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ABSTRACT. In this paper, we use the auxiliary principle technique to suggest some new classes
of iterative algorithms for solving multivalued equilibrium problems with trifunction. The con-
vergence of the proposed methods either requires partially relaxed strongly monotonicity or
pseudomonotonicity. As special cases, we obtain a number of known and new results for solving
various classes of equilibrium and variational inequality problems. Since multivalued equilib-
rium problems with trifunction include equilibrium, variational inequality and complementarity
problems as specials cases, our results continue to hold for these problems.
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1. INTRODUCTION

Equilibrium problems theory is an interesting and fascinating branch of applicable mathe-
matics with a wide range of applications in industry, physical, regional, social, pure and applied
sciences. This field is dynamic and is experiencing an explosive growth in both theory and ap-
plications; as a consequence, research techniques and problems are drawn from various fields,
see [1], [3], [4], [14], [16]-119]. Equilibrium problems have been generalized and extended in
different directions using the novel and innovative techniques. Inspired and motivated by the re-
cent research going on in this area, we introduce and consider a class of equilibrium problems,
which is called multivalued general equilibrium with trifunction. It is known![14],][16]+[19]
that multivalued equilibrium problems include general equilibrium , variational inequality and
complementarity problems as special cases. There are several numerical methods including
projection methods, Wiener-Hopf equations, descent and decomposition for solving variational
inequalities, see [3]-[13], [15], [18],[20], [21]. On the other hand, there are no such methods for
solving equilibrium problems, since it is not possible to find the projection. To overcome these
drawbacks, one usually uses the auxiliary principle technigue to suggest some iterative methods
for solving equilibrium problems. The auxiliary principle technique is mainly due to Lions and
Stampacchia |7]. Glowinski, Lions and Tremoliergs [5] used this approach to study the exis-
tence of a solution of the mixed variational inequalities. In recent years, Noor[14]-[17] has used
this technique to study some predictor-corrector methods for various classes of equilibrium and
variational inequality problems. In this paper, we again use the auxiliary principle technique to
suggest a class of three-step predictor-corrector iterative methods for multivalued equilibrium
problems with trifunction. In particular, we show that one can obtain various forward-backward
splitting, modified projection, and other methods as special cases from these methods. We also
prove that the convergence of the suggested methods requires only the partially relaxed strongly
monotonicity. Using the auxiliary principle technique, we also suggest and analyze an inertial
proximal method for solving multivalued equilibrium problems. We show that the convergence
of the inertial proximal method converges for pseudomonotone functions, which is a weaker
condition than monotonicity. It is worth mentioning that inertial proximal method include the
classical proximal method as a special case. Consequently, our results represent an improve-
ment and refinement of the previously known results. Our results can be considered as an
important and significant extension of the previously known results for solving general equilib-
rium, variational inequality and complementarity problems.

2. PRELIMINARIES

Let H be a real Hilbert space whose inner product and norm are denotéd-band||.||,
respectively. LeC'(H) be the family of all non-empty compact subsetsbfLetT : H —
C(H) be a multivalued operator and: H — H be a single-valued operator. L&t be a
nonempty, closed and convex setin

For a given single-valued trifunctiof'(.,.,.) : H x H x H — C(H), we consider the
problem of findingu € H, g(u) € K,v € T(u), such that

(2.1) F(u,v,g(v)) 20, Vg(v) € K,

which is called thenultivalued general equilibrium problem with trifunctiort can be shown

that a wide class of problems arising in various branches of pure and applied sciences can be
studied in the general framework of multivalued equilibrium problems.grFer/, the identity
operator, we obtain the multivalued equilibrium problems considered and studied by Noor and
Oettli [19] and Noor([17] using quite different techniques.
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If T': H— H is asingle-valued operator, then problem 2.1 is equivalent to findieg?
such that

(2.2) F(u,Tu,g(v)) >0, Vg(v) €K,

which is called the general equilibrium problem with trifunction. glf= I, where is the
identity operator, problein 3.2 was introduced and studied by Noor [17].

If F(u,v,g(v)) = F(v,g(v), then problenj 2]1 is equivalent to findinge H : g(u) €
K, v e T(u)such that

(2.3) Fv,g(v)) 20, Vg(v) € K,

which is known as the multivalued general equilibrium problem, introduced and studied by
Noor [16]. If T is a single-valued operator agd= I, the identity operator, we obtain the
original equilibrium problems considered and studied by Blum and Okttli [1] and Noor and
Oettli [19] in 1994.

If F(u,v,g(v)) = (v,g(v) — g(u)), then probleni 2]1 is equivalent to findinge H,v &
T'(u),g(u) € K such that

(2.4) (v,g(v) —g(u)) = 0,  Vg(v) € K.

The inequality of typé 2]4 is called thraultivalued variational inequality It is known that a
wide class of multivalued odd order and nonsymmetric free, obstacle, moving, equilibrium and
optimization problems arising in pure and applied sciences can be studied via the multivalued
variational inequalities 2|4, see, for example, Noor [10].

We note that, ifl’ : H — H is a single-valued operator, then problem 2.4 is equivalent to
findingu € H, g¢(u) € K such that

(2.5) (Tu,g(v) —g(u)) > 0, Vg(v) €K,

which is known as the general variational inequality, introduced and studied by Noor [9] in
1988. Problem 2|5 is a quite general and unified one. It has been shown that a class of quasi-
variational inequalities, odd-order and nonsymmetric free, moving, unilateral, obstacle and non-
convex programming problems can be studied by the general variational inequality approach,
see[10]-4[13],115].

We remark that, iff = I, the identity operator, then problgm P.4 is equivalent to finding
u € K,v € T(u) such that

(2.6) (v,u—u)y > 0, Yuv e K,

which are called the generalized variational inequalities introduced and studied by Fang and
Peterson([2]. For the applications, numerical methods and formulations, see [2], [10], [12] and
the references therein.

If K* = {ue H : (u,v) > 0,Vv € K} is a polar cone of a convex coré in H, then
problen 2.4 is equivalent to findinge H such that

(2.7) guye K, veT(u) CK*, and (v,g(u)) =0,

which is known as the multivalued complementarity problem. We note théat jf= « —m(u),
wherem is a point-to-point mapping, then probl¢m|2.7 is called the multivalued quasi(implicit)
complementarity problem.

It is clear that problemjs 2[2-2.7 are special cases of the multivalued variational inequality
2.1. In brief, for a suitable and appropriate choice of the operdt¢rs), 7', g, and the space
H, one can obtain a wide class of equilibrium, variational inequalities and complementarity
problems. This clearly shows that problem|2.1 is quite general and unifying one. Furthermore,
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probleny 2.1 has many important applications in various branches of pure and applied sciences,
seel[1]121].
We also need the following well known results and concepts.

Lemma 2.1.Vu,v € H, we have
(2.8) 2(u, v) = [lu+o[* — [Jull* = [v]|?

Definition 2.1. Yuy, us, 2 € H,wy € T(uy), ws € T'(us9), the trifunctionF'(.,.,.) : H x H x
H — C(H) and the operatdf is said to be:
(i) partially relaxed strongly jointly-monotoneiff, there exists a constant > 0, such that

F(uy, wy, g(uz)) + F(us,wa, 9(2)) < allg(2) — g(w)||?
(i) jointly g-monotone,iff,
F(ur,wi, g(u2)) + F(uz, wa, g(ur)) < 0.
(iif)  jointly g-pseudomonotondf,
F(uy,wy, g(ug)) >0, implies F(us,ws, g(uy)) < 0.

Definition 2.2.  Vuy,us € Hywy € T(uy),w € T(uz), the multivalued operatdf : H —
C(H) is said to bel/-Lipschitz continuousiff, there exists a constant> 0, such that

M(T (ur), T(uz)) < 0fur — ual,
wherelM (., .) is the Hausdorff metric ot'(H).

We remark that, ifz = wu;, then partially relaxed strongly-monotonicity is exactlyg-
monotonicity of F'(., .,.). Forg = I, the indentity operator, Definition 2.1 reduces to the defi-
nition of partially relaxed strongly monotonicity, monotonicity and pseudomonotonicity of the
trifunction £°(, ., .).

3. MAIN RESULTS

In this section, we suggest and analyze a class of iterative methods for solving the problem
[2.7 by using the auxiliary principle technique.

Foragivenu € H : g(u) € K,v € T(u), consider the problem of finding a solutiane H
, g(w) € K, satisfying the auxiliary equilibrium problem
(3.1) pE(u,v,g(v)) + (9(w) = g(u), g(v) = g(w)) = 0, Vg(v) € K,

wherep > 0 is a constant.

We note that, itv = u, then clearlyw is a solution of the multivalued equilibrium problem
[2.1. This observation enables us to suggest the following predictor-corrector method for solving
the multivalued equilibrium problem 2.1.

Algorithm 1. For a givenu, € H, compute the approximate solutier,; by the iterative
schemes

(3.2) PE (W, 1, g(0)) + (g(tny1) — g(wn), 9(v) — g(unta)) > 0, Vg(v) € K
(33) M, € T(wn) : M1 — Mll £ M(T(wnia), T(w,))

(3.4) BE(Yn, &y 9(0) + (g(wn) — 9(Yn), 9(v) — g(w,)) >0, Vg(v) € K
(3.5) £ € T(WYn)  l€npr — Eull £ M (T (Yns1), T'(Yn))
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and
(3.6) PE (U, v, 9(0) + (9(Yn) — 9(un), g(v) — g(yn)) =0, Vg(v) € K.
(3.7) Vp € T(up) : ||Vng1 — vall < M(T(tupsr), T (uy)), m=0,1,2,...

wherep > 0, > 0 and > 0 are constants.

Note that, ifg = I, the identity operator, then Algorithin 1 reduces to the following predictor-
corrector method for solving the multivalued equilibrium problem.

Algorithm 2. For a givenuy € H, computeu,,,; by the iterative schemes

pF(wn,n,,v) + (Upi1 — Wpy v —up1) > 0, YoeK

M, € T<wn) : Hnn—l—l - nnH S M(T(wn+1)7T(wﬂ))

ﬁF(ymfm U) + <wn —Yn, UV — wn> Z 07 \V/U S K

PE (U, Vi 0) + (Y — Up,v —yn) > 0, YoeK

Up € T(up) : ||Vns1 — val| < M(T(upsq),T(uyn)), n=0,1,2...

If F(u,v,g(v)) = (r,g(v) — g(u)), then Algorithn] 1 reduces to the following algorithm for
solving multivalued variational inequalities 2.3.

Algorithm 3. For a givenu, € H, compute the approximate solutiery ., by the iterative
schemes

(PN, + Upt1 — Wy, v —upry)y > 0, YweEK,

N, € T<wn) : Hnn+1 - nnH < M(T(wn+1)7T(wﬂ))

<6€n+wn_yn7v_wn> Z 0, VUEK

(Wn + Yn = Un,v —yn) = 0, YweK

Up € T(up) @ ||Vner — val] < M(T(uns1),T(uyn)), n=0,1,2...

which can be written as

Algorithm 4. For a givenu, € H, compute the approximate solutiar),, by the iterative
schemes

) = Pxlg(wn) — pn,]
) g = mall < M(T (wnia), T(wn))
g(wn) = Prlg(yn) — B¢
) e = &all < M(T(ynta), T(yn))
) = Pxlg(un) — pv]
) ner = vl < M(T (un1), T (un)),
where Py is the projection ofd onto the closed convex st Algorithm([4 is known as the

predictor-corrector method for solving the multivalued variational inequalitie$ 2.4 52k
[13].

If T"is a single-valued operator, then Algorithins 3 ahd 4 reduce to:
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Algorithm 5. For a givenu, € H, computeu,,,; by the iterative schemes

<pT(wn)) + .g(un-i-l) - g(wn)7 g(U) - g(un-i-l)) Z 07 Vg(v) €K
(BT (yn) + g(wn) = g(yn), 9(v) = g(wn)) = 0, Vg(v) € K
(W (un) + 9(yn) — g(un), 9(v) —g(ym)) = 0, Vg(v) € K,
which is called the predictor-corrector method for solving general variational inequalities 2.5,
see Noof11]-[13].
We remark that Algorithm|5 can be written in the following equivalent form as
Algorithm 6. For a givenuy € H, computeu,,,; by the iterative schemes

9(n) = Prlg(un) — pTuy)
g(wn) = Pxlg(yn) — BT (yn)]
9(unt1) = Pglg(w,) — pT(w,)], n=0,1,2...
which can be written in the following form, gfis invertible,

9(tuni1) = Pg[l — pTg Pkl — BTg |Px[I — uTg 'g(u,), n=0,1,2...

Algorithm|[§ is known as three-step forward-backward splitting algorithms. Algofithm 6 is
similar to the so-called-scheme of Glowinski and Le Tallecl[6], which they suggested by
using the Lagrangian multiplier method. It has been showhlin [6] that three-step schemes are
numerically efficient and are reasonably easy to use for computations as compared with one-
step and two-step iterative methods for solving nonlinear problems arising in elasticity and
mechanics. The convergence analysis of Algorithm 6 has been considered by Noor [11]-[13].

We now rewrite Algorithni B in the following form:

Algorithm 7. For a givenuy, € H, compute the approximate solutiery . ; by the iterative
schemes

Ut = (L= pp)un + po{tn — g(un) + Prlg(wn) — p,n,]}
Ny € T(wn) o Nnar = Mull < M(T(wpga), T(wy))
w, = (1=08,)un+ B, {wn — g(wn) + Plg(yn) — 8.6,]}
En €T(n) ¢ N16nga = &l £ M(T(Yns1), T(yn))
Un = (L= pp)un + s {¥n — 9(yn) + Prclg(yn) — pnval}
Vn € T(un) 0 vnpr — vall < M(T(unt1), T(un)),

where the sequencés,, }, {5,}, {1, } satisfy some certian conditions.

Algorithm[7 is also known as three-step (Noor) iteration process. Clearly Ishikawa and Mann
iterations are special cases of Noor (three-step ) iterations.

Clearly for K = H and a single-valued operat®r with ¢ = I, the identity operator, Al-
gorithm[7 collapses to the following three-step iterative method for solving nonlinear equation
Tw = 0 which has been studied in the Banach spaces setting.

Algorithm 8. For a givenu, € H, compute the approximate solutier ., by the iterative
schemes

Unt1 = (1 —ap)up, + a,Tw,
Yo = (1 —p)un+ p,Tu,, n=0,1,2...
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Algorithm [§ is well known three-step (Noor iteration ) iterative method which has been
studied extensively in recent years. It is obvious that the three-step iterative method includes
Ishikawa-Mann iterations as special cases.

For a suitable choice of the operators and the sphaane can obtain various new and known
methods for solving equilibrium, variational inequality and complementarity problems.

For the convergence analysis of Algorithin 1, we need the following result.

Theorem 3.1.Letu € H be the exact solution ¢f 2.1 ang,,, be the approximate solution
obtained from Algorithrh|1. If the bifunctiafi(., ., .) is a partially relaxed strongly-monotone
operator with constant > 0, then

(3.8)  lg(un1) —g@)* < lglwn) = gw)|* = (1 = 2pa)[|g(tns1) — g(w,)||?
(3.9) lg(wn) = g(@I> < Nlg(yn) = g()[I* = (1 = 2a8)[Ig(ya) — g(wn)|?
(3.10)  [lg(yn) —g@)* < glun) — g(u)||* = (1 = 2ap)|lg(yn) — g(un)|[.
Proof. Letu € H, v € T(u) be solution of 2]1. Then

(3.11) pF(u,v,g(v)) > 0, Vg(v)eK
(3.12) BF(u,v,g(v)) > 0, Vgv)eK
(3.13) pF(u,v,9(v)) > 0, Vg(v) € K,

wherep > 0, 8 > 0 andu > 0 are constants.
Now takingv = u,, in[3.11 andv = v in[3.3, we have

(314) pF(u7 v, g<un+1)) 2 0
and
(3.15) pE (W, 5 g(w)) + (9(Unt1) — g(wn), g(u) — g(unt1)) = 0.

Adding[3.14 and 3.15, we have
(9(uny1) = g(wn), g(u) = g(tng1)) = —p{F (W, 0, g(w)) + F(u, v, g(unt1))}
(3.16) > —apllg(untr) — g(wn)|?,

where we have used the fact thét., ., .) is partially relaxed strongly-monotone with constant
a > 0.

Settingu = g(u) — g(upt1) @andv = g(up41) — g(wy,) in[2.§, we obtain

(g(uni1) = g(wn), g(u) = g(unya)) = %{HQ(U) = g(wa)|* = llg(u) = g(unsa)|?

(3.17) — lg(un+1) — g(wn)||2}-
Combining 3.1p and 3.17, we have

lg(uns1) = g(w)|* < llg(wn) = g(w)|* = (1 = 20p) | g(un+1) — glwn) %,

the required 3]8.

Takingv = v in[3.4 andv = w,, in[3.12, we have
(3.18) BF(u,v,g(w,)) > 0
and

Adding[3.18 andl 3.19 and rearranging the terms, we have

(g(wn) = g(yn), g(u) — g(wn)) > —B{F(yn. &, 9(w)) + F(u, v, g(w,))}
(3.20) > —Ballg(yn) — g(wa)|?,
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sincefF'(., ., .) is a partially relaxed strongly-monotone operator with constamt> 0.
Now takingv = g(w,) — g(y,) andu = g(u) — g(w,) in[2.8[3.20 can be written as

lg(u) = g(wa)[* < llg(w) = g(ya)lI* = (1 = 28a)[|g(yn) — g(wa)*,
the required 3]9.
Similarly, by takingyv = « in[3.§ andv = u,, 4 in[3.13 and using the partially relaxed strongly
g-monotonicity of the operataF(., .,.), we have
(3.21) (9(yn) = 9(un), g(u) = gyn)) = —pelg(yn) — g(un)|*.

Lettingv = y,, — u,,, andu = u — y, in[2.§, and combining the resultant wjth 3.21, we have
lg(yn) = g@)II* < llg(u) = g(ua)I* = (1 = 2p0) | g(yn) — (),

the required 3.70n

Theorem 3.2.LetH be a finite dimensional space. Lett H — H be injective and) <

Pp<s5: 0<B8<s5, 0<pu< i LetT : H — C(H) be M-Lipschitz continuous
operator Then the sequen{:en}‘” given by Algorithm 1 converges to a solutiof[2.1.

Proof. LetueHbeasqutlon of 2]1. Since 0 < p < 5-,0 < B < 3=, 0< p < 5, from

[3-83.10, it follows that the sequencil(u) — g(u)||}. {||9( )— (yn)ll} {g(u) —g(wn)|}

are nonincreasing and consequenRtly}, {y,} and{w,} are bounded under the assumptions
on the operatog. Furthermore, we have

> (1= 2ap)llg(wn) = g(uwn)* < llg(w) — g(wo)ll”
> (1 =208)llg(ya) — gwa) > < lg(u) — g(wo)|I?
> (1 —=20p)lg(ya) = g(u) > < llg(u) — g(uo)ll”
which implies that
Tim lg(wn) = g(un)| = 0
Tim lg(yn) = g(wn)ll = 0
Tim lg(yn) = g(un)| = 0.
Thus
Tim lg(uns1) = g(un)|| = lim {[g(uns1) = g(wa)l| + lim {[g(yn) — g(w,)]
(3.22) = lim {lg(yn) — g(un)[| = 0.

Let @ be the limlit point of{u,}; a subsequencéu,,}  of {u,} converges tai € H.

Replacingw,, andy, by u,; in[3.2[3.4 and 3]6, taking the limit; — oo and using 3.22, we
have
F(a,v,g(v)) = 0, Vg(v) €K,

which implies that: solves the multivalued equilibrium problens]|2.1 and
lg(uni1) — g(@|* < llg(un) — g(@)]*.
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Thus, it follows from the above inequality thét,, }. has exactly one limit point and
lim g(un) = g(@).

Sinceg is injective, thus
lim (u,) = 4.

It remains to show that € T'(u). From[3.7 and using th#/-Lipschitz continuity ofT’, we
have

vn — V|| < M(T (un), T'(u)) < 0l[un — ull,
which implies that,, — r asn — oo. Now consider
d(v, T (u)) v — vl + d(v, T(u))
v = vall + M(T (un), T'(u))

lv — v +6||u, —ul| — 0asn — oo

VAN VANV

whered(v, T(u)) = inf{||lv—=z| : z € T'(u)} andd > 0 is the M -Lipschitz continuity constant
of the operatofl’. From the above inequality, it follows thd{v, 7'(u)) = 0. This implies that
v € T'(u), sinceT (u) € C(H). This completes the proo#

We now use the auxiliary principle technique to suggest an inertial proximal method for
solving multi-valued equilibrium problems, which were studied and considered by Naoor [14]
for solving multivalued equilibrium problenmis 2.3. We remark that the inertial proximal method
includes the proximal method as a special case.

Foragivenu € H, g(u) € K, consider the auxiliary problem of finding € H, g(w) €
K, neT(w)such that
(3.23) pF(w,n,g(v)) + {g(w) = g(u) — alg(u) — g(u)), g(v) — g(w)) =2 0, Vg(v) € K,

wherep > 0 anda > 0 are constants. Note thatdf = «, thenw is a solution of 2.JL. We use
this fact to suggest the following iterative method for soljing 2.1.

Algorithm 9. For a givenuy € H, compute the approximate solution by the iterative schemes:

pF(w7,,+1,7]"+1,g(v)) + <g(un+1) - g(un) - O‘n(g(un) - g(un_l)),g(v) - g(u"+1)> >0, VQ(U) €K,
Ny € T(w’ﬂ) : ||777L+1 - nn” < M(T(wN+1)7T(wn))a

wherep > 0 and«,, > 0 are constants.

Algorithm[9 is known as the inertial proximal method. Note thatdgr= 0, Algorithm[9
reduces to:

Algorithm 10. For a givenu, € H, compute the approximate solutiar) ., by the iterative
scheme

pF<wn+17nn+17g<v)) + <g(un+l) - g(”n)Lg(U) - g(un>> Z 07 Vg(v) € K
My € T(wn) = |0pgr = 0all < M(T(wnsa), T'(wn)),
which is called the proximal method for solving multivalued equilibrium proflein 2.1.
If F(u,v,g(v)) = (r,g(v) — g(u)), then Algorithn{ 9 reduces to:

Algorithm 11. For a givenu, € H, compute the approximate solutiar) ., by the iterative
schemes

(M1 + 9(Ung1) — g(un) — an(g(un) — g(un-1)), g(v) — g(uny1)) >0, Vg(v) € K,
Nn € T(’U}n) : ||77n+1 - nn” < M(T(wN+1)’T(wn))7
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which can be written as

9(uns1) = Pxlg(u,) — Plpy1 + n(g(un) — g(un-1)],
Mo € T(wy)  + Npgs = Nl < M(T(wn1), T(wn)),

which is known as an inertial proximal method for solving the multivalued variational inequal-
ities and appears to be a new one. Notedpr= 0, Algorithm[1] reduces to the well known
proximal method for solving multivalued variational inequalifieg 2.4. In a similar way, for suit-
able and appropriate choices of the trifunctiof, ., .), T, ¢ and the spacé/, one can obtain a
number of new and known iterative methods for solving equilibrium and variational inequality
problems. Using the techniques and ideas of Noar [14],[16],[17], one can study the convergence
analysis of Algorithni P for pseudomonotone trifunctibi., ., .).
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