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2 ALEXANDRU MIHAI BiCcA

1. INTRODUCTION

Consider the initial value problem :
P(t) = f(t,x(t),x(t — 7)), t € [0,T]
(-4 A i

wherer > (0 is the constant delay arid > 0 is such thal’ = [ - 7, with [ € N*.

Such problems appear as models in economy and biology. As applications of the delay
differential equations in biology we can mention the models from [9], [15], [26] and [10]. For
instance, as in [26], we can study the Nicholson’s model (from 1957) for the time evolution of
some species of blowflies,

N(t— 7')]

—% I

On the other hand, the arterial concentration o, @0ungs which is governed by the equation,
b)) —am(t—1)

N'@)=r-N()-[1—

2 (t) =

L+am(t—1)
and the production of white cells in blood which is governed by the equation,
oy ax(t—7)
Z'(t) = Py c-x(t).

Another model from haematopoiesis can be found in [15]. The models in economy governed
by delay differential equations can be found.in [4],/[14] and [29]. For instance, in [29] has been
generalized the model

{ P(t) = 2(t) [ram — ], >0

btan(t) — d+zm(t—7)
J,’(t) = (,O(t),tE[—T,O], a7b7c>m€R7 T>0,n>1

of the naive consumer, frorn![4], obtaining the model

a'(t) = () [f(z(t) —glz(t —7))], £ =0
x(t) = (t), t €[-7,0],

for which the authors obtained results about the existence and uniqueness of the positive bounded

solution. A general model for market price fluctuations has the form,

{ 2(t) = x(t)- Flz(t),z(t —7)), t >0
x(t) = (), t €[-7,0].

Such models has been also studied_in [29] from the existence and uniqueness of the positive
bounded solution point of view.

To approximate the solution of the initial value probldm1.1) numerical methods has been
elaborated in the last 30 years. The classical methods can be found in [1], [5]/ [19]1[20], [21],
[22], [30] and [31]. Some papers ( see [8]) [2], [18], [24] and|[25] ) use spline functions to
approximate the solution df (1.1). For instance/in [25] the authors use the method of steps for
the problem,

2t = f(t,z(t),z(t —w)), t €a,b], w>0
z(t) = @(t), t €la—w,al.
At the first step, the solution of the Cauchy’s problem,

{ () = ft,z(t), ot —w)), t € la,a+ w]
z(a) = ¢(a),
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has been approximated by a spline function of even degree and at the general step were solved
the initial value problems,

{ () = f(t,z(t),x(t —w)), t € la+kw,a+ (k+ 1)w]
z(t) = sk(t), tela+ (k- 1w, a+ kwl,

wheres”(t) is the spline function of even degree constructed on the previous interval
la+ (k- Dw, a+ kw.

Applications of the approximation theory for delay differential equations can be found in
[18] and [23]. Using Hermite polynomial interpolation in [27] a numerical method for delay
differential equations has been obtained. The procedures based on the one step method and on
the collocation method have been obtained in [3] and [16], respectively. The numerical methods
for delay differential equations based on the Runge-Kutta procedure have been investigated in
[6], [12] and [13].

2. EXISTENCE, UNIQUENESS AND APPROXIMATION OF THE POSITIVE SOLUTION
Consider the functional space
X =C[-7,T)={x:[-7,T] — R | x is continuous o—7,T] }
with the metric generated by the Bielecki's norm,
lzll; = max{|z()] - e+t € [~ T},

wheref > 0 is convenable chosen. With this metric the spAt®&ecame a complete metric
space.

Theorem 2.1.Suppose that € C([—7, T]xRxR), ¢ € C[—7,0] and the following conditions
are fulfilled :

() f(t,u,v) >0, Vte|[-7,T], Vu,v>0, and ¢(t) >0, Vte|-T,0]

(i) there existsM > 0 such that | f(t,u,v)| < M, V(t,u,v) € [-7,T] x R x R;

(iii) there existsL > 0 such thatyu, uq, v1,v2 € R, we have :

|f(t,ur,v1) — f(t, ug,v2)] < ST (Jur — up| + vy — o), Vte[-7,T]

Then the initial value probleny (1.1) has in the spa€ea unique positive and bounded solution
x*, which can be approximated by the sequence of successive approximations :

t), te|—7,0
1) %o(t) :{ fa((o)), tee[[O,T],]

(2.2) Tm(t) = (), vt € [—7,0], Ym € N*,

(2.3) zm(t) = ¢(0) + /f(s,xml(s),mml(s —71))ds, Vtel0,T], Vm € N,
0
with the error estimation,

(2.4) |z*(t) — zp(t)

4LT +1 <1
2

<aTe1 ) oy —aolly V€ [0,7],¥m € N

Moreover, this solution is differentiable with continuous first derivative0off’].
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Proof. The problem[(1]1) is equivalent @—7, T'] with the initial value problem,

t
p(0)+ [ f(s,2(s),z(s —7))ds,  t€[0,T]
0
(1), t€[0,T],
which suggest to define the operatdr; X — X,

Az)(t) = { ©(0) + E)ff(s,:z:(s),x(s —7))ds, te[0,7T)  VreX.
p(t), te0,T],
Elementary calculus leads to,

(2.5) z(t) = {

t

[A(z) (1) — Aly)(1)] < / |f(s,2(s),2(s = 7)) = f(s,9(s),y(s — 7))| ds

t
2L
<L ||x — y|’B/[€9(s+T) + e@s]ds < 7 Hl’ i yHB/e . 69(s+7)d8
0 0

2L 2L
= e =yl [ = ) < S o gl Y, vie 0,7

Then,
2L
1A@) =AWl = 5 llz —yllp,  VoyeX,
and choosing = 4LT+ 1, it follows that the operatod is a contraction. Then, on applying the

Banach’s fixed point theorem (see [28], [32]) we conclude that the initial value proplem (2.5)
has a unique solution* € X N C'[0, T ('sincef is continuous ). Ifp € C''[—7, 0] and

¢'(0) = £(0,9(0), p(—7))
thenz* € C'[—7,T]. From the conditions (i) and (ii) we deduce that
0 < z*(t) < max(MT,max{p(t) : t € [-7,0]}), Vt e [—7,T].
Using the properties of the sequence of successive approximations from the Banach’s fixed
point theorem (se€ [17],128]), sinég = 22— < 1 we obtain the estimatio.4j.

4LT+1

Remark 2.1. The estimation[(2]4) permits to approximate the solutiéron [0, 7], by the
sequence of successive approximations| (2.1)] (2.2), (2.3). To compute the integrals ffom (2.3)
we can use a quadrature rule.

3. THE NUMERICAL METHOD

To compute the integrals from (2.3) we will apply the trapezoidal quadrature rule with a
new remainder estimation recently obtained by P. Cerone and S.S. Dragomir in [11], presented
below.

Proposition 3.1. The following inequalities holds :
—a)2 .
{ (® 4) L, f € Lipla,b]

—a)2
(b4) ‘Hf/HCW fECl[CL,b],
whereL is the Lipschitz constant ¢f, if f is Lipschitzian.

Gy | [ sws - ) + )| <
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We have used the notations :
Lipla,b] = {f : [a,b] — R | f Lipschitzian}
C'a,b] = {f : [a,b] — R | f differentiable withf’ € C[a, b]}
and

1/ e = sup |F(£)].

t€la,b]
Considering an uniform partition of the interval b],

(3.2) Aia=xg<21< ... <Tp1<Tp=02"

with ; ‘
xi:a—i—( —a)z’ Vi=0,n, n¢cN*
n

On can state the result from [11]:

Corollary 3.2. For the trapezoidal quadrature rule we have,

[ rwye =22 @ +2 3 ste) + 500

(3.3)

IN

—a)2
SN, f € CMa,b.
The followings results are known (see for instarice [7]) :

Proposition 3.3.If f € C'[a, b] with Lipschitzian first derivative, having the Lipschitz constant
L' > 0, then the following trapezoidal quadrature formula holds :

[ rwie = 5@ + s < L

Corollary 3.4. If f € C'[a, b] with Lipschitzian first derivative, having the Lipschitz constant
L' > 0, then, for the uniform partitior{ (3]2), the following trapezoidal quadrature rule holds :

(b—a)’

i
oz

[ r@ie =" @ +2 3 st + 50| <

To apply the above quadrature rules for the integrals fiom (2.3) we define the funktions
0,7] — R, m €N, by
(3.4) Fn(t) = f(t,xn(t), z,(t — 7)), Vtel0,T].
Now, consider the uniform partition of7, 77,
Ap:—T=t) <t <..<th1<t,=0<t1 <..<t,=T,

witht;, =t;+ 7, Vi=0,¢q—1, neN, g¢g=(+1)n.
In the conditions of the Theorem 2.1 we can see that C'[—7,T], Vm € N*. On the
knots of the partitio\,, let,

(35) i) ={ o,

—0n

I o
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and
(3.6) tm(ty) = o(ty),  k=0,n, VmeN-

Applying the trapezoidal quadrature rule to the integrals frpbm| (2.3), on the kpois =
n+1,q, since

tk I(k:—n) T -
_ = — 7 Vk=n71
2k—n) 20—n) 20’ nthe

we obtain the following numerical method :

12

+ /f(s, Tim-1(8), Tm_1(s — 7))ds = ¢(0) + /Fm_l(s)ds

0

k—n—1
= 90<O) + %[f(ov 90<0)7 90<_T)) + 2 Z f(tn+j7 mmfl(tn+j)7 xm71<tj))
(37) + f(tk, $m71(tk)7 xm,l(tk,n))] + RmJg, Vk=n+ 17 q, Vm € N*.

For the remaindeR,,, ;, according to Corollary 3]2 arid 3.4, we have,

Z, if F,,_,¢€ Lip[0,T], ¥Ym € N*
(3.8)  |Rmul < H lle i Faoa € CHOT), VmeN Vk=n+1,4q,
if £/, € Lip[0,T], Vm e N*,
whereL > 0 ( respectlverL’ > 0 ), is an upper bound of the Lipschitz constants of the

functionsF,,_; andF _,, m € N* respectively.
The reIanns[@?) lead to the foIIowmg algorithm :

2

k—n—1

1(tk) = ¢(0) + %[f(o ©(0),(-7)) +2 ; F(tusg, wo(tuss), wo(t5))
+f(t, xo(tr), xo(te—n))] + Ri1x ( by notation)
(3.9) =1(ty) + Ry, Vk=n+1,q,
wa(tn) = ¢(0) + %[f (0,(0),(=7)) +2 k_Zn_l F(turs, @1(tss) + Runsg 21ty
+Ry ;) + f(tr, xi(ty) + R, ml+ Ry )] + Rox = ¢(0)
[0 (0),p-7) +2 Z sy 2xlErs). 105

+f(tr, 21(t), 1 (te—n))] + Rax ( by notation )

(3.10) =2(ty) + Ray,  Vk=n+1q.
By induction, form € N*, m > 3, we obtain :

Tm(te) = #(0) + 5 1£(0,0(0). ¢ Z bt Tt (bat)

+Rm 1n+];xm 1( )+Rm lj)—i_f(tk;xm l( )+Rm—1,kaxm—l(tk—n>

+Rm—1,k—n)] + Rm,k = 90<0) + %[f(()? @(0)7 90<_T))
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k—n—1
+2 Z f(tn—‘rja xm—l(tn+j)7 xm—l(tj)) + f(tka C("777,—1(2516)7 xm—l(tk—n»]
j=1
+R,, ( by notation)
(3.11) = T (tk) + R, Vk=n+1,q, VYm > 3.

To estimate the remainders, applying the Lipschitz property (iii) from Theprem 2.1, we obtain
the recurrent inequalities :

k—n—1
_ T L L

| Roi| < |Rog| + o app U Bel + [ Rignl) + 2 > ar7 o 1l
j=1

+|R1,j|)]<|R2\+%[2(/€_n—1)+1].%ym, Vk=n+1,q,
where,
L
|Ry| =max{|Ry,| :i =1k} << = |Fr_]|,.
T3 I
12n2
and
=7
(3.12) |Ry| = max{|Ry,| i =1k} << = |[Fl ]|,
1522'[/'
Then,
For < 1Rl + 22 (k —n) - = |Ry| < |
’ 2n 2LT +1
(3.13) 4z ”'2L;L+1|Rl|:(1+%).y&\, Vk=n+1,q.

Moreover, foranym € N*, m > 3,and k = n + 1, ¢, we obtain :

_ T L
Roel <|Rpul + —[—r~—
[Ronie| < | ’k|+2n[2LT+1

(}Rm—l,kl + ‘Rm—l,k—n‘)

k—n—1 I
+2 ; oLT + 1(‘Rm—1v"+j‘ + [Ron1,3])] < [ Rl

L 2LT

Rur| < [ Rl + so—
p Bl < Bl 57

(3.14) + 20k —n— D+l

Rmf )
2n | ! ‘

where,
|Rp—1| = max{| Ry ;| : i = 1,k}.
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4. MAIN RESULTS

Consider the following Lipschitz conditions :
3y > 0, § > 0 such that,

(41) |f(t1,u,v)—f(t2,u,v)| S7|t1 _t2|7 thatQ S [OaTL VU,U € R,
and
(4.2) o(t) = p(t2)] <Ot — o], Vit € [=7,0].

We can see that the Lipschitz condition (iii) from Theofenj 2.1 lead to the inequality,
\f(t,ul, Ul) - f(t,UQ, Uz)’ < L(|U1 - 'LLQ’ + ’Ul - UQ’),VZ& S [O,T],Vul, U9, V1, Vg € R.

Proposition 4.1. In the conditions of the Theordm P.1, if the Lipschitz properfie$ (4.1)[and (4.2)
are fulfilled then the functions;,, m € N, are Lipschitzian with the same Lipschitz constant
L =~+2L-max(d, M).

Proof. Firstly,
|[Fo(t1) — Fo(t2)] = | f(tr, zo(te), mo(ts — 7)) — f(t2, zo(t2), zo(t2 — 7))
< vty = to| + L(|wo(t1) — wo(ta)| + |zo(ts — 7) — mo(t2 — 7)|)
< (y+6L) |ty —to|, Vit €10,T).
By induction form € N*, we obtain,
[En(t1) = Fn(t2)] < [f(t, 2m(t), zm(t — 7)) — (2, 2m(t1), 2t — 7))
+ |f(t2, xm(t1)7$m(tl - 7—)) - f(t2>xm(t2)7 zm(tQ - T))| S Y |tl - t2|
+L[|Tm(t1) — Tp(te)| + |2t — 7) — 2m(ta — 7)[] < v [t — 22

L[ 152029, ms (s = 7)) s maef oty = 7) = o2 = 7)1,
oty — 7) — o(0) — / (5, 2m 1 (), 21 (s — 7))ds]

to—T
[ 176 m1(9) a5 = D) s} < 3t = ] + LA - 1~
t1—T
+L . max(é, M) . |t1 — tz’ S [’}/ + 2L - max(é, M)] . |t1 — tg‘ i Vm S N*,th,tg € [O,T]
Consequently, the functiong’,,, are Lipschitzian with the Lipschitz constaht= ~ + 2L -
max (6, M), VméeN. 1

In the conditions of the above theorem the remainder estimafiors (3.8) becomes :

2
(4.3) (Rs| < 1— ‘T, VYmeN, Vk=n+1,4q

n
Theorem 4.2. In the conditions of the above Theorem, the sequéngét))en+ apProxi-
mates the solution* of the initial value problem|(1]1) on the knats k = n + 1, ¢ of the
uniform partitionA,,, with the error estimation :
ALT + 1 ( 1

5) llos—aally + LT+ DT

2
- T —
4.4 — <= T — .7
(4.4) m{tk) = @ (t)] < LT + 1

YmeN'm>2, Vk=n+1,4q.

Y
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Proof. From the inequalitieg (3.12], (3]13) and (4.3) we obtain,

\@|§(1+—2;ﬁil)£-f, Vk=n-+1,q.
From the recurrent inequalitigs (3]14) we obtain successively, by induction, that
[Rsil < sl + %27%% | < g Lt 2L2TLZ L 2[,27%; 1)5 L
=+ 2L2TMJ;1 * (ZLQTLZ 1)2]5 L Vk=ntlg
Rl < 1Rl + 50 1o
<1+ % + o+ <%)ml}g L
(4.5) <(2LT+1)£-Z, YmeN" " m>3, Vk=n+1,q.

The estimation[(4]4) follows now, from the inequalities [2.4) (4A5).

Theorem 4.3.1n the conditions of the Theorgm R.1fiE C'([—7,T] x RxR), p € C'[—7, 0]
and¢’'(0) = f(0,¢(0),o(—7)), then the terms of the sequence of successive approximations

lies in C'[—7, T] and the sequencer,,(tx))men- approximates the solution* of the initial
value problem|(1/1) on the knotg, k = n + 1, ¢ of the uniform partitionA,,, with the error

estimation :
41T + 1 1\"
) — 2 ()] < ——— . = . —
ot~ a')| < 3+ () bea =l
7_2
(4.6) +(2LT+1)R-M1(1+M+K),

Vm e N*,m >2, Vk=n+1,q, whereK = max(||¢'||,, M).
Proof. Let K = max(||¢'|| , M) and

_ offl |ofjl (1of
My = max( ot ||| 0z ||’ ‘8y o>'
Sincef € CY([-7,T] x R x R), p € C[—7,0], we get that
0 0
Fiu(t) = 2t 0l0), 0t = 7)) + L (10 (0, (= 7)) - 1)
0 0
S 400t = 7)) = 1) = Tt )t - )
0
+8_£(t’ T (), T (t — 7)) - f(t, 1 (t), Tpr (t — 7))

of ¢t =), te 0]
oyt oml) Enlt = 7)) { Pt =7 Bt = 7). (b = 27)) 1€ [r,T]

ThenF,, € C[0,7] and
IFLlle < Mi(1+M+K),  VmeN,
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On the other hand, for artyc [0, 7] we have,

R0 < |, (0), molt )

+ ‘%&,xo(tmo(t )| ¢t =)l

Therefore,
IF e < My(1+ M+ K),  VmeN.

In this case, the estimation (8.8) is,

2
Bogl < T Mi(1+ M+K),  YmeN, Vk=nT g
n

From this moment, the proof is analogous with the proof of the Theprem4.2.

In the conditions of the Theorem 4.3, we consider the Lipschitz properties of the partial
derivatives of first order :

0 0
(47) ‘a_{(tluuﬂ])_a_{(t%uvv) S/yl |t1_t2|7 Vtth € [07T]7 v11'77}€]R7
of f
(4.8) E(t,ul,v) - E(t,’lﬁg,’l}) <y lur —ug|, Vte€l[0,T], Vup,ug,veR,
of f
(49) E(tauﬂ}l) - E(tauﬂ@) < V3 |U1 - UQl ) vt € [OvTL vvlvv%u € R,
0 0
(410) lﬁ—i(tl,u,v) — a-i(tz,ﬂ,@) S (0%} ‘tl — tgl y th,tg € [O,T], Vu,’u S R,
0 0
(411) a_i(t,Uhv> - a_i(t7u27v) < ap |U1 - u2’ ) vt e [OuT]a VU17UQ,U S Ru
(4.12) ﬁ(t,u,vl) - g(t,u,vg) <aglvy —we|, Vte[0,T], Vv, vg,u€R,
Ox ox
0 0
(413) _f(tlauvv) - _f(t27u7 U) < 51 ’tl - t2| ) thth S [O7T]a \V/U,U S Rv
oy dy
of f
(4.14) ——(t,u1,v) — ==(t,u2,v)| < By lug —ugl, Vte€[0,T], Vuy,uz,veR,
dy dy
0 0
(415) _f(t7uavl) - _f(tauav2) < ﬁ3 |U1 - U2| ) vt € [07T]7 Vvl,vg,u € R,
dy oy
with a; > 0, 8, > 0,~, > 0, Vi = 1,3 and a Lipschitz condition on the initial interval :
(4.16) [ (t) =@ (L) <9 [t — o], Vit ta € [-7,0],
with v/ > 0.

Theorem 4.4.1n the conditions of the Theordm §.3 and under the assumpfiorjs [(4.7)-(4.16), the
first derivatives of the functions,,, m € N, are Lipschitzian with the same Lipschitz constant
L'>0.
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Proof. Firstly,

| Fo(th) — Fy(ta)] < ﬁ(tlw”ﬁo(lfl)aﬂ?o(tl —7))— %(tz,xo(tz),fo(b — 7))

ot ot
2 (et = 1) @ 1 = ) = Gt ().l = ) -t = 7
<yt = to| 4 By - ety = 7) — oty — 7)| + My - [t — 1o
1€l [rs - [t = ta| + B - lo(ts — 7) — @(ta — 7)]]
< [y, + 810 + K(v3 + 30) + Myy/] - [t — tof Vi, tp € [0,T7.
Let
Ly =1+ 810 + K(ys + 856) + M1/
We obtain,
‘Féz(tl) - Fr/n(tQ)‘ < aa_{(thxm(tl)awm(tl - 7-)) - %(t%wm(h)axm(b - 7—))‘
of
+ 1 f (s 2ma(t1), Tma (1 — 7)) | a—x(thxm(h),xm(h —7))
0 0
Sttt omts = 1) | + | Sttt = 7)
Aft, xmo1(t), Tpe1 (B — 7)) — f(to, m—1(t2), T (t2 — 7))
0 0
Sttt nts = 7)) = s alte) ot = 7) |
-max {[o'(t = 7), [f(th =T, Zm1(tr = 7), 1 (1 — 27))[}
S (1), ot = )| - max{l/ (6 = ) = (12 = 7],
| f(tl — T,Im_l(tl — T), ZL‘m_l(tl — 27’))
—flte =T, 21ty = 7), 21 (ta — 27)) |}
<yt =l o o (t) = w(te)| + By - o (ty — 7) — 2n(te — 7))
+M - (yy - [t — to| + g - X (t) — Tm(t2)] + By - |Tm(ts — 7) — Tt — 7)|)
+K - [ys- [t —to| +as - |zm(t1) — zpm(ta)| + Os - |2m(ts — ) — 2 (ta — 7)]
+ML - |ty — to| + My -max{y - [ty —ta|, L-|t1 —tof}
SL/-‘tl—tgy, Vi, ty € [O,T],
where,

L' =~ + a; -max(d, M) + 3, - max(d, M) + M~y + May - max(§, M)
+M By - max (5, M) + ML + Kv; + Kas - max(§, M)
+K B35 - max(§, M) + M, - max(v/, L).
SinceLj < L', hence we obtain,
|F(t) — By (ta)| S L'+ [ty — o], V1,12 €10,T], VmeN.
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Corollary 4.5. In the conditions of the Theor.4 the sequenggiy))men- approximates
the solutionz* of the initial value problent (1]1) on the knats k& = n + 1, ¢ of the uniform
partition A,,, with the error estimate :

ALT +1 (1

5) llon—aolly + QLT+ 1)

3
T ~LI

(4.17) T (tr) — 2™ (tr)| < oz L

T 2LT+1
YmeN'"m>2, VkE=n+1,4q.

Proof. In this case, the estimation (8.8) is,
3

-

< .
[ Bom. | < 12n2
Using the result from the Theorgm #.3 and the method of the proof from Théorem 4.2 we obtain
the estimation (4.17x

Remark 4.1.If f € C?*([-7,T] xR xR) andy € C*[—7, 0], then using the numerical method
(3.7)-(3.11) and the classic trapezoidal quadrature rule we obtaifithatC2[0, 7], ¥V m € N,
with || £ || < M" and the error estimations is :

. ALT+1 (1\™
‘Jim(tk> — X (tk) < — (—) . Hxl — JI()HB + (2LT + 1)

L, VmeN, Vk=n+1,q.

7_3

12n?2

'M//
T 2LT+1 2 ’

YmeN'"m>2 Vk=n+1,4q.

Remark 4.2. Note that the numerical method presented in this paper works in the case when
the functionf have at most a continuous first order partial derivative. The known methods from
literature ( see 2], 13],15],.16],[[8]+[10],112],[[13], [16], [18]-[27]/130])/131] ) on states in the
cases when the functigh have partial derivatives of high order.
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