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2 K. RAUF AND S. PONNUSAMY AND J. O. OMOLEHIN

1. INTRODUCTION

The following famous classical inequality was proved in 1920 by G. H. Hardy (see, [14]):
Ifl<p<oo, A, = ,_, a;and a, = {a;} is a sequence of non-negative real numbers, then

(L. >l <63l
n=1 n=1

and in 1925 he proved the continuous counterpart:

Theorem 1.1. Let f(x) be a non-negative p-integrable function defined on (0, 00), and p > 1.
Then, f is integrable over the interval (0, x) for each x and the following inequality:

(1.2) /O ) E( /0 xf(y)dy)rdx < (]%)p /O " fapds

p
holds, where (%) is the best possible constant (see [13])).

This inequality was developed in his attempt to provide an elementary proof to the following
famous Albert Hilbert double series theorem [17, |43]]:

Theorem 1.2. If Y~ a2 < oo and > °7 b2 < oo, where a,, > 0 and b, > 0, then the

m n=1"n

double series: y Zm L ‘;r’zfg converges. In particular,

(1.3) sz—i—n_ (ia%J;(gbZ)%

In his attempt to simplify this theorem, he needed an estimate for arithmetic means of the

form: - .
> il e jw
n=1 n=1

with both a,, and A,, are as defined above. This lead him to inequality (1.2).
In 1928, Hardy[[16] obtained a generalized form of (1.2, namely that if p > 1 and k£ # 1,
then

(1.4) /OOO o " (/wa(t)dt)pdx < (%)p/f 2 F f(2)Pda(p > 1,k > 1)

and also the dual form of this inequality

(1.5) / —k (/ f(t dt) dx<< fk)p/oooxp—’ff(x)f?dapz1,k<1).

P is the best possible in both cases, see [16] (see also [17], Chapter 9,

The constant (5 1|)
Theorem 330, p. 245).

Furthermore, Hardy[16] pointed out (see, [17], Chapter 9, Theorem 347, p. 256) that if £ and
f satisfy the conditions of the above results, then (1.4) and hold in the reversed direction
with 0 < p < 1.

Thereafter, inequality (I.2]) was extended and generalized in many direction, for example, if

T:LP(R) — L”(R)

where T is an integral operator of the form:

:meW@@
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(T* F)(a) = / T Ky,) fy)dy

then, Hardy’s inequality is expressible in the operator form as
(1.6 | aperie < awy) [ swpas
0 0

where A(K,p) is a constant independent of f,p > 1 and K (x,y) = % if y < x and 0 otherwise.

Hardy’s inequality has many applications in analysis (see [6]) most especially in the study of
Fourier series ([33]]), theory of ordinary differential equations ([5]) and in providing bounds to
integral operators ([12]). Due to its usefulness, this inequality has been extensively studied and
generalized in various directions by a number of researchers. Some of those who have worked
on this inequality are: [9, 11} 19, 20, 2835, [7].

However, in the early seventies, a new dimension was introduced into inequality and
emphasis was later shifted to finding the necessary and sufficient conditions on the non-negative
weight functions w and v such that, the norm inequality:

(1.7) lwT'flIy < A, pll v}

is valid, where p > 1, f is a non-negative function defined on [0, oc], A(K,p) is a constant
depending on K and p but independent of the function f and K(z,y) = % ify < xand 0
otherwise. We observed that when w(z) = 27! and K(z,y) = v(z) = 1, X = R then,
inequality is equivalent to (1.2)).

In particular, Tomaselli [41] and Talenti [40] investigated independently the necessary and
sufficient conditions on the non-negative weight functions w and v which ensure that the in-
equality:

(1.8) (/OOO (w(a) /0 f(t)dt)pdx>; <c </O°o <f(az)y(x)>pdx);

holds, where f and C = A(K,p) is as defined in (L.7). It can be readily observed that
reduced to with w(z) = 27! and v(z) = 1.

Muchenhoupt [26] studied inequality (I.6) and gave conditions on the non-negative weight
functions w and v such that is valid. He raised the question that given the weight function
w, under what condition will there exist a weight function v, such that

(1.9) /X (Tf)(2)wdp < /X Fla) vy

holds for all f > 0.

In their attempt to simplify this problem, Kerman and Sawyer[22] provided a partial solution
to this question and two new open problems were posed. That is, the characterization of weights
w for which there exist v < oo p-almost everywhere such that holds, where 7" is a sublinear
operator and secondly, for 1 < p, ¢ < oo, those weight functions w and v are to be characterized
when 7" maps L”(v) to L9(w) such that:

(1.10) ( / (Tf)(x)qwdu); < ( / f(:v)pvdu);

holds for all f > 0, v < oo, and for every p-almost everywhere on X. Problem 1 has been
treated partially when 7" is the Hardy-Littlewood maximal function; see [42] while Problem 2
has been treated partially in [36] for the case of fractional integrals.
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Rauf and Imoru[31] provided partial solution to the open problems when 7' is a sublinear
operator while Rauf and Omolehin[32] provided partial solution to the same problems in the
case in which 7' is a non-linear integral operator.

Bradley[8] studied Hardy’s inequality with mixed norms and showed that the generalized
Hardy’s inequality:

(/Uoo (w(x) /ox f<t>dt>de); <C (/ooo <f(x)v(x)>pdx);

holds for non-negative weight function f defined on [0, oo] if and only if

sup (/ w(x)%lm) ' </ y(x)plda:> T =K< 00,
r>0 0 0

where 1 < p < ¢ < 00, w(x) and v(x) are non-negative weight functions, p and p’ are conjugate
exponents, and K is a positive constant independent of f.

Beesack and Heining[6] considered the weighted case for negative powers and Heining [[18]]
extended the result to the case where p, ¢ < 0 and 0 < p,q < 1. They investigated the reverse
Hardy inequality:

(L11) (/OOO (f(x)y(x))pdx)’l’ <c </0°O (ufe) /0 f(t)d(t))qu);

The dual version of with necessary and sufficient conditions for the validity of the in-
equality were also considered.

In 1983, Andersen and Heinig [3]] gave conditions on the non-negative weight functions w(z)
and v(x) which ensure that the inequality of the form:

(1.12) (/m(uvxmwu»ﬂm);sc(/m(ﬂmquﬂM>;

[e.e] o

holds, where T is an integral operator, f a non-negative function, p and q are as defined above.
Inequality (I.12)) extended some of the earlier as well as recent extensions on classical Hardy’s
inequality (see, [10]). If K(z,y) = 1 and p = ¢, the inequality yields from which
(T.2) can be obtained.
Opic and Kufner [29] generalized this result to N-dimensional Hardy’s inequality:
1

(1.13) (/\f IR=IC ~"3> <C<Z/)5xz “l m)

holds, where 2 is a domain in the /N-dimensional Euclidean Space RY, p, q are positive real
numbers and w, V1, Vs, ..., vy are weight functions that is measurable and positive almost ev-
erywhere in €.

Adams [2] investigated special case of by considering w(z) = vi(z) = 1,1 =
1,2,..., N and have

(1.14) (/Lf Wm) <C(/WVf PMJ

holds, for continuous function f(z) defined on ( 00), X = (X1,Xs,...,Xn), Vf(z) =

<6f(z) 51 (z) 5f(:v)> (@) =N, ‘agm 8

oxry ' dxg 7" dxpn
bounded domain with Lipschitzian boundary 5Q where the admissible values of the parameter
g may change. This is called Sobolev inequality.

and Q) is a
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Another special case of (I.14) was considered in literature with p = ¢ = 2 as:

/Q|f(x)|2d37§02/9|Vf(:v)\2dx

holds. This inequality is called Friedrichs inequality.
Also, for all functions f(x) whose mean value over 2 is zero:

/Qf(;v)dx =0

is called the Poincare inequality. See, [29, 130, 34]].
1
Finally, by replacing f with fr in inequality li and letting p — oo, we have the limiting

inequality
o 1 T o0
/ exp (—/ In f(t)dt) dr < e/ f(z)dz
0 T Jo 0

This is called the Knopp’s-Polyd inequality. For further development, remarks, extensions,
generalizations and applications of inequalities (1.2), (1.3), (1.4), (1.3), (1.9), (I.10) and (T.11),
see for instance, |1 4, 24, 25, 27, 13]] and the references cited therein.

This work is, therefore, devoted to Hardy-type inequalities and to some modifications and
consequences. The aim is to determine conditions on the data of our problem. These were done
by introducing n-terms of functions for all n € N on a multiple Hardy integral operator and by
making one of the weight functions a power function.

Throughout this paper, p > 1 except otherwise stated, We shall use f to be integrable or
f € Lor [ f(z)dx exists whenever f is measurable and [ |f(x)|dz < oo. Hence, if f is an
integrable function, then f € Lor [ f(x) dx exists whenever f is measurable and [ |f(z)|dz <
00.

2. MAIN RESULTS

In this section, we let (X, (, 1) be a o-finite measure space, K (z,y) be a nonnegative and
measurable on X x X and 7' a positive linear operator defined for nonnegative functions on the
measure space. It is on record that [39]] and [38]] dealt with some weighted inequalities for a
multiple Hardy operator 7;, of the form:

x x1 Tn
Tn:// / F)dtde, - da

They derived sufficient conditions for the validity of the corresponding multiple Hardy inequal-
ity.

Theorem 2.1. Let py,...,p, > 0 such that Y, _, pik = 1 and suppose w;, are weight functions

on X. For a positive function f on (0, 00), we define the operator T by [ K(x,y)f(y)dy. Let
fr be p-integrable positive function defined on (0,00) for k = 1,...,n + 1. Then, there exist
weight functions vy, finite p-almost everywhere on X such that:

n n

2.1 11 (/Xk<Tfk)pkwkdﬂk)plk <C(Ep]] (

k=1 k=1 Xk

Pk i
fk Vidjy,

holds, if and only if there exist positive functions ® on X with [ (T @)Prwydp < oo equivalently
1o ®PRTH((TP)Prtwy) < oo
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Proof. We employ hypothesis of induction on n. When n = 2 we have p;p, > 0 with pl + i =

1 then (2.1) holds for a particular case of p;, p2 > 1 (see, [31]). Suppose (2.1)) holds for n > 2.
We claim that it holds for n 4 1, then we let p;, ps,...pyr1 > 0 be any real numbers with

Zﬂpik = 1 and also f, € LP*, k = 1,...,n + 1. Then, for p, > 1, we have p; > 0 and
n+1

~£- > () therefore, H/ (T fr)Prwidpy,

n+1
_ H/ (o % fo)* wrdps
n+1
1 _(Pl—l) p1—l _py—1
- H/X (/X(K(ﬂf,y)“ﬁ@ nU Kz, y) e o
k=2 Xk

) o Pk
X K (x,y)7s fr,®" PkK(a: ) T CD%)CM) wrdfiy

;01—1) p1—1 p1—1 P
C(K, pr) K(a,y)m o5 K, y) 5 @0 )dp ) widpy
n+1

1 pr—1 1 Pk
XH/( ( xy”kfk PkK(x,y)f’k@’k)dO wrdp,
X

= C(K,p)(¥ xT)

IA

where
p1—1
U< / (/ K(x,y)ffltb_(pl_l)du) (/ K(x,y)‘b) dp| widpy
X, X X
= fflVldlul
X1
and
ntl 1 1 Pp—1 1 Pk
r= H / ( / ( v y)pkfnb‘w«x,y)pk@pk) du) wrdpy.
Since, (p1 Y - 0andfork = 2,...,n+ 1, we have

n+1 n+1
1 1

Z D1 Zi: D1 1-1y=1

=D/ p-1%p. pm—-1" n

and by using the same argument n + 1 times, then

il o (r1=1)\ P»
1—\ H/ fpl/(pl_l)xpn(pl_l)/pldu)m> 1 I/’I’Ld/j’n

n+1
— P
H /X (forvn)dp,

Therefore,

Uxl < ( fflVldM) ( f3?va d,uz) (/ i Vng dﬂn+1>
X1 X2 Xnt1
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Hence,
1

Pk d Ph
fk ViQpy,

Otherwise, f = 0. Inequality is reversed with any f < 0 or both ¥ < 0 and w < 0 and we
have equality with wy, = v and K (z,y) = C(k,pr) = 1.

On the other hand, we assume that (2.1)) holds for some v, < oo p-almost everywhere. By
using the o-finiteness of £, we can obtain a positive function ® such that [ « PP (vi)dp < oo
then, ®'~P:T*((T®)P*~'w;) < oo holds. If all the above conditions hold then the proof of the
converse is easily obtained and this completes the proof of the theorem.

By making the same calculation with pj, < 0 on inequality (2.1)), we noted that the inequality
is reversed, if and only if there exist at least a p; € pi such that 0 < p; < 1. Also, if more than
one p; is positive then at least one positive p; is less than one. The result is also valid for dual
operator 7. 1

n

H ([ @) " own ] (

k=1 Y Xk

Theorem 2.2. Let pi,qr > 0 such that Zle % = 1 and suppose u;, = (wk)% are weight
functions on X. Then, there exist weight functions vy, finite j-almost everywhere on X such
that the weighted norm inequality:

n n

(22) H (/ T.fk kakdﬂk> " < C(Kapa q) H ( flfkl/kd:uk> "
Xk

k=1 k=1
holds, for each fi, > 0, if and only if there are positive functions ®P* on X satisfying ®(y)P* <
vy, and C'(K, py, qx) is a constant independent of f.

Proof. We have

1

H(/ )

IA
w
=
o
®
V)
»
/‘\
H
N
@‘H
\
=)
&
@

ST k=1
= (SupessK T, z) PL /K z,Y) D CI’( )~ lfl(y)CID(y)dy)
z<x

(iﬂgeSSHK r,2)u (w)/XK(:v,y)m‘fq%y)lfk(y)fb(y)dy)-

Since, u(z) and ®(z) depend on p and g with constant C' and also the integral

supessK(x, z)ﬁul( )(sup essK (t, x)f%ul(t))_l

z<x t>x
< supessK(z, Z)Piu (t)(sup essK (z, Z)Piul(t))*l =1
z<x 2>

with K (¢, .) non-decreasing then, the result follows by Holder’s inequality. 1

Theorem 23. Let 1 < pp < qr < 00 with p1,...,pp, > 0and q,...,q, > 0 such that
Y ory o = = 1 and suppose u = (wk) a are weight functions on X. Then, there exist weight

AJMAA, Vol. 9, No. 1, Art. 14, pp. 1-21, 2012 AJMAA
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functions vy, finite p-almost everywhere on X such that the weighted inequality:

n

(2.3) "( (T fr)*wrd ) C(K,p, ( kuid )
,E/Xk k)T WEQHy Py d H/Xk kAL,

k=1

holds, for each fr >0, if and only if there are positive functions ®P* on X satisfying ®(y)Pr <
v with s(x) < ([ K sz)p+1 and C(K, px, qx) is a constant independent of f.

Proof. The integral

H /X Tfk wkd,uk

9k

S!Z/ ((/Kmy <>@mmwwo“
(/zrxy mawpwmw)x)wmw

ﬂmﬂﬁ(AKAK@WMWMmd%WWWWMwm)

91

x(f(y)@(y)s(y))" dps (y)) 7

Pk

n+1 (n— 1)‘1k ap

<ok (f ot 90650 T )

<(f ()0 (y)s(y))*du(y))

by Holder’s and Minkowski integral inequalities and since u(x) and ®(x) depend on p’s and ¢'s
with constant C' and that

-p

/X K (o, )®(z)" dz < O ( /X K(s, y)u(z)qdz) N

/ (Tfk)%wkdﬂk) < O(K.p, Q)H( f;fkl/kdﬂk> k
Xk

k=1

then, we have

n(q®+pp’ —np _ n(a+pp)
where, C(K,p,q) = (p' +1) & (p') 2 O where the conjugate of ¢ is defined in the
same way as conjugate of p. We note that Theorem [2.1] holds for the following corollaries if we

define kernel K (x,y) of operator 7' by ®(x — y) and e~*¥ respectively. i

Corollary 2.4. Let ®,w;, > 0 be locally integrable with respect to Lebesque measure on R"™ and
suppose ®(x) = ®(|x|) is non-increasing as a function of |x|. Define the convolution operator

T by
(Hﬁ) 1)) = [ o -y Ay

AJMAA, Vol. 9, No. 1, Art. 14, pp. 1-21, 2012 AJMAA
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for every fixed p;, € (1,00) and a constant C' > 0, depending on py, and qy.. Then, there exist
weight functions v, < oo finite p-almost everywhere on R"™ such that the weighted inequality:

(2.4) 11 ( / (r fk)quduk(x)) "< C(Ep,g) ][ ( f,f’“ukduk> "

k=1 k=1

holds, for each fi, > 0, if and only if for all y € R™ such that for all positive functions ®(y)P* <
vy, with u, = w9 and O (K, py, qi.) a constant independent of f.

Corollary 2.5. Let wy, > 0 be a locally integrable with respect to Lebesque measure on R, =
(0, 00) and denote the Laplace transform (T) of fr on Ry by

T (H fk) @ = [ e Ly
k=1 0 k=1

x € Ry for a fixed p,. € (1,00) and a constant C > 0, depending on py and q. Then, there
exist weight functions v, < oo finite p-almost everywhere such that:

2.5) H (/ (T fi) " widpy (x )) Y < C(K,p,q) H ( - flfk’/kduk> "

k=1 k=1
holds, if and only if (Tw)(z) < oo.

3. MULTI-DIMENSIONAL HARDY-TYPE INEQUALITIES WITH WEIGHTS

In literature, one dimensional Hardy-type inequalities has received rigorous treatment in var-
ious directions while the multi-dimensional case has been given little attention. The charac-
terizations for pairs of weights (u,v) such that the operator T : LP(R%,v) — LY(R%, u), is
bounded in the case when 1 < p < g < oo were treated in [37], that is. If p > 1 then

//|T2fxy|pdxdy<( )// F(x,y)|Pdzdy

. However, it has recently been pointed out that the proof of classical Hardy integral inequality
(I.2) will also work for the corresponding multidimensional LP-spaces that is the n-dimensional
case of classical Hardy operator:

/ / ‘Tnf(xl’... ’xn)|pdxldxn§0/ .../ ’f(xI’ ’xn)|pdx1...dxn
0 0 0 0

where
np
p
C=——
(p - 1)

1 x1 Tn

Also, the corresponding weighted mixed-norm version can be proved similarly see[25].
The multidimensional generalized Hardy-Polya type inequality described by convex func-
tions are discussed in this section. We use the following notation throughout the remaining

sections:
b b br,

AJMAA, Vol. 9, No. 1, Art. 14, pp. 1-21, 2012 AJMAA
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and we have similar expression for

where b;’s, x;’s and v;’s are the components of b, x and v forall: = 1,...,n € Z, respectively.
All functions are measurable and g(x) = x” except otherwise stated. Based on the methods in
[32]], [21] and [28], we further make some new generalizations of multidimensional Hardy-type
integral inequalities by introducing real function g(x). Some multidimensional Hardy-type
integral inequalities are obtained. Some applications are also considered. First, we give some
lemmas which are fundamental to prove certain inequalities in our context.

and

LemmaA. Let 0 < b; <00, i=1,2...,n€Z,, —00 < a < c < oo andlet ® be a positive

function [a, c].
b X
1 dx

(A) If @ is convex, then,
b
1 Tn dx
g/O B(f(x)) (1—5) <1_E> e

for every function f on (0,b) such that a < f(x)< c.
(B) If ® is concave, then,

[ (e )

for every function f on (0,b) such that a < f(x)< c.

Lemma B. Let b € (0, 00|, —00 < a < ¢ < oo and ® be a positive function on [a, c]. Suppose
u(x)

)
z7...T5

that the weight function u defined on (0, b) is nonnegative such that
on (0, b) and the weight function v is defined by

is locally integrable

b
u(t) :tl...tn/t 2“(—X>2dx,t € (0,b).

ry... %

(C) If ® is convex, then,

Jy voom (5 o) 22

b X
< / v(x)®(f(x))— X

0 Ti...Tn
holds for every function f on (0,b) such that a < f(xy,...,x1) <c.

AJMAA, Vol. 9, No. 1, Art. 14, pp. 1-21, 2012 AJMAA
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(D) If ® is concave, then,

b 1 x dx

b X
> / o(x)®(f (x))—2

0 Ti...Tp
holds for every function f on (0,b) such that a < f(xy,...,21) < c.

Lemma 3.1. If ® is positive and continuous on [0,00), f is a non-negative function on [0, b],
0<z;<b;<o0(i=1...n€Z;)and )\ is non-decreasing on [0, 0|, assume

b
0< | o)) g(rr).dol) < o0
for each continuous and non-decreasing function g on [0, 00) and ve R" such that 0 < v; < 00

with,
(E) ® convex, then,

/Ob g(x)""® (L—l /OX Fur, .. va)dA(vr) . d)\(vn)> dg(z1) ... dg(z,)

b
< /0 9(x) 7D (f(x))dg(a1) . . dg(x,)

(F) ® concave, then,

/Obg(x)_”‘l’ (L‘l /OX Flor, .- v)dA(w) . d)\(vn)) dg(z1). .. dg(z,)

b
> /0 9(x) 7D (f(x))dg(a1) . . dg(x)
where [ = fgo d\(vy) ... d\(vy)

Proof. Applying the iterative integrals of functions g and f on measurable set X with measure
A and Y with measure . (o-finite) then,

/Xg(yl, ) (/Y FE)d . d)\n) duy . dp,

:/ F(x) X g(yry -y yn)(dpey . dp, X dXy ... dNy,)
(Xl...Xn)X(Yl...Yn)

:/ g(x) (/ f(yl,...,yn)dul...dun> dA\y ...d\,
(Yi..Yn) (X1..Xn)

Since @ is convex in (E) above, taking L = fgo (dX(v1) ... dA(v,,)) and by imploring Fubini’s
theorem, then,

/Ob g(x)Pd (L—l /OX fur, ... v0)dA(vy) . .. d)\(vn)) dg(zy) ... dg(x,)

<L! /O g(x)"Pdg(xy) ...dg(z,) /0 O(f(v1,...,00))dN(vy) . ..dA\(vy,)

AJMAA, Vol. 9, No. 1, Art. 14, pp. 1-21, 2012 AJMAA
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00 b
<L! dA(v1) ... d\(vy,) 9(x)PO(f(x))dg(z1) ... dg(x,)
0 0

b
= | @Utglx) gt . dy(a)
When @ is concave, then the proof is easily obtained by reversing inequality (E). 1

Corollary 3.2. If p > 1, f > 0, g(x) = x is continuous, non-decreasing on [0, c). Let O be
positive and continuous on [0, 00), and define d\(vy) ... dA\(v,) by
(e Yduy .. dv, on [0,1] and 0 forv > 1,1 < a < nandn € Z, . Assume

b
/O O(f(x)P)dx < o0

with,
(G) O convex, then,

(H) ¢ concave, then,

b B 1 p
/0 g(x)Pd ((/0 f(vl,...,vn)d/\(vl)...d)\(vn)> )dx

n b
> [Jtas— 1) /0 &(f(x))dx

Proof. Since the integral of two or more variables of a summable functions can be obtained by
successive integrations with respect to each variable separately or by pairs that is an iterative
integral and with ® convex on (G), we have

b ) 1 B B P
/O(g(x) )(I)<(/() (v .ol )f(vl,...,vn)dvl...dvn>>dx

b 1 b
§/0 O(f(x)P) (/0 g(vg, . o) (0T )dvl...dvn> dx

result follows by substituting and integrating the inner integral on [0, 1] by single step of integra-
tion by part. Also, if there exist a continuous inverse which is necessarily concave on function
® then (H) is proved using similar method with inequalities reversed. The results also hold if
we assume g(x) = x* whenever | <k <a<neZ,.1

Corollary 3.3. If p > 1, f is continuous, non-decreasing on [0,b]. Let ® be positive and
continuous on [0, 00), and define d\(vy) . ..d\(v,) by (V) '.. v Vdv; ...dv, on [0,1], a €
R and X is non-decreasing on |0, 1]. Assume

0</0 O(f(x)P)dx < o0
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if ¢ is convex, then,

b B 1 p
/0 g(x) PP <</O f(vl,...,vn)d/\(vl)...d)\(vn)) )dx

b

< (a1 — k) /0 B(f (x))dx

*is a decreasing function over [0,1] and 1 < k € Z,..

whenever g(x) = x

13

Proof. Using the same method in the proof of Corollary and since ¢ is decreasing on [0, 1],

then we obtain, on using Chebyshev’s integral inequality on

0

< /Obq)(f(x)l’) (/01 g(vl,...,vn)ldvl...dvn)p
X </01(vf‘_1 02 D dvy ..dvn)pdx

/b O(f(x)?) (/01 glvr, .- ) 0 e N d, .dvn>pdx

and the result follows since g and A are not similarly ordered, otherwise the inequality is re-
versed. Also, the inequality is reversed if they are not similarly ordered and p lies between

0 < p < 1. See ([17], Theorem 43, see also section 5.8 page 123).
We distinguished two cases for this inequality:
(1) holds for p odd if @ < 0 for any chosen k and
(2) holds for p even if @ > 0 for any chosen .

We obtain the corresponding reverse inequality if ® has a continuous inverse which is neces-

sarily concave. I

Theorem 3.4. If0 < b, <00, it =1,2....,n € Z,, —00 < a < ¢ < oo and let O be a positive

function |a, c|. Let function f be defined on (0,b) such that a < f(x)< c.
(1) If @ is convex, then,

b 1 X dx
/0 ¢ ((l‘lxn)r/o f(t)dt) T1...2Tp
bjioJrl b lequl 37%“

for every positive function g on (0,b) with' = —(p+ 1) and 0 < p < .
(J) If @ is concave, then,

[ o (o fo o) =2

as b leoﬂ Lt
> p+1/() D(f(x)) (1_ b;iz+1) (1_ bi’lﬂ)dx

for every positive function g on (0,b) with' = —(p+ 1) and 0 < p < .
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Proof. The proof of the inequality (J) is practically the same as (I) by making the same calcula-
tion with ® concave and the inequality is reversed, we give that of (I). If ® is convex. Then, by
Jensen’s inequality and the Fubini theorem, (I) yields

b (e o) 2
< /Ob (/OXCD(f(t))dt) =MD T gy

b b
= /0 O(f(t)) (/c =T x_(rﬂ)dx) dt
bfﬂ b agl tﬁﬂ
:p—l-l/() B(f(t)) ( —b}}ﬁ) (1— b%';“) dt

Theorem 3.5. If0 < b; <oo,1=1,2...,n€Z,, —o0 < a < c < oo and let P be a positive
function [a, c|. Let p > 1 and function f be defined on (0,b) such that a < f(x)< c.
(K) If ® is convex, then,

o (o o o) 2

Sp-"/()bwf(x»g( ) (15 )

for every positive function g on (0,b).
(L) If @ is concave, then,

ﬂf@(ar%aﬁﬂfﬂﬂﬁ)ag%;

sy [ ot (1-5) - (1- ) ax

for every positive function g on (0,b).

Proof. The proof are completely similar to that of Theorem [3.4] and hence the details are omit-
ted. The result also holds for 0 < p < 1 and in fact if p = 1, we have lemma 2.1 in [21] and
lemma 2.1 in [28] by defining weight function

b
_ u(x)
U—tltn/t mdx

with weight function u(x) = 1 and also holds whenever u(x) is a power function whose power
not equal to the value of p except possibly for power zero.

If ®(t) is assuming ¢* in Theorem we obtain the following natural multidimensional
Hardy-type inequalities and the reverse inequality. I

Corollary 3.6. If0 <b; < o0, i =1,2...,n€ Z,, —o0 < a < ¢ < 0o and let P be a positive
function [a, c|. Let function f be defined on (0,b) such that a < f(x)< c. If

b
0</0 (x1...2y) fP(x)dx < 00
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then,

(M) With p > 1 or p < 0 such that n is even, then
b X
1 P dx
L [ oy
0 \(x1...2,)? Jo T1...%,
np b p—1 p—1
SL(L) / (1_x1_1)...(1—x”
pr\l—=p 0 by

bp_1> (fP(x))xy ... zedx
(N) With 0 < p < 1, then
b x
1 P dx
/0 ((xl...xn)l’/ﬂ f(t)dt> Ty... Ty
() L6 E) 0 F
= i \1=, 0 pT)

b” ) (fP(x)zy ... xpdx
for every positive function g on (0, b)

Proof Inequahty (M) is proved for p > 1 using inequality (K) by assuming ®(¢)
SZ P — yz bp

=P, t; =
= q; whenever¢ = 1 n and the function

o1 TN
flzy,xy) = fla], . xh el

then, we have

? L R -
/()((:le )p/ J@r ot

p_l_ldt)p dx

LN o e T1...Tp
p—l np a

_< p )

_p_ p
p—1
1 1 on dx
T sy Sp)dsy...ds, | —
/() xf...:z:ﬁ/o /0 flsrssn)dsy ° Ti... Ty
p— np+n p
= ( » ) / (/ f S1y...,8 dSl .ds ) ~p- 1) .

v yfp(pfl) dyy . ..dy,

Yr---Yn
p— np+n
:( p) /(/ f(s1, 0 8n)dsy .. d) ~p(p—1)-1

o Ly PPy, L dy,
Also, from the left hand side of (K), we have
a p
_ 1 2 P p(=E;-1) p(525-1) T b
" S Y N L 1——=... — 2\ d
p /0 :B;zl)xgrolf ('rl ) y L )371 T ( azlo ag
p—1 p—1
n  ea 5 P 5 P
p—1 Yy y -
pbp 0 blp p blp p

n b p—1 -1 —(p—1)2 —(p—1)2
= I—=— .. (1= ) Py, yn)yy © - v
( pp 0 bt bt '

< Un dyy . ..dy,
The parameter p involved in the proof of inequality (M) is greater than 1. However, they have

analogous with a p less than 0 when n is even while 0 < p < 1 resulted in a reversal of the sign
of the inequality and (N) is proved. 1
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Remark 3.1. If &(t) = exp(t) the analogue of Theorem whenever f — In f? in one
dimensional case can be found in ([17], theorem 335, page 250). This type of inequality is
called Knopp’s inequality with reference ([23]], cf. Remark 3.2) it was originally discovered by
G. Polya (see Remark 2.3) and it is therefore refer to as Polya-Knopp’s inequality. In our own

case, we obtain the following natural multidimensional Hardy-type inequalities.

Corollary 3.7. If 0 < b; < 00,1 =1,2...,n € Z,, —00 < a < ¢ < 0o and let  be a positive

function [a, c]. Let function f be defined on (0,b) such that a < f(x) < c. If

b
0</O f(x)dx < o0

then we write inequality (M) as:

(7 (s (i o)) )
() (b eIl ) )

for every positive function g on (0, b).

S =

Proof. Our proof is partially related to Knopp’s original idea see([23]], page 211).

sum of a convex function is also a convex function then we have,

(4 (o o) o)
_ (/Ob(exp (m /OX In(t; .. .tn)f(t)dt)

X exp <ﬁ /OX In(t; .. .tn)dt) )Pdx)

Since the

Since f(x) = €* is convex and it is apparent that the local minimum of any convex function
is also a global minimum then either by using Jensen’s inequality or the Arithmetic-Geometric

mean inequality(AG-inequality) we have,

exp (m /0 . t) f(t)dt)

and

Hence,
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< /Ob (Wexp(—ln(m...xn)+(1...1)))p
x (m /O St fp(t)dt> dx
o [P ([ )
_ o ( /ob< R—_— ) [ A ——

On using the analysis of Theorem [3.3|then,

(e”p (/Ob(tl » .tn)pfp(t)dt> (/:1 : ../tlbn mdx)>i
o N AT (e A

Finally, if ®(¢) = In(¢) whenever f — exp f, we obtain the following reversed multidimen-
sional Hardy-type inequalities.

Corollary 3.8. If0 < b; < o0, i =1,2...,n € Zy, —o0 < a < ¢ < 0o and let ® be a positive
function [a, c|. Let function f be defined on (0,b) such that a < f(x)< c. If

b
O</O f(x)dx < o0

then we write inequality (M) as:

(ot expf@)dt))”dx)‘l’
(oI5 525)

for every positive function g on (0,b).

Proof. Since, the natural logarithmic functions are strictly increasing and the exponential func-
tions which is necessarily the inverse of natural logarithmic function is strictly convex and

therefore the proof of Corollary [3.§] follows inversely from that of Corollary resulted in
reversing the inequalities. I
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4. MULTI-DIMENSIONAL HARDY-TYPE INEQUALITIES WITH 1 < p < g < 00

In this section, we discussed some weighted case of multi-dimensional Hardy integral in-
equality.

Theorem 4.1. If0 < p < g < oowithl/p+1/g=1and0 < b, < o0, i=1,...,n
and let ® be a positive and convex function on (a, c) with —oo < a < ¢ < 0o and let w(x
weight function defined on (0,b) for any non-negative function f(x) such that a < f(z) <
the weight function v is defined by

tl t 1/]0 b 1 1/q
C = sup < oo lpy > / w(x)xl_(q+ ). -x;(qul)dX
0<t;<b; l/(tl .. .tn> t

</0b (CD (ﬁ /Oxf(t)dt»q/pw(x)ﬁ) 1/q
b 1p
= (/0 O(f(x))v(x) dx)

Proof. By using Jensen and Minkowski integral inequalities, we obtain

</0b (q) <$ /OX f(t)dt)>q/pw(x)ﬁ) 1

/Ob (5= I @(f(t))dt)q/pm)ﬁ)l/q

€7,
) be a
c

f

Then,

holds, whenever g(x) = x?.

VAN
VR

1/p

VAN
(op
S
~
3
iy
\
=
S~—
SN~—
RS
rh\.»
lop
&
—~
NeJ
&
=
=
+
8
S |
T:?
x
S
>
~_
3
~
B~}
<
=
S~—
|&.
o

b 1/p
< c( ) @(f(t))u%)

where, v(z) is a weight function on (0,b) and K = C but if K is sharp then we have K < C
which concludes the proof. In view of a comparison with Theorem we noted that, the
Theorem holds in the reverse direction if ® is concave by defining

b 1/q
t--et, (1)
C = inf / w(x)zy Y g @D gy
t

o<ti<b;  v(t)

Corollary 4.2. If 0 <p=q<o00,0< b; < 00,2 =1,...,n € Z, and let P be a positive and
convex function on (a, c) with —oo < a < ¢ < oo and w(z) = 1. Also, let f(x) be non-negative
ona < f(x) < cand
(1= 8/by)--- (1 = 8/0})
(t1...tn)P

AJMAA, Vol. 9, No. 1, Art. 14, pp. 1-21, 2012 AJMAA


http://ajmaa.org

ON GENERALIZATION OF HARDY-TYPE INEQUALITIES 19

Then,

/Obq) (i [ ) Do [ " a0 x)ix

holds, whenever g(x) = x”.

Proof. 1t is easy to obtain that C' = p~" and the remaining proof follow directly from Theorem
4.1 from which we obtain Theorem [3.5] In addition, if p = ¢ = 1 then we obtain the following
useful multidimensional version of classical Hardy integral inequality:
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