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ABSTRACT. In this paper we prove that the gradient of the weak solution of the Dirichlet prob-
lem for divergent form elliptic equations, with the known term belongs to the Morrey spaces, is
the element of the weak Morrey spaces.
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1. I NTRODUCTION

Recently, the regularity properties of the Dirichlet problem

(1.1)

{
Lu = f,

u ∈ H1
0 (Ω),

wheref belongs to some various Morrey spaces, have been studied by some authors (for ex-
ample, see [2, 3, 5]). HereΩ is bounded domain inRn, H1

0 (Ω) is the Sobolev spaces, andL is
divergent form elliptic operator defined inH1

0 (Ω).
By using the assumption thatf belongs to the Morrey spacesL1,λ(Ω) for 0 < λ < n − 2,

Di Fazio [3] showed that the weak solution of (1.1) is the element of the weak Morrey spaces
wLpλ,λ(Ω), where 1

pλ
= 1 − 2

n−λ
. For more sharp result, in the sense of inclusion between

Morrey spaces, Di Fazio [4] also proved that the weak solution of (1.1) is the element of the
weak Morrey spaceswLqλ,λ(Ω), where 1

qλ
= 1

2
− 1

n−λ
, by takingf from the Morrey spaces

L2,λ(Ω) for 0 < λ < n− 2.
For the casen − 2 < λ < n andf is in the Morrey spacesL1,λ(Ω), Cirmi et. al [2] showed

that the weak solution (1.1) is bounded essentially inΩ and its gradient belongs to the Morrey
spacesLp,λ(Ω), for somen− 2 < p ≤ λ.

Di Fazio has not investigated the regularity of the weak solution gradient of (1.1). In this
paper, we continue his works, which are different from that one by Cirmi et. al in case of
parameterλ. We prove that the the weak solution gradient of (1.1) belongs to the weak Morrey
spaceswLpλ,λ(Ω), where 1

pλ
= 1 − 1

n−λ
, by assumingf is in the Morrey spacesL1,λ(Ω) for

0 < λ < n− 2.

2. DIRICHLET PROBLEM AND M ORREY SPACES

Let Ω be an open, bounded, and connected subset ofRn with n ≥ 3. These assumptions are
always assumed forΩ. Fora ∈ Ω andr > 0, we define

B(a, r) = {y ∈ Rn : |y − a| < r},
and

Ω(a, r) = Ω ∩B(a, r) = {y ∈ Ω : |y − a| < r}.
For 1 ≤ p < ∞ and 0 ≤ λ ≤ n, the Morrey spaceL1,λ(Ω) is the set of all functions

f ∈ L1(Ω) which satisfies

‖f‖L1,λ = sup
a∈Ω,r>0

(
1

rλ

∫
Ω(a,r)

|f(y)|dy

)
.

Meanwhile, the weak Morrey spacewLp,λ(Ω) is the set of all measurable functionsf defined
onΩ which satisfies

sup
a∈Ω,t>0

(
supt>0 t |{x ∈ Ω(a, r) : f(x) > t}|

1
p

r
λ
p

)
< ∞.

For q = 1, 2, let W 1,q(Ω) is denoted the Sobolev spaces. The closure ofC∞
0 (Ω) in W 1,q(Ω)

is denoted byW 1,q
0 (Ω). We consider the following second order divergent elliptic operator

(2.1) Lu = −
n∑

i,j=1

∂

∂xj

(
ai,j

∂u

∂xi

)
,

whereu ∈ W 1,2
0 (Ω),

ai,j ∈ L∞(Ω), i, j = 1, . . . , n,
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and there existsν > 0 such that

ν|ξ|2 ≤
n∑

i=1

ai,j(x)ξiξj ≤ ν−1|ξ|2,

for everyξ = (ξ1, . . . , ξn) ∈ Rn and for almost everyx ∈ Ω. We also assume a regularity
condition of the coefficientsai,j of the operatorL, that is,

|ai,j(x)− ai,j(y)| ≤ ω(|x− y|), ∀x, y ∈ Ω,

whereω : (0,∞) −→ (0,∞) is non-decreasing, satisfies

ω(2t) ≤ Cω(t)

for a constantC > 0 and for allt > 0, and∫ ∞

0

ω(t)

t
dt < ∞.

Let f ∈ L1,λ(Ω). We are interested in investigating the following Dirichlet problem

(2.2)

{
Lu = f,

u ∈ W 1,2
0 (Ω),

whereL is defined by (2.1).
The functionu ∈ W 1,2

0 (Ω) is called the weak solution of equation (2.2) if

(2.3)
∫

Ω

n∑
i,j=1

ai,j(x)
∂u(x)

∂xi

∂φ(x)

∂xj

dx =

∫
Ω

f(x)φ(x)dx,

for all φ ∈ C∞
0 (Ω).

3. TOOLS

Theorem 3.1(Grüter and Widman, [6]). There exists a unique functionG : Ω×Ω −→ R∪{∞},
G ≥ 0, such that for eachy ∈ Ω and anyr > 0

(3.1) G(·, y) ∈ W 1,2(Ω\B(y, r)) ∩W 1,1
0 (Ω),

and for allφ ∈ C∞
0 (Ω),

(3.2)
∫

Ω

n∑
i,j=1

ai,j(x)
∂G(x, y)

∂xi

∂φ(x)

∂xj

dx = φ(y).

Furthermore, there exists a positive constantC0 = C(n, ν) andC1 = C1(n, ν, ω, Ω) such that

(3.3) G(x, y) ≤ C0
1

|x− y|n−2
,

and

(3.4) |∇G(x, y)| ≤ C1
1

|x− y|n−1

for all x, y ∈ Ω, with x 6= y.
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The functionG in Theorem 3.1 is called the Green function forL and Ω. Fix y ∈ Ω.
According to (3.1),G(·, y) has a weak derivative inΩ, which is denoted by∂G(x,y)

∂xi
. Therefore

(3.5)
∫

Ω

∂G(x, y)

∂xi

φ(x)dx = −
∫

Ω

G(x, y)
∂φ(x)

∂xi

dx,

for all φ ∈ C∞
0 (Ω).

Let M be the Hardy-Littlewood maximal operator, defined by

M(f)(x) := sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)| dy,

for everyf ∈ L1
loc(Rn).

Theorem 3.2. [1] Let0 < λ < n, a ∈ Ω, andr > 0. If f ∈ L1,λ(Ω), then there exists a positive
constantC, which is independent froma andr, such that

sup
t>0

t |{x ∈ Ω(a, r) : M(f)(x) > t}| ≤ Crλ‖f‖L1,λ .(3.6)

The first proof of Theorem 3.2 was given by [1]. For more simple and elegant proof of this
theorem, we refer to [7].

4. AN I NTEGRAL OPERATOR AND M AIN RESULT

From now on, we always assume that0 < λ < n− 2. Let G be the Green function forL and
Ω. Forf ∈ L1,λ(Ω), we define

(4.1) u(x) =

∫
Ω

G(x, y)f(y)dy

for everyx ∈ Ω. Next we define

(4.2) ui(x) =

∫
Ω

∣∣∣∣∂G(x, y)

∂xi

f(y)

∣∣∣∣ dy,

for everyi = 1, . . . , n andx ∈ Ω.
We note that the functionu which is defined by (4.1) is the unique weak solution of (2.2).

This fact can be seen in [3].

Theorem 4.1.There exists a constantC > 0 such that

(4.3) t
λ−n

λ−n+1 |{x ∈ Ω(a, r) : |ui(x)| > t}| ≤ Crλ‖f‖1−λ−n−1
λ−n+1

L1,λ ,

for everya ∈ Rn, r > 0, andt > 0.

Proof. Let x ∈ Ω andδ > 0. By virtue of (3.4), we first estimate∫
Ω

|f(y)|
|x− y|n−1

dy =

∫
Ω(x,2δ)

|f(y)|
|x− y|n−1

dy +

∫
Ω\B(x,2δ)

|f(y)|
|x− y|n−1

dy = I1 + I2.

We boundI1 by using the Hedberg estimation, that is,

I1 ≤ C(n)δM(f)(x).
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Now we compute the bound ofI2 as follows,

I2 =

∫
2δ≤|x−y|

|f(y)χΩ(y)|
|x− y|n−1

dy =
∞∑

k=1

∫
2kδ≤|x−y|<2k+1δ

|f(y)χΩ(y)|
|x− y|n−1

dy

≤ C(n)
∞∑

k=1

1

(2k+1δ)n−1

(2k+1δ)λ

(2k+1δ)λ

∫
2kδ≤|x−y|<2k+1δ

|f(y)χΩ(y)|dy

≤ C(n, λ)‖f‖L1,λδλ−n+1
∞∑

k=1

(
2λ

2n−1

)k

= C(n, λ)‖f‖L1,λδλ−n+1.

Therefore

(4.4)
∫

Ω

|f(y)|
|x− y|n−1

dy ≤ C(n, λ)
[
δM(f)(x) + δλ−n+1‖f‖L1,λ

]
,

by using the estimations ofI1 andI2. We choose

δ =

(
M(f)(x)

‖f‖L1,λ

) 1
λ−n

to minimize the right hand side of (4.4). Then∫
Ω

|f(y)|
|x− y|n−1

dy ≤ C(n, λ)M(f)(x)
λ−n+1

λ−n ‖f‖
λ−n−1

λ−n

L1,λ .(4.5)

Note that, according to (3.4) and (4.5), then

(4.6) |ui(x)| ≤ C

∫
Ω

|f(y)|
|x− y|n−1

dy ≤ CM(f)(x)
λ−n+1

λ−n ‖f‖
λ−n−1

λ−n

L1,λ ,

for everyx ∈ Ω, whereC = C(n, λ, C1). Let a ∈ Ω andr > 0. For everyt > 0, we have

|{x ∈ Ω(a, r) : |ui(x)| > t}| ≤
∣∣∣∣{x ∈ Ω(a, r) : M(f)(x) > Ct

λ−n
λ−n+1‖f‖

λ−n−1
λ−n+1

L1,λ

}∣∣∣∣ .
Now we use Theorem 3.2 to obtain∣∣∣∣{x ∈ Ω(a, r) : M(f)(x) > Ct

λ−n
λ−n+1‖f‖

λ−n−1
λ−n+1

L1,λ

}∣∣∣∣
≤ C

rλ‖f‖L1,λ

Ct
λ−n

λ−n+1‖f‖
λ−n−1
λ−n+1

L1,λ

= C
rλ‖f‖1−λ−n−1

λ−n+1

L1,λ

t
λ−n

λ−n+1

,

whereC > 0 is independent froma, r, andt. This means

t
λ−n

λ−n+1 |{x ∈ Ω(a, r) : |ui(x)| > t}| ≤ Crλ‖f‖1−λ−n−1
λ−n+1

L1,λ

for everya ∈ Ω, r > 0, andt > 0.

Lemma 4.2. ui ∈ L1(Ω) for everyi = 1, . . . , n.
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Proof. Let a ∈ Ω. SinceΩ is bounded, then we can chooser > 0 such thatΩ ⊆ B(a, r). This
meansΩ = Ω(a, r). By the Cavalieri Principle, we have∫

Ω

|ui(x)|dx =

∫
Ω(a,r)

|ui(x)|dx

=

∫ ∞

0

|{x ∈ Ω(a, r) : |ui(x)| > t}}|dt

=

∫ |Ω(a,r)|

0

|{x ∈ Ω(a, r) : |ui(x)| > t}}|dt

+

∫ ∞

|Ω(a,r)|
|{x ∈ Ω(a, r) : |ui(x)| > t}}|dt.

Note that∫ |Ω(a,r)|

0

|{x ∈ Ω(a, r) : |ui(x)| > t}}|dt ≤
∫ |Ω(a,r)|

0

|Ω(a, r)|dt = |Ω(a, r)|2 < ∞.

Using Theorem 4.1 and the factn−λ
λ−n+1

+ 1 < 0, then∫ ∞

|Ω(a,r)|
|{x ∈ Ω(a, r) : |ui(x)| > t}}|dt ≤ Crλ

∫ ∞

|Ω(a,r)|
t

n−λ
λ−n+1 dt

= Crλ|Ω(a, r)|
n−λ

λ−n+1
+1 < ∞.

Therefore ∫
Ω

|ui(x)|dx ≤ |Ω(a, r)|2 + Crλ|Ω(a, r)|
n−λ

λ−n+1
+1 < ∞.

This proves the lemma.

Lemma 4.3. If u is defined by(4.1), then the weak derivatives ofu is given by

∂u(x)

∂xi

=
∂

∂xi

(∫
Ω

G(x, y)f(y)dy

)
=

∫
Ω

∂G(x, y)

∂xi

f(y)dy,

for everyi = 1, . . . , n.

Proof. Let φ be an arbitrary element ofC∞
0 (Ω). We claim that∂G(x,y)

∂xi
f(y)φ(x) ∈ L1(Ω × Ω).

This is because∫
Ω

∫
Ω

∣∣∣∣∂G(x, y)

∂xi

f(y)φ(x)

∣∣∣∣ dydx =

∫
Ω

|ui(x)||φ(x)|dx

≤ max
x∈Ω

|φ(x)|
∫

Ω

|ui(x)|dx < ∞,

which is concluded from Tonneli’s theorem and Lemma 4.2. Therefore we can use Fubini’s
theorem and (3.5) to obtain∫

Ω

(∫
Ω

G(x, y)f(y)dy

)
∂φ(x)

∂xi

dx =

∫
Ω

f(y)

(∫
Ω

G(x, y)
∂φ(x)

∂xi

dx

)
dy

= −
∫

Ω

f(y)

(∫
Ω

∂G(x, y)

∂xi

φ(x)dx

)
dy

= −
∫

Ω

(∫
Ω

∂G(x, y)

∂xi

f(y)dy

)
φ(x)dx.

The proof is complete.

AJMAA, Vol. 18 (2021), No. 2, Art. 14, 7 pp. AJMAA

https://ajmaa.org


A REGULARITY OF THE WEAK SOLUTION GRADIENT OF THEDIRICHLET PROBLEM 7

The following is our main theorem. This shows that the gradient of the weak solution of (2.2)
belongs to the weak Morrey spaces.

Theorem 4.4. If u is defined by(4.1), then|∇u| ∈ wLpλ,λ(Ω) where 1
pλ

= 1− 1
n−λ

.

Proof. It is enough to proof that∂u(x)
∂xi

∈ wLpλ,λ(Ω) for every i = 1, . . . , n. According to
Lemma 4.3, (4.2), and Theorem 4.1, we have

t
λ−n

λ−n+1

∣∣∣∣{x ∈ Ω(a, r) :

∣∣∣∣∂u(x)

∂xi

∣∣∣∣ > t

}∣∣∣∣ ≤ t
λ−n

λ−n+1 |{x ∈ Ω(a, r) : |ui(x)| > t}|

≤ Crλ‖f‖1−λ−n−1
λ−n+1

L1,λ .

Therefore this theorem is proved.
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