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2 F. AKUTSAH AND O. K. NARAIN

1. INTRODUCTION

Let H be areal Hilbert space with the inner prodict) and the induced norm- ||, C be a
nonempty closed convex subsetidfandA : H — H be an operator. The classical Variational
Inequality Problem (VIP) is formulated as: Find= C' such that

(1.1) (Az,y —z) >0VyeC.

The notion of VIP was introduced independently by Stampacchia [26] and Ficher [14, 15]
for modeling problems arising from mechanics and for solving Signorini problem. It is well-
known that many problems in economics, mathematical sciences, mathematical physics can be
formulated as VIP. Censor et al. [n]12] extended the concept of[VIP (1.1) to the following Split
Variational Inequality Problem (SVIP): Find

1.2) z* € C'that solvegA1z*,x —2*) >0Vzx e’
such thaty* = Tz* € () solves

whereC' and @ are nonempty, closed and convex subsets of real Hilbert sgacesd H,
respectivelyA, : H; — H,, Ay : H, — H, are two operators arfl : H; — H, is a bounded
linear operator. Whenl; = A, = 0, the SVIP reduces to the Split Feasibility Problem (SFP).
That is, find

(1.4) x* € C'suchthay™ =Tz" € Q.

The concept of SFP was introduced by Censor and Elfving [9] in the framework of finite-
dimensional Hilbert spaces. The SFP has found applications in many real-life problems such
as image recovery, signal processing, control theory, data compression, computer tomography
and so on (seé [10, 11] and the references therein). Therefore, it has attracted the attention of a
lot of researchers in this direction. For instance, Ceng et lal. [6] proposed the following iterative
method for solving the SFP:

g =T € C
(1-5) Yn = (1 - ﬁn)lﬁ + ﬁnPC<xn - )‘vfan (xn»
Tni1 = VT + (1 = 7,)SPo(Yn — AV fa, (Yn)),
wherev f,, = a,l +T*(I — Py)T, S : C — C'is a nonexpansive mapping and the sequences
of parameterd«,, }, {5, } and{~v, } are in(0,1). The above iterative algorithm is a combina-
tion of the regularization method and extragradient method due to Nadezhkina and Takahashi
[21]. Under some mild assumptions, they established that the sequence generated by the iter-
ative method converges weakly to a common solution of the SFP and fixed point problem for
nonexpansive mapping.
In 2020 Chuasuk and Kaewcharoénl[13] proposed the following iterative scheme:
(xo = H
Yn = Po(xy — M(T*(I — SP))T + ap1)zy,)
2y = Pol(x, — A(T*(1 = SPQ))T + anl)yy,)
wy, = (1 —o0n)z, +0,Uz,
(Znt1 = (1 = 7,)20 + 7, Usn,
whereS : Q — @ is a nonexpansive mapping, : ¢ — C' is a pseudo-contractive air
Lipschitzian continuous mapping and the sequences of param{etgfs{s3, } and{~,} are

(1.6)
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in (0,1). Under some mild assumptions, they established that the sequence generated by the
iterative method converges weakly to a common solution of the SFP and fixed point problem
for nonexpansive mapping. The above iterative scheme is the combination of an extragradient
method with regularization due to a generalized Ishikawa iterative scheme.

As already mentioned, Algorithm (1.5) and Algorithm (1.6) are regularization-type methods
with the regularization steps involvingl + 7(I — Pg)T. Regularization-type methods have
been employed in a number of problems, mainly due to its efficiency in solving these problems.
For example, letf : H; — R be a continuous differentiable function, then the minimization
problem

. 1 9
min f(z) := 5| Tz — PT|
is ill-posed (seel[29]). To address this problem, Xul [29] considered the following Tikhonov
regularized problem:

1 1
mi = —||Tx — PoTx||* + =
melgfa(:v) 2H x— PoTx| +204HwH,

wherea > 0 is the regularization parameter.

Remark 1.1. The traditional Tikhonov regularization methods are usually used to solve ill-
posed optimization problems. Moreover, one of the advantages of regularization methods are
their possible strong convergence to minimum-norm solutions to optimization problems (see
[5,16,7,29] and the references therein).

Question 1: It is natural to ask if Algorithms[(1}5) andl (1.6) can be modified to converge
strongly to a minimum-norm solution of the SVIP (IL.2)-(1.3)?

The inertial extrapolation method has proven to be an effective way for accelerating the rate
of convergence of iterative algorithms. The technique is based on a discrete version of a second
order dissipative dynamical system [2, 3]. The inertial type algorithms use its two previous
iterates to obtain its next iterale [1,/20]. For details on inertia extrapolation,ldee€ [4, 22, 23] and
the references therein.

Motivated by the research works in this direction, in this paper, we provide an affirmative an-
swer to Question 1 raised above. That is, we propose an inertial regularization method for solv-
ing the SVIP[(Z.R){(1]3) in real Hilbert spaces. We prove that the method converges strongly to
a minimum-norm solution of the problem when the underlying operators-ameerse strongly
monotone operator and Lipschitz continuous monotone operator. Moreover, our method of
proof does not rely on the conventional two cases approach for strong convergence. To the best
of our knowledge the regularization method is yet to be used to solve the SVIP. Furthermore,
we present some numerical experiments to show the efficiency and applicability of our method
in the framework of infinite and finite dimensional Hilbert spaces. We emphasize that one of
the novelty of this work is in the use of the regularization approach and in the method of proof
of its strong convergence to a minimum-norm solution of the SVIP. The results obtained in this
work extend, generalize and improve several results in this direction.

The rest of this paper is organized as follows: In Segtjon 2, we recall some useful definitions
and results that are relevant for our study. In Sedtion 3, we present our proposed method and
highlight some of its useful features. advantages over other existing algorithms. In $éction 4,
we establish strong convergence of our method and in S€gtion 5, we present some numerical
experiments to show the efficiency and applicability of our method in the framework of infinite
dimensional Hilbert spaces. Lastly in Sectidn 6, we give the conclusion of the paper.
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2. PRELIMINARIES

In this section we begin by recalling some known and useful results which are needed in the
sequel.

Let H be a real Hilbert space. The set of fixed points of a nonlinear mapping/ — H
will be denoted byF'(T'), that is#(T) = {xr € H : Tx = x}. We denote strong and weak

convergence by-»" and "—", respectively. For any,y € H anda € [0, 1], it is well-known
that

(2.1) (r,y) = %(leHer ly11* = llz = yII)-
(2.2) Iz = yll* < ll=ll* + 2(y, = — v).
(2.3) lax + (1 = a)yl* = allz]* + (1 = &)llyll* — a(l = a)llz — y|*.

Definition 2.1. LetT : H — H be an operator. Then the operaiors called
(a) L-Lipschitz continuous if there exisis > 0 such that

[Tw =Tyl < Lljz —yl],

forallz,y € H.If L =1, thenT is called nonexpansive;
(b) monotone if

(c) a-inverse strongly monotone{ism) if there existsy > 0, such that
(Te —Ty,x —y) > o|Te = Ty|]*, V o,y € H.

Let C be a nonempty, closed and convex subset/ofor anyu € H, there exists a unique
point Pou € C' such that

lu — Poul| < |lu—y| ¥y € C.
The operatorP. is called the metric projection aff onto C'. It is well-known that P is a
nonexpansive mapping and thiat satisfies

(x —y, Pox — Pey) > ||Pox — Poyll?,
forall x,y € H. Furthermore P is characterized by the property

lz = ylI* > [l= — Pox|* + [ly — Pexl?
forallxz € Handy € C.

Lemma 2.1. LetC be nonempty closed convex subset of a real Hilbert spac¢®r anyxr € H
andz € C, we have: = Poxifandonly if(x — z,z —y) Vy € C.

It is well-known that the metric projectioR. is firmly nonexpansive, that is,
(r —y, Pox — Pey) > ||Pex — Peyl|®
(2.4) & ||[Pex — Peyl|* < |z — ylI* = (I = Pe)x — (I — Pe)y||* Vo, y € H.

It is well-known that for any nonexpansive mappihgthe set of fixed points df is closed
and convex. Also] satisfies the following inequality

1
25)  ((x=Tw) = (y—Ty),Ty—Ta) < STz —2) = (Ty —y)|*, Y&,y € H.
Thus, for allx € H andz* € F/(T'), we have that

1
(2.6) (x = Tx,2" —Tx) < §||Tx —z||?, Yo,y € H.
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Definition 2.2. [19] Let H be a real Hilbert space ard be a nonempty closed and convex
subset ofH. A mapping?T : ¢ — C'is said to be demiclosed at O, if for any sequence
{z,} C C which converges weakly to andlim,, ., ||z, — Tz,|| =0, Tz = z.

Lemma 2.2. [27] LetT be ana-ism operator, then

Q) Tis aé-Lipschitz continuous monotone operator.
(2) if X € (0,2«), then(I—\T) is a nonexpansive mapping, whéris the identity operator
onH.

Lemma 2.3.[19] Let C' be a closed and convex subset of a Hilbert spAcendT : C' — C
be nonexpansive mapping wit{7") # (). Then, T is demiclosed a.

Lemma 2.4.[25] Let{a, } be a sequence of positive real numbétrs, } be a sequence of real
numbers in(0, 1) such thaty_>° o, = oo and{d, } be a sequence of real numbers. Suppose
that

An41 S (1 - aTL)an + Oéndnyn Z 1.
If lim sup,_,, d,, < 0 for all subsequencegu,, } of {a,} satisfying the condition

liminf{a,, 1 — an, } >0,
o

k—

then, lim a,, = 0.

n—oo

Lemma 2.5.[28] Let A : H — H be a continuous and monotone operator. Thehjs a
solution of VIP(L.1)if and only ifz* is a solution of the following problem. Finet € C such
that (Az,z — 2*) > Oforall z € C.

3. PROPOSEDALGORITHM

In this section we present our proposed method and highlight some of its important features.
We begin with the following assumptions under which our strong convergence is obtained.

Assumption 3.1. Suppose that the following conditions hold:

(1) The sets” and(@ are nonempty closed and convex subsets of the real Hilbert sphces
and H, respectively.

(2) A, : Hy — H; is monotone and Lipschitz continuous operator ahd: H, — Hs is
a-inverse strongly monotone operator.

(3) T : Hy — H, is a bounded linear operator.

(4) The solution sef’ = {x € VI(A;,C) : Tz € VI(A2,Q)} # 0, whereVI(A;,C) is
the solution set for the classical VIR.T).

We present the following iterative algorithm.

Algorithm 3.2. Initialization: Given\,y, > 0, 0, a,, 1 € (0,1),andg3,, C (b,1 — a,) for
someb > 0, for all n € N. Letxg, z1, € H be arbitrary.

Iterative steps: B
Step 1: Given the iterates,,_; andz,, for all n € N, choosd),, such that) < 6,, < 6,,, where

B min {9’ max{n2||xn—a:n751ﬁ2,n2||a:n—a:n,1H} }’ if Tn 7& Tn—1
(3.1) 5, — ,
0, otherwise
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with 6 been a positive constant add, } is a positive sequence such that= o(«,,).
Step 2.Set

Wy = Ty + Op(Tn — Tp1).

Then, compute

(3.2)

Up = Wy, — Y, (T"(L — Po(I —nA2))T + o) w,,

wheren € (0,2a) and

o€ (ool et DT

T (Po(I — MAs) — DTw,|? E)v if Po(1 — Ay Az)Tw, # Tw, otherwisey, = ¢, .

Step 3.Compute

(3.3)
(3.4)

U = Po(u, — A\ Aiuy,)

Yn = Up — Tnbna

whereb, = u, — vn — An(Aruy — Ayvy); 7, = ntnbal i £ 0: otherwiser,, = 0; and

(3.5)

[[bn]12

N min { pfleel 0 i Ay, £ Ay,
n - . :
Ans otherwise

Step 4.Compute

(36) Tpt+1 = (1 — Qp — ﬁn)xn + ﬁnyn
Remark 3.1.
(1) A notable advantage of this method (Algorithm|3.2) is that} converges strongly to

(2)

3)

(4)

(5)

a minimum-norm solution of the SVIP. This is very desirable in optimization theory.

The choice of the stepsi4e,, } used in Algorithn} 3.2 does not require the prior knowl-

edge of the operator norfi’|| which is very difficult to find in practice. In addition,

the stepsizd \,, } is self adaptive.

As we shall see in our convergence analysis, we do not use the popular two cases method
usually used in numerous papers to guarantee strong convergence. Thus the techniques
and ideas employed in our strong convergence analysis are new for solving the problem
considered in this paper.

In Algorithm[3.2, it is easy to compute step 1 since the valugrgf— z,,_:|| is known

before choosing,. Itis also easy to see frorfi (3.1) thétn %= ||z, — z, | = 0.

Qn

Indeed, since{e,} is a positive sequence such that = o(«,), which means that
lim <= = 0, we have that, ||z, — z,_1|| < €, for all n € N, which together with

lim & =0, it implies that

lim —— ||z, — z,_1] < lim (Y

n—oo an n—oo Ckn

It is easy to see in (3.5) that, ., < A, for all n € N. More so, sinced, is L-Lipschitz
continuous, we obtain in the case whén, # Av,, that

[t — o] [t — vy]| M

[Avn — Aval] = Lllun —vall L’
which follows that),, > min{A;, £} for all n € N. This gives that the limit of \,,}

exists andlim A, > min{\;, £} > 0.
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4. CONVERGENCE ANALYSIS

In this section we establish strong convergence result of our proposed method.

Lemma4.1. Let{z,} be a sequence generated by Algorithn 3.2. Then, under Assufnpiion 3.1,
we have tha{x, } is bounded.

Proof. Letp € I and sincelim 2|z, — z,, 4| = 0, there existsV, > 0 such that= ||z, —

Zn—1|| < Ny, forall n € N. Then fromStep2, we have

“wn _pH = Hxn + On(Tn — 20-1) _pH
<|lzn = pll + Onllzn — 0]l

= [|zn — pl| + an_onn — T |
67%

(41) S Hxn _pH + Oéan_
Using (2.1) and[(2]2), we obtain

[t = plI* = [lwn + 7, (T (Po(I = nAs) = T — apl)w, — p||?

= [lwn = plI* + 17 (T*(Po(I = nAs) — DT — a I yw,||?
+ 2(wn = p, 7, (T (Po(I = nAy) = T — o l)wy,)
< lwn = pl? + 92l T*Po(I = nAz) — I)Tw,|®
+ 2(Yp W, Y, (T (Po(I — nAs) — T — aI)wy,)
+ 2(wy, — p, v, T (Po(I — nAz) — ITw,) + 2(w, — p, —7,0nWy)
= [lwn = pl* + 12l T*(Po(I — nA2) — I)Tw,|®
+ 27, (wn — p, T (Po(I — nAz) — I)Twy)

(4.2) — Y (2(Up, — D) + 7, W, W)

Now, observe that

(wy, — p, T*(Po(I —nAy) — INTw,)
= (Tw, —Tp, Po(I — nAs)Tw, — Tw,)
= (Tw, + Po(I — nAs)Tw, — Po(I —nAs)Tw, — Tw, + Tw, — Tp,
Po(I —nAs)Tw, — Twy,)
= (Po(I —nAs)Tw,, — Tp, Po(I — nAs)Tw, — Twy,)
— | Po(I — nAy)Tw, — Tw,||?
1
= SllIPe(l = nA2)Tw, — Tp|* + || Po(I — nAz)Tw, — Twy|?
— | Twn = Tpl’] = [Po(I = nAs)Tw, — Tw,|?
1 1 1
< Sl Twn — Tp|* - SIPo(l = nAz)Tw, — Tw,|* - I Twn — Tpl?

1
(4.3) = —§||PQ(1 — nAy)Tw, — Tw,||*
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Substituting[(4.3) intd (4]2), we have

[un = plI* < lwn = plI? + V2T (Po(I = nAs) — I)Tw,|
— Yl Po(I = nA2)Twy — Twy||* = 7,00 (2(tn — p) + ¥, 00w, wn)
< Jwn = plI? + V2| T*(Po(I — nAs) — I)Twy||?
= V(Y + ONT*(Po(I = nAs) — D) Tw,” — 7,00 (2(tn — p) + 7,00 W, W)
4.4) = w, =l = Vel T*(Po(I = nAs) — DTw,|]* + 0 (2(un — ) + Y Ontwn, wy)]
< |Jwn = p|?,

this implies that
(4.5) [tn = pll < [lwn = p.

Sincev,, = Po(u, — M\ Aju,) andp € VI(Ay, C) C C, then by the characterization &%, we
have

<vn — P, Un — Up + /\nAlun> S 0.

Using the monotonicity ofl;, we obtain

<Un - D, bn> <vn —D,Up — Up — )\nAlun> + )\n<vn 2 Al”n)
A —p, A1vy,)
A

n<vn
n<vn — D, Alvn - A1p> + >\n<vn 2 A1p> Z 0.

v

Thus we have

<un - b, bn> = <un - Unabn> + <Un - b, bn>

<un — Unp, bn)

(4.6)

v

Hence fromStep3 and [4.6), we have

= pII* = llun = Tnbo — plI*
= Jlun = plI* + 73 116al* = 270 (s — p, bn)
< flun — pH2 + 7_721an||2 — 270 (U — Vg, bn)
<l = plI* + T3 l10all* = 275104
= [lun = plI* = [I70bnll?
(4.7) < lun =l

this implies that

(4.8) lyn — 2l < Jwn — P
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In addition we observe that

11— an = B,) (@0 — ) + Bn(yn — p)|I?

= (1= an = B, w0 = plI* + B2llyn — plI?

2(1 = an — B,) B, (Tn — D, yn — )

(1= an = B,) Nz — plI* + B2llyn — I

2(1 = an = B,)Bullzn — pllllyn — pll

B, len = plI* + Ballyn — pII?

1—an = B3,)8,llen — plI> + (1 = an = 8,)B,llyn — plI?

(
(
= (1 —an = 6,)(1 = an)llzn = p* + (1 = @) Bollyn — p?
< (1= an = B,)(1 = an)llzn = pl* + (1 = an) B, llwn — pl*
< (1= ay = B,) (1 = an)llzn = plI* + (1 = @) B, lllzn — pll + N1 J?
= (1= ay = 8,)1 = an)llzn = pl* + (1 = an) B, |0 — pI*
+2(1 — ay,) B0 || T — || N1+ (1 — @) 8,02 N7
< (1= an)?[lzn = plI* +2(1 = an) |z, — pl| N1 + af N7
(4.9) = [(1 = an)llzn = pl| + anNi ],
this implies that
@10) 0~ 0n— B)(n —2) + Bule — D) < (1= )l +

Lastly, we have

s = pll = 11 = @ = 3,) (50 = 2) + Bulyn — p) = anpl
< (1 = an = B,) (w0 = p) + Br(yn — )| + cnllpll
< (1= ap)|lzn = pll + anNi + anllpl|
= (1 — an)llzn — pll + an(N1 + [pl])
< max{||z, — pl|, M1 + ||pll}

(4.11) < max{||z1 — pl|, N1 + [|p||}-

Thus,{z, } is boundedy

Lemma 4.2. Let Assumptiof 3|1 hold and Iét,,} be a sequence generated by Algorithn 3.2.
Assume that the subsequerasg, } of {z,,} converges weakly to a point, and klim | tn, —
Wy, || = klim |tn, — vn, || =0, then,z* € T.

Proof. Let {x,, } be a subsequence éf,,} which converges weakly to* € H,. It is easy to
see that

7

(4.12) Wy, — Ty || = O‘nkﬂnxnk — Ty, 1| — 0 ask — oo.
ng
It follows that
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SinceT is a bounded linear operator, it follows from (4.12) thdtw,, } converges weakly to
Tx* € Q C H,. Also, by (4.18), we obtain that,, converges weakly ta*. In addition, we
have

(414) ank - m”k” < ank - unkH + Hunk - xnkH — 0ask — oo.
From [4.4), we have that
= pl* < llwn = pII* = 7€l T* (Po(I = nAa) — I)Tw, |
(4.15) < wn = pl? = €T (Po(I — nAz) — I)Tw, |,
which implies that
T (Po(I — nAz) — I)Twn,|I* < Jlwny, = plI* = [Jun, — pl?

(416) < ||wnk - unkHQ + 2”“’% - p||||wnk - u”k“’
thus, we have that
(4.17) i [|T*(Po(I = nAy) — I)Tw,, || = 0.
More so, from[(4.4), we have
lttn = pll < llwn — Pl + 72N T*(Po(I = 1A2) — I)Tw,||* = 7, || Po(I — nAs)Tw, — Tuw, |
(4.18) < flwn — p|* + 22T (Pl — nAs) — )Tw,||* — €| Po(I — nAs)Tw, — Tuw, |,
which implies that

el Po(I — nAz)Tw,, — Twy, |?

< lwny, = plI* = lftn, = plI* + 72T (Po(I = nAs) — I)Tw,, |*
(4.19) < Hwnk - unk||2 + 2||unk - pH”wnk - unk” + 'VELHT*(PQ(I —nAs) — ]>Twnk||27
which implies that

(4.20) ]}LIrolo | Po(I —nAs)Tw,, —Tw,,| =0.
Using Lemma 23 andl (4.20), we have that
(4.21) Tx* € F(Po(I —nAsy)) = Tax" € VI(As, Q).
In addition sincey,, = Pc(u,, — An, A1y, ), We obtain
(4.22) (Un,, — Apj, A1y, — Uny 0 — vy, ) < 0V € C.
Then,
(Uny, — Vnyoy 0 — Uy ) < Ay (A1, © — Uy )
(4.23) < Ay (Artn,, Uny, — Vny) + Ay (A, , v — Uy, ) Vv € C.

Now fix v € C and take limit as: — oo in (4.23), since|u,, — v,, || — 0 andliminf \,, > 0,
we have

(4.24) 0< h}?_l)(i;lf(Alunk,U — Uy, ) Vv € C.

SinceA; is monotone, we then have

(4.25) (A10,0 — up, ) > (Ajtty,, v — Uy, ) Vv e C.
Taking liminf of both sides, we have

(4.26) li,?ig}f@‘llv, V= Up, ) > ligg}f(Alunk, v —uy,, ) VveC.
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More so sincgu,, } converges weakly to*, the it follows from [4.24) and (4.26) that

(4.27) (Ajv,v — ") = liminf(Ajv, v — u,, ) > 0.

k—oo

Thus, using Lemmpa 2.5, we have thate VI(A;, C'). Using this fact and (4.21), we have that
zrel.

Theorem 4.3.Let{z,} be the sequence generated by Algorithnm 3.2. Then, under the Assump-
tion , if lim o, =0, 2, &, = o0 and0 < liminf, .. 3, < limsup,_ 6, < 1. Then,

{z,} converges strongly tp € I', where||p|| = min{||z*|| : 2* € T'}.

Proof. Letp € I'. To start with, observe that

lwn = plI* = llzn + On(@n = 20-1) = p]|*
= ||z = p||* + 20, (2 — p, Ty — Tp_1) + 02|20 — Ty
< Nz = plI* + 205201 = pllllzn — pll + O3ll2n — 2o
= ||z = plI* + Onllzn — 2l 2llzn — pll + |20 — 20all]

O
= llzn = pI* + Oullzn — 2201z = pll + an—=lzn = 20 l]
o

n

< llzn = pl* + Onllzn — n-all2llz0 — pll + V1]
(4.28) < llzn = plI* + Onllwn — 2o [ N,

for someN, > 0. 1

Also,
11 = B,)2n + Buyn — ol = 11 = 8,) (20 = p) + B, (yn — D)
= (1= 8, zn = plI” + Billyn — plI”> +2(1 = 8,) 8, (%0 — P Y — D)
< (1= B2z — plI* + Ballwn — plI* +2(1 = 8,) 8, l|2n
= pllllyn — pll
< (1= B,)%wn = plI* + Billwn — plI* + (1 = 8,) 8,1z — plI?
+ (1= 6,)8,ullyn — pII?
< (1= B,)%wn = plI* + Ballwn — plI* + (1 = 8,) 8,1z — plI?
+ (1= 8,)8,llwn — plI?
= (1 =B )z — pIP + Bollwn — pl?
< (1= B)llwn = pl* + Bulllen — plI* + Onllzn — 20| Na]
(4.29) < |z = plI? + Onllzn — Tni||No.
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Hence we have that

21 = p* = 1(1 = a)[(1 = B,)0 + Buyn — 1] = [Bpn(n = ya) + anp]||®
<(1- C“n)2H(1 — B,)Tn + Bryn — pH2 — 2(B,n(Tn — Yn) + P, Tpy1 — p)
< (1= o)’ l(1 = B,)@n + Buyn — plI* + 2(Bnan(Tn — Yn), D — Tat1)
+ 20, (p, p — Tpt1)
< (1= an)[llzn = plI* + Onllzn — 21| Na] + 2008, |20 — Yl [ 241 — pll
+ 20, (P, D — Tpy1)

O,
< (1 —ap)|lz, - pHQ + 20,8, |20 — YnllllTns1 — pll + O‘na_Hxn — Tn_1]|No

+ 20, (D, p — Tpt1)

0y,
L—ap)en = pl* + 028,170 = gallllenis =l + —=ll2n — 20 a [ N2

(
+ 2<p7p - xn+1>]
(

(4.30) 1 —ap)|lzn — p|* + andy

whered,, = 26, ||z, — yallllznsr = pll + Z2[lzn — @t || N2 + 2(p, p — @n41). According to
Lemmg 2.4, to conclude our proof, itis sufficient to establishlinasup, .., J,,, < 0 for every
subsequenc§||z,, — p||} of {||z, — p||} satisfying the condition:

(4.31) tim inf{ 0, 11— pll = 5, — I} > 0.

To establish thaltim sup,,_, ., 4, < 0, we suppose that for every subsequefite,, — p||} of
{||z. — p||} such that[(4.31) holds. Then,

lim inf {2, 11— plI* = [|2a, —p[*}
= lim inf{([[zn 41 = pll = |20, = PIDUZnr1 =PIl + [[2n, = pI)}
(4.32) > 0.

Now usingStep 4, we have

[Zns1 — plI* = 11 = — B)@n + Buyn — plI?

(1= an = B,) (@0 — p) + B, (yn — p) — anp)|®

(1= o = B,) (@0 = p) + B (yn — ) |I” + o |Ip||”

—2an((1 = = B,) (@0 — ) + B,(Yn — p), D)

<1 = = B,) (@0 — p) + Bolyn — P)I* + anM

< (1= an = Bo)llzn — 2l + Bullyn — 2lI* = (1 — o = 8,)B,llyn — 2l + anM
< (1= an = B)llen —plI* + B, llwn —plI* = (1 — an — 8,) 8, llyn — 2all* + anM
<

(4.33) 1z =PI + Onllzn — 2nallN2 = (1= an = 8,) B, lyn — zall* + 00 M
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for someM > 0. This implies from[(4.3R) that

lim sup[(1 — an, = B, ) B 19n, — 2, |I*] < limsup[[|zn, — plI* = [|2a,+1 — pII*

k—o0 k—o0

O
+ anka_k||xnk - Ink—1||N2 + ankM]

ng
(4.34) < —liminf[ln, — pl* = 701 = pI? <0,
which gives
(435) kh—{go Hynk - xnk” =0.

Similarly usingStep 4, (4.4), (4.7),[(4.2B)[(4.35) anfl (4]33), we obtain

1 = pI* < (1= = B)llzn = plI* + Bulllwn — plI* = lI7ablI]
— (1= an = B,)B,llyn — zall* + M
< (1= an = B,)llwn = plI* + Bullwn = plI* = Bullun — yall*
— (1= an = B,)B,llyn — zall* + €M
<z = pl* + Oullzn — 2a-1| N2 = Bllun — yall®
(4.36) — (1= an = B,)B,1yn =zl + €aM

This implies from[(4.3R) that

lim supl3,,, [tn, — Y, [*] < limsup(|lz,, — plI* = |zn41 = pII*

k—o0 —00

+ @nkﬂu%k - 33nk71“N2

N
- (1 — Qg — ﬁnk)ﬁn”ynk - xnkHQ + C(nkM]
(4.37) < —lim inf{n, — plI* = 50,51 = 9] <0,
which gives
(4.38) l}LITOlO |tn, — Yn, || = 0.

Now, observe that

<unk = Unys bnk> = <unk — Unys Uny, — Uny, — )\nk (Alun;C - Alvnk)>
= Hunk - UnkH2 - <U’nk — Uny,» )\nk (Alunk - Alvnk)>

> ||unk - UnkH2 - )\nkHunk - U”kHHAlunk - Alv”k”

Any
> ||unk - UnkHQ - A - Hunk - Unk”Q
ne+1
)‘nk:u 2
(4.39) =(1- Mttny, = n, ||

)\le—‘rl
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which implies that

A
- 2 < L—i_l . b
Hun;C UnkH = )\nk+1 — )\nku<unk Uny. s nk>
)\’I’Lk—l-l 2
pr— —Tn bn
b
)\n 1
— ﬁmkankHHunk — Up, — Ay (A, — Ay, ||
nk+1 - N
Any+1
)\n +1 )\n M
(4.40) — K (14 2 N, = Yo, |t — v ||-
Ank_;'_l — Ank[,[/ )\nk+1 k k k k
Using [4.38), we have that
(4.41) klim |tn, — Vn, || = 0.

UsingStep 4, (3.2), (4.4),[(4.3b) and (4.83), we have
[2n11 = plI* < (1= an = Bo)llzn = plI* + Byllun — pl”
— (1= an = 8,)Bullyn — zall* + anM
< (1= an = By)llwn = plI* + B,llwn — plf?
— E8,IT*(Po(I —nAy) — I)Tw,|?
— (1= an = 8,)Bullyn — @al* + M

< llwn = plI* + Onllwn — 1l N2 — €8, T (Po(I — nAs) — I Twy |

for somelM > 0. This implies from[(4.3R)
limsup[e”,,, [|T*(Po(I — nAz) — ITwy, ||”]

k—oo

. 0
< timsuplJzn, — pl* = 21 = I + i, =2, — 21|V

k—o0 Nk
- (1 — Oy, — ﬂnk)ﬁnkHynk - xnkH2 + ankM]
(443) < —tminfl|lan, = pl* ~ |on — I} <O,
which gives
(4.44) lim | 7(Po(I = nAs) - NTw,|* = 0.

Using a similar approach as in (4]42) ahd (4.18), we have that
(4.45) Jim [|(Po(7 = nAg) — I)Twn|* = 0.

Using (4.44) and our hypothesis, we have
(4.46)

||unk - wnk” - ||wnk + rYnT*(PQ([ - T]A2 - I)T’an - oznl)wnk - w”k“ — 0 ask — oo.
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It is easy to see that, &s— oo, we have
0

(447) Hwnk - Ink” = anHxnk - xnk—lH = Qny - ﬂ”xnk - xnk—lH — 0.
ng
In addition, we have that
(448) ||wnk - ynk” < ||wnk - xnkH + ||xnk - ynk” — 0 ask — oo.
(450) ank - xnk” < ank - U’nk” + ”uﬂk - xnkH — 0 ask — oo.
From the Algorithn 3. and (4.85), observe that
H‘I.nk+1 - ynk” = H(l — Qp — ﬁn)xnk + 5ny”k - ynk“
(451) < (1 — Qpy, — ﬁnk)Hxnk - ynk” + ﬁnkHynk - ynk” + ankHynk” — 0ask — oo
Using (4.51) and (4.35), it is easy to see that
(452) ||xnk+1 - x”k” < ”mnk"‘l - ynk” + ||y7’lk - x”k” — O0ask — oo.

Since{z,, } is bounded, it follows that there exists a subseque{m;%} of {z,, } that con-
verges weakly ta* such that
(4.53) lim sup(p, p — @p,) = jlirglo<p7p — T, ) = (p,p — 7).

k—oo
Also, we obtain from([(4.46)] (4.41) and Leminal4.2 thate I'. Hence, since = P,0, we
have obtain from[(4.53) that

(4.54) lim sup(p, p — 2,) = (p,p — %) <0,

k—o0

which implies that
(455) lim Sup<p7p - xnk+1> S 07

k—o0
Using using our assumptior], (4]35) afnd (4.55), we havelthatup, ... d,, = 20, ||z, —
Ynllllznsr = pll + 2|2 — 20 1[| N2 + 2(p, p — 2n41) < 0. Thus, the last part of Lemma 2.4 is
achieved. Hence, we have thiin ||z, — p|| = 0. Thus,{z,,} converges strongly tp € T

5. NUMERICAL EXAMPLES

In this section we present some numerical experiments to show the efficiency and applicabil-
ity of our method in the framework of infinite dimensional Hilbert spaces.

Example 5.1.Let H; = H, = /, be the linear space whose elements consists of all 2-summable
sequence of scalafs, z, ..., zj,...), i.e.,

ly = {a:: (1,29,...,25,...) and Z|xj|2<oo}

j=1
with inner product(-,-) : £, x £, — R defined by(z,y) = >°72, z;y; and norm||z||y :=

<Z;?';1 |:cj]2>§ ,wherez = {z,} € {, andy = {y;} € ¢». LetC be defined by’ = {z € ¢, :
(a,x) = b} wherea = (3,5,3,0,...,0,...)andb =4 and@ = {z € {5 : (¢,x) > d} where
c=(3,1,0,0,:0,...)andd = 3. Thus, we have

Po(%) = max {0, b-la,) } a+ 7,

13
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Figure 1: Exampl¢ 5]1, Top Left: Case I; Top Right: Case II; Bottom Left: case IlI; Bottom Right: Case IV.

and
d—{c,T)
lell3
LetT : ¢, — {, be defined byl'z = 5z, thusT is a bounded linear operator. Suppose
Al . 62 — gg be defined byqlif' = (3.1'1,3.%2, Ce ,3£Cj, c. ) and Ag . 62 — 62 be defined by
Ao = (%1, R %, . ) . It is easy to see thatl; and monotone and Lipschitz continuous
and A, is inverse strongly monotone. We choase= 2, \; = 1,u = 0.5,0,, = 0., =
= 60 = 33,3, = 3 — a,,, forall n € N. Itis easy to verify that all hypothesis of Theorem
@ are satisfied. We implement our algorithm for different values of; as follows.

PQ(i‘) = c+rx.

Caselix; = (1,5,5,...), %0 = (3,2, 75 --- );
Casell:zy = (5,2, 715---)izo=(1,3.5,-..),
Caselll::cl:(1,§,§,...),x0_(2,1,§,. );
Case IViz; = 2 = ( ,1,%,...);3:0:( ulu%" )
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Example 5.2.Let H; = Hy = L»([0, 1]) be equipped with the inner product

(2, ) = / w(y(H)dt Y 2,y € Ly([0, 1]) and jo]* = / 2()2dt Y, y, € La([0,1]).

Let Ay, Ay : Ly([0,1]) — Ls([0, 1]) be defined by

Ava(t) = /0 <:U(t) - (%) Cosx(s)>ds + W% v € Ly([0, 1]) and

Ayz(t) = max{0, @}, te[0,1].

It is easy to see thatl; is Lipschitz continuous and monotone adAd is inverse strongly
monotone orl, ([0, 1]). LetT : Ly(]0, 1]) — Lo([0, 1]) be defined by

Ta(s) = /01 K(s,)z(t)dt ¥ z € L([0, 1)),

whereK is a continuous real-valued function defined [onl] x [0, 1]. Thus,T" is a bounded
linear operator with adjoint

T x(s) = /01 K(t,s)x(t)dt ¥ x € Ly([0,1]).

LetC be defined by’ = {x € Ly : (a,z) = b} wherea # 0 andb = 2 and@ = {z € L :
(¢, x) > d} wherec # 0 andd = 4. Thus, we have
Po(Z) = max {0, b- {a7) } a+z,

lall?
and
d—{c,T)
[lell?
We choose,, = 2,A\ = 1,10 = 05,0, = 0,00, = =15, 60 = =347, 3, = 5 —a, foralln e N.
It is easy to verify that all hypothesis of Theollen 4.3 are satisfied. We implement our algorithm
for different values of, =, as follows.

Case Lizg(t) = 2t2 +t + 2, (1) = t;

Py(z) = c+ 7.

Case Il:zg(t) = 2t* + e + 1, x1(t) = 3t + 3;
Case lll: zo(t) =t + 2, x1(t) = cos(t);
Case IV:zy(t) = cos(t) + 2t> + 4, z,(t) = 2t + 2 + €.

6. CONCLUSION

A new inertial regularization method for solving the SV[P {1[2){1.3) is proposed, we es-
tablish strong converge to a minimum-norm solution of the problem in two real Hilbert spaces.
The main advantage of this method is the combination of both the inertial extrapolation step and
the regularization method, which has not been used to solve the SV]P[(1]2)-(1.3). In addition,
our method uses a simple self-adaptive stepsize that is generated at each iteration, which allows
it to be easily implemented without the prior knowledge of the operator norm as well as the
Lipschitz constant. Finally, we present some numerical experiments to establish the applicabil-
ity and efficiency of our method. The results obtain in this paper is new in solving the SVIP

T.2)-(1.3).
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Figure 2: Exampl¢ 5]1, Top Left: Case I; Top Right: Case II; Bottom Left: case IlI; Bottom Right: Case IV.
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