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ABSTRACT. We continue the investigation on classes of small sets in a Banach space that give
alternative formulations of the Drop Property. The small sets here considered are the set having
the small ball property, and we show that for sets having non-empty intrinsic core and whose

affine hull contains a closed affine space of infinite dimension the Drop Property can be equiva-

lently formulated in terms of the small ball property.
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2 C. DONNINI AND A. MARTELLOTTI

1. INTRODUCTION

Let (X, || ||) be a reflexive Banach space.
We remind a definition from [3]

Definition 1.1. : Let K be a non-empty class of subsetsXf and letC' be a closed and
convex subset ak. We shall say that' € () — DP(X) if, for every closed” with FNC = (),
there exists, € F' such thatD(z,, C) N F € K.

Whenk = X is the class of singletons X, we shall simply use the symb@P (X);
DP(X) has been introduced by D. Kutzarovalin [6].
In [8] and [3] it has been shown that some classes of "small” sets playing the rGlarefsuch
that(K) — DP(X) = DP(X).
More precisely, the equivalence has been shown wiiénthe class of compact subsets.of
in [8], and for the class of microscopic and of scalarly microscopic subsetsiof[3], where
they are also defined.
In this note we shall consider the class of setXihaving thesmall ball propertyas defined in
[2], and we shall compare it with the claBE (.X).

2. PRELIMINARIES

The Drop Property has been equivalently characterized in several ways in [S]) [7]/[8], [3].
Besides the characterization in term of different classes of small sets of [8]land [3], we shall
need the following equivalence, that has been obtained in [5].

Definition 2.1. Given a closed bounded convex §éta sequencéz,,), in X \ C such that
ZTpt1 € D(x,,C), foralln € IV, is called astream

A stream(y,, ), is said adyadic streanif it can be represented by the following inductive formula

= szl :y”;;x”,fornzz wherex € X \ C and(z,), C C.

In [5] the following result is given:

andy,

Theorem 2.1. A bounded, closed and convex ehas the Drop Property iff every stream in
X \ C has a norm converging subsequence.

In this paper we shall continue the investigation of classes of small sets and their role in
defining alternative forms of the Drop Property, and we shall turn our attention to the class of
sets with the small ball property. This class has been introduced and studiéd in [2].

Definition 2.2. A setC has thesmall ball propertyif for everys > 0 there exists a sequence
of positive scalars,, < ¢ with lim r,, = 0 and a sequence of elemefis,),, C X such that

CcC U (xn + 10 X7)

n=1

(whereX; denotes the closed unitary ball of the space).
Among the properties obtained in [2] we quote the following that we shall need in the sequel

Theorem 2.2. A closed, convex and bounded subseXdias the small ball property iff it is
compact.
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3. COMPARISON

Throughout this sectio’ will denote a non empty, bounded, closed and convex s&t in
As mentioned in the Introduction, besides the already defined hyper&pBR¢&’) we shall
consider also the hyperspa@€) — DP(X) whereK is the class of sets having the- small
ball property.

Since singletons clearly have the small ball property, it is immediate to note the inclusion

DP(X) C (K) — DP(X).

In this section we investigate the inverse inclusion. For the sake of simplicity in the sequel we
shall also consider the following notation:

Definition 3.1. The setC' is symmetrically compadf for every y € C, every closed and
symmetric subset” of C' — y is compact.

The main result in this section is the following
Theorem 3.1.1f C'is not symmetrically compact, adde (X)—DP(X), thenC € DP(X).

Proof. SinceC' is not symmetrically compact, there exigts C such that” — z contains a
non-compact, closed, symmetric subBetAs C' — 7 is convex, we can always assume that
is convex, and therefore circled.

Also C has the Drop Property if® — z has the Drop Property, ard € (K) — DP(X) iff
(C—2z) e (K)—-DP(X).

Hence we can replagé with C' — z namely we can assume without loss of generality that
contains a non compact, convex, circledget

Assume by contradiction that ¢ DP(X).

Claim 1. There exists a dyadic stream i\ C with no converging subsequences.

Proof. Observe first that, by Theorgm 2.1 it is clear that a streai inC' with no converging
subsequences certainly exists; our statement is a little more restrictive, for we want the stream
to be dyadic.

We have only two possible casesCif = (), the existence of a dyadic stream with no converging
subsequences is proven in [7], Theorem 3. Otherwise sugpose (). Then, the equivalence
between (i) and (ii) in Theorem 7 dfl[7] shows th@tdoes not have property) (for C' does

not have the Drop Property). In this case, then, the existence of the required dyadic stream is
proven in Proposition 1 of [7]. Hence in both cases Claim 1 holds.

Let then the dyadic stream of Claim 1 be defined as
r, € X\ C

Tn+a
xn+1:"TnH, a, € C,n € IN.

We shall now replace,, with a suitable choice of, € C.
To this aim, consider the following procedure: first pick some positive so:alar§ such that

(z, +2r1 V)N C = (); sinced € C andC'is convex,(1—r;)a; € C for every choice of; < %;

1 - o
then choose; such that< 7“1)2a1 T ¢ C.

. o+ b
Define nowz, = z,, by = (1 — r1)a; andz; = ~ ;F L
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Iterating this procedure, we can construct a decreasing sequence of positive (3galassch
that

T'n—1 ]-

1 < < — |
(3 ) 'n > 9 <:> Tn > 2n)’
(3.2) (2n + 2r V)N C = 0
(3.3) b = (1 —1p)an;

(3.4) - % ¢C.

Claim 2. The dyadic streany,),, has no converging subsequences.
Proof. In fact, settingk = diam(C), we have from[(3]3) that

1

(3.5) 1, — an|| = mllan]] < z—nR.
Thus

1 R
(3.6) |21 — 21| = §Ha1 — bl = 3
then from [3.5) and (3]6)

1 R R 1 1
|22 — 22| < 3 ([[r — 21| + [Jaz — ba) < 1 + 3 ZR (1 + 5) :

By induction then

which implies thatz,,),, and(z,),, would have the same converging subsequences.
Let us set

oo Tn
Then clearlyF" N C = 0.
Claim 3. F'is closed.
Proof. The proof is rather similar to that of Lemma 1 in [3]: in fact givgn),, C F such that
t, — t definelV, = {p\tp € (zk + %V)} . If INy is infinite for somek, then a subsequence

of (t,), liesin (zko + Tke V) and therefore ¢ (Zko + Tke V) C F.

We prove now that this is the only possible occurrence, namely that assuminythsfinite
for everyk € IN leads to a contradiction.
Indeed if IV, is finite or empty for every: € IN and we pick

. tp(k) if ]Nk 75 @ and p(l{?) = min]Nk
=z i IN, =0,

then(y,,), has a subsequence converging,tand since|y, — z,|| < %” from ) it would
follow that (z,),, has a subsequence converging,tehich contradicts Claim 2.
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Claim 4. For everyt € F, sayt € (zn + %”V) then

<2n+1 + T”z“ V) c D, 0).

Proof. Note that from Claim 4, there follows th@t(¢, C') N F' contains a hon-compact closed
and convex set; from Theorgm P.2 thérfails to fulfill the (K)-Drop Property, contradicting
the assumption.

- n Vv .
In order to prove the Claim, fix= z, + %v for somev € V. Putil = 5 and writet =

zn + rpw With w € W. To prove thatz,,..1 + .1 W) C D(t,C) means that for every € W
there existx €]0, 1] anda € C such that

Znt1 + Tt = a2, + ryw) + (1 — a)a.
We shall in fact prove that for every € W there exists € C' such that
(zn +Tw) + @

Zp1 T Tppt =

2
. . n+ by .
which, sincez, . = : er , IS equivalent to
by, n roW + a
— + iU =
2 i 2
Therefore we have to show that for every W,
(3.7) 2rpu —rpw+ b, € C.
Since
2ry 2ry 2ry
2t =1y < ! +1) U= ! +1rnu+ (1 _ +1> 0
Tn Tn Tn

we have tha2r, . u € r,W. Hence we can write
2rpiu — ryw = 1(z — w)

for somez € W. Therefore(z — w) € W — W =V sinceV is circled.
In conclusion

by + 2rp 1w — rw = by + 1 (2 —w) = (1 —ry)a, + rp(z —w)

with (z —w) € V C C, anda, € C; this proves|(3]7) and therefore the total assertion. [

4. SYMMETRICALLY COMPACT SETS

In view of Theorenj 3]1 it becomes clear that an answer to the natural question whether the
inclusionDP(X) C (K) — DP(X) is strict or not can be given only in the framework of non
compact symmetrically compact sets.

To prove that the answer to the question is not this easy we provide an example of a non compact
symmetrically compact set.

Example 4.1.In X = ?let K = X; N X" whereX ™ is the usual closed order conen
Then immediatelyk is not compact, for it contains the standard basis.
We shall show thak is symmetrically compact. Let € K be fixed,y = (v;)icv, @and consider
a symmetric closed and convex subBet. K — y. Then for every € V,v = (v;);ev We find
for eachi € IN
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In fact,v = k — y for somek € K; As —v € V too, there existg’ € K such that-v = k' — y,
whencek’ — y = y — k, namelyk’ = 2y — k. Sincek’ € K C X' every component is non
negative, that i2y; — k; > 0 for every: € IN, or elsek; < 2y;, which proves|(4]1).

From [4.]) the compactness bf follows; in fact it implies thatl” is contained in the order
interval [—y, y], and sinceX is discrete, this interval is compact([1] Corollary 21.13, page
156).

Hencek is symmetrically compact.

Therefore it becomes interesting to investigate which sets are in fact symmetrically compact.
We point out again that a s€tin X is not symmetrically compact, provided there exigtsc C
such that the translaté — x, contains a non compact symmetric set.

Then a first example of sets that are not symmetrically compact is the class of Xetsiring
non empty interior, provided the dimension®fis infinite.

A generalization of this fact can be given according 1o [4].

In fact, following Giles, we define, for a non empty C X, the affine hullaff(V') = v +
span(V — v) whatever isy € V.

Then for a non empty” we define thentrinsic coreicor(V) to be the set of elementse V/
such that for every € aff(V), z # v there exists some €0, 1] for which the whole interval
[v,rv + (1 — r)z] is contained i/ (where the interval means the line segment joining the two
elements).

Proposition 4.1.If C'is bounded, closed and convex, witbr(C') # 0, and if aff C') contains
a closed affine space of infinite dimensiéhis not symmetrically compact.

Proof. Clearly, if icor(C') # 0, then for each: € icor(C'), 0 € icor(C' — z); setA = C' — x;
obviously aff A) = spam, and A absorbs its own linear span.
For everyr € A\ {0} consider

p(x) =sup{t €]0,1[: tx € A}

e then define

r(z) = p(x) A p(—z).
Since0 € icor(A), p(x) > 0 for everyx € A\ {0}, and hence:(x) is positive (in fact,A
absorbs spa#t, and therefore(—x) is strictly positive too). Consider now the set

K= {J [-r@).r@)
rEspanA

ThenK C A and clearlyK is symmetric. Sincel is closed, bounded and convéx,= coK is
a closed, bounded, convex, circled subsetipthat absorbs spaA = spanV’. In other words
V' is a barrel in spani.

By our assumptions, spafhcontains a closed subspace of infinite dimensigandV NY is a
barrel in the complete Banach space hencel’ NY is a neighbourhood df in Y, and hence
V' NY is not compact. Thug is not compact too. O

As a consequence, we can derive the following

Corollary 4.1. If C'is a bounded, closed and convex seffif) — DP(X) withicor(C) # 0,
and ifaff(C') contains a closed affine space, thére DP(X).

Proof. Indeed, if aff ') is of finite dimension, then' is compact, and therefore directly ¢
DP(X). If aff(C) is of infinite dimension, then from Propositibn |Clis not symmetrically
compact, so that Theorgm B.1 can be applied. O
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