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1. I NTRODUCTION

Equilibrium problems theory is an interesting and fascinating branch of applicable mathe-
matics with a wide range of applications in industry, physical, regional, social, pure and applied
sciences. This field is dynamic and is experiencing an explosive growth in both theory and ap-
plications; as a consequence, research techniques and problems are drawn from various fields,
see [1], [3], [4], [14], [16]-[19]. Equilibrium problems have been generalized and extended in
different directions using the novel and innovative techniques. Inspired and motivated by the re-
cent research going on in this area, we introduce and consider a class of equilibrium problems,
which is called multivalued general equilibrium with trifunction. It is known [14], [16]-[19]
that multivalued equilibrium problems include general equilibrium , variational inequality and
complementarity problems as special cases. There are several numerical methods including
projection methods, Wiener-Hopf equations, descent and decomposition for solving variational
inequalities, see [3]-[13], [15], [18], [20], [21]. On the other hand, there are no such methods for
solving equilibrium problems, since it is not possible to find the projection. To overcome these
drawbacks, one usually uses the auxiliary principle technique to suggest some iterative methods
for solving equilibrium problems. The auxiliary principle technique is mainly due to Lions and
Stampacchia [7]. Glowinski, Lions and Tremolieres [5] used this approach to study the exis-
tence of a solution of the mixed variational inequalities. In recent years, Noor[14]-[17] has used
this technique to study some predictor-corrector methods for various classes of equilibrium and
variational inequality problems. In this paper, we again use the auxiliary principle technique to
suggest a class of three-step predictor-corrector iterative methods for multivalued equilibrium
problems with trifunction. In particular, we show that one can obtain various forward-backward
splitting, modified projection, and other methods as special cases from these methods. We also
prove that the convergence of the suggested methods requires only the partially relaxed strongly
monotonicity. Using the auxiliary principle technique, we also suggest and analyze an inertial
proximal method for solving multivalued equilibrium problems. We show that the convergence
of the inertial proximal method converges for pseudomonotone functions, which is a weaker
condition than monotonicity. It is worth mentioning that inertial proximal method include the
classical proximal method as a special case. Consequently, our results represent an improve-
ment and refinement of the previously known results. Our results can be considered as an
important and significant extension of the previously known results for solving general equilib-
rium, variational inequality and complementarity problems.

2. PRELIMINARIES

Let H be a real Hilbert space whose inner product and norm are denoted by〈·, ·〉 and‖.‖,
respectively. LetC(H) be the family of all non-empty compact subsets ofH. Let T : H −→
C(H) be a multivalued operator andg : H −→ H be a single-valued operator. LetK be a
nonempty, closed and convex set inH.

For a given single-valued trifunctionF (., ., .) : H × H × H −→ C(H), we consider the
problem of findingu ∈ H, g(u) ∈ K, ν ∈ T (u), such that

(2.1) F (u, ν, g(v)) ≥ 0, ∀g(v) ∈ K,

which is called themultivalued general equilibrium problem with trifunction.It can be shown
that a wide class of problems arising in various branches of pure and applied sciences can be
studied in the general framework of multivalued equilibrium problems. Forg = I, the identity
operator, we obtain the multivalued equilibrium problems considered and studied by Noor and
Oettli [19] and Noor [17] using quite different techniques.
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MULTIVALUED EQUILIBRIUM PROBLEMS WITH TRIFUNCTION 3

If T : H −→ H is a single-valued operator, then problem 2.1 is equivalent to findingu ∈ H
such that

(2.2) F (u, Tu, g(v)) ≥ 0, ∀g(v) ∈ K,

which is called the general equilibrium problem with trifunction. Ifg = I, whereI is the
identity operator, problem 2.2 was introduced and studied by Noor [17].

If F (u, ν, g(v)) ≡ F (ν, g(v), then problem 2.1 is equivalent to findingu ∈ H : g(u) ∈
K, ν ∈ T (u) such that

(2.3) F (ν, g(v)) ≥ 0, ∀g(v) ∈ K,

which is known as the multivalued general equilibrium problem, introduced and studied by
Noor [16]. If T is a single-valued operator andg = I, the identity operator, we obtain the
original equilibrium problems considered and studied by Blum and Oettli [1] and Noor and
Oettli [19] in 1994.

If F (u, ν, g(v)) = 〈ν, g(v) − g(u)〉, then problem 2.1 is equivalent to findingu ∈ H, ν ∈
T (u), g(u) ∈ K such that

(2.4) 〈ν, g(v)− g(u)〉 ≥ 0, ∀g(v) ∈ K.

The inequality of type 2.4 is called themultivalued variational inequality. It is known that a
wide class of multivalued odd order and nonsymmetric free, obstacle, moving, equilibrium and
optimization problems arising in pure and applied sciences can be studied via the multivalued
variational inequalities 2.4, see, for example, Noor [10].

We note that, ifT : H −→ H is a single-valued operator, then problem 2.4 is equivalent to
findingu ∈ H, g(u) ∈ K such that

(2.5) 〈Tu, g(v)− g(u)〉 ≥ 0, ∀g(v) ∈ K,

which is known as the general variational inequality, introduced and studied by Noor [9] in
1988. Problem 2.5 is a quite general and unified one. It has been shown that a class of quasi-
variational inequalities, odd-order and nonsymmetric free, moving, unilateral, obstacle and non-
convex programming problems can be studied by the general variational inequality approach,
see [10]-[13],[15].

We remark that, ifg ≡ I, the identity operator, then problem 2.4 is equivalent to finding
u ∈ K, ν ∈ T (u) such that

(2.6) 〈ν, v − u〉 ≥ 0, ∀v ∈ K,

which are called the generalized variational inequalities introduced and studied by Fang and
Peterson [2]. For the applications, numerical methods and formulations, see [2], [10], [12] and
the references therein.

If K∗ = {u ∈ H : 〈u, v〉 ≥ 0,∀v ∈ K} is a polar cone of a convex coneK in H, then
problem 2.4 is equivalent to findingu ∈ H such that

(2.7) g(u) ∈ K, ν ∈ T (u) ⊆ K∗, and 〈ν, g(u)〉 = 0,

which is known as the multivalued complementarity problem. We note that ifg(u) = u−m(u),
wherem is a point-to-point mapping, then problem 2.7 is called the multivalued quasi(implicit)
complementarity problem.

It is clear that problems 2.2-2.7 are special cases of the multivalued variational inequality
2.1. In brief, for a suitable and appropriate choice of the operatorsF (., .), T , g, and the space
H, one can obtain a wide class of equilibrium, variational inequalities and complementarity
problems. This clearly shows that problem 2.1 is quite general and unifying one. Furthermore,
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problem 2.1 has many important applications in various branches of pure and applied sciences,
see [1]-[21].

We also need the following well known results and concepts.

Lemma 2.1. ∀u, v ∈ H, we have

(2.8) 2〈u, v〉 = ‖u + v‖2 − ‖u‖2 − ‖v‖2

Definition 2.1. ∀u1, u2, z ∈ H, w1 ∈ T (u1), w2 ∈ T (u2), the trifunctionF (., ., .) : H × H ×
H −→ C(H) and the operatorT is said to be:
(i) partially relaxed strongly jointlyg-monotone, iff, there exists a constantα > 0, such that

F (u1, w1, g(u2)) + F (u2, w2, g(z)) ≤ α‖g(z)− g(u1)‖2

(ii) jointly g-monotone,iff,

F (u1, w1, g(u2)) + F (u2, w2, g(u1)) ≤ 0.

(iii) jointly g-pseudomonotone,iff,

F (u1, w1, g(u2)) ≥ 0, implies F (u2, w2, g(u1)) ≤ 0.

Definition 2.2. ∀u1, u2 ∈ H, w1 ∈ T (u1), w ∈ T (u2), the multivalued operatorT : H −→
C(H) is said to beM -Lipschitz continuous,iff, there exists a constantδ > 0, such that

M(T (u1), T (u2)) ≤ δ||u1 − u2||,

whereM(., .) is the Hausdorff metric onC(H).

We remark that, ifz = u1, then partially relaxed stronglyg-monotonicity is exactlyg-
monotonicity ofF (., ., .). For g ≡ I, the indentity operator, Definition 2.1 reduces to the defi-
nition of partially relaxed strongly monotonicity, monotonicity and pseudomonotonicity of the
trifunctionF (., ., .).

3. M AIN RESULTS

In this section, we suggest and analyze a class of iterative methods for solving the problem
2.1 by using the auxiliary principle technique.

For a givenu ∈ H : g(u) ∈ K, ν ∈ T (u), consider the problem of finding a solutionw ∈ H
, g(w) ∈ K, satisfying the auxiliary equilibrium problem

(3.1) ρF (u, ν, g(v)) + 〈g(w)− g(u), g(v)− g(w)〉 ≥ 0, ∀g(v) ∈ K,

whereρ > 0 is a constant.
We note that, ifw = u, then clearlyw is a solution of the multivalued equilibrium problem

2.1. This observation enables us to suggest the following predictor-corrector method for solving
the multivalued equilibrium problem 2.1.

Algorithm 1. For a givenu0 ∈ H, compute the approximate solutionun+1 by the iterative
schemes

ρF (wn, ηn, g(v)) + 〈g(un+1)− g(wn), g(v)− g(un+1)〉 ≥ 0, ∀g(v) ∈ K(3.2)

ηn ∈ T (wn) : ||ηn+1 − ηn|| ≤ M(T (wn+1), T (wn))(3.3)

βF (yn, ξn, g(v)) + 〈g(wn)− g(yn), g(v)− g(wn)〉 ≥ 0, ∀g(v) ∈ K(3.4)

ξn ∈ T (yn) : ||ξn+1 − ξn|| ≤ M(T (yn+1), T (yn))(3.5)
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and

µF (un, νn, g(v)) + 〈g(yn)− g(un), g(v)− g(yn)〉 ≥ 0, ∀g(v) ∈ K.(3.6)

νn ∈ T (un) : ||νn+1 − νn|| ≤ M(T (un+1), T (un)), n = 0, 1, 2, . . .(3.7)

whereρ > 0 , µ > 0 andβ > 0 are constants.

Note that, ifg ≡ I, the identity operator, then Algorithm 1 reduces to the following predictor-
corrector method for solving the multivalued equilibrium problem.

Algorithm 2. For a givenu0 ∈ H, computeun+1 by the iterative schemes

ρF (wn, ηn, v) + 〈un+1 − wn, v − un+1〉 ≥ 0, ∀v ∈ K

ηn ∈ T (wn) : ||ηn+1 − ηn|| ≤ M(T (wn+1), T (wn))

βF (yn, ξn, v) + 〈wn − yn, v − wn〉 ≥ 0, ∀v ∈ K

ξn ∈ T (yn) : ||ξn+1 − ξn|| ≤ M(T (yn+1), T (yn))

µF (un, νn, v) + 〈yn − un, v − yn〉 ≥ 0, ∀v ∈ K

νn ∈ T (un) : ||νn+1 − νn|| ≤ M(T (un+1), T (un)), n = 0, 1, 2 . . .

If F (u, ν, g(v)) = 〈ν, g(v)− g(u)〉, then Algorithm 1 reduces to the following algorithm for
solving multivalued variational inequalities 2.3.

Algorithm 3. For a givenu0 ∈ H, compute the approximate solutionun+1 by the iterative
schemes

〈ρηn + un+1 − wn, v − un+1〉 ≥ 0, ∀v ∈ K,

ηn ∈ T (wn) : ||ηn+1 − ηn|| ≤ M(T (wn+1), T (wn))

〈βξn + wn − yn, v − wn〉 ≥ 0, ∀v ∈ K

ξn ∈ T (yn) : ||ξn+1 − ξn|| ≤ M(T (yn+1), T (yn))

〈µνn + yn − un, v − yn〉 ≥ 0, ∀v ∈ K

νn ∈ T (un) : ||νn+1 − νn|| ≤ M(T (un+1), T (un)), n = 0, 1, 2 . . .

which can be written as

Algorithm 4. For a givenu0 ∈ H, compute the approximate solutionun+1 by the iterative
schemes

g(un+1) = PK [g(wn)− ρηn]

ηn ∈ T (wn) : ‖ηn+1 − ηn‖ ≤ M(T (wn+1), T (wn))

g(wn) = PK [g(yn)− βξ]

ξn ∈ T (yn) : ‖ξn+1 − ξn‖ ≤ M(T (yn+1), T (yn))

g(yn) = PK [g(un)− µν]

νn ∈ T (un) : ‖νn+1 − νn‖ ≤ M(T (un+1), T (un)),

wherePK is the projection ofH onto the closed convex setK. Algorithm 4 is known as the
predictor-corrector method for solving the multivalued variational inequalities 2.4, see[12],
[13].

If T is a single-valued operator, then Algorithms 3 and 4 reduce to:
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Algorithm 5. For a givenu0 ∈ H, computeun+1 by the iterative schemes

〈ρT (wn)) + g(un+1)− g(wn), g(v)− g(un+1)〉 ≥ 0, ∀g(v) ∈ K

〈βT (yn) + g(wn)− g(yn), g(v)− g(wn)〉 ≥ 0, ∀g(v) ∈ K

〈µT (un) + g(yn)− g(un), g(v)− g(yn)〉 ≥ 0, ∀g(v) ∈ K,

which is called the predictor-corrector method for solving general variational inequalities 2.5,
see Noor[11]-[13].

We remark that Algorithm 5 can be written in the following equivalent form as

Algorithm 6. For a givenu0 ∈ H, computeun+1 by the iterative schemes

g(yn) = PK [g(un)− µTun]

g(wn) = PK [g(yn)− βT (yn)]

g(un+1) = PK [g(wn)− ρT (wn)], n = 0, 1, 2 . . .

which can be written in the following form, ifg is invertible,

g(un+1) = PK [I − ρTg−1]PK [I − βTg−1]PK [I − µTg−1]g(un), n = 0, 1, 2 . . .

Algorithm 6 is known as three-step forward-backward splitting algorithms. Algorithm 6 is
similar to the so-calledθ-scheme of Glowinski and Le Tallec [6], which they suggested by
using the Lagrangian multiplier method. It has been shown in [6] that three-step schemes are
numerically efficient and are reasonably easy to use for computations as compared with one-
step and two-step iterative methods for solving nonlinear problems arising in elasticity and
mechanics. The convergence analysis of Algorithm 6 has been considered by Noor [11]-[13].

We now rewrite Algorithm 3 in the following form:

Algorithm 7. For a givenu0 ∈ H, compute the approximate solutionun+1 by the iterative
schemes

un+1 = (1− ρn)un + ρn{un − g(un) + PK [g(wn)− ρnηn]}
ηn ∈ T (wn) : ‖ηn+1 − ηn‖ ≤ M(T (wn+1), T (wn))

wn = (1− βn)un + βn{wn − g(wn) + PK [g(yn)− βnξn]}
ξn ∈ T (yn) : ‖ξn+1 − ξn‖ ≤ M(T (yn+1), T (yn))

yn = (1− µn)un + µn{yn − g(yn) + PK [g(yn)− µnνn]}
νn ∈ T (un) : ‖νn+1 − νn‖ ≤ M(T (un+1), T (un)),

where the sequences{ρn}, {βn}, {µn} satisfy some certian conditions.

Algorithm 7 is also known as three-step (Noor) iteration process. Clearly Ishikawa and Mann
iterations are special cases of Noor (three-step ) iterations.

Clearly for K = H and a single-valued operatorT with g = I, the identity operator, Al-
gorithm 7 collapses to the following three-step iterative method for solving nonlinear equation
Tu = 0 which has been studied in the Banach spaces setting.

Algorithm 8. For a givenu0 ∈ H, compute the approximate solutionun+1 by the iterative
schemes

un+1 = (1− αn)un + αnTwn

wn = (1− βn)un + βnTyn

yn = (1− µn)un + µnTun, n = 0, 1, 2, . . .
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Algorithm 8 is well known three-step (Noor iteration ) iterative method which has been
studied extensively in recent years. It is obvious that the three-step iterative method includes
Ishikawa-Mann iterations as special cases.

For a suitable choice of the operators and the spaceH, one can obtain various new and known
methods for solving equilibrium, variational inequality and complementarity problems.

For the convergence analysis of Algorithm 1, we need the following result.

Theorem 3.1. Let u ∈ H be the exact solution of 2.1 andun+1 be the approximate solution
obtained from Algorithm 1. If the bifunctionF (., ., .) is a partially relaxed stronglyg-monotone
operator with constantα > 0, then

‖g(un+1)− g(u)‖2 ≤ ‖g(wn)− g(u)‖2 − (1− 2ρα)‖g(un+1)− g(wn)‖2(3.8)

‖g(wn)− g(u)‖2 ≤ ‖g(yn)− g(u)‖2 − (1− 2αβ)‖g(yn)− g(wn)‖2(3.9)

‖g(yn)− g(u)‖2 ≤ ‖g(un)− g(u)‖2 − (1− 2αµ)‖g(yn)− g(un)‖2.(3.10)

Proof. Let u ∈ H, ν ∈ T (u) be solution of 2.1. Then

ρF (u, ν, g(v)) ≥ 0, ∀g(v) ∈ K(3.11)

βF (u, ν, g(v)) ≥ 0, ∀g(v) ∈ K(3.12)

µF (u, ν, g(v)) ≥ 0, ∀g(v) ∈ K,(3.13)

whereρ > 0, β > 0 andµ > 0 are constants.
Now takingv = un+1 in 3.11 andv = u in 3.2, we have

(3.14) ρF (u, ν, g(un+1)) ≥ 0

and

(3.15) ρF (wn, ηn, g(u)) + 〈g(un+1)− g(wn), g(u)− g(un+1)〉 ≥ 0.

Adding 3.14 and 3.15, we have

〈g(un+1)− g(wn), g(u)− g(un+1)〉 ≥ −ρ{F (wn, ηn, g(u)) + F (u, ν, g(un+1))}
≥ −αρ‖g(un+1)− g(wn)‖2,(3.16)

where we have used the fact thatF (., ., .) is partially relaxed stronglyg-monotone with constant
α > 0.

Settingu = g(u)− g(un+1) andv = g(un+1)− g(wn) in 2.8, we obtain

〈g(un+1)− g(wn), g(u)− g(un+1)〉 =
1

2
{‖g(u)− g(wn)‖2 − ‖g(u)− g(un+1)‖2

− ‖g(un+1)− g(wn)‖2}.(3.17)

Combining 3.16 and 3.17, we have

‖g(un+1)− g(u)‖2 ≤ ‖g(wn)− g(u)‖2 − (1− 2αρ)‖g(un+1)− g(wn)‖2,

the required 3.8.
Takingv = u in 3.4 andv = wn in 3.12, we have

(3.18) βF (u, ν, g(wn)) ≥ 0

and

(3.19) βF (yn, ξn, g(u)) + 〈g(wn)− g(yn), g(u)− g(wn)〉 ≥ 0.

Adding 3.18 and 3.19 and rearranging the terms, we have

〈g(wn)− g(yn), g(u)− g(wn)〉 ≥ −β{F (yn, ξn, g(u)) + F (u, ν, g(wn))}
≥ −βα‖g(yn)− g(wn)‖2,(3.20)
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sinceF (., ., .) is a partially relaxed stronglyg-monotone operator with constantα > 0.
Now takingv = g(wn)− g(yn) andu = g(u)− g(wn) in 2.8, 3.20 can be written as

‖g(u)− g(wn)‖2 ≤ ‖g(u)− g(yn)‖2 − (1− 2βα)‖g(yn)− g(wn)‖2,

the required 3.9.
Similarly, by takingv = u in 3.6 andv = un+1 in 3.13 and using the partially relaxed strongly

g-monotonicity of the operatorF (., ., .), we have

(3.21) 〈g(yn)− g(un), g(u)− g(yn)〉 ≥ −µα‖g(yn)− g(un)‖2.

Lettingv = yn − un, andu = u− yn in 2.8, and combining the resultant with 3.21, we have

‖g(yn)− g(u)‖2 ≤ ‖g(u)− g(un)‖2 − (1− 2µα)‖g(yn)− g(un)‖2,

the required 3.10.

Theorem 3.2. Let H be a finite dimensional space. Letg : H −→ H be injective and0 <
ρ < 1

2α
, 0 < β < 1

2α
, 0 < µ < 1

2α
. Let T : H −→ C(H) beM -Lipschitz continuous

operator. Then the sequence{un}
∞

1
given by Algorithm 1 converges to a solutionu of 2.1.

Proof. Let u ∈ H be a solution of 2.1. Since 0 < ρ < 1
2α

, 0 < β < 1
2α

, 0 < µ < 1
2α

, from
3.8-3.10, it follows that the sequences{‖g(u)−g(un)‖}, {‖g(u)−g(yn)‖}, {g(u)−g(wn)‖}
are nonincreasing and consequently{un}, {yn} and{wn} are bounded under the assumptions
on the operatorg. Furthermore, we have

∞∑
n=0

(1− 2αρ)‖g(wn)− g(un)‖2 ≤ ‖g(u)− g(w0)‖2

∞∑
n=0

(1− 2αβ)‖g(yn)− g(wn)‖2 ≤ ‖g(u)− g(y0)‖2

∞∑
n=0

(1− 2αµ)‖g(yn)− g(un)‖2 ≤ ‖g(u)− g(u0)‖2

which implies that

lim
n→∞

‖g(wn)− g(un)‖ = 0

lim
n→∞

‖g(yn)− g(wn)‖ = 0

lim
n→∞

‖g(yn)− g(un)‖ = 0.

Thus

lim
n→∞

‖g(un+1)− g(un)‖ = lim
n→∞

‖g(un+1)− g(wn)‖+ lim
n→∞

‖g(yn)− g(wn)‖

= lim
n→∞

‖g(yn)− g(un)‖ = 0.(3.22)

Let û be the limlit point of{un}
∞

1
; a subsequence{unj

}∞
1

of {un}
∞

1
converges tôu ∈ H.

Replacingwn andyn by unj
in 3.2,3.4 and 3.6, taking the limitnj −→ ∞ and using 3.22, we

have

F (û, ν̂, g(v)) ≥ 0, ∀g(v) ∈ K,

which implies that̂u solves the multivalued equilibrium problems 2.1 and

‖g(un+1)− g(û)‖2 ≤ ‖g(un)− g(û)‖2.
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Thus, it follows from the above inequality that{un}
∞

1
has exactly one limit point̂u and

lim
n→∞

g(un) = g(û).

Sinceg is injective, thus
lim

n→∞
(un) = û.

It remains to show thatν ∈ T (u). From 3.7 and using theM -Lipschitz continuity ofT , we
have

||νn − ν|| ≤ M(T (un), T (u)) ≤ δ||un − u||,
which implies thatνn −→ ν asn −→∞. Now consider

d(ν, T (u)) ≤ ‖ν − νn‖+ d(ν, T (u))

≤ ‖ν − νn‖+ M(T (un), T (u))

≤ ‖ν − νn‖+ δ‖un − u‖ −→ 0 asn −→∞
whered(ν, T (u)) = inf{‖ν−z‖ : z ∈ T (u)} andδ > 0 is theM -Lipschitz continuity constant
of the operatorT. From the above inequality, it follows thatd(ν, T (u)) = 0. This implies that
ν ∈ T (u), sinceT (u) ∈ C(H). This completes the proof.

We now use the auxiliary principle technique to suggest an inertial proximal method for
solving multi-valued equilibrium problems, which were studied and considered by Noor [14]
for solving multivalued equilibrium problems 2.3. We remark that the inertial proximal method
includes the proximal method as a special case.

For a givenu ∈ H, g(u) ∈ K, consider the auxiliary problem of findingw ∈ H, g(w) ∈
K, η ∈ T (w) such that

(3.23) ρF (w, η, g(v)) + 〈g(w)− g(u)− α(g(u)− g(u)), g(v)− g(w)〉 ≥ 0, ∀g(v) ∈ K,

whereρ > 0 andα > 0 are constants. Note that ifw = u, thenw is a solution of 2.1. We use
this fact to suggest the following iterative method for solving 2.1.

Algorithm 9. For a givenu0 ∈ H, compute the approximate solution by the iterative schemes:

ρF (wn+1, ηn+1, g(v)) + 〈g(un+1)− g(un)− αn(g(un)− g(un−1)), g(v)− g(un+1)〉 ≥ 0, ∀g(v) ∈ K,

ηn ∈ T (wn) : ‖ηn+1 − ηn‖ ≤ M(T (wN+1), T (wn)),

whereρ > 0 andαn > 0 are constants.

Algorithm 9 is known as the inertial proximal method. Note that forαn = 0, Algorithm 9
reduces to:

Algorithm 10. For a givenu0 ∈ H, compute the approximate solutionun+1 by the iterative
scheme

ρF (wn+1, ηn+1, g(v)) + 〈g(un+1)− g(un), g(v)− g(un)〉 ≥ 0, ∀g(v) ∈ K

ηn ∈ T (wn) : ‖ηn+1 − ηn‖ ≤ M(T (wn+1), T (wn)),

which is called the proximal method for solving multivalued equilibrium problem 2.1.

If F (u, ν, g(v)) = 〈ν, g(v)− g(u)〉, then Algorithm 9 reduces to:

Algorithm 11. For a givenu0 ∈ H, compute the approximate solutionun+1 by the iterative
schemes

〈ρηn+1 + g(un+1)− g(un)− αn(g(un)− g(un−1)), g(v)− g(un+1)〉 ≥ 0, ∀g(v) ∈ K,

ηn ∈ T (wn) : ‖ηn+1 − ηn‖ ≤ M(T (wN+1), T (wn)),
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which can be written as

g(un+1) = PK [g(un)− ρηn+1 + αn(g(un)− g(un−1)],

ηn ∈ T (wn) : ‖ηn+1 − ηn‖ ≤ M(T (wN+1), T (wn)),

which is known as an inertial proximal method for solving the multivalued variational inequal-
ities and appears to be a new one. Note forαn = 0, Algorithm 11 reduces to the well known
proximal method for solving multivalued variational inequalities 2.4. In a similar way, for suit-
able and appropriate choices of the trifunctionF (., ., .), T, g and the spaceH, one can obtain a
number of new and known iterative methods for solving equilibrium and variational inequality
problems. Using the techniques and ideas of Noor [14],[16],[17], one can study the convergence
analysis of Algorithm 9 for pseudomonotone trifunctionF (., ., .).
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