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ABSTRACT. In this paper, we apply the dynamical systems method proposed by A. G. RAMM,
and the the variational regularization method to obtain numerical solution to some ill-posed
problems with noise. The results obtained are compared to exact solutions. It is found that the
dynamical systems method is preferable because it is easier to apply, highly stable, robust, and it
always converges to the solution even for large size models.
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2 N. H. SWEILAM AND A. M. NAGY

1. I NTRODUCTION

Let A : H → H be a closed, densely defined linear operator on a Hilbert spaceH. Consider
the following linear equations inH

(1.1) Au = f,

and assume that the rangeR(A) is not closed, so that problem (1.1) is ill-posed. Let us assume
that f = Ay wherey is the minimal-norm solution of (1.1), and that noisy datafδ are given
such that‖f − fδ‖ ≤ δ. Discretizing problem (1.1), one often deals with a finite-dimensional
problem of solving ill-conditioned linear algebraic system. Problem (1.1) is called discrete ill-
posed problem if the matrixA is ill- conditioned, that is the condition number is large and the
singular values ofA decay gradually to zero. Also the inverse ofA may not exist or may be
unbounded. Our goal in this paper is to compute a stable approximation toy, givenfδ . Discrete
ill posed problems arise in a variety of applications such as astronomy see [3], computerized
tomography see [9], electrocardiography see [4], mathematical physics see [24] and other fields.
The classical example of an ill-posed problem is encountered in the linear Fredholm integral
equation of the first kind with a square integrable kernel:

(1.2)
∫ b

a

K(s, t)u(t)dt = g(s), c ≤ s ≤ d,

where the right-hand sideg and the kernelK are given functions andu is an unknown function.
By using discretization techniques like Galerkin method with an orthonormal basis or quadra-
ture method see [2], [5] and [6], equation (1.2) can be written as a linear systemKu = g , with
K integral operator mappingu to g. Since the kernel is square integrable over[a, b]× [c, d], then
it is a classical result thatK is a compact operator fromL2[a, b] into L2[c, d]. Regularization
methods are often used to obtain stable and smooth solutions to such ill-posed problem. The
most common and well known technique for regularizing ill-posed problems is the variational
regularization method see [7], [23] and [24]. This method attempts to provide a good estimate
of the solution of (1.1) by a solutionuα,δ of the problem

(1.3) min{‖Au− fδ‖2 + α‖u‖2},

whereα is the regularization parameter anduα,δ is the regularization solution. The success of
the variational regularization method depends on making a good choice of the regularization
parameter which is not easy to find. The reason is thatuα,δ is too sensitive to perturbations in
f , i.e., a small change inf may produce a large change inuα .

In this paper, we will consider two methods for solving numerically some ill-posed models
with noise. The first method is the dynamical systems method (DSM) which is proposed by A.
G. RAMM see [11]- [21] and the references therein. The DSM is based on an analysis of the so-
lution of Cauchy problem for nonlinear differential equations in Hilbert space. Such an analysis
was done for well-posed and some ill-posed problems see [11], and the references therein, using
some integral inequalities. The DSM has several attractive properties; it is fast convergent, can
be easily designed and no need to calculate the inverse of large condition number matrices. In
section 2, a brief description of the analysis of the DSM is presented.

The second method is the variational regularization method see [8], [23] and [24]. This
method consists of finding a global minimizer of (1.3), wherefδ is a noisy data and‖f−fδ‖ ≤ δ.
The global minimizer of the quadratic functional (1.3) is the unique solution to the linear system
(A∗A + αI)uα,δ = A∗fδ, whereI is the unit matrix. This system has a unique solution
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uα,δ = (A∗A + αI)−1A∗fδ. To determine the suitableα, let uα(δ),δ be a solution of (1.3) and
consider the equation

(1.4) ‖Auα,δ − fδ‖ = τδ,

whereτ ∈]1, 2[. Equation (1.4) is the usual discrepancy principle. One can prove that equation
(1.4) determinesα = α(δ) uniquely,α(δ) → 0 asδ → 0, anduδ := uα(δ),δ → y wherey
is the minimal-norm solution to (1.1) asδ → 0. This justifies the usual discrepancy principle
for choosing the regularization parameter see [8]. For more details on the theory of variational
regularization method see e.g., [11, Chapter 2].

The accomplishment of the paper will be explained in the following manner. In section 2,
a brief description of the analysis of the DSM is presented. In section 3, numerical experi-
ments and comparisons are made for the regularized solutions chosen by DSM and variational
regularization method. We end in section 4 with the conclusions.

2. ANALYSIS OF THE DSM

In this section, we will give a brief description of the analysis of the DSM and for more
details on the analysis of DSM see [11]- [21] and the references therein. The DSM analysis is
bases on a construction of a dynamical systems with the trajectory; by using Cauchy problem
for nonlinear differential equations in a Hilbert space; starting from an initial approximation
point and having a solution to problem (1.1) as a limiting point. It is proved in see [11] that if
equation (1.1) is solvable and‖f − fδ‖ ≤ δ, the following results hold:

Theorem 2.1. Assume thatf = Ay, y ⊥ N(A), A is a linear operator, closed and densely
defined inH. Consider the problem

(2.1)
du

dt
= −u + T−1

ε(t)A
∗f , u(0) = u0,

N(A) := {u : Au − f = 0}, u0 ∈ H is arbitrary, Tε = T + ε(t), T = A∗A, ε = ε(t) is
a continuous function monotonically decaying to zero att → ∞ and

∫∞
0

ε(s)ds = ∞. Then
problem (2.1) has a unique solutionu(t) defined on[0,∞), and the following limit exists:

limt→(∞)u(t) := u(∞) and u(∞) = y .

It is pointed out in [11] that iffδ is given in place of the exact solutionf , calculate its solution
uδ(t) ast = tδ, it can be proved that

limδ→(∞)‖uδ(tδ)− y‖ = 0.

If tδ is suitable chosen. The stopping timetδ can be uniquely determined, for example by
a discrepancy principle, see [17], for bounded operatorsA. Also, it is pointed out that the
argument in see [11] remains valid in the case of unboundedA without any change.

3. THE DYNAMICAL SYSTEMS ALGORITHM

The DSM is a stable regularized algorithm for solving (1.1), especially whenf is replaced
by the noise datafδ The algorithm can be applied by using the following steps:
Step 1. Solve the following ordinary differential equation:

(3.1)
du

dt
= Φ(u, t), u(0) = u0,
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where

(3.2) Φ(u, t) = −u + (A∗A + αI)−1A∗fδ, u0 = 0,

and the discretization is based on an explicit Runge-Kutta formula.
Step 2. The stopping timetδ is defined by using the following generalization of the discrepancy
principle:
whenτ ∈]1, 2[, the stopping time is chosen by the formula

(3.3) ‖Auδ(tδ)− fδ‖ = τδ

and we assume that

(3.4) τδ < ‖Auδ(t)− fδ‖ for all times t < tδ

i.e., tδ is the first momentt, at which the discrepancy is equal toτδ. If

‖Au0 − fδ‖ > τδ,

then formulas (3.3) and (3.4) determine uniquelytδ > 0, see [17].

4. NUMERICAL EXPERIMENTS

In the following, three extremely unstable test examples from the literature are presented.
Comparisons are made for the regularized solutions chosen by DSM and by the variational reg-
ularization method. Table (4.1) displays the results of these ill-posed examples for which the
exact solutions are known. In each example; the size of the coefficient matrixA is taken as
20× 20 and the noise term isδ = 0.02 andτ = 1.9, andε(t) = 0.1

exp(t)
.

Example 4.1. (PHILIPS example [10]):
Consider Fredholm integral equation of the first kind (1.2), wherea = −6, b = 6 and

K(s, t) =

{
1 + cos(π(s−t)

s
), |s− t| < 3.

0, |s− t| ≥ 3.

g(s) = (6− |s|)
(

1 +
1

2
cos

(πs

3

))
+

9

2π
sin

(
π|s|
3

)
and the exact solutionu(t) is given by

u(t) =

{
1 + cos(πt

3
), |t| < 3.

0, |t| ≥ 3.

By using Galerkin method for discretization with orthonormal box functions as basis functions
(see [5], chapter 7), where both integration intervals are [-6,6]. Then the Galerkin method leads
to a linear ill-posed system of equationsAu = f where the condition number of the matrixA is
equal to3.95818402e3. Perturbed the right-hand side vectorf ; by adding a noise termδ to the
last row inf ; in order to havefδ, then we have an extremely unstable system.

Example 4.2. (SHAW example [22]):
Consider Fredholm integral equation of the first kind (1.2), wherea = −π

2
, b = π

2
and

K(s, t) = (cos(s) + cos(t))2

(
sin ω

ω

)2

, ω = π(sin(s) + sin(t)),

and the exact solution is given by

u(t) = a1 exp(−c1(t− t1)
2) + a2 exp(−c2(t− t2)

2).
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By using quadrature method (see [5], chapter 6), where both integration intervals are [−π
2

, π
2
],

hence, we obtain a linear ill-posed system of equationsAu = f , where the condition number
of the matrixA is equal to3.74711237e14. Perturbed the right-hand side vectorf ; by adding
a noise termδ to the last row inf ; in order to havefδ, then we have an extremely unstable
system. The integral equation in this example represents a one-dimensional model of an image
reconstruction problem from see [1]. The kernelK is the point spread function for an infinitely
long slit. The parametersa1, a2, etc., are constants that determine the shape of the solutionu(t);
in this implementation we usea1 = 2, a2 = 1, c1 = 6, c2 = 2, t1 = 0.8, t2 = −0.5, giving an
u(t) with two different "humps".

Example 4.3. (Inverse Laplace transformation (ilaplace) example [25]):
Consider Fredholm integral equation of the first kind (1.2), in the interval[0,∞). The kernelK
and the the corresponding right-hand side are given by

K(s, t) = exp(−st), g(s) =
1

s + (1/2)
,

the exact solution is given by
u(t) = exp(−t/2).

Discretization of the inverse Laplace transformation (i.e., equation (1.2) in this example) by
using Gauss-Laguerre quadrature method, see [25], where both integration intervals are[0,∞),
hence, we obtain a linear ill posed system of equationsAu = f , where the condition number
of the matrixA is equal to3.79743094e30. Perturbed the right-hand side vectorf by adding a
noise termδ to the last row inf in order to havefδ, then we have an extremely unstable system.

Problem Method Rerr tδ, α
Phillips (20) variational regularization2.37e-2 α = 0.0457

DSM 7.55e-2 tδ = 6
Shaw (20) variational regularization1.44e-1 α = 0.00679

DSM 8.69e-2 tδ = 5.7
Ilaplace (20) variational regularization4.18e-2 α = 0.02

DSM 3.17e-2 tδ = 3.9

Table 4.1: Comparison between results of the ill-posed examples.

The third column in Table (4.1) gives the relative errorRerr := ‖uexact−uapprox‖
‖uexact‖ , and the last

column gives the values of the stopping timetδ and the regularization parameterα.

5. H ILBERT MATRIX EXAMPLE

Consider problem (1.1) where the matrixA is a Hilbert matrix:

A =


1 1/2 ... 1/n

1/2 1/3 ... 1/(n + 1)
...

...
...

...
1/n 1/(n + 1) ... 1/(2n− 1)
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6 N. H. SWEILAM AND A. M. NAGY

The condition number of the20 × 20 Hilbert matrix A is equal to1.908432e18. We will
consider here two different choices of the right-hand side vectorf of (1.1). The exact solution
is generated by some mathematical formula asuexact = F (ti); ti = 0.5i. The right-hand sidef
is then produced asf = Auexact. Perturbed the right-hand side vectorf ; by adding a noise term
δ to the last row inf ; in order to havefδ, then we have an extremely unstable system, where
δ = 0.02, τ = 1.9 andε(t) = 0.1

exp(t)
. The results listed in Table (5.1) show that the higher

accuracy is obtained by DSM method.

uexact = F (ti) Method Rerr tδ, α
sin(ti) variational regularization9.15e-1 α = 0.0087

DSM 8.96e-1 tδ = 4.35
1 variational regularization1.22e-1 α = 0.0565

t3i + t2i + ti + 1 DSM 7.62e-2 tδ = 3.5
variational regularization1.61e-1 α = 0.0501

exp(−ti) DSM 8.02e-2 tδ = 4.9

Table 5.1: Comparison between results of Hilber matrix examples.

6. CONCLUSIONS

In this paper, the dynamical systems method which is proposed by A. G. RAMM is applied
to solve numerically some ill-posed models. Three test examples taken from the literature
are tested, the PHILLIPS example, the SHAW example, and the inverse Laplace transformation
(ilaplace) example. Also artificial examples by using the Hilbert matrix are tested. Comparisons
are made between the DSM and the variational regularization method. For all test problems with
noise considered in this paper, the DSM has many advantages than the other, it is easier to apply,
can choose a regularized solution that is as good as and frequently better than the regularized
solution chosen by the variational regularization method. The main difficulty in variational
regularization method is the inversion of the matrixA∗A + αI which is numerically difficult if
α is small, because the condition number of the matrixA∗A is much larger than the condition
number of the matrixA. We noted that in all tested examples the relative errors by using the
DSM are smaller than the relative errors by using the variational regularization method or it is
of the same order of magnitude.
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