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1. INTRODUCTION

In this paper, we study the Girsanov transformation of Markov process. A Markov process
is said to be conservative if the associated particle stays at state space forever. This property
is one of the important global properties of Markov process. The conservativeness of Markov
processes has been considered by many authors (for example [S€€ [4, 8, 9]). We give the con-
servativeness of Girsanov transform process associated with regular Dirichlet for(4., IF8t
be a regular Dirichlet form oi?(E; m) andX = (2, F,, 6, X;, P, () them-symmetric Hunt
process ory associated withi&, F). Letu be a bounded measure, (see [2, Lemma 3.2.3]),
such that

1
£ (u,v) = §'u(<:"’”> (X) foru e F..
We define the family® of sequence of finely open sets defined by
0 = {{G,} : G, isfinely open for alln, G,, C G,,;1,U;> G, = E q.e}.

A functionu € Fq if there exists{G,,} € © and{u,} € F such thats = u,, m-a.e on{G,,}
for eachn € N. Itis shown in[6, Theorem 4.1] th&f, C Fioc.
We introduce the subclagé‘,I,C of Fioc as follows:

/ (u(y) — u(x))*J(dz,dy) is the smooth measu}e

An increasing sequendg, } of closed set of? is said to be atrict E-nest if
lim CapLGM(E\Fn) =0

‘7:Ioc = {u € "f|00

where Cap,;, is the weighted capacity defined in [7, Chapter V, Definition 2.1] and family
{F,} of closed sets is a striét-nest if and only if

Px( lim O-E\Fn) =09g. exe E
in view of [7, Chapter V, proposition 2.6]. A functiandefined onFE is said to bestrictly &-
quasi continuous if there exists a stricf-nest{ £, } such that. is continuous on each, U{0}.
Denote byQ)C(Ejy) the totality of strictly&-quasi-continuous functions dty,. We assume that
p is a non-negative function it . N QC/(E;,) such tham({p > 0}) > 0 and0 < p(d) < co.
SetN := {z € E : p(z) = 0} and define a stopping timey by oy :=inf{t > 0: X; € N}.
From the Fukushima decomposition,

p(X)) — p(Xo) = M + NPt € [0,¢[,P-as. forq.ex € E,

whereM ! is an MAF locally of finite energy and/?! is a CAF locally of zero energy. Define
a local martingalé\/ on the random intervdl, o A (] by

t
1
(1.1) M ::/ ———dMP,
t o P(Xso)

Let L} be the Doléans-Dade exponentialidf, that is, the unique solution of
t
Ly =1 +/ LY_dM,, P,-a.s.,x € E\N.
0

By the Doléans-Dade formula 1'[5 Theorem 9. 39]){(7)n< on AC}

(1.2) L = exp (Mt — (M) ) H p (1 - pp(()f))) .

0<s<t

AJMAA Vol. 16, No. 1, Art. 1, pp. 1-11, 2018 AJMAA


http://ajmaa.org

THE CONSERVATIVENESS OFGIRSANOV 3

Since L} is a positive local martingale on the random interf@lo y A (], so is a positive
supermartingale. Consequently, the formula

(1.3) dP, = LPdP, onF, N {t < oy A ()} for z € E\N,

uniquely determines a family of probability measuregQnF ). Let X := (Q, F, X, P,, C)
be the transformed processXfby ;. Here forw € Q,

O'NStSOO,

Ry = {15 LN T o) )

The semigroud 7.} of X” equals
(1.4) Pif(x) = E,[f(X)) : t < (] = Bo[L{f(X0);t < o A C].
The transformed proce§ép by L is a p>m-symmetric right process by|[8, Lemma 3.1]. We
denote by(€#, F7) the Dirichlet form onL2(E, p*m) associated witfX?. It is known that
(EP P’) is aquasi-regular(see [7]). For a closed subsgtof E, D,(€)r is the space defined
by

Dy(E)r ={u € Dy(E) : u= 0 m-a.e. ONE\F'},

whereD, (&) is the set of bounded functions jf. The following theorem has been proved in
[8, Theorem 3.4].

Theorem 1. Suppose thap > 0 g.e belongs tdﬁfgc N QC(Ey). Then there exists afi-nest
{F,} of compact sets such that,~1D,(E)r, C F* andforu € Dy(E)g,,

P (u, u) = % [E p(@)?u, (do) + /E E\d(U(SU) —u(y))?p(x)p(y)J (dz, dy)
+0(0) [ u(oPplo)s(do)

We assume that = 0 in (1.5). This means that the corresponding symmetric Hunt process
has no killing inside. For, v € F, then we have the following.
(1.6)

E"(u,v) = % /E p(x)* 115, 4 (d) + /E E\d(U(I) —u(y))(v(z) — v(y))p(x)p(y)J (dz, dy).

(1.5)

By [2, Theorem 1.6.6] that€, F) is conservative if and only if there exists a sequeficg} C
F satisfying

0<u, <1, lim u, =1m-a.e

n—oo

such that
lim &(u,,v) = 0foranyv € FN L'(E;m).

n—oo

By the same argument as il [9, Lemma 2.1], we obtain the following lemma.

Lemma 1. Let {¢,} denote an increasing sequence of non negative functidi¥ (&; m) N
L*>(FE;m) such that

lim ¢, =1 m-a.e.

n—oo
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Assume that there exigts > 0 such that

lim [ (f(2) — Bif(2))g,(2)pm(dz) = 0

n—oo E

for anyt € (0,t,] and anyf € F N Cy(E). Then(E#, F?) is conservative.

By considering the Beurling-Deny formula of Girsanov transformed proXess [8, The-
orem 3.4], we prove the conservativeness by using a similar way! to [9]. More precisely,
we first divide the regular Dirichlet forn(rgp ]?P) into the “small jump”partgp and the
“big jump”part Er2 ) (see SeCtI0|E|2 for definition). Here we assume &) is regarded
as a bounded perturbation, which implies tl(réf f/’) is conservatlve if and only if so is
(€7D, Fr). We then adapt the Davies method agin [1]&61) 7).
2. MAIN RESULTS

In this section, we prove the conservativeness of Girsanov transformed for symmetric jump-
diffusion processeg&?, F?). Firstly, we divide it into “small jump”part”(!) and the “big
jump”part£~(2), We now impose assumption on the measiiér, dy).

Assumption 1.
(i) The measurd(dz,dy) on E x E\d is expressed by

J(dz,dy) = J(z,dy)m(dx)

for some kernel/(x, dy) which associates a positive Radon measurg@n) for each
r e Fb.
(i) There exists a strictly positive functidi(x, y) on £ x E\d such that

F(z,y) = F(y,x) forany(z,y) € E x E\d
and

M::sup/ J(z,dy) < oo
z€E Jd(z,y)>F(z,y)

Let F(x, y) be a function orE x E\d satisfying Assumptiof|1 (ii). Faz,v € F and assume
p is bounded, we divide the integral in (IL.6) into:

& (o) = [ i+ 5 [[ (@) = i) = ) I dym(ds)

=5 [ it (@)

w3 [ () = ) ) = S)ple)o) (7 . dy) + T o))
=5 [ ol o)
+§/Zdww@@wwu»—mwxum—6w»mmme@Awmmm
+§/mew@w@@r—mwxmm—ww»mmmmJ@Awmmm

= gp’(l)(u, v) + Ere (u,v).
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whereJ® (:E, dy = 1{0<d(zjy)<p(z,y)}t](x, dy) and.J® (QZ, dy = 1{d(x,y)ZF(gg,y)}J($, dy).
We set

R 1
gp,(l)(uyv) = 5 /Ep({jj)2,u?u,v> (dm)

L Y ~ ~ ~
T3 //O<d(x7y)<F(x7y)(U(x) —a(y))(0(z) — 3(y))p(z)p(y)J (dz, dy)
and
-~ 1 ) - ~
P (u,v) := Q/E (/d(w,y)zp(x,y) (a(x) —u(y))(v(x) — v(y))p(x)p(y)J(x,dy)) m(dz).

Then by the symmetry of, the boundedness pfand Assumptiof]1 (ii) we have
0 < & (u,u) < [|pl2E (u,w) < 2M||plI% ull32 .y Tor anyu € F,

where€® (u,u) = L [ ( S o (@) = @) (0(2) — 5(y))J (z, dy)) m(dz). Since this
implies that

EPWy,u) < EP(u,u) < gzpjxglu)pw 1 (u,u) foranyu € F,

(5{”(1), F*) is also aregular Dirichlet formon L2(E; m). Moreover, by the same way as if [9,
Lemma 2.3], we have the following.

Lemma 2. The form(£7, F*) is conservative if and only if so (€71, 7).

Then we consider the conservativeness&sft) | 77) in order to show the conservativeness

of (€7, F*) . In the following, we consider the conservativenes$&#\), 7#) . To this end,
we drop the suffix “(1)"for simplicity until the end of this section.

Define uf,, for any non negative € Fioe- Let C(E) be the totality of continuous functions
on E and define

Fioc,ac = {€ € Fioc N C(E) | iy << m}.
For non negativé € Fioc, a0 We denote by “(p) the density function oﬁf@ with respect to the
measuren. For each” > 0 and{ € Fioc, ao We Set
Ke(r) ={z e E|&(r) <r}.
To state another assumption, we introduce a function cladsfined by
A= {€ € Fioc ac| a}i_r)rif(x) = oo and K¢(r) is compact for each > 0}.

Assumption 2. There exist a functio'(z, y) satisfying Assumption 1 (ii) and a functigne A
such that the following hold.

(i) Forany(z,y) € E x E\dwith d(x,y) < F(z,y),
[§(x) = &(y)l < 1.

(i) The function¢ satisfies
1 2
— — J(x,d
(e ) o) ) < o0
foranyx € E andp(z) # 0.

The main result of this section is the following.
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Theorem 2. Assume AssumptioE’P‘ 1 aﬁd 2 @, 7). If there exists a sequende,,} such
that

(2.1) lim Me(n + 3)m(Ke(n + 3)) exp(—na, + a2e"?" Me(n+ 1)T) =0

for someT” > 0, then(£”, F*) is conservative.

We fix F(z,y) and¢ € A satisfying Assumptionf|1 arld 2. Létv,} C Co(R) be an
increasing sequence such that

1, it <n+1
wu(t):=¢ n+2—1t|, n+1<|t| <n+2,
0, [t > n+2.

Let us define a sequence of cut-off functidns, } by

@, (x) = wy(E(zx)) forn =1,2,3, ...

By [9, Lemma 3.1], we can see that € F N Cy(E) for anyn > 1. We know by [2, Theorem
3.2.2] that the measuvé@ ) is absolutely continuous with respectio Moreover, if we denote

by I'(¢,,) the density function Oﬂifﬁ , with respect tan, then we obtain

(2.2) T(p,) () = w), (E(x))” - T(€) () < TE)(2) - Linpr<e(@)<nta}-

We denote by’ (y,,) the density function of the jumping energy measure
) (de) = [ (o) = o) Pola)otw) (o, dy)

with respect tg(z)*m(dz). By Assumptior) P we have
|00(2) = @u(y)] = [wn(§(x)) — wa(€W))] < [€(x) = EW)] - Lnze@)<niay
forany(z,y) € E x E\d with d(z,y) < F(z,y), then we obtain

I (p,)(x) == /0 orr )(wn(l‘)—wn(y))Qp(ﬂf)p(y)J(fE,dy)

< / () — €W)p(2)p(¥) (. dy) - Lineewy<nss)
0<d(z,y)<F(z,y)

(2.3) =T7(&)(7) - Lnze(m)<ntsy-
Hence we obtain from Eq[_(2.2) arid (2.3) the following result.

Lemma 3. The following inequality holds:

L(@n) (@) + I (g,)(2) < (T() (@) + T7() (@) - Linzew)<n+a}-
For the proof of Theorem| 2, we need the following two lemmas.

Lemma 4. The following inequality holds:

/¢ )T, ()m(dz) + /¢ )2 () (x)m(dlz)
(2.4) < e " Me(n + 3)p*m(Ke(n + 3)).
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Proof. Fix a constant. > 0. Let{v, } C C,(R) be a sequence such that
0, t] < 3,
na/2, It] < n.

Let us define

Y, (z) = exp(v,(&(x))) forn =1,2,3, ...
By the definition ofy,,, we have

/ () 2T (0, () pla) () + / ()29 () () () Pm(dl)
/ e (p,)(2) pPm(dz) + / e T (i0,) () pPm(de)
n+1<€(z)<n+2 n<é(z)<n+3

<e ™ e +3(r6(%)(x) +T7(0,)())p*m(de)

S efna (eSS Supn<£(z <n+3(FC<90n)(x)) + ess Supngf(a:)gn—f—?»(Fj (Spn)<x>>) p2m (K§ (n + 3)) .
Put
Me(r) := esssup,e g () (I°(€) (7)) + ess supxng(r)(Fj(g)(x)) for eachr > 0,
hence we obtain the assertian.

Lemma 5. The following inequality holds:

5[ ([ atorotarin, fan) as

/ (//O<d( V< F(a3) (us(x) _Us<y)) Y, () p(m)p(y)J(dmdy)) ds
(2.5) < 2exp(a’e™ Me(n + 1)t)||pv,, HL2 B

Proof. The proof is based on an idea in [9]. Fixe F N Cy(E) and setu; := ]3[”(1) fort > 0,
Where{Pf’(l)}t>0 is the Markovian semigroup ob?( F; m) associated with thBirichlet form
(7). Fr). By similar way in [9, Lemma 3.1], we hawe, € F; ;... Furthermore, the measure

,LLE;) > is absolutely continuous with respectitoby [2, Theorem 3.2.2]. We denote by (v),,)

the density function o,tLEfZ , with respect tan then by the Schwarz inequality ([6, lemma 5.2]),
we have for any\ > 0,

2 [
<o
<)\/ oz

E

M, (dS
Jrus(a)u, () \// )26, (224, ()
P, d0) + 5 [ @@ ()
26) = [ plaPuaP T m(de) + 5 [ @@, )

()10, ()
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and
- / /0<d( - )(us(m) — us (1) (¥, (2)* = ¥, () )us(y) p(x) p(y) J (dzdy)
= / /( s erieg () = Pl s p(@)p(y) T (dady)
/ /0<d er us ) = us(y))* (U (2) + 1 () p(2)p(y) T (dady)
Y/ y>(w”("””> — ()P0l (y) T (ddy)
//0<d \<F( “s ) = us(1))* (Y (@) + ¥, (4)*) () ply) T (dzdy)
Defining
I‘J(@Z))(ZE)_L/ (W, () — o, (y)2p(y) I (z,dy), z € E
! () 0<d(zy)<F(zy) n\Y)) PY »4Y), ;

and by Assumptiof|1 the following holds.

- / /0 ewrert )(us(m)—us(y))(wn(x)z—wn(y)z)us(y)p(:v)p(y)J(d:vdy)
2 [ P, @ ()
1
2.7 — Ug(X) — Ug 2nx2x J(dxdy).
I | R 2 R S R R

Sincew, € Fi.. N Cy(E), we havepu,v? € F by Assumptiorﬂz and [9, Eg. 3.5] in similar
way to [4, Lemma 3.5]. Then by[3, Theorem 4.9(iv)] ahd [2] we see that

d ~
Zolloustull i = =267 (s, us?)

:_/p< BHE, g (42) // (15(x) — 14(1))
0<d(z,y)<F(z,y)

X (us(2)1, (1) = us(y)10, (y)*) p(2) p(y) I (ddy)
= - /E p(2)* ()1, (d) — 2 /E p(@) us (@), (2) Gy, ) (d)

- / /0<d( \<B( )<“s(f€) — us(y))* P, (2)*p(2) p(y)J (dady)

- / / g (128) ()
(2.8) X (0 (2)? = 6o (y)?)us () () ply) T (ddly).

Take) = 1in Eq. (2.6) and[(2]7) we have

ol < [ ol T o) + [ @D w,) (@)mds)

E

AJMAA Vol. 16, No. 1, Art. 1, pp. 1-11, 2018 AJMAA


http://ajmaa.org

THE CONSERVATIVENESS OFGIRSANOV 9

Let {p,} be a sequence defined by

pni=2sup{|€(@) = €9)| : 5 —1 < E(2) Sn+1,0 < dlw,y) < Fla.y)}.

By [9, Lemma 3.3] we then have the following.

/ p(@)?us(2)°T (¢, )m(da) + / p()?us ()’ (1)) (w)m(dx)
E E

< a2eapnM£<n + 1)Hpu3wn|‘%2(E,m)
By the Gronwall lemma, we obtain

(2.9) ot |22y < exp(a®e™ Me(n + 1)t pth,, 172 (gom))-
By (2.68) and[(Z.]7) with\ = 2, we see from[(2]8) that
d 1
ol < =5 [ G0l (@)
+2 [ ufePplaP T, m(do)
E

1
3 us(z) — us(y)) v, (2)*p(x) p(y) J (dzd
S () =)o )y

#2 [l o6, i)

</

2 / /o<d<x,y><p<$,y)<“8(x> — uy(y))*, (2)p() ply) J (dady)
+2a%" My(n + 1) exp(ae™ Me(n + 1)s) | 00, |32y

By integrating with respect te, we have the assertion.

Proof of Theorem 2By [3, Theorem 4.9(iv)], we have the following.
[ twta) = s@)pa@ptamica)

t ~
= —/ Sp’(l)(us,gon)ds
0

= —% /0 t ( /E p(x)Qu?us,m(dm)) ds

U] () = )~ )l ) ) s

By Schwarz inequality [6, Lemma 5.2], we then have
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and

( / / (us(2) — us(y)) (n (@) — wn<y>>p<x>p<y>J<dxdy>)
0<d(z,y)<F(z,y)
x) — 2 2) 2p(x J(dzxd
< / /O<d(w)<w<wn<> o (9)20, (2) 2 (@) p(y) J (dady)
Ug(x) — Ug an2x J(dzdy).
x / /O<dm)<m’y)< (2) — wa()) 24 (2) ) ply) T (drdly)

We thus have

([t - f(ft))son(x)p(x)m(dw))Q

<t ([ otorvnter2utytan) (5 [ ([ oo, an) as)

o ([ (o) = a0, 0) 0ot )

<(3 / (/ /)F (1) = (00, o o) T (e ) i )

<t ([ P2, @) + [ (alo) = 000000 20l o))

< (3 [ ([ oteronori an) as
5 L (o () =)ot o)) ).

If we takea = a,,, then by Lemmals|4 arjd 5 that the last expression is less than
(2.10) 2te " Me(n + 3)m(Ke(n + 3)) exp(aZe™" Me(n + 1)t)prnH%2(E;m).

Moreover, we can take a subsequeReg} such that the expression in (2/10) goedtas
k — oo. Namely, we have

khiEO i (ue(z) — f(2)) @, (x)pm(dr) = 0 foranyt c (0,T].

This equality and Lemnig 1 complete the propf.
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