +

(
1− 2rn+1

rn

)
0

we have that2rn+1u ∈ rnW . Hence we can write

2rn+1u− rnw = rn(z − w)

for somez ∈ W . Therefore(z − w) ∈ W −W = V sinceV is circled.
In conclusion

bn + 2rn+1u− rnw = bn + rn(z − w) = (1− rn)an + rn(z − w)

with (z − w) ∈ V ⊂ C, andan ∈ C; this proves (3.7) and therefore the total assertion. �

4. SYMMETRICALLY COMPACT SETS

In view of Theorem 3.1 it becomes clear that an answer to the natural question whether the
inclusionDP(X) ⊂ (K) −DP(X) is strict or not can be given only in the framework of non
compact symmetrically compact sets.
To prove that the answer to the question is not this easy we provide an example of a non compact
symmetrically compact set.

Example 4.1. In X = `2 let K = X1 ∩X+ whereX+ is the usual closed order cone inX.
Then immediatelyK is not compact, for it contains the standard basis.
We shall show thatK is symmetrically compact. Lety ∈ K be fixed,y = (yi)i∈IN , and consider
a symmetric closed and convex subsetV ⊂ K − y. Then for everyv ∈ V, v = (vi)i∈IN we find
for eachi ∈ IN

|vi| ≤ yi.(4.1)
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In fact,v = k− y for somek ∈ K; As−v ∈ V too, there existsk′ ∈ K such that−v = k′− y,
whencek′ − y = y − k, namelyk′ = 2y − k. Sincek′ ∈ K ⊂ X+ every component is non
negative, that is2yi − ki ≥ 0 for everyi ∈ IN , or elseki ≤ 2yi, which proves (4.1).
From (4.1) the compactness ofV follows; in fact it implies thatV is contained in the order
interval [−y, y], and sinceX is discrete, this interval is compact ([1] Corollary 21.13, page
156).
HenceK is symmetrically compact.

Therefore it becomes interesting to investigate which sets are in fact symmetrically compact.
We point out again that a setC in X is not symmetrically compact, provided there existsxo ∈ C
such that the translateC − xo contains a non compact symmetric set.
Then a first example of sets that are not symmetrically compact is the class of sets inX having
non empty interior, provided the dimension ofX is infinite.
A generalization of this fact can be given according to [4].
In fact, following Giles, we define, for a non emptyV ⊂ X, the affine hullaff(V ) = v +
span(V − v) whatever isv ∈ V .
Then for a non emptyV we define theintrinsic core icor(V ) to be the set of elementsv ∈ V
such that for everyx ∈ aff(V ), x 6= v there exists somer ∈]0, 1[ for which the whole interval
[v, rv + (1− r)x] is contained inV (where the interval means the line segment joining the two
elements).

Proposition 4.1. If C is bounded, closed and convex, withicor(C) 6= ∅, and if aff(C) contains
a closed affine space of infinite dimension,C is not symmetrically compact.

Proof. Clearly, if icor(C) 6= ∅, then for eachx ∈ icor(C), 0 ∈ icor(C − x); setA = C − x;
obviously aff(A) = spanA, andA absorbs its own linear span.
For everyx ∈ A \ {0} consider

ρ(x) = sup{t ∈]0, 1[: tx ∈ A}

e then define
r(x) = ρ(x) ∧ ρ(−x).

Since0 ∈ icor(A), ρ(x) > 0 for everyx ∈ A \ {0}, and hencer(x) is positive (in fact,A
absorbs spanA, and thereforeρ(−x) is strictly positive too). Consider now the set

K =
⋃

x∈spanA

[−r(x), r(x)].

ThenK ⊂ A and clearlyK is symmetric. SinceA is closed, bounded and convex,V = coK is
a closed, bounded, convex, circled subset ofA, that absorbs spanA = spanV . In other words
V is a barrel in spanA.
By our assumptions, spanA contains a closed subspace of infinite dimensionY , andV ∩Y is a
barrel in the complete Banach spaceY ; henceV ∩ Y is a neighbourhood of0 in Y , and hence
V ∩ Y is not compact. ThusV is not compact too. �

As a consequence, we can derive the following

Corollary 4.1. If C is a bounded, closed and convex set in(K)−DP(X) with icor(C) 6= ∅,
and ifaff(C) contains a closed affine space, thenC ∈ DP(X).

Proof. Indeed, if aff(C) is of finite dimension, thenC is compact, and therefore directlyC ∈
DP(X). If aff(C) is of infinite dimension, then from Proposition 4.1C is not symmetrically
compact, so that Theorem 3.1 can be applied. �
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