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1. INTRODUCTION

The integral inequalities which provide explicit bounds on unknown functions have played
a fundamental role in the development of the theory of differential and integrial [13, 14], and
can be used as handy tools in the study of existence, boundedness, uniqueness, stability and
other qualitative properties of solutions of differential and integral equations. Over the years,
many nonlinear retarded Gronwall-Bellman inequalities were discussed by several authors, who
either reproved and generalized them in many different ways/(5eg [3,/7,/11, 12]).
In his study of boundedness of solutions to linear second order differential equations, Pachpatte
[13] established the following nonlinear integral inequality.

(1.2) u(t) <a+ /tt f(s)w(u(s))ds,

wherea > 0 is a constant. Replacinigoy a functionb(¢) in (1.1), Lipovan [10] investigates the
retarded Gronwall-Bellman inequality :

t b(t)
(1.2) u(t) <a +/ f(s)w(u(s))ds +/ g(s)w(u(s))ds.

to b(to)
These inequalities have been generalized to more than one variable see for example [2, 4, 8, 9].
In 2005, Zhao and Men@ [15] studied the following new nonlinear retarded integral inequality:

Lemma 1.1. Let p € C(R.,R,) be an increasing function witlp(cc) = oo. Lety €
C(R., R, ) be anondecreasing function and let ¢ be a nonnegative constant. £ &€t* (R, , R, ) be
nondecreasing with(¢) > tonR . If u, f € (Ry,R,) and

(1.3) o(u(t)) < c+ :f<s>¢<u<s>>ds, teR,,

then for0 <7 <t < oo,

(1.4) wny <o (67 e+ [ roas) )
a(t)
Where G(z) = [ 5% 2= 20 > 0.

He also established the following main result

(1.5) p(u(t)) < c+ / o [f (s)uls)ip(u(s)) + g(s)u(s)] ds.

Similar to [1.5), in 2016, Hunng and Wang [6] established some new retarded integral inequal-
ities in two independent variables (Lemma 2.1 and 2.2). However, in some situations, it is
desirable to investigate some inequalities of the above type where a canstaeplaced by a
functionc(z) and the lineag(s)u(t) in integral functions in[(1]5) is replaced by the nonlinear
cased (u(t)) w(u(x)).

In this paper, our results concern with integral inequalities involving infinite integral for func-
tions with such a functiorf;(x) term outside the integrals, which gives us another generaliza-
tions in different form in the case of n-independents variables as we will see in Lémma 3.1,
Theorenm 3.8 and Theordm B.4 in Section 3.

Motivated by the inequalitie$ (1.3) and ([L.5) of Zhao and Meng in [15] and by the works of
Hunng -Wang and Lipovan presented inl[6] 12], our main aim here is to establish some non-
linear retarded integral inequalities involving infinite integrals in several variables. So in this
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paper we discuss more general forms of the following integral inequality:
ni /0‘6
plu(z)) < c(x)+) f(x) /N ( )aj(w,t><1> (u(t)) dt
j=1 ajlz
ng 1)
(1.6) + Z gr(x) [v bi(z,t)® (u(t)) w(u(t))dt, z,teRY,
=1 B ()
wherec(z) > 0 is a function inC(R%,R,), f;(z) andg,(x) be nondecreasing continuous
functions for allz € R} anda;(z) = (aj(21), aje(x2), ..., aju(zn)) € RY, By(z) =
(Br1(®1), Bra(®2), .., By () € R fOr j = 1,2,... ,ny andk = 1,2, ..., ny, Wherep, ® €
O(R-H R+ )
Furthermore, we show that some resultd 6f[6,/12, 15] can be deduced from our results in some
special cases. As applications and motivated by the works In [6, 12], we give the boundedness
of the solutions of Volterra-Fredholm integral equation with delay.

2. INTEGRAL INEQUALITIES IN TWO VARIABLES

In this section, we state and prove some new nonlinear retarded integral inequalities of
Gronwall-Bellman type, which are further generalizations for some known results in the case
of two independents variables.

Throughout the present section, all the functions which appear in the inequalities are assumed
to be real valued of two independents variables which are nonnegative and continuous.

Lemma2.1. Letc € C(R},Ry), w € C(R4, R, ) be a nondecreasing function with(«) > 0
on (0,00) and let a;(x,y, s, t) € C(R% x R3,Ry)be nondecreasing functions {m,y) for
every(s,t) fixed foranyj =1,...,n;. Letay, 3; € C'(R,R,) be nondecreasing functions
with a;(r) > = ,8,(y) > yonR, for j = 1,2,...,n;, . Letp € C(R,R;) be a strictly
increasing function with lim., . ¢(z) = +oc. If u € C(R%, R, ) and

(2.1) o(u(z,y)) < clz,y) +Z</( / (z,,y, s t)w(u (s,t))dsdt),

then for any(z, y) € R? with0 < z* < 2 < oo and0 < y* < y < oo, we have

c(x,y)) +§:/ / ,,y,st)dsdt]).

? ds
(23) G(Z) = /(; m, c>0, z€ (O, —|—OO),

andy~!, G~! are respectively the inverse gfand G, on condition thaG(+oo) = 400 , and
the real numbergz*, y*) € R?, are chosen so that(c(z, y))+>_ 7%, f°° aj(z,,y, s, t)dsdt €

a;(z)
Dom(G™1)
and G! [G(c(x,y)) +>00 ;:(JC) f:j(y) a;(z, ,y,s,t)dsdt} € Dom(e™!) for all (z,y) €

[*, 00) X [y*, 00) .

22)  ulr)<e (G-

Where

o ()

Remark 2.1. We can regard Lemnja 2.1 as a generalized form of a Gronwall-Bellman inequal-
ity (L.1) with advanced argument in two independent variables and infinite integration.
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Remark 2.2. It is interesting to note that in the special case wh@n = ¢ (positive constant),
ny = j = 1l anda;(z,y,s,t) = f(z) forall z € R then the inequality (2]1) reduces to the
Zhao and Meng result in [15, Lemma 2.1].

Remark 2.3. Since the proofs resemble each other, we give the details for L¢mma 3.1, The-
orem[3.2 and Theorem 3.4 only, the proofs of the remaining inequalities can be completed by
following the proofs of the inequalities in n-independents variables (see section 3)

Theorem 2.2.Letc € C(R%Z,R,), wy,ws € C(R;,R;) be nondecreasing functions with
wi (u),

wi(u) > 0on (0,00) and let a;(x,y,s,t) andby(z,y,s,t) € C(RZ x R3,R;) be nonde-
creasing functions ifx, y) for every(s,t) fixed andj = 1,2,...,ny, kK = 1,2,...,ny. Let
@ji, Br; € CH(R4,Ry) be nondecreasing functions witty;(z) > z and j3,,(y) > y onRy
fori=1,2, j=1,2,...,n1, k=1,2,... ,nyVa,y € R,. Letp € C(R;,R,) be a strictly
increasing function with Ii%mw(x) =o0.If u e C(R},R;) and

olu(z,y)) < c(z,y) / ( )/ (x,y, s, t)wy(u(s,t))dsdt

(2.4) +Z / /B (z,y, s, t)ws(u(s, t))dsdt,

then for any(z, y) € R2 with0 < ¢; <z < ocoand0 < ¢, <y < .
(a) In the casews(u) < wy(u) , forany(z,y) € R" , there exist4¢,, (,) € R?, so that for all
0<( <zx<ocandd < (¢, <y < oo, we have

+Z/ / aj(x,y, s, t)dsdt
j=1 Y aji(z) Jaja(y)
(2.5) +Z/ / be(z,y, s,t)dsdt )

k=1 Y Br1(®) v Bra(y)

(b) In the casew,(u) > wi(u), for any(z,y) € R, there exist§(,, C,) € R?, so that for all
0<( <zr<ooandl <(, <y < oo, we have

)+ Z/ / a;j(z,y, s, t)dsdt
aj1(x) Jaja(y)

26 /ﬁm . /% - t)dsdt])

Where

i ds
(2.7) GTz:/—, z2>20>0, (1=1,2),
=) e 070 r=12)
andy~! G- are regpectively the inverse pfand G, on condition that7, (+o0) = +o0, and
the real numbers C € R, are chosen so that

G, (c(z ))+Z (e f:o aj(z,y, s, t)dsdt+y ;> fﬂm fﬁkz (z,y,s,t)dsdt € Dom(G")

]2(31)
forall = € [(,,00) and y € [C.,00) for (r = 1,2) respectively.

u(z) < ¢! (Gll

u(z) < ot (G’

Many interesting corollaries can also be obtained from the above results
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Corollary 2.3. (Gronwall-Bellman inequality in tow variables) Letr, y) € C(R3,R,), and

let a(z,y, s, t)andb(z,y, s,t) € C(R3 x RZ, R, ) be nondecreasing functions:iny for every

s,t fixed. Wherey;;, 8,, € C* (R+,R+) be nondecreasing functions with;(¢;) > t; and

ﬁ,ﬂ( ;) >t onR fori=1,2, j=1,2,...,nyandk = 1,2,...,n,. Letp, ¢ be nonnegative
constantgp > ¢ > 0).If u € C(JR2 )

u(z,y)’ < clz,y +Z/ / a;j(z,y, s, t)ul(s,t)dsdt
aji(@) Jaj2(y)

(2.8) / / 7.,y 5. (s, dsd,
Br1(z) J Bral

then for any(z,y) € R%, there eX|sts{a: ,y*) € R%, so that for all0 < 2* < 2 < oo and

0 <y* <y < oo, we have
u(ey) < (G|l / / (2,9, 5, 1))t
aji(z) Joaja(y
p

n2 0o oo
(2.9) —i—Z/ / bk(x,y,s,t)dsdt]> ,
k=1 ¥ Br1(®) v Bra(y)

with
(2.10) G(z) = / ﬁ, z >z > 0.

54/p

WhereG~! is the inverse of7,0on condition thatG(+o0) = +oo, and the real numbers
(z*,y*) € ilfi aie chosen so that(c(x,y)) + 27111 [, o) Ja() (@0, 5, ))dt
+> 0 fﬂm(ﬂf) fﬂkz(y) bi(z,y, s, t)dsdt € Dom(G~1') forall x € [z*,00) andy € [y*, c0).

Remark 2.4. Itis interesting to note that in the special case wher= j = 1 and 3;,(7) =
z (z € Ry) then the inequality given in Corollafy 2.3 reduces to the EI-Owaidy result [5] in
the case of infinite integration.

Remark 2.5. Il the special cas¢j = 1)whenc(z,y) = uo (positive constantyy (z,y, s,t) =
g(s,t), bi(z,y,s,t) = h(s,t),forall z,y € R, then the inequality| (2]1) reduces to Theorem
2.2 in [1] in the case of infinite integration.

3. FURTHER GENERALIZATIONS IN N-INDEPENDENTS VARIABLES

In this section, we state and prove some new retarded nonlinear integral inequalities of
Gronwall-Bellman type, which are further generalizations for some known results in the case
of n independents variables, these inequalities can be used in the analysis of various problems
in the theory of retarded nonlinear differential equations.

Throughout the present section, all the functions which appear in the inequalities are assumed to
be real valued of.—variables which are nonnegative and continuous. All integrals are assumed
to exist on their domains of definitions. For= (21, x2, ..., 2,), t = (t1,t2, ..., t,) € R and

= (400, +00, ..., +00), we denote

/ / / / dndtla j:17"'7n1>
aj1(z1) Jajo ﬂc2) ajn(r2)

/ dt = / / / dty---dt;, k=1,... ng,

ﬁk ﬁkl x1) ﬁkz x2) Bin (z2)
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with ny,ny € N*. Forz, ¢t € R, we shall writex < ¢t < oo wheneverr; <t; < +oo, with
i=1,2,...,n.

We denoteD = DD, --- D,,, whereD,; = ai- fori =1,2,...,n. We use the usual conven-
tion of writing >, u(s) = 0 if ® is empty set.
9?](93) = (oj1(z1), ajo(®2), ..., afn(z,)) €RY forj=1,2,... n,
Br(x) = (Br1(21), Bro(2), ..., Bp(xn)) € RY.fOrk =1,2,... ny.
Our main results read as the follows.

Lemma3.1.Letc € C(R:,Ry), w € C(R4, R, ) be a nondecreasing function with(«) > 0
on(0,00) and let a;(z,t) € C(R} x R}, R )be nondecreasing functions infor everyt fixed
foranyj = 1,2,...,ny. Letay; € C* (R4, R.) be nondecreasing functions with;(¢;) > ¢
onR, for i =1,2,...,n andj = 1,2,...,n;. Letp € C(R,,R,) be a strictly increasing
function with lim._. p(z) = +o0.If ue C(R"},R,)

(3.1) o(u(z)) < c(z) + Z/ aj(x, t)w(u(t))dt, t e R",

then for anyz € R?, then there exists* € R’} with0 < 2* <z < oo, we have

(3.2) u(z) < ot (G_l G(c(x)) + Z/fo aj(x,t)dt]> :
j=1 7 ()

Where

(3.3) G(z) = /Z ﬁ, c>0, z€(0,+00),

andp—t, G~! are respectively the inverse gfand G, on condition thatG(+00) = +o00 , and
the real numbers™ € R}, are chosen so that/(c(z)) + > 7L, faof(x) aj(z,t)dt € Dom(G™)

andG! [G(c(x)) 3 e aj(x,t)dt} € Dom(p) forall « € [+*, 00).

Proof. 1) If ¢(x) > 0 for all z € RY, fixing arbitraryy = (y1,...,y,) € R} with 0 < 2* <
y < x < o0, we define orjy, c0) a functionz(z) by

(3.4 @ =)+ D [ aowo)

j=1 7@
thenz(z) is positive and nonincreasing function in each variables [y;, +o0), and
(3.5) u(e) <¢7' (2(2), w€ [y

we know that differentiating (3]4) and usirjg (8.5) and the monotonicity afdw, we deduce
that

ni
’ ’ ’

(3.6) DDy -+ Dyz(z) = (—1)" Z a;(y, o(@))w(u(a;(x))) a0y - gy,

J=1

forallj =1,2,... n.
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i) If nis even and since;;(t;) > t;onR for i =1,2,...,n andj =1,2,...,n;, we have
z(a;(z)) < z(x), then

/ / /

DDy Dpz(z) = — Z a(y, aj(aj))w(u(&j(m)))aﬂaﬂ T Qg

> - Z a;(y, a;(z))w(e™" (2(a;(x))))ag 05 - - s

3.7 > - Z a;(y, @; (@) w(e™ (2(2)))aj @), - g,
forallz € [y,00) andj = 1,2,...,n; . Since
(3.8) w(p™ (2(2))) > wlp™ (2(9))) = w(p™" (c(y))) > 0.

Using [3.7) and[(3]8), we have

D1Dy - - /
(39) w(<p—1 g y7Ck] 3104]2 "

using[D1 Dy - - - D,,_12(x)] x Dypz(z) < 0and(¢~") > 0,w’ > 0 and ), we have

Dng---Dn_lz(x) DngDnZ(JZ)
b ( (e (2(0))) > = (e ()

> - Z@J Y, aj(z ]10‘]2 CQn,
Fixing z1, s, ..., 2z,1, Settingz,, = ¢, and integrating (3.10) from,, to co, we obtain
D1D2 cee Dn 12
- w(s0,1 (Z(ZE - Z o) ya ) 04]1(1'1) a1 (132), cee aajn—l(xn—l)a tn)

/

Xajl(xl)aﬂ(xZ) T ajn—1($N—1)dtn:|

Using the same method above, we obtain
D;z(z)
w(e~! (2(x)))

> —Z (/ / a(y,ozﬂ(azl),tQ,...,tn1,tn)oz;-1(x1)dtn---dt2> .

j=1 j2(172) jn(ivn)

(-1

Sincen is even, we have
Dy z(x)
w(p! (2()))

ni o 00
(3.10) > - Z (/ e / a(y, o (1), o, - tn, tn) oy (1)dty, - - dt2> ;

j=1 j2(22) jn(Tn)
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forall x € [y, ). Integrating|(3.1D) fronx; to +oco, we obtain
Gleloo,mn, . 2) ~GE@) = =Y [ oyt
j=1 7 @;(x)

for all z € [y, o0), which implies that

Gle(o) < Gle) + Y [ astunat
we have
(3.11) 2(y) <G| Gle(y)) + le)aj(yi)dt] :

for any arbitrary numberg € R, with z* < y andG' is defined by[(3]3). Fronj (3.11) and
(3.5) we obtain the following inequality

ORI aj<y,t>dt]> .

Sincey are arbitrary numbers with* < y, we obtain the resulf (3.2).

i) In the case of: is odd, using the same method in (i) withis odd, we obtain the result in
Lemmd 3.1, we omit the details here.

2) If ¢(z) > 0, we carry out the above procedure in (i) and (ii) witfiz) + ¢ instead ofc(z),
wheree > 0 is an arbitrary small constant, and subsequently pass to the limit-a8 to obtain
(3.9). This completes the prodi.

Remark 3.1. Under the same hypothesis as in the previous Lemma, and If

u(y) <! (G‘l

(3.12) u(z) < c(r) + ) / a;(z, tyw(o tu(t))dt, t e R",

j=1 7 @;(x)
wherec(z) € C(R,R.), then the inequality[ (3]2) also holds. In fact, we can observe that
in the special case: = 2 andj = 1) the inequality|(3.12) reduced to the main result<in [6,
Lemma 2.1] without the monotonicity condition @#(z, y).

Remark 3.2. We can also regard Lemma B.1 as a generalized form of a Gronwall inequality
(2.7) with advanced argumentirindependent variables.

Remark 3.3. It is interesting to note that in the special case wh@n = ¢ (positive constant),
n=1,j =1anda;(z,t) = f(z) forallz € R, then the inequality (3]1) reduces to the Zhao
and Meng result in [15, Lemma 2.1].

Theorem 3.2.Letc € C(R%,Ry), wy,

wy € C(R4, R, ) be nondecreasing functions with (u), w; (u) > 00on(0, co) and leta,(z, t)and
bi(z,t) € C(R} xR%, R, )be nondecreasing functions:irfor everyt fixed forj = 1,2,...,m;
andk = 1,2,...,ny. Letay;, 8, € C'(R4,R,) be nondecreasing functions with(t;) > ¢
and g,;(t;) > tionR, fori = 1,2,...,n, j = 1,2,...,ny andk = 1,2,...,n,. Lety €
C(R4,R,) be astrictly increasing function with lim,.¢(z) = oo. If v € C(R%,R;) and

(3.13)  p(u(zr)) <c(x)+ Zl/ aj(x, t)wy (u(t))dt + Z/ br(x, t)we(u(t))dt,

j=1 aj(z) k=1 By ()

)
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then for anyz € R} with0 < ¢; <z < oo,
(@) In the casewy(u) < wi(u) , for anyz € R , there exists); € R , so that for all

0 <{, <x<o0,we have
+Z/ xtdt+2/ xtdt])
J(ff

(b) In the casewy(u) > wq(u) , for anyz € R’} , there exists), € R? , so that for all
0<({ <x<oo,we have

(3.15) u(x)ggo1<G [ +Z/ xtdt+2/ xtdt])

(3.14)  wu(z) <t (G

Where
(3.16) G-(2) = /Z L, 2>2>0, (1=1,2),
A O))
and ¢!, G~ are respectively the inverse gfand G, on condition thatG i (+ ) = +o0o,
and the real numberg, € R’ are chosen so thatG,(c(z P iy () @il )dt +
fﬁ by(z,t)dt € Dom(G 1) and
GT [GT( ( ) + f ) @i, t)dt + i fﬁ () be(2, 1) dt} € Dom(o7!) forall z €

[¢,,00) for (=1 2) respectlvely

Proof. If c(x) > 0 for all z € R, fixing arbitraryy = (y1,...,y,) € R} with0 < ¢, <y <
r < oo (T =1,2), we define orjy, c0) a functionz(z) by

(317)  2(a) = cly) + Z / O: @y (@)t + > /B O: buly s

thenz(z) is positive and nonincreasing function in each variables [y;, o), and

(3.18) u(z) <7 (2(2), @€ [y;00).

We know that differentiating[ (3.17) and usirig (3.18) and the monotonicity ahd w, we
deduce that

/ / /

D1Dy---Dpz(x) = Za] Yy, aj(x))w (u(a (if)))aj1@j2“‘ajn

1" Z b (Y, Br(2))wa(w(By(2)) B Bra - - Ben-

in the case of is even, then

!/ !

DiDy--- Dyz(z) = — Z a;(y, a;(@)wi(p™" (2(2))ajas, - aj,

= >y Brl@)wa(0 ™ (@) BBz B
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(&) Whenw,(u) < w;(u), we deduce that

ni
l ’

DDy Dpz(z) > — Z a;(y, aj(x))wl(SO_l (Z(x)))a;'laﬂ Qi

=1

(3.19) = by, Bil@)wi (o™t (2(2))) B Bra - - B
k=1

forall z € [y, o0),
(3.20) wi(p™ (2(2))) = wi(e™" (2(9))) = wi(e ™" (e(y))) > 0.
Using (3.19) and (3.20), we have

DD /
1;1(; > Zaa y, o(x ]1%2 Zbk ﬁklﬁm B

Using similar procedures as frofn (B.5) [fo (3.11) in the proof of Lefinmnia 3.1 (i) and(ii), we can
get the desired bound ef z) in (3.14). By continuity,[(3.14) also holds for the cage) > 0. 1

Remark 3.4. In the special cas~e¢ =1,j = 1 andk = 1)whenc(x) = ug (positive constant),
a(x,t) = g(x), b(x,t) = h(z), f(z) =z, alx) = a(z) forall x € R, then the inequality
(3.7) reduces to Theorem 2.2 | [1] in the case of infinite integration.

Theorem 3.3. Let the functions, ¢, a, b, w;, w1, o; and 3y, be defined as in Theorem B.2.
Moreover, letp, ¢ be nonnegative constants > ¢ > 0).
(A)If we CR:,Ry) and

(3.21)  wu(x)? < c(x +Z/ (x, t)ui(t dt—l—Z/ (x, t)ul(t)w (u(t))dt,
By (x)

then for anyz, t € R?}, there existe* € R, so that for all 0 < z* < 2 < oo,with we have

p/(p—q)
Ty (p P—4q Z / (z,t dt]) .
Where

(3.23) p(x) = PP (z) + ;QZ/

k=1 aj(@

(3.22) u(z) < <\I/1_1

o ds
(324) \111(6) = /(;0 W’ 0> g > 0.

Here ¥ is the inverse of ¥y, on condition that¥,(+00) = +oc, and the real numbers

z* € R’ are chosen so thatl;(p(z)) + 2 3712 fﬁ br(x,t)dt € Dom(¥;") and for all
x € [2%,00).
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Ag II U € C Rn R a||d
s IN

w(z) < +Z/ (@, )l () wy (u(t))dt

(3.25) +y /ﬁ Oj )bk(m,t)uq(t)wg(u(t))dt,

(i) In the casews(u) < ws(u), for anyz € R?, there existg; € R, so that for all0 < ¢; <
x < oo, with we have

(3.26) u(z) < (U5 [0y (c(p_q)/p(x)) + e(m)})l/(p_q) :

(ii) In the casewsy(u) > wi(u) , for anyz € R’ , there exists), € R’ , so that for all
0 <(, <2< oo, with we have

(3.27) u(zr) < (\111_1 [\111 (c(p_q)/p(x)) + e(x)})l/(p_q) )
With
oY, [
(3.28) e(x) = 5 L; /(33@) aj(x,t)dt + ;/Bk(x) bk(x,t)dt] ,
J ds
(329) qu(5> = /;O W’ T = 1, 2.

Where¥ ! are the inverseV. (7 = 1,2), on condition that¥ . (+o00) = +o0, and the real
numbers;. € R are chosen so that( ¥, (c*~9/?(z)) + e(x)) € Dom(¥;") for all z €
[¢,,00) for (7 = 1,2) respectively.

Proof. (A1) If c(z) > 0 for all z € R"}, fixing arbitraryy = (y1,...,y,) € R} with 0 < 2* <
y < x < oo, we define orjy, o0) a functionz(z) by

(3.30) +> / be(y, t)ul (£)w (u(t))dt,

thenz(z) is positive and nonincreasing function in each variables [y;, c0), and

(3.31) u(z) < z(x)P, T € [y;00).
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we know that differentiating (3.30) and usirng (3.31) and the monotonicigyafdw and in the
case ofn is even, then we deduce that

/ / /

DyDy--- Dypz(z) = —Zaj(y,&j(fc))uq(&j(ﬂf))aﬂ%a---%n

- Z be(y, Bk($>)Uq(Bk($>>w1(u(5k($)))5;€1522 - ‘5;%

> Zq/p Za’j y7aj glaﬂ O‘;’n
(3.32) Z—bk@,ﬁk(m) 1 (7)) B Bhs - B |
k=1

forall z € [y, 0)
(3.33) 2P (3) > 29P(30) = 29/P(c(y)) > 0.
Using (3.32) and (3.33), we have

D1D2 .D Z ’ ’
E :&] Y, aj(z ]104]'2"'04'

ZCI/p( n

- Z ~bi(y, By (2))wi (27 (2)) BBz -+ B
k=1

Using similar procedures as in the proof of Lenimg 3.1 (i), we obtain

Dy z(x)
—1 1
(=D)" 2Pl (g )
Z / / / 03 (4, €31 (21) b, )y (1)l -
—1 Cvgz(:lm) Ajn—1(n—1) J ajn(zn)
n2 o) 0 0
_Z/ / / bk(y76k1($1)7t27"‘Jtnfhtn)
k=1 Bra(z2) Brn—1(@n—-1) ¥ Bip(zn)

xwi (277 (B (1), ta, - b1, b)) B (1)t - - dis,
sincen is even, we obtain

o D

ny 0o o
2 _Z/ . / / y’ajl xl) t27'"atn—latn>aj1(x1)dtn"'dtQ
; aja(z2) Qjn—1(Tn_1) ajn(zn

Jj=1

n2 ) o)
_Z/ ’ / / y 6k;1 ‘/L‘l) t27“'7tn—17tn)
k=1 51@2(902) Brn—1(Tn-1) kn(ﬂfn

(3.34) xwi (2P (B (21) ta -+ o b, ) By (T1)dty, - - - dlt,
forall z € [y, 0).
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Integrating [(3.34) fromx; to +oo, we obtain

ni 0
SO O O

5 (@

p Z(pfq)/p(y) —
p—q p—yq

S ntowoa
k=1 Br(@)

forall z € [y, 0), we have

n1 0
Lo-0n(g) < dralpy) 4 L4y / a(y,1)dt

P D e
no 0
(3.35) e N A
p k=1 By (z)
Definingr; () asry (z) = 2P~9/7(x),(3.35) can be rewritten as
i n2 B3
(3.36) n@ <)+ 03 [ b0 @)
k=1 By (z)

wherep(y) is defined by[(3.23). Now applying LemrhaB.1[to (3.36), we get

P~ [~
Ui (p(y)) + — ;/}u) bk(yat)dt] .

From (3.3%) and for any arbitrany, we obtain

P [(F p/(p—q)
Ui(p(y)) + —— Z[ bk (y, t)dt] :
p k=1 B (y)

Sincey are arbitrary numbers* < y, the desired bound far(z) appeared irf (3.22) directly.
By continuity, [3.22) also holds for the casg:) > 0 andn is odd number(A2) If ¢(z) > 0
for all z € RY, fixing arbitraryy = (y1,...,y,) € R} with0 < ¢; <y < 2 < oo, we define
on [y, c0) a functionz(x) by

r(z) < Ut

2(y) < 0t

(3.37) Sa) = )+ / 0y, ) (£)ws (u(t))dt

thenz(z) is positive and nonincreasing function in each variables [y;, o), and
(3.38) u(z) < z(z)Y?, T € [y; ).

we know that differentiating (3.37) and usirlg (3.38) and the monotonicity}/6f andw,, we
deduce that
DiDy---Dyz(z) = (=1)"a(y, a(2))u’(@(x))w (w@(x)))agag, -,

n2

H(=1)" Y bly, Bul@)u? (B (2))wa (w(B(2))) BBz -+ Brens

k=1
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(i) Whenws(u) < w;(u) and if nis even, then

I ! !

D\Dy -+ Dypz(z) = — Z a;j(y, a;j (@) )u’ (o (z))wr (u(a; (@) ogragy - ayy,

—Zbk Y, B (@) (By(2))ws (w(Be(2) BBz -+ B

ni
’

> () | =3 4y () un(=M (@) gy -,

j=1
(3.39) - Z bi(y, Ek(@)WQ(Zl/p(x))ﬁ;dﬂgﬁ o 5;4371 )
k=1
forall z € [y, 0)
(3.40) 21P(z) > 29/7(30) = 297 (c(y)) > 0.
Using (3.39) and (3.40), we have
D D D ’ ’ ’
e I Zaj 0,8, (2)) -,

—Zbk@,Bk<x>>w2<z1/p<x>>ﬁzlﬁ;2 e B
k=1

using similar procedures as is Lemmal 3.1, foradt [y, 50) we obtain

Sl (g) < iy 4 P Z / (MR (1)) dt
P—dx
(3.41) +—Z/~ bi(y, t)wa (2P (1)) dt.
P = )
Settingr; () = 2P~9/?(z),(3.41) can be rewritten as
ni
(z) < o Z / r/ 00 (1)) i
na 0
(3.42) e /~ be(y, t)ws(ry/ =0 (1)) dt,
P Bl

Now applying Theorer 3|2 t¢ (3.42), and singeare arbitrary number$, < y, the desired
bound foru(z) appeared irf (3.26) directly. By continuity, (3]26) also holds for the case>
0.1

Remark 3.5. Theoren] 3.8 reduced to [11, Theorem 2.2] in the case of one variable (with an
infinite integration limits), whemy(x,t) = 0, wy(t) =1, j = 1 andn = 1.

Theorem 3.4. Let the functions, ¢, a, b, w, &; andBk (j=1,2,....n1, k=1,2,...,n9) be
defined as in Theorem 3.3. Moreover, ket C(R;,RR.) be a strictly increasing function
with lim,_.p(z) = oo, and® € C(R,, R, ) be nondecreasing function with(x) > 0 for
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all z € R%. Letd;(r) andl,(x) be nondecreasing continuous functions foralE R . If
uve CRY,Ry) and

(3.43) +Z g, (x / (2, £)® (u(t)) w(u(t))dt,

then for anyz, t € R, , there existg™ € R} , shut as for all0 < 2* <z < co,we have

3.44 u(z) <ot GH Ql_l QO (n(x y (T * b (x,t)dt .
(3.44) (1) < ( ( (”””,;g”/m (2,1) )D
Where
(3.4 ) = G + 3 4o) [ et

)
(3.46) G() = /5(13(9061—?(8))7 §> 8, >0,

)
(3.47) W) = /6w(@15121(8))), 5> 8 > 0.

HereQ; "' is the inverse 0fQ1, on condition that, (+o00) = +o0, and the real numbersg*
R" are chosen so tha; (n +fﬂ (z,t)dt € Dom(1), Q' (Ql (n(2) + 5, b(x,t)dt) €

Dom(G~") and G [ " (Ql (n(2)) + f50, b(x,t)dt)] e Dom(p~") forall z € [z*,00) .

Proof. If c¢(x) > 0 for all z € R, fixing arbitraryy = (y1,...,y,) € RT with0 < 2* <y <
x < oo, we define orjy, c0) afunctlonz( ) by

(348) B
+ij [ e Y a6 [ e ns wo) o

thenz(z) is positive and nonincreasing function in each variables [y;, +0), and

(3.49) u(z) < o ' (2(x)), z € [y;0).

We know that differentiating (3.48) and usirjg (3.49) and the monotonicity ob andw, we
deduce that

’ 4

DDy Dypz(x) = Zf] y)a;(y, a;(x ))®(u<aj($)))a;laj2”'ajn

ng )b (9, By ()@ (u(By () (B, (2))) B Bz - B
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in the case of. is even, and sinc@j(x)ﬁ,ﬁk(x) > xforallj = 1,2,...,n; andj =
1,2,...,n9, we havez(a;(z)) < z(z) andz(8,(x)) < z(x), then

DngDTLZ(I) = _Zf] aj yvaj )@(u(5j(x)))a;1a;2a;n
- ng 2))®(u(By(x))w(u(By (@) B Bra -+ Brens
(3.50) > o Z Fi@)aj(y, a;(@))aiasy - a,

- ng W)k, Br(@))w(e™ (2(2)) B4 Bha -+ B |
k=1

forallz € [y,o00) andj = 1,2,...,ny andk = 1,2,...,ny
(3.51) @ (7" (2(2)) = @ (¢ (2()) = (c(y)) > 0.
Using (3.50) and (3.51), we obtain

DD, -- D z(x o |
(p(SO_l( Z f] CL] Yy, Oé] )ajlaj2 . ajn

—ng )bk (y, B (@) w (oo™ (2(2))) B Bra - -+ B

using similar procedures as in the proof of Lenjma 3.1, we obtain

>0 [ b Bl o)

k=1 By (z)
whereG is defined in[(3.46), for alt: € [y, 50), we have

() < +ij / R

#3000 [ B oy

Settingr (z) = G(z(x)),(3.52) can be rewritten as

(352) @ <nw) + S 0. ) / by, B () wlo™ (=(0))dt.

k=1 B (z)

Wheren, is defined in[(3.45). Now applying Theorém|3.2[to (3.52), we get

2(y) <G (911 [Ql(n(y)) +/;) b(y,t)dtD :
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Sincey are arbitrary numbers* < y, the desired bound far(z) appeared in (3.44) directly.
By continuity, [3.44) also holds for the caser) > 0. 1

Remark 3.6. Under the same hypothesis as in the previous Theorem, we can obtain easily the
estimation of the following inequality

o (u(z) < +ka /()aj<x,t><1><u<t>>w1<u<t>>dt

(3.53) +ng /ﬁ B ) () )

foranyz,t € R. Details are omltted here.

Remark 3.7. As one can see, the established results above mainly deal with Gronwall-Bellman
type integral inequalities involving infinite integral for functions with n independent variables.
And they are different from the main results presented in [15]. It is interesting to note that
in the special casen = 1(R,) andj = k£ = 1 whenc(zy,...,z,) = c (positive con-
Stant), andal(xl, ey Ty, by, te, . ,tn) = f(l‘), bl(Il, R I A TR 2 N ,tn) = g(l‘) and
(ji(@1), s agn(@n) = (Bra(®1), ..., Bra(wn)) = a(x), forallz € Ry and @ (u) = u

then the inequality[ (3.43) reduces to the Zhao and Meng main resultlin [15, Theorem 3.1]
(Inequality (1.%) in the case of one variable).

Remark 3.8. As in Corollarieg 2.3, other new Gronwall-Bellman type integral inequalities of
one and two variables can be obtained from Theofems 3.3 @nd 3.4 by choosing suitable functions
for p,w and®. Details are omitted here.

4. AN APPLICATION

In this section, motivated by the works [n [9, 6], we give the boundedness of the solutions of
\olterra-Fredholm integral equation with delay and infinity upper limit

o0 o0

way) = wy)+ | K.y, 5,1, u(s, 1) dsdt

1(z) Joa(y)
(4.2) —|—/ Ky(x,y, s, t,u(s, t)dsdt.
B1(x) J By ()
Whereu(z,y), c(z,y) € C(RZ,R), with o;, 5, € C*(R4,R;) are nondecreasing functions
such thaty;(z) > =, a;(+00) = 400 (B;(z) >z, B;(+00) = +00) andK; € C(RY x
R? x R,R) fori=1,2.

Proposition 4.1. Suppose thatu(x, y) is a solution of ) and the functiods; € C(R? x
R? x R,R), ¢ = 1,2 satisfy the following conditions

(42) |K1(x7y757t7u(57t))’ < f1<x Y, S, t) ]u(s t)’
(4.3) [Ka(z,y,s,tu(s, ) < falw,y,s,t) Ju(s, £)]? .

Where f; € C(R% x R%,R,) i = 1,2, are nondecreasing function in y for everys, ¢ fixed,
then we have

NS [S]S]

lu(z,y)| < {\/|0(m,y)l+%/ fi(x,y, s, t)dsdt

1(z) Jaz(y)

(4.4) / f2 x,1, S, t)dsdt},
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Proof. By the conditions[(4]2) andl (4.3), from (4.1) we have

(e, )P = el )| + / fi(@ . 5,1) Ju(s, )" dsdt

1(z) Jaa(y)
(4.5) +f Fala,y.5,) (s, )P dt,
B1(z) J Bz ()
a suitable application of Corollafy 2.3 (with= %) to (4.5) yields
el < (67 |ateten + [ o,y 5, )
ai(z) v az(y)
0o (%s) 1/p
(4.6) +/ fQ(x,y,s,t)dsdt]) ,
B1(z) v Ba(y)
with
* ds
(4.7) Ge) = [ Sp=nE-rm 2za>0
2 2
(4.8) Gz = (%Z—O) , 2> 29> 0.

From [4.6),[(4.]/) and (4]8) , we obtain the following estimation

{ Glelw, ) + [0y [ ful@y, s, t)dsdt
2

u(z,y)| <

o o 2
+ o S fol@ry, s, 0)dsdt + 2z }
2

{2 (o y) = 2T+ [0 [ i@y 5, dsdt

<
o 2

o) e’} 2
n Jo ) Ja, ) 2(@ 8, t)dsdt + 2\/%}1'
2 9

That is the desired estimatidn (4.4).

Remark 4.1. By using Theoreri 3|3, we can obtain estimate of solutions of Volterra-Fredholm
integral equation|[ (4]1) iR’}
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5. CONCLUSION :

In this paper, we established several new retarded nonlinear Gronwall-Bellman type integral
inequalities containing integration on infinite intervals in two independent variables in Theo-
rem[2.2] Theoren(3.2] and Theoren3.4, and gave their specific cases in Coroll@r§, which
can be used in the analysis of the qualitative properties to solutions of integral equations in
n independent variables. In the last section, we also presented the application to research the
boundedness of solutions of the initial boundary value problem for hyperbolic partial delay
differential equations with delay.

Using our method one can further study the integral inequality containing integration on
infinite intervals in two independent variables and with more dimensions.
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