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1. INTRODUCTION

The following famous classical inequality was proved in 1920 by G. H. Hardy (see, [14]):
If 1 < p <∞, An =

∑n
k=1 ak and an = {ak} is a sequence of non-negative real numbers, then

(1.1)
∞∑
n=1

∣∣∣ 1
n
An

∣∣∣p ≤ Cp

∞∑
n=1

|an|p

and in 1925 he proved the continuous counterpart:

Theorem 1.1. Let f(x) be a non-negative p-integrable function defined on (0,∞), and p > 1.
Then, f is integrable over the interval (0, x) for each x and the following inequality:

(1.2)
∫ ∞

0

[
1

x

(∫ x

0

f(y)dy
)]p

dx ≤
( p

p− 1

)p ∫ ∞
0

f(x)pdx

holds, where
(

p
p−1

)p
is the best possible constant (see [15]).

This inequality was developed in his attempt to provide an elementary proof to the following
famous Albert Hilbert double series theorem [17, 43]:

Theorem 1.2. If
∑∞

m=1 a
2
m < ∞ and

∑∞
n=1 b

2
n < ∞, where am ≥ 0 and bn ≥ 0, then the

double series:
∑∞

n=1

∑∞
m=1

ambn
m+n

converges. In particular,

(1.3)
∞∑
n=1

∞∑
m=1

ambn
m+ n

≤ π
( ∞∑
m=1

a2
m

) 1
2
( ∞∑
n=1

b2
n

) 1
2

.

In his attempt to simplify this theorem, he needed an estimate for arithmetic means of the
form:

∞∑
n=1

∣∣∣ 1
n
An

∣∣∣2 ≤ C2

∞∑
n=1

|an|2

with both an and An are as defined above. This lead him to inequality (1.2).
In 1928, Hardy[16] obtained a generalized form of (1.2), namely that if p ≥ 1 and k 6= 1,

then

(1.4)
∫ ∞

0

x−k
(∫ x

0

f(t)dt

)p
dx ≤

( p

k − 1

)p ∫ ∞
0

xp−kf(x)pdx(p ≥ 1, k > 1)

and also the dual form of this inequality

(1.5)
∫ ∞

0

x−k
(∫ ∞

x

f(t)dt

)p
dx ≤

( p

1− k

)p ∫ ∞
0

xp−kf(x)pdx(p ≥ 1, k < 1).

The constant ( p
|k−1|)

p is the best possible in both cases, see [16] (see also [17], Chapter 9,
Theorem 330, p. 245).

Furthermore, Hardy[16] pointed out (see, [17], Chapter 9, Theorem 347, p. 256) that if k and
f satisfy the conditions of the above results, then (1.4) and (1.5) hold in the reversed direction
with 0 < p ≤ 1.

Thereafter, inequality (1.2) was extended and generalized in many direction, for example, if

T : Lp(R)→ Lp(R)

where T is an integral operator of the form:

(Tf)(x) =

∫ x

−∞
K(x, y)f(y)dy
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ON GENERALIZATION OF HARDY-TYPE INEQUALITIES 3

or

(T ∗f)(x) =

∫ ∞
x

K(y, x)f(y)dy

then, Hardy’s inequality is expressible in the operator form as

(1.6)
∫ ∞

0

(Tf)(x)pdx ≤ A(K, p)

∫ ∞
0

f(x)pdx

whereA(K, p) is a constant independent of f , p > 1 andK(x, y) = 1
x

if y ≤ x and 0 otherwise.
Hardy’s inequality has many applications in analysis (see [6]) most especially in the study of

Fourier series ([33]), theory of ordinary differential equations ([5]) and in providing bounds to
integral operators ([12]). Due to its usefulness, this inequality has been extensively studied and
generalized in various directions by a number of researchers. Some of those who have worked
on this inequality are: [9, 11, 19, 20, 28, 35, 7].

However, in the early seventies, a new dimension was introduced into inequality (1.2) and
emphasis was later shifted to finding the necessary and sufficient conditions on the non-negative
weight functions ω and ν such that, the norm inequality:

(1.7) ‖ωTf‖pp ≤ A(K, p)‖fν‖pp
is valid, where p > 1, f is a non-negative function defined on [0,∞], A(K, p) is a constant
depending on K and p but independent of the function f and K(x, y) = 1

x
if y ≤ x and 0

otherwise. We observed that when ω(x) = x−1 and K(x, y) = ν(x) = 1, X = R then,
inequality (1.7) is equivalent to (1.2).

In particular, Tomaselli [41] and Talenti [40] investigated independently the necessary and
sufficient conditions on the non-negative weight functions ω and ν which ensure that the in-
equality:

(1.8)
(∫ ∞

0

(
ω(x)

∫ x

0

f(t)dt
)p
dx

) 1
p

≤ C

(∫ ∞
0

(
f(x)ν(x)

)p
dx

) 1
p

holds, where f and C = A(K, p) is as defined in (1.7). It can be readily observed that (1.8)
reduced to (1.2) with ω(x) = x−1 and ν(x) = 1.

Muchenhoupt [26] studied inequality (1.6) and gave conditions on the non-negative weight
functions ω and ν such that (1.7) is valid. He raised the question that given the weight function
ω, under what condition will there exist a weight function ν, such that

(1.9)
∫
X

(Tf)(x)pωdµ ≤
∫
X

f(x)pνdµ

holds for all f ≥ 0.
In their attempt to simplify this problem, Kerman and Sawyer[22] provided a partial solution

to this question and two new open problems were posed. That is, the characterization of weights
ω for which there exist ν <∞ µ-almost everywhere such that (1.9) holds, where T is a sublinear
operator and secondly, for 1 < p, q <∞, those weight functions ω and ν are to be characterized
when T maps Lp(ν) to Lq(ω) such that:

(1.10)
(∫

X

(Tf)(x)qωdµ

) 1
q

≤
(∫

X

f(x)pνdµ

) 1
p

holds for all f ≥ 0, ν < ∞, and for every µ-almost everywhere on X . Problem 1 has been
treated partially when T is the Hardy-Littlewood maximal function; see [42] while Problem 2
has been treated partially in [36] for the case of fractional integrals.
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4 K. RAUF AND S. PONNUSAMY AND J. O. OMOLEHIN

Rauf and Imoru[31] provided partial solution to the open problems when T is a sublinear
operator while Rauf and Omolehin[32] provided partial solution to the same problems in the
case in which T is a non-linear integral operator.

Bradley[8] studied Hardy’s inequality with mixed norms and showed that the generalized
Hardy’s inequality:(∫ ∞

0

(
ω(x)

∫ x

0

f(t)dt
)q
dx

) 1
q

≤ C

(∫ ∞
0

(
f(x)ν(x)

)p
dx

) 1
p

holds for non-negative weight function f defined on [0,∞] if and only if

sup
r>0

(∫ ∞
0

ω(x)qdx

) 1
q
(∫ r

0

ν(x)−p
′
dx

) 1
p′

≡ K <∞,

where 1 ≤ p ≤ q ≤ ∞, ω(x) and ν(x) are non-negative weight functions, p and p′ are conjugate
exponents, and K is a positive constant independent of f .

Beesack and Heining[6] considered the weighted case for negative powers and Heining [18]
extended the result to the case where p, q < 0 and 0 < p, q < 1. They investigated the reverse
Hardy inequality:

(1.11)
(∫ ∞

0

(
f(x)ν(x)

)p
dx

) 1
p

≤ C

(∫ ∞
0

(
u(x)

∫ x

0

f(t)d(t)
)q
dx

) 1
q

The dual version of (1.11) with necessary and sufficient conditions for the validity of the in-
equality were also considered.

In 1983, Andersen and Heinig [3] gave conditions on the non-negative weight functions ω(x)
and ν(x) which ensure that the inequality of the form:

(1.12)
(∫ ∞
−∞

(
(Tf)(x)ω(x)

)q
dx

) 1
q

≤ C

(∫ ∞
−∞

(
f(x)ν(x)

)p
dx

) 1
p

holds, where T is an integral operator, f a non-negative function, p and q are as defined above.
Inequality (1.12) extended some of the earlier as well as recent extensions on classical Hardy’s
inequality (see, [10]). If K(x, y) ≡ 1 and p = q, the inequality (1.12) yields (1.8) from which
(1.2) can be obtained.

Opic and Kufner [29] generalized this result to N -dimensional Hardy’s inequality:

(1.13)
(∫

Ω

|f(x)|qω(x)d(x)

) 1
q

≤ C

(
N∑
i=1

∫
Ω

∣∣∣δf(x)

δxi

∣∣∣pνi(x)dx

) 1
p

holds, where Ω is a domain in the N -dimensional Euclidean Space RN , p, q are positive real
numbers and ω, ν1, ν2, . . . , νN are weight functions that is measurable and positive almost ev-
erywhere in Ω.

Adams [2] investigated special case of (1.13) by considering ω(x) = νi(x) ≡ 1, i =
1, 2, . . . , N and have

(1.14)
(∫

Ω

|f(x)|qdx
) 1

q

≤ C

(∫
Ω

|∇f(x)|pdx
) 1

p

holds, for continuous function f(x) defined on (0,∞), X = (X1, X2, . . . , XN), ∇f(x) =(
δf(x)
δx1

, δf(x)
δx2

, . . . , δf(x)
δxN

)
, 1 < p < N , 1 < q < Np

N−p and |∇f(x)|p =
∑N

i=1

∣∣∣ δf(x)
δxi

∣∣∣p and Ω is a
bounded domain with Lipschitzian boundary δΩ where the admissible values of the parameter
q may change. This is called Sobolev inequality.
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Another special case of (1.14) was considered in literature with p = q = 2 as:∫
Ω

|f(x)|2dx ≤ C2

∫
Ω

|∇f(x)|2dx

holds. This inequality is called Friedrichs inequality.
Also, for all functions f(x) whose mean value over Ω is zero:∫

Ω

f(x)dx = 0

is called the Poincare inequality. See, [29, 30, 34].
Finally, by replacing f with f

1
p in inequality (1.2) and letting p → ∞, we have the limiting

inequality ∫ ∞
0

exp

(
1

x

∫ x

0

ln f(t)dt

)
dx ≤ e

∫ ∞
0

f(x)dx

This is called the Knopp’s-Polyá inequality. For further development, remarks, extensions,
generalizations and applications of inequalities (1.2), (1.3), (1.4), (1.5), (1.9), (1.10) and (1.11),
see for instance, [1, 4, 24, 25, 27, 13] and the references cited therein.

This work is, therefore, devoted to Hardy-type inequalities and to some modifications and
consequences. The aim is to determine conditions on the data of our problem. These were done
by introducing n-terms of functions for all n ∈ N on a multiple Hardy integral operator and by
making one of the weight functions a power function.

Throughout this paper, p > 1 except otherwise stated, We shall use f to be integrable or
f ∈ L or

∫
f(x)dx exists whenever f is measurable and

∫
|f(x)| dx < ∞. Hence, if f is an

integrable function, then f ∈ L or
∫
f(x) dx exists whenever f is measurable and

∫
|f(x)| dx <

∞.

2. MAIN RESULTS

In this section, we let (X, ζ, µ) be a σ-finite measure space, K(x, y) be a nonnegative and
measurable on X ×X and T a positive linear operator defined for nonnegative functions on the
measure space. It is on record that [39] and [38] dealt with some weighted inequalities for a
multiple Hardy operator Tn of the form:

Tn =

∫ x

a

∫ x1

a

· · ·
∫ xn

a

f(t) dt dxn · · · dx1

They derived sufficient conditions for the validity of the corresponding multiple Hardy inequal-
ity.

Theorem 2.1. Let p1, . . . , pn > 0 such that
∑n

k=1
1
pk

= 1 and suppose ωk are weight functions
on X . For a positive function f on (0,∞), we define the operator T by

∫
X
K(x, y)f(y)dy. Let

fk be p-integrable positive function defined on (0,∞) for k = 1, . . . , n + 1. Then, there exist
weight functions νk, finite µ-almost everywhere on X such that:

(2.1)
n∏
k=1

(∫
Xk

(Tfk)
pkωkdµk

) 1
pk

≤ C(K, p)
n∏
k=1

(∫
Xk

fpkk νkdµk

) 1
pk

holds, if and only if there exist positive functions Φ onX with
∫
X

(TΦ)pkωkdµ <∞ equivalently
to Φ1−pkT ∗((TΦ)pk−1ωk) <∞
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6 K. RAUF AND S. PONNUSAMY AND J. O. OMOLEHIN

Proof. We employ hypothesis of induction on n. When n = 2 we have p1p2 > 0 with 1
p1

+ 1
p2

=
1 then (2.1) holds for a particular case of p1, p2 > 1 (see, [31]). Suppose (2.1) holds for n ≥ 2.
We claim that it holds for n + 1, then we let p1, p2, . . . pn+1 > 0 be any real numbers with∑n+1

k
1
pk

= 1 and also fk ∈ Lpk , k = 1, . . . , n + 1. Then, for pk > 1, we have p1 > 0 and

p1
p1−1

> 0 therefore,
n+1∏
k=1

∫
Xk

(Tfk)
pkωkdµk

=
n+1∏
k=2

∫
Xk

T (f1 × fk)pk ωkdµk

=
n+1∏
k=2

∫
Xk

(∫
X

(K(x, y)
1
p1 f1Φ

−(
p1−1
p1

)
K(x, y)

p1−1
p1 Φ

p1−1
p1

×K(x, y)
1
pk fkΦ

− 1
pkK(x, y)

pk−1

pk Φ
1
pk )dµ

)pk
ωkdµk

≤ C(K, pk)

∫
X1

(∫
X

(K(x, y)
1
p1 f1Φ

−(
p1−1
p1

)
K(x, y)

p1−1
p1 Φ

p1−1
p1 )dµ

)p1
ω1dµ1

×
n+1∏
k=2

∫
Xk

(∫
X

(
K(x, y)

1
pk fkΦ

− 1
pkK(x, y)

pk−1

pk Φ
1
pk

)
dµ

)pk
ωkdµk

= C(K, pk)(Ψ× Γ)

where

Ψ ≤
∫
X1

[(∫
X

K(x, y)fp11 Φ−(p1−1)dµ

)(∫
X

K(x, y)Φ

)p1−1

dµ

]
ω1dµ1

=

∫
X1

fp11 ν1dµ1

and

Γ =
n+1∏
k=2

∫
Xk

(∫
X

(
K(x, y)

1
pk fkΦ

− 1
pkK(x, y)

pk−1

pk Φ
1
pk

)
dµ

)pk
ωkdµk.

Since, pk(p1−1)
p1

> 0 and for k = 2, . . . , n+ 1, we have

n+1∑
k=2

1

pk(p1 − 1)/p1

=
p1

p1 − 1

n+1∑
n=2

1

pn
=

p1

p1 − 1
(1− 1

p1

) = 1

and by using the same argument n+ 1 times, then

Γ =
n+1∏
k=2

∫
Xk

((
(fp1/(p1−1)×pn(p1−1)/p1
n dµ)

p1
pn(p1−1)

) (p1−1)
p1

)pn

νndµn

=
n+1∏
k=2

∫
Xk

(fpnn νn)dµn

Therefore,

Ψ× Γ ≤
(∫

X1

fp11 ν1dµ1

)(∫
X2

fp22 ν2 dµ2

)
· · ·
(∫

Xn+1

f
pn+1

n+1 νn+1 dµn+1

)
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Hence,
n∏
k=1

(∫
Xk

(Tfk)
pkωkdµk

) 1
pk

≤ C(K, p)
n∏
k=1

(∫
Xk

fpkk νkdµk

) 1
pk

Otherwise, f ≡ 0. Inequality (2.1) is reversed with any f < 0 or both ν < 0 and ω < 0 and we
have equality with ωk ≡ νk and K(x, y) = C(k, pk) ≡ 1.

On the other hand, we assume that (2.1) holds for some νk < ∞ µ-almost everywhere. By
using the σ-finiteness of µ, we can obtain a positive function Φ such that

∫
X

Φpk(νk)dµ < ∞
then, Φ1−pkT ∗((TΦ)pk−1ωk) < ∞ holds. If all the above conditions hold then the proof of the
converse is easily obtained and this completes the proof of the theorem.

By making the same calculation with pk < 0 on inequality (2.1), we noted that the inequality
is reversed, if and only if there exist at least a pi ∈ pk such that 0 < pi < 1. Also, if more than
one pi is positive then at least one positive pi is less than one. The result is also valid for dual
operator T ∗.

Theorem 2.2. Let pk, qk > 0 such that
∑k

i=1
1
pi

= 1 and suppose uk = (ωk)
1
q are weight

functions on X . Then, there exist weight functions νk, finite µ-almost everywhere on X such
that the weighted norm inequality:

(2.2)
n∏
k=1

(∫
Xk

(Tfk)
qkωkdµk

) 1
qk

≤ C(K, p, q)
n∏
k=1

(∫
Xk

fpkk νkdµk

) 1
pk

holds, for each fk ≥ 0, if and only if there are positive functions Φpk on X satisfying Φ(y)pk ≤
νk and C(K, pk, qk) is a constant independent of f .

Proof. We have
n∏
k=1

(∫
Xk

(Tfk)
qkωkdµk

) 1
qk

= sup
x<∞

(
n∏
k=1

uk(x)

∫
X

K(x, y)
1
p1 fk(y)K(x, y)

p1−1
p1 dy

)

≤ sup
z<x

ess

n∏
k=1

(
K(x, z)

1
p1 uk(x)

∫
X

K(x, y)
p1−1
p1 fk(y)dy

)
=

(
sup
z<x

essK(x, z)
1
p1 u1(x)

∫
X

K(x, y)
p1−1
p1 Φ(y)−1f1(y)Φ(y)dy

)
×

(
sup
z<x

ess

n+1∏
k=2

K(x, z)
1
pk uk(x)

∫
X

K(x, y)
pk−1

pk Φ(y)−1fk(y)Φ(y)dy

)
.

Since, u(x) and Φ(x) depend on p and q with constant C and also the integral

sup
z<x

essK(x, z)
1
p1 u1(x)(sup

t>x
essK(t, x)

1
p1 u1(t))−1

≤ sup
z<x

essK(x, z)
1
p1 u1(t)(sup

z>x
essK(x, z)

1
p1 u1(t))−1 = 1

with K(t, .) non-decreasing then, the result follows by Hölder’s inequality.

Theorem 2.3. Let 1 < pk ≤ qk < ∞ with p1, . . . , pn > 0 and q1, . . . , qn > 0 such that∑n
k=1

1
pk

= 1 and suppose uk = (ωk)
1
q are weight functions on X . Then, there exist weight
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8 K. RAUF AND S. PONNUSAMY AND J. O. OMOLEHIN

functions νk, finite µ-almost everywhere on X such that the weighted inequality:

(2.3)
n∏
k=1

(∫
Xk

(Tfk)
qkωkdµk

) 1
qk

≤ C(K, p, q)
n∏
k=1

(∫
Xk

fpkk νkdµk

) 1
pk

holds, for each fk ≥ 0, if and only if there are positive functions Φpk on X satisfying Φ(y)pk ≤
νk with s(x) ≤ (

∫
X
K(y, z)Φ(z)−pdz)

1
p+1 and C(K, pk, qk) is a constant independent of f .

Proof. The integral
n∏
k=1

∫
Xk

(Tfk)
qk ωkdµk

≤
n∏
k=1

∫
Xk

u(x)q

((∫
X

K(x, y)(f(y)Φ(y)s(y))pkdµ(y)

) qk
pk

×
(∫

X

K(x, y)Φ(y)−p
′
ks(y)−p

′
kdµ(y)

) qk
p′
k

)
dµk(x)

≤ (p′1 + 1)
q1
p′1

(∫
X1

(∫
X

K(x, y)u(x)q1(K(y, z)Φ(z)−p
′
1dz)

q1
p′1(p

′
1+1)dµ(x)

) p1
q1

×(f(y)Φ(y)s(y))p1dµ1(y))
q1
p1

×
n+1∏
k=2

(p′k + 1)
(n−1)qk

p′
k (

∫
Xk

(∫
X

K(x, y)u(x)qk(K(y, z)Φ(z)−p
′
kdz)

qk
p′
k
(p′

k
+1)dµ(x)

) pk
qk

×(f(y)Φ(y)s(y))pkdµ(y))
qk
pk

by Hölder’s and Minkowski integral inequalities and since u(x) and Φ(x) depend on p′s and q′s
with constant C and that∫

X

K(x, y)Φ(x)−p
′
dx ≤ Cp′

(∫
X

K(z, y)u(z)qdz

)−p
q

then, we have
n∏
k=1

(∫
Xk

(Tfk)
qkωkdµk

) 1
qk

≤ C(K, p, q)
n∏
k=1

(∫
Xk

fpkk νkdµk

) 1
pk

where, C(K, p, q) = (p′ + 1)
n(q2+pp′)

q2p′ (p′)
−np

q2 C
n(q+pp′)
q(p′+1) where the conjugate of q is defined in the

same way as conjugate of p. We note that Theorem 2.1 holds for the following corollaries if we
define kernel K(x, y) of operator T by Φ(x− y) and e−xy respectively.

Corollary 2.4. Let Φ, ωk ≥ 0 be locally integrable with respect to Lebesque measure on Rn and
suppose Φ(x) = Φ(|x|) is non-increasing as a function of |x|. Define the convolution operator
T by

T

(
n∏
k=1

fk

)
(x) = (Φ∗f)(x) =

∫
Rn

Φ(x− y)
n∏
k=1

fk(y)dy
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for every fixed pk ∈ (1,∞) and a constant C > 0, depending on pk and qk. Then, there exist
weight functions νk <∞ finite µ-almost everywhere on Rn such that the weighted inequality:

(2.4)
n∏
k=1

(∫
Rn

(Tfk)
qkωkdµk(x)

) 1
qk

≤ C(K, p, q)
n∏
k=1

(∫
Rn

fpkk νkdµk

) 1
pk

holds, for each fk ≥ 0, if and only if for all y ∈ Rn such that for all positive functions Φ(y)pk ≤
νk with uk = ω1/q and C(K, pk, qk) a constant independent of f .

Corollary 2.5. Let ωk ≥ 0 be a locally integrable with respect to Lebesque measure on R+ =
(0,∞) and denote the Laplace transform (T) of fk on R+ by

T

(
n∏
k=1

fk

)
(x) =

∫ ∞
0

e−xy
n∏
k=1

fk(y)dy

x ∈ R+ for a fixed pk ∈ (1,∞) and a constant C > 0, depending on pk and qk. Then, there
exist weight functions νk <∞ finite µ-almost everywhere such that:

(2.5)
n∏
k=1

(∫
Rn

(Tfk)
qkωkdµk(x)

) 1
qk

≤ C(K, p, q)
n∏
k=1

(∫
Rn

fpkk νkdµk

) 1
pk

holds, if and only if (Tω)(x) <∞.

3. MULTI-DIMENSIONAL HARDY-TYPE INEQUALITIES WITH WEIGHTS

In literature, one dimensional Hardy-type inequalities has received rigorous treatment in var-
ious directions while the multi-dimensional case has been given little attention. The charac-
terizations for pairs of weights (u, v) such that the operator T2 : Lp(R2

+, v) → Lq(R2
+, u), is

bounded in the case when 1 < p ≤ q <∞ were treated in [37], that is. If p > 1 then∫ ∞
0

∫ ∞
0

|T2f(x, y)|pdxdy ≤
(

p

p− 1

)2p ∫ ∞
0

∫ ∞
0

|f(x, y)|pdxdy

. However, it has recently been pointed out that the proof of classical Hardy integral inequality
(1.2) will also work for the corresponding multidimensional Lp-spaces that is the n-dimensional
case of classical Hardy operator:∫ ∞

0

· · ·
∫ ∞

0

|Tnf(x1, · · · , xn)|pdx1 · · · dxn ≤ C

∫ ∞
0

· · ·
∫ ∞

0

|f(x1, · · · , xn)|pdx1 · · · dxn

where

C =

(
p

p− 1

)np
and

Tnf(x1, · · · , xn) =
1

x1 · · · xn

∫ x1

0

· · ·
∫ xn

0

f(t1, · · · , tn)dt1 · · · tn

Also, the corresponding weighted mixed-norm version can be proved similarly see[25].
The multidimensional generalized Hardy-Polya type inequality described by convex func-

tions are discussed in this section. We use the following notation throughout the remaining
sections: ∫ b

t
:=

∫ b1

t1

. . .

∫ bn

tn
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and we have similar expression for∫ b1

0

· · ·
∫ bn

0

,

∫ x1

0

· · ·
∫ xn

0

,

∫ ∞
0

. . .

∫ ∞
0

and ∫
X

. . .

∫
X

where bi’s, xi’s and vi’s are the components of b, x and v for all i = 1, . . . , n ∈ Z+ respectively.
All functions are measurable and g(x) = xp except otherwise stated. Based on the methods in
[32], [21] and [28], we further make some new generalizations of multidimensional Hardy-type
integral inequalities by introducing real function g(x). Some multidimensional Hardy-type
integral inequalities are obtained. Some applications are also considered. First, we give some
lemmas which are fundamental to prove certain inequalities in our context.

Lemma A. Let 0 < bi ≤ ∞, i = 1, 2 . . . , n ∈ Z+, −∞ ≤ a < c ≤ ∞ and let Φ be a positive
function [a, c].

(A) If Φ is convex, then, ∫ b

0
Φ

(
1

x1 . . . xn

∫ x

0
f(t)dt

)
dx

x1 . . . xn

≤
∫ b

0
Φ(f(x))

(
1− x1

b1

)
. . .

(
1− xn

bn

)
dx

x1 . . . xn

for every function f on (0,b) such that a < f(x)< c.
(B) If Φ is concave, then,∫ b

0
Φ

(
1

x1 . . . xn

∫ x

0
f(t)dt

)
dx

x1 . . . xn

≥
∫ b

0
Φ(f(x))

(
1− x1

b1

)
. . .

(
1− xn

bn

)
dx

x1 . . . xn

for every function f on (0,b) such that a < f(x)< c.

Lemma B. Let b ∈ (0,∞], −∞ ≤ a < c ≤ ∞ and Φ be a positive function on [a, c]. Suppose
that the weight function u defined on (0,b) is nonnegative such that u(x)

x21...x
2
n

is locally integrable
on (0,b) and the weight function v is defined by

v(t) = t1 . . . tn

∫ b

t

u(x)

x2
1 . . . x

2
n

dx, t ∈ (0,b).

(C) If Φ is convex, then,∫ b

0
u(x)Φ

(
1

x1 . . . xn

∫ x

0
f(t)dt

)
dx

x1 . . . xn

≤
∫ b

0
v(x)Φ(f(x))

dx

x1 . . . xn

holds for every function f on (0,b) such that a < f(x1, . . . , x1) < c.
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(D) If Φ is concave, then,∫ b

0
u(x)Φ

(
1

x1 . . . xn

∫ x

0
f(t)dt

)
dx

x1 . . . xn

≥
∫ b

0
v(x)Φ(f(x))

dx

x1 . . . xn
holds for every function f on (0,b) such that a < f(x1, . . . , x1) < c.

Lemma 3.1. If Φ is positive and continuous on [0,∞), f is a non-negative function on [0,b],
0 < xi < bi ≤ ∞ (i = 1 . . . n ∈ Z+) and λ is non-decreasing on [0,∞], assume

0 <

∫ b

0
g(x)−pΦ(f(x))dg(x1) . . . dg(xn) <∞

for each continuous and non-decreasing function g on [0,∞) and v∈ Rn such that 0 < vi <∞
with,

(E) Φ convex, then,∫ b

0
g(x)−pΦ

(
L−1

∫ x

0
f(v1, . . . , vn)dλ(v1) . . . dλ(vn)

)
dg(x1) . . . dg(xn)

≤
∫ b

0
g(x)−pΦ(f(x))dg(x1) . . . dg(xn)

(F) Φ concave, then,∫ b

0
g(x)−pΦ

(
L−1

∫ x

0
f(v1, . . . , vn)dλ(v1) . . . dλ(vn)

)
dg(x1) . . . dg(xn)

≥
∫ b

0
g(x)−pΦ(f(x))dg(x1) . . . dg(xn)

where L =
∫∞
0 dλ(v1) . . . dλ(vn)

Proof. Applying the iterative integrals of functions g and f on measurable set X with measure
λ and Y with measure µ (σ-finite) then,∫

X
g(y1, . . . , yn)

(∫
Y
f(x)dλ1 . . . dλn

)
dµ1 . . . dµn

=

∫
(X1...Xn)×(Y1...Yn)

f(x)× g(y1, . . . , yn)(dµ1 . . . dµn × dλ1 . . . dλn)

=

∫
(Y1...Yn)

g(x)

(∫
(X1...Xn)

f(y1, . . . , yn)dµ1 . . . dµn

)
dλ1 . . . dλn

Since Φ is convex in (E) above, taking L =
∫∞
0 (dλ(v1) . . . dλ(vn)) and by imploring Fubini’s

theorem, then,∫ b

0
g(x)−pΦ

(
L−1

∫ x

0
f(v1, . . . , vn)dλ(v1) . . . dλ(vn)

)
dg(x1) . . . dg(xn)

≤ L−1

∫ ∞
0

g(x)−pdg(x1) . . . dg(xn)

∫ x

0
Φ(f(v1, . . . , vn))dλ(v1) . . . dλ(vn)
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≤ L−1

∫ ∞
0

dλ(v1) . . . dλ(vn)

∫ b

0
g(x)−pΦ(f(x))dg(x1) . . . dg(xn)

=

∫ b

0
Φ(f(x))g(x)−pdg(x1) . . . dg(xn)

When Φ is concave, then the proof is easily obtained by reversing inequality (E).

Corollary 3.2. If p > 1, f ≥ 0, g(x) = x is continuous, non-decreasing on [0,∞). Let Φ be
positive and continuous on [0,∞), and define dλ(v1) . . . dλ(vn) by
(vα−1

1 . . . vα−1
n )dv1 . . . dvn on [0, 1] and 0 for v > 1, 1 < α ≤ n and n ∈ Z+. Assume∫ b

0
Φ(f(x)p)dx <∞

with,
(G) Φ convex, then,∫ b

0
g(x)−pΦ

((∫ 1

0
f(v1, . . . , vn)dλ(v1) . . . dλ(vn)

)p)
dx

≤
n∏
i=1

(αi − 1)−p
∫ b

0
Φ(f(x)p)dx

(H) Φ concave, then,∫ b

0
g(x)−pΦ

((∫ 1

0
f(v1, . . . , vn)dλ(v1) . . . dλ(vn)

)p)
dx

≥
n∏
i=1

(αi − 1)−p
∫ b

0
Φ(f(x)p)dx

Proof. Since the integral of two or more variables of a summable functions can be obtained by
successive integrations with respect to each variable separately or by pairs that is an iterative
integral and with Φ convex on (G), we have∫ b

0
(g(x)−p)Φ

((∫ 1

0
(vα−1

1 . . . vα−1
n )f(v1, . . . , vn)dv1 . . . dvn

)p)
dx

≤
∫ b

0
Φ(f(x)p)

(∫ 1

0
g(v1, . . . , vn)−1(vα−1

1 . . . vα−1
n )dv1 . . . dvn

)p

dx

result follows by substituting and integrating the inner integral on [0, 1] by single step of integra-
tion by part. Also, if there exist a continuous inverse which is necessarily concave on function
Φ then (H) is proved using similar method with inequalities reversed. The results also hold if
we assume g(x) = xk whenever 1 < k < α ≤ n ∈ Z+.

Corollary 3.3. If p > 1, f is continuous, non-decreasing on [0,b]. Let Φ be positive and
continuous on [0,∞), and define dλ(v1) . . . dλ(vn) by (vα−1

1 . . . vα−1
n )dv1 . . . dvn on [0, 1], α ∈

R and λ is non-decreasing on [0,1]. Assume

0 <

∫ ∞
0

Φ(f(x)p)dx <∞
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if Φ is convex, then,∫ b

0
g(x)−pΦ

((∫ 1

0
f(v1, . . . , vn)dλ(v1) . . . dλ(vn)

)p)
dx

≤ (α(1− k))−np
∫ b

0
Φ(f(x)p)dx

whenever g(x) = xk is a decreasing function over [0, 1] and 1 < k ∈ Z+.

Proof. Using the same method in the proof of Corollary 3.2 and since g is decreasing on [0, 1],
then we obtain, on using Chebyshev’s integral inequality on∫ b

0
Φ(f(x)p)

(∫ 1

0
g(v1, . . . , vn)−1(vα−1

1 . . . vα−1
n )dv1 . . . dvn

)p

dx

≤
∫ b

0
Φ(f(x)p)

(∫ 1

0
g(v1, . . . , vn)−1dv1 . . . dvn

)p

×

(∫ 1

0
(vα−1

1 . . . vα−1
n )dv1 . . . dvn

)p

dx

and the result follows since g and λ are not similarly ordered, otherwise the inequality is re-
versed. Also, the inequality is reversed if they are not similarly ordered and p lies between
0 < p < 1. See ([17], Theorem 43, see also section 5.8 page 123).

We distinguished two cases for this inequality:
(1) holds for p odd if α < 0 for any chosen k and
(2) holds for p even if α > 0 for any chosen k.
We obtain the corresponding reverse inequality if Φ has a continuous inverse which is neces-

sarily concave.

Theorem 3.4. If 0 < bi ≤ ∞, i = 1, 2 . . . , n ∈ Z+, −∞ ≤ a < c ≤ ∞ and let Φ be a positive
function [a, c]. Let function f be defined on (0,b) such that a < f(x)< c.

(I) If Φ is convex, then,∫ b

0
Φ

(
1

(x1 . . . xn)Γ

∫ x

0
f(t)dt

)
dx

x1 . . . xn

≤ bp+1
i

p+ 1

∫ b

0
Φ(f(x))

(
1− xp+1

1

bp+1
1

)
. . .

(
1− xp+1

n

bp+1
n

)
dx

for every positive function g on (0,b) with Γ = −(p+ 1) and 0 ≤ p <∞.
(J) If Φ is concave, then,∫ b

0
Φ

(
1

(x1 . . . xn)Γ

∫ x

0
f(t)dt

)
dx

x1 . . . xn

≥ bp+1
i

p+ 1

∫ b

0
Φ(f(x))

(
1− xp+1

1

bp+1
1

)
. . .

(
1− xp+1

n

bp+1
n

)
dx

for every positive function g on (0,b) with Γ = −(p+ 1) and 0 ≤ p <∞.
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Proof. The proof of the inequality (J) is practically the same as (I) by making the same calcula-
tion with Φ concave and the inequality is reversed, we give that of (I). If Φ is convex. Then, by
Jensen’s inequality and the Fubini theorem, (I) yields∫ b

0
Φ

(
1

(x1 . . . xn)Γ

∫ x

0
f(t)dt

)
dx

x1 . . . xn

≤
∫ b

0

(∫ x

0
Φ(f(t))dt

)
x−(Γ+1) . . . x−(Γ+1)dx

=

∫ b

0
Φ(f(t))

(∫ b

t
x−(Γ+1) . . . x−(Γ+1)dx

)
dt

=
bp+1
i

p+ 1

∫ b

0
Φ(f(t))

(
1− tp+1

1

bp+1
1

)
. . .

(
1− tp+1

n

bp+1
n

)
dt

Theorem 3.5. If 0 < bi ≤ ∞, i = 1, 2 . . . , n ∈ Z+, −∞ ≤ a < c ≤ ∞ and let Φ be a positive
function [a, c]. Let p ≥ 1 and function f be defined on (0,b) such that a < f(x)< c.

(K) If Φ is convex, then,∫ b

0
Φ

(
1

(x1 . . . xn)p

∫ x

0
f(t)dt

)
dx

x1 . . . xn

≤ p−n
∫ b

0
Φ(f(x))

1

xp

(
1− xp1

bp1

)
. . .

(
1− xpn

bpn

)
dx

for every positive function g on (0,b).
(L) If Φ is concave, then,∫ b

0
Φ

(
1

(x1 . . . xn)p

∫ x

0
f(t)dt

)
dx

x1 . . . xn

≥ p−n
∫ b

0
Φ(f(x))

1

xp

(
1− xp1

bp1

)
. . .

(
1− xpn

bpn

)
dx

for every positive function g on (0,b).

Proof. The proof are completely similar to that of Theorem 3.4 and hence the details are omit-
ted. The result also holds for 0 < p ≤ 1 and in fact if p = 1, we have lemma 2.1 in [21] and
lemma 2.1 in [28] by defining weight function

v = t1 . . . tn

∫ b

t

u(x)

(x1 . . . xn)p+1
dx

with weight function u(x) = 1 and also holds whenever u(x) is a power function whose power
not equal to the value of p except possibly for power zero.

If Φ(t) is assuming tp in Theorem 3.5, we obtain the following natural multidimensional
Hardy-type inequalities and the reverse inequality.

Corollary 3.6. If 0 < bi ≤ ∞, i = 1, 2 . . . , n ∈ Z+, −∞ ≤ a < c ≤ ∞ and let Φ be a positive
function [a, c]. Let function f be defined on (0,b) such that a < f(x)< c. If

0 <

∫ b

0
(x1 . . . xn)fp(x)dx <∞
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then,
(M) With p > 1 or p < 0 such that n is even, then∫ b

0

( 1

(x1 . . . xn)p

∫ x

0
f(t)dt

)p dx

x1 . . . xn

≤ 1

pn

(
p

1− p

)np ∫ b

0

(
1− xp−1

1

bp−1
1

)
. . .

(
1− xp−1

n

bp−1
n

)
(fp(x))x1 . . . xndx

(N) With 0 < p < 1, then∫ b

0

( 1

(x1 . . . xn)p

∫ x

0
f(t)dt

)p dx

x1 . . . xn

≥ 1

pn

(
p

1− p

)np ∫ b

0

(
1− xp−1

1

bp−1
1

)
. . .

(
1− xp−1

n

bp−1
n

)
(fp(x))x1 . . . xndx

for every positive function g on (0,b).

Proof. Inequality (M) is proved for p > 1 using inequality (K) by assuming Φ(t) = tp, ti =

s
p−1
p

i , xi = y
p−1
p

i , b
p

p−1

i = ai whenever i = 1, . . . , n and the function

f(x1, ..., xn) = f(x
p

p−1

1 , ..., x
p

p−1
n )x

p
p−1
−1

1 ...x
p

p−1
−1

n

then, we have∫ a

0

(
1

(x1 . . . xn)p

∫ x

0
f(t

p
p−1

1 , . . . , t
p

p−1
n )t

p
p−1
−1

1 . . . t
p

p−1
−1

n dt

)p
dx

x1 . . . xn

=

(
p− 1

p

)np ∫ a

0

 1

xp1 . . . x
p
n

∫ x
p

p−1
1

0

. . .

∫ x
p

p−1
n

0

f(s1, . . . , sn)ds1 . . . dsn

p

dx

x1 . . . xn

=

(
p− 1

p

)np+n ∫ b

0

(∫ y

0
f(s1, . . . , sn)ds1 . . . dsn

)p
y
−p(p−1)
1 . . . y−p(p−1)

n

dy1 . . . dyn
y1 . . . yn

=

(
p− 1

p

)np+n ∫ b

0

(∫ y

0
f(s1, . . . , sn)ds1 . . . dsn

)p
y
−p(p−1)−1
1 . . . y−p(p−1)−1

n dy1 . . . dyn

Also, from the left hand side of (K), we have

p−n
∫ a

0

1

xp1 . . . x
p
n
fp(x

p
p−1

1 , . . . , x
p

p−1
n )x

p( p
p−1
−1)

1 . . . x
p( p

p−1
−1)

n

(
1− xp1

ap1

)
. . .

(
1− xpn

apn

)
dx

=

(
p− 1

pp

)n ∫ a

0

1− y
p−1
p
p

1

b
p−1
p
p

1

 . . .

1− y
p−1
p
p

1

b
p−1
p
p

1

 (fp(y1, . . . , yn))y2−p
1 . . . y2−p

n dx

=

(
p− 1

pp

)n ∫ b

0

(
1− yp−1

1

bp−1
1

)
. . .

(
1− yp−1

n

bp−1
n

)
fp(y1, . . . , yn)y

−(p−1)2

p

1 . . . y
−(p−1)2

p
n dy1 . . . dyn

The parameter p involved in the proof of inequality (M) is greater than 1. However, they have
analogous with a p less than 0 when n is even while 0 < p < 1 resulted in a reversal of the sign
of the inequality and (N) is proved.
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Remark 3.1. If Φ(t) = exp(t) the analogue of Theorem 3.5 whenever f → ln fp in one
dimensional case can be found in ([17], theorem 335, page 250). This type of inequality is
called Knopp’s inequality with reference ([23], cf. Remark 3.2) it was originally discovered by
G. Polya (see Remark 2.3) and it is therefore refer to as Polya-Knopp’s inequality. In our own
case, we obtain the following natural multidimensional Hardy-type inequalities.

Corollary 3.7. If 0 < bi ≤ ∞, i = 1, 2 . . . , n ∈ Z+, −∞ ≤ a < c ≤ ∞ and let Φ be a positive
function [a, c]. Let function f be defined on (0,b) such that a < f(x) < c. If

0 <

∫ b

0
f(x)dx <∞

then we write inequality (M) as:(∫ b

0

(
exp

(
1

(x1 . . . xn)p

∫ x

0
ln f(t)dt

))p
dx

) 1
p

≤

(
e

(4p2 − 1)
1
p

)n(∫ b

0
t
p(1−4p)+1
i fp(t)

n∏
i=1

(
1− (ti)

4p2−1

(bi)4p2−1

)
dt

) 1
p

for every positive function g on (0,b).

Proof. Our proof is partially related to Knopp’s original idea see([23], page 211). Since the
sum of a convex function is also a convex function then we have,(∫ b

0

(
exp

(
1

(x1 . . . xn)p

∫ x

0
ln f(t)dt

))p
dx

) 1
p

= (

∫ b

0
(exp

(
1

(x1 . . . xn)p

∫ x

0
ln(t1 . . . tn)f(t)dt

)
× exp

(
−1

(x1 . . . xn)p

∫ x

0
ln(t1 . . . tn)dt

)
)pdx)

1
p

Since f(x) = ex is convex and it is apparent that the local minimum of any convex function
is also a global minimum then either by using Jensen’s inequality or the Arithmetic-Geometric
mean inequality(AG-inequality) we have,

exp

(
1

(x1 . . . xn)p

∫ x

0
ln(t1 . . . tn)f(t)dt

)
≤ 1

(x1 . . . xn)p

∫ x

0
(t1 . . . tn)f(t)dt

and
−1

(x1 . . . xn)p

∫ x

0
ln(t1 . . . tn)dt =

1

(x1 . . . xn)p−1
(− ln(x1 . . . xn) + (1))

Hence, ∫ b

0
(exp

(
1

(x1 . . . xn)p

∫ x

0
ln(t1 . . . tn)f(t)dt

)
× exp

(
−1

(x1 . . . xn)p

∫ x1

0

. . .

∫ xn

0

ln(t1 . . . tn)dt

)
)pdx
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≤
∫ b

0

(
1

(x1 . . . xn)p−1
exp(− ln(x1 . . . xn) + (1 . . . 1))

)p

×
(

1

(x1 . . . xn)pp

∫ x

0
(t1 . . . tn)pfp(t)dt

)
dx

= enp
∫ b

0

1

(x1 . . . xn)2pp

(∫ x

0
(t1 . . . tn)pfp(t)dt

)
dx

= enp

(∫ b

0
(t1 . . . tn)pfp(t)dt

)∫ b1

t1

. . .

∫ bn

t1

1

(x1 . . . xn)(2p)2
dx

On using the analysis of Theorem 3.5 then,(
enp

(∫ b

0
(t1 . . . tn)pfp(t)dt

)(∫ b1

t1

. . .

∫ bn

t1

1

(x1 . . . xn)(2p)2
dx

)) 1
p

=

(
e

(4p2 − 1)
1
p

)n(∫ b

0
t
p(1−4p)+1
i fp(t)

n∏
i=1

(
1− (ti)

4p2−1

(bi)4p2−1

)
dt

) 1
p

Finally, if Φ(t) = ln(t) whenever f → exp f , we obtain the following reversed multidimen-
sional Hardy-type inequalities.

Corollary 3.8. If 0 < bi ≤ ∞, i = 1, 2 . . . , n ∈ Z+, −∞ ≤ a < c ≤ ∞ and let Φ be a positive
function [a, c]. Let function f be defined on (0,b) such that a < f(x)< c. If

0 <

∫ b

0
f(x)dx <∞

then we write inequality (M) as:(∫ b

0

(
ln

(
1

(x1 . . . xn)p

∫ x

0
exp f(t)dt

))p
dx

) 1
p

≥

(∫ b

0
f(x)

n∏
i=1

(
1− xi

bi

)
dx

x1 . . . xn

)
for every positive function g on (0,b).

Proof. Since, the natural logarithmic functions are strictly increasing and the exponential func-
tions which is necessarily the inverse of natural logarithmic function is strictly convex and
therefore the proof of Corollary 3.8 follows inversely from that of Corollary 3.7 resulted in
reversing the inequalities.
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4. MULTI-DIMENSIONAL HARDY-TYPE INEQUALITIES WITH 1 < p ≤ q <∞

In this section, we discussed some weighted case of multi-dimensional Hardy integral in-
equality.

Theorem 4.1. If 0 < p ≤ q < ∞ with 1/p + 1/q = 1 and 0 < bi ≤ ∞, i = 1, . . . , n ∈ Z+

and let Φ be a positive and convex function on (a, c) with −∞ ≤ a < c ≤ ∞ and let ω(x) be a
weight function defined on (0, b) for any non-negative function f(x) such that a < f(x) < c. If
the weight function ν is defined by

C = sup
0<ti≤bi

(
t1 . . . tn

ν(t1 . . . tn)

)1/p
(∫ b

t
ω(x)x

−(q+1)
1 · · ·x−(q+1)

n dx

)1/q

Then, (∫ b

0

(
Φ

(
1

g(x)

∫ x

0
f(t)dt

))q/p
ω(x)

dx

x1 . . . xn

)1/q

≤ K

(∫ b

0
Φ(f(x))ν(x) dx

)1/p

holds, whenever g(x) ≡ xp.

Proof. By using Jensen and Minkowski integral inequalities, we obtain(∫ b

0

(
Φ

(
1

g(x)

∫ x

0
f(t)dt

))q/p
ω(x)

dx

x1 . . . xn

)1/q

≤

(∫ b

0

(
1

xp1 . . . x
p
n

∫ x

0
Φ(f(t))dt

)q/p
ω(x)

dx

x1 . . . xn

)1/q

≤

∫ b

0

t1 . . . tn
ν(t)

Φ(f(t))

(∫ b

t
ω(x)x

−(q+1)
1 . . . x−(q+1)

n dx

)p/q

ν(t)
dt

t

1/p

≤ C

(∫ b

0
Φ(f(t))ν

dt

t

)1/p

where, ν(x) is a weight function on (0, b) and K = C but if K is sharp then we have K ≤ C
which concludes the proof. In view of a comparison with Theorem 4.1, we noted that, the
Theorem holds in the reverse direction if Φ is concave by defining

C = inf
0<ti≤bi

t1 · · · tn
ν(t)

(∫ b

t
ω(x)x

−(q+1)
1 · · ·x−(q+1)

n dx

)1/q

Corollary 4.2. If 0 < p = q <∞, 0 < bi ≤ ∞, i = 1, . . . , n ∈ Z+ and let Φ be a positive and
convex function on (a, c) with−∞ ≤ a < c ≤ ∞ and ω(x) ≡ 1. Also, let f(x) be non-negative
on a < f(x) < c and

ν =
(1− tp1/b

p
1) · · · (1− tpn/bpn)

(t1 . . . tn)p
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Then, ∫ b

0
Φ

(
1

g(x)

∫ x

0
f(t) dt

)
ω(x)

x
dx ≤ K

∫ b

0
Φ(f(x))ν(x)dx

holds, whenever g(x) ≡ xp.

Proof. It is easy to obtain that C = p−n and the remaining proof follow directly from Theorem
4.1 from which we obtain Theorem 3.5. In addition, if p = q = 1 then we obtain the following
useful multidimensional version of classical Hardy integral inequality:∫ b

0
Φ

(
1

x1 . . . xn

∫ x

0
f(t)dt

)
dx

x1 · · ·xn
≤
∫ b

0
Φ(f(x))ν(x)dx.
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