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Foreword

Linear Operator Theory in Hilbert spaces plays a central role in contemporary mathemat-
ics with numerous applications for Partial Differential Equations, in Approximation Theory,
Optimization Theory, Numerical Analysis, Probability Theory & Statistics and other fields.

The main aim of this survey is to present recent results concerning inequalities for continu-
ous functions of bounded selfadjoint operators on complex Hilbert spaces.

The survey is intended for use by both researchers in various fields of Linear Operator
Theory and Mathematical Inequalities, domains which have grown exponentially in the last
decade, as well as by postgraduate students and scientists applying inequalities in their specific
areas.

In the first chapter we recall some fundamental facts concerning bounded selfadjoint oper-
ators on complex Hilbert spaces. The generalized Schwarz’s inequality for positive selfadjoint
operators as well as some results for the spectrum of this class of operators are presented. Then
we introduce and explore the fundamental results for polynomials in a linear operator, continu-
ous functions of selfadjoint operators as well as the step functions of selfadjoint operators. By
the use of these results we then introduce the spectral decomposition of selfadjoint operators
(the Spectral Representation Theorethat will play a central role in the rest of the survey.

This result is used as a key tool in obtaining various new inequalities for continuous functions
of selfadjoint operators, functions which are of bounded variation, Lipschitzian, monotonic or
absolutely continuous. Another tool that will greatly simplify the error bounds provided in the
survey is theTotal Variation Schwarz’s Inequalitipr which a simple proof is offered.

The chapter is concluded with some well known operator inequalities of Jensen’s type for
convex and operator convex functions. Finally, some Griiss’ type inequalities obtained in 1993
by Mond & Pearic are also presented.

Jensen’s type inequalities in their various settings ranging from discrete to continuous case
play an important role in different branches of Modern Mathematics. A simple search in the
MathSciNetdatabase of the American Mathematical Society with the key words "jensen” and
"inequality” in the title reveals more than 300 items intimately devoted to this famous result.
However, the number of papers where this inequality is applied is a lot larger and far more
difficult to find.

In the second chapter we present some recent results obtained by the author that deal with
different aspects of this well research inequality than those recently reported in the 2djvey [
They include but are not restricted to the operator version of the Dragomir-lonescu inequality,
Slater’s type inequalities for operators and its inverses, Jensen’s inequality for twice differ-
entiable functions whose second derivatives satisfy some upper and lower bounds conditions,
Jensen’s type inequalities for log-convex functions and for differentiable log-convex functions
and their applications to Ky Fan’s inequality. Finally, some Hermite-Hadamard'’s type inequal-
ities for convex functions and Hermite-Hadamard's type inequalities for operator convex func-
tions are presented as well. 5

The third chapter is devoted @ebySev and Griss’ type inequalities.
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The éebyée,vor in a different spelling Chebyshev, inequalitywhich compares the inte-
gral/discrete mean of the product with the product of the integral/discrete means is famous in
the literature devoted to Mathematical Inequalities. It has been extended, generalized, refined
etc...by many authors during the last century. A simple search utilizing either spellings and the
key word "inequality” in the title in the comprehensiMathSciNetdatabase produces more
than 200 research articles devoted to this result.

The sister inequality due to Griss which provides error bounds for the magnitude of the
difference between the integral mean of the product and the product of the integral means has
also attracted much interest since it has been discovered in 1935 with more than 180 papers
published, as a simple search in the same database reveals. Far more publications have been
devoted to the applications of these inequalities and an accurate picture of the impacted results
in various fields of Modern Mathematics is difficult to provide.

In this chapter, however, we present only some recent results due to the author for the
corresponding operator versions of these two famous inequalities. Applications for particular
functions of selfadjoint operators such as the power, logarithmic and exponential functions are
provided as well.

The next chapter is devoted to the Ostrowski’s type inequalities. They provide sharp error
estimates in approximating the value of a function by its integral mean and can be utilized to
obtain a priory error bounds for different quadrature rules in approximating the Riemann inte-
gral by different Riemann sums. They also shows, in general, that the mid-point rule provides
the best approximation in the class of all Riemann sums sampled in the interior points of a given
partition.

As revealed by a simple search fathSciNetwith the key words "Ostrowski" and "in-
equality” in the title, an exponential evolution of research papers devoted to this result has been
registered in the last decade. There are now at least 280 papers that can be found by perform-
ing the above search. Numerous extensions, generalizations in both the integral and discrete
case have been discovered. More general versions-fione differentiable functions, the cor-
responding versions on time scales, for vector valued functions or multiple integrals have been
established as well. Numerous applications in Numerical Analysis, Probability Theory and
other fields have been also given.

In this chapter we present some recent results obtained by the author in extending Ostrowski
inequality in various directions for continuous functions of selfadjoint operators in complex
Hilbert spaces. Applications for mid-point inequalities and some elementary functions of op-
erators such as the power function, the logarithmic and exponential functions are provided as
well.

From a complementary viewpoint to Ostrowski/mid-point inequalities, trapezoidal type in-
equality provide a priory error bounds in approximating the Riemann integral by a (generalized)
trapezoidal formula.

Just like in the case of Ostrowski’s inequality the development of these kind of results have
registered a sharp growth in the last decade with more than 50 papers published, as one can
easily asses this by performing a search with the key word "trapezoid” and "inequality” in the
title of the papers reviewed bylathSciNet

Numerous extensions, generalizations in both the integral and discrete case have been dis-
covered. More general versions feitime differentiable functions, the corresponding versions
on time scales, for vector valued functions or multiple integrals have been established as well.
Numerous applications in Numerical Analysis, Probability Theory and other fields have been
also given.

In chapter five we present some recent results obtained by the author in extending trape-
zoidal type inequality in various directions for continuous functions of selfadjoint operators in
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complex Hilbert spaces. Applications for some elementary functions of operators are provided
as well.

In approximatingr-time differentiable functions around a point, perhaps the classical Tay-
lor's expansion is one of the simplest and most convenient and elegant methods that has been
employed in the development of Mathematics for the last three centuries.

In the sixth and last chapter of the survey, we present some error bounds in approximating
n-time differentiable functions of selfadjoint operators by the use of operator Taylor's type
expansions around a point or two points from its spectrum for which the remainder is known
in an integral form. Some applications for elementary functions including the exponential and
logarithmic functions are provided as well.

For the sake of completeness, all the results presented are completely proved and the original
references where they have been firstly obtained are mentioned. The chapters are followed by
the list of references used therein and therefore are relatively independent and can be read
separately.
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CHAPTER 1

Functions of Selfadjoint Operators in Hilbert Spaces

1. INTRODUCTION

In this introductory chapter we recall some fundamental facts concerning bounded selfad-
joint operators on complex Hilbert spaces. Since all the operators considered in this survey are
supposed to be bounded, we no longer mention this but understand it implicitly.

The generalized Schwarz’s inequality for positive selfadjoint operators as well as some re-
sults for the spectrum of this class of operators are presented. Then we introduce and explore
the fundamental results for polynomials in a linear operator, continuous functions of selfadjoint
operators as well as the step functions of selfadjoint operators. By the use of these results we
then introduce the spectral decomposition of selfadjoint operator$fibetral Representation
Theoren that will play a central role in the rest of the survey. This result is used as a key tool
in obtaining various new inequalities for continuous functions of selfadjoint operators which
are of bounded variation, Lipschitzian, monotonic or absolutely continuous. Another tool that
will greatly simplify the error bounds provided in the survey is ffatal Variation Schwarz’s
Inequalityfor which a simple proof is offered.

The chapter is concluded with some well known operator inequalities of Jensen’s type for
convex and operator convex functions. More results in this spirit can be found in the recent
survey [].

Finally, some Griss’ type inequalities obtained in 1993 by Mond &adPie are also pre-
sented. They are developed extensively in a special chapter later in the survey where some
applications in relation with classical power operator inequalities are provided as well.

2. BOUNDED SELFADJOINT OPERATORS

2.1. Operator Order. Let(H;(.,.)) be a Hilbert space over the complex numbers field
A bounded linear operatad defined onH is selfadjoint i.e., A = A* if and only if
(Az,x) € Rforall z € H and if A is selfadjoint, then
(2.1) |A|| = sup |[(Az,z)| = sup |[(Az,y)|.
llzl=1 l=ll=llyll=1
We assume in what follows that all operators are bounded on defined on the whole Hilbert
spacef. We denote by (H) the Banach algebra of all bounded linear operators definéd. on

DEFINITION 2.1. LetA and B be selfadjoint operators oH. ThenA < B (A is less or
equal toB) or, equivalently,B > A if (Ax,z) < (Bz,x) for all x € H. In particular, A is
called positive ifA > 0.

It is well known that for any operatot € B (H ) the composite operators’ A and AA* are
positive selfadjoint operators affi. However, the operatotd* A and AA* are not comparable
with each other in general.

The following result concerning the operator order holds (see for inst@nhpe 220]):

THEOREM2.1. Let A, B,C' € B (H) be selfadjoint operators and let 5 € R. Then
(1) A< A4
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Q) If A< BandB < (C,thenA < C;

(3) If A< BandB < A, thenA = B;

(4) If A< Banda > 0, then
A+C<B+C,aA<aB,—A>-B;

(5) If a < 3, thenaA < A for positive operatotA.

The following generalization of Schwarz’s inequalitgr positive selfadjoint operatord
holds:

(2.2) [(Az,y)|* < (Az,z) (Ay,y)

foranyz,y € H.
The following inequality is of interest as well, sé&& p. 221]

THEOREMZ2.2. Let A be a positive selfadjoint operator di. Then
(2.3) 1Az]* < || A|l (A, )
foranyz € H.
THEOREM2.3. Let A,,, B € B(H) withn > 1 be selfadjoint operators with the property

that
A< A <...<A,<..<B.

Then there exists a bounded selfadjoint operatatefined on/ such that
A, <A< Bforalln>1

and
lim A,z = Axforall x € H.

n—oo

An analogous assertion holds if the sequefidg} ~ | is decreasing and bounded below.

DEFINITION 2.2. We say that a sequenfd,,} ~ | C B(H) converges strongly to an op-
eratorA € B(H), called the strong limit of the sequengel, } ~, and we denote this by
(s)limy, 00 A, = A, if lim,, o, Ayx = Axforallz € H.

The convergence in norm, i.e. lim, ||A, — A|| = 0 will be called the"uniform conver-
gence"as opposed to strong convergence. We denotg Jigt,, = A for the convergence in
norm. From the inequality

[Amz — Apz]] < [|Am — Apl} [[]]

that holds for all», m andz € H it follows that uniform convergence of the sequetieg, } >~ |
to A implies strong convergence ¢4}, to A. However, the converse of this assertion is
false.

It is also possible to introduce yet another conceptveéak convergenceih B (H) by
defining(w) lim,, ., 4, = Aifand only iflim,, .., (A,z,y) = (Ax,y) forall z,y € H.

The following result holds (se@][p. 225]):

THEOREMZ2.4. Let A be a bounded selfadjoint operator ¢h Then

a :Hn"lfl(A:):,a:}:max{a€R|a[§A};
[lz]|=1

AJMAA Vol. 17(2020), No. 1, Art. 1, 319 pp. AIMAA
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and
[A[} = max {[an ], |aal} -
Moreover, ifSp (A) denotes the spectrum df thena,, s € Sp (A) andSp (A) C [ay, as] .

REMARK 2.1. We remark that, ifi, a, ay are as above, then obviously
a; = min{A A€ Sp(A)} = minSp(A);
a; = max{A|A € Sp(A)} = maxSp(A);
[Al = max{[A[[A € Sp(A)}.
We also observe that
(1) Ais positive iffa; > 0;
(2) Ais positive and invertible iffy; > 0;
(3) If oy > 0,thenA~"is a positive selfadjoint operator andn Sp (A~') = a;*, max Sp (A™') =
-1
O .

3. CONTINUOUS FUNCTIONS OF SELFADJOINT OPERATORS

3.1. Polynomials in a Bounded Operator.For two functionsp, 1) : C — C we adhere to
the canonical notation:

s) =@ (s) +¢(s),

(o + ) (
(s) =g (s),
(s
f

)
(Ap)
()
for sum, scalar multiple and product o
gate ofy (s) .
As a first class of functions we consider the algeBraf all polynomials in one variable
with complex coefficients, namely

P .= {go(s) ::Zaksk|n20,ak E(C,ngrgn}.

k=0

) =¢(s)¢(s)

these functions. We denote(bythe complex conju-

THEOREM 3.1. Let A € B(H) and for ¢ (s) := >,_ Oaksk € P definep (A) =
S AP € B(H)(A°=1) and @ (A) == Sr_,a (A*)* € B(H). Then the mapping
¢ (s) — ¢ (A) has the following properties

§H¢+W() v (A) + 9 (A);

(Ap) (A) = Ap (A);
€) (¢v) (A) = (A) ¥ (A);
[o (A)] @(A>
Note thaty (A) ¢ (A) = ¥ (A) ¢ (A) and the constant polynomial (s) = «, is mapped

into the operator.
Recall that, a mapping — «’ of an algebrd/ into an algebra/’ is called ahomomorphism
if it has the properties
a) (a+b) =d+V;
b) (Ap)' = Ad';
c) (ab)’ = a'v'.
With this terminology, Theorem 3.1 asserts that the mapping which associates with any
polynomialy (s) the operatorp (A) is a homomorphism oP into B (H) satisfying the addi-
tional property d).

AJMAA Vol. 17(2020), No. 1, Art. 1, 319 pp. AIMAA
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The following result provides a connection between the spectrumarfd the spectrum of
the operator (A) .

THEOREM3.2. If A € B(H) andy € P, thenSp (¢ (A)) = ¢ (Sp(4)).

COROLLARY 3.3. If A € B(H) is selfadjoint and the polynomiat (s) € P has real
coefficients, them (A) is selfadjoint and

(3.1) [l (A)]] = max {[¢ (N[, A € Sp(A)}.

REMARK 3.1. If A € B(H) andy € P, then
(1) ¢ (A)isinvertible iff o (A\) # 0 forall A € Sp(A);
(2) If ¢ (A) is invertible, thenSp (¢ (A) ™) = {e(\) ", A € Sp(A)}.

3.2. Continuous Functions of Selfadjoint Operators.Assume thatd is a bounded self-
adjoint operator on the Hilbert spaét If ¢ is any function defined oR we define

lell4 = sup {lp (M), A € Sp(A)}.

If © is continuous, in particular ip is a polynomial, then the supremum is actually assumed
for some points irbp (A) which is compact. Therefore the supremum may then be written as a
maximum and the formula (3.1) can be written in the fdkm(A)|| = [|¢| 4 -

ConsiderC (R) the algebra of all continuous complex valued functions define®.omhe
following fundamental result for continuous functional calculus holds, see for instanpe [
232]:

THEOREM 3.4. If A is a bounded selfadjoint operator on the Hilbert spaéeand ¢ €
C (R), then there exists a unique operatp(A) € B (H) with the property that whenever
{¥,}22, C Psuchthatlim_. ||¢ — ,ll4 =0, thenp (A) = lim, .« ¢, (A) . The mapping
¢ — ¢ (A) is a homomorphism of the algebea(R) into B (H) with the additional prop-
erties[p (A)]" = @ (A) and [|¢ (A)|| < 2]¢l|l, . Moreover,¢ (A) is a normal operator, i.e.

[0 (A)] ¢ (A) = (A)[p(A)]". If pis real-valued, ther (A) is selfadjoint.
As examples we notice that, if € B (H) is selfadjoint and (s) = €', s € R then

_ 1
iA (AN
e = Z X (1A)".
k=0
Moreover,e*4 is a unitary operator and its inverse is the operator

(eiA)* — ¢ = Z % (—iA)F.

Now, if A € C\ R, A € B(H) is selfadjoint andp (s) = =5 € C(R), thenyp (4) =
(A= XD)"".

If the selfadjoint operatorl € B (H) and the functions, ¢ € C (R) are given, then we
obtain the commutativity property (4) ¢ (A) = ¢ (A) p (A) . This property can be extended
for another operator as follows, see for instar;g| 235]:

THEOREM3.5. Assume thatl € B (H) and the functiorp € C (R) are given. IfB € B(H)
is such thatAB = BA, theny (A) B = By (A).

The next result extends Theorém]3.2 to the case of continuous functions, see for instance
[2, p. 235]:

THEOREM 3.6. If A is abounded selfadjoint operator on the Hilbert spadeand ¢ is
continuous, thetsp (¢ (A)) = ¢ (Sp(A)).

AJMAA Vol. 17(2020), No. 1, Art. 1, 319 pp. AIMAA
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As a consequence of this result we have:

COROLLARY 3.7. With the assumptions in Theorém|3.6 we have:

a) The operatorp (A) is selfadjoint iffp (A\) € R forall A € Sp(A);
b) The operatorp (A) is unitary iff |0 (A\)| = 1 forall A € Sp(A);
c) The operatorp (A) is invertible iffo (\) # 0 forall A € Sp(A);
d) If ¢ (A) is selfadjoint, then|y (A)|| = ||¢]| 4 -

In order to develop inequalities for functions of selfadjoint operators we need the following
result, see for instanc2,[p. 240]:

THEOREM 3.8. Let A be a bounded selfadjoint operator on the Hilbert spateThe ho-
momorphismpy — ¢ (A) of C (R) into B (H) is order preserving, meaning that,4f ¢ € C (R)
are real valued orbp (A) andy (A) > ¢ (\) forany A € Sp (A), then

(P) v (A) > (A) inthe operator order of3 (H) .

The"square root"of a positive bounded selfadjoint operator&rcan be defined as follows,
see for instance?] p. 240]:

THEOREM 3.9. If the operatorA € B (H) is selfadjoint and positive, then there exists a
unique positive selfadjoint operatd® := /A € B (H) such thatB> = A. If A is invertible,
then so isB.

If A€ B(H),thenthe operatad* A is selfadjoint and positive. Define thabsolute value"
operator byl A| := v A*A.
Analogously to the familiar factorization of a complex number

5 — ‘5’ eiargé

a bounded normal operator éghmay be written as a commutative product of a positive selfad-
joint operator, representing its absolute value, and a unitary operator, representing the factor of
absolute value one.

In fact, the following more general result holds, see for insta@cp.[241]:

THEOREM 3.10. For every bounded linear operatot on H, there exists a positive selfad-
joint operatorB = |A| € B(H) and an isometric operatof’ with the domairD. = B (H)

and rangeR¢ = C' (D¢) = A(H) such thatd = C'B.

In particular, we have:

COROLLARY 3.11. If the operatorA € B (H) is normal, then there exists a positive self-
adjoint operatorB = |A| € B(H) and a unitary operatorC' such thatA = BC = CB.
Moreover, ifA is invertible, thenB and C' are uniquely determined by these requirements.

REMARK 3.2. Now, suppose that = C'B whereB € B(H) is a positive selfadjoint
operator and’ is an isometric operator. Then

a) B = v A*A; consequently3 is uniquely determined by the stated requirements;
b) C is uniquely determined by the stated requirementd i one-to-one.

4., STEP FUNCTIONS OF SELFADJOINT OPERATORS

Let A be a bonded selfadjoint operator on the Hilbert spdc@/e intend to extend the order
preserving homomorphism — ¢ (A) of the algebra (R) of continuous functions defined

AJMAA Vol. 17(2020), No. 1, Art. 1, 319 pp. AIMAA
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onRinto B (H), restricted now to real-valued functions, to a larger domain, namely an algebra
of functions containing the "step functiong}, A € R, defined by

1, for —oo < s < A,

@x(s) ==

0, for A < s < +c.
Observe thap, (s) = ¢, (s) andy3 (s) = ¢, (s) which will imply that [¢, (A)]" = ¢, (A4)
and[p, (4)]° = ¢, (4), i.e. ¢, (A) will then be a projection. However, since the functiop
cannot be approximated uniformly by continuous functions on any interval containthgn,
in general, there is no way to define an operatp(A) as a uniform limit of operatorg, ,, (4)
with ¢, , € C(R).

The uniform limit of operators can be relaxed to the concept of strong limit of operators
(see Definitior] 2.2) in order to define the operatgr(A). In order to do that, observe that
the functionp, may be obtained as a pointwise limit of a decreasing sequence of real-valued
continuous functions, ,, defined by

1, for —oo < s < A,
0 (s):=¢ 1=n(s=A),forA<s<A+1/n

0, for A < s < +o0.

By Theore we observe that the sequence of corresponding selfadjoint opefators is
nondecreasing and bounded below by zero in the operator or8€irdf . It therefore converges
strongly to some bounded selfadjoint operatQr A) on H, see P, p. 244].

To provide a formal presentation of the above, we need the following definition.

DEFINITION 4.1. A real-valued functiop on R is called upper semi-continuous if it is a
pointwise limit of a non-increasing sequence of continuous real-valued functidis on

We observe that it can be shown that a real-valued functi@rsR is upper semi-continuous
iff for every sy € R and for every > 0 there exists @ > 0 such that

v (s) <p(sg)+eforallse (so—0d,s0+9).
We can introduce now the operatpf A) as follows, see for instanc@,[p. 245]:

THEOREMA4.1. Let A be a bonded selfadjoint operator on the Hilbert spd€eand lety
be a nonnegative upper semi-continuous functioriRonThen there exists a unique positive
selfadjoint operatorp (A) such that whenevelrp, }.° | is any non-increasing sequence of non-
negative functions i@ (R) , pointwise converging tg onSp (A) ,theny (A) = (s) limy,, (A) .

If ¢ is continuous, then the operator A) defined by Theorein 3.4 coincides with the one
defined by Theorem 4.1.

THEOREM 4.2. Let A € B(H) be selfadjoint, letp and ) be non-negative upper semi-
continuous functions oR, and leta: > 0 be given. Then the functiogs+ v, ap and oy are
non-negative upper semi-continuous gpd+ v)) (A) = ¢ (A) + ¥ (A), (ap) (A) = ap (A)
and (py) (A) = ¢ (A) ¢ (A). Moreover, ifp (s) < ¢ (s) forall s € Sp(A) thenp (A) <
b (A).

We enlarge the class of non-negative upper semi-continuous functions to an algebra by
definingR (R) as the set of all functiongs = ¢, — ¢, Wherey,, ¢, are nonnegative and upper
semi-continuous functions defined & It is easy to see th&k (R) endowed with pointwise
sum, scalar multiple and product is an algebra.
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The following result concerning functions of operatprg4) with ¢ € R (R) can be stated,
see for instanceZ] p. 249-p. 250]:

THEOREMA4.3. LetA € B (H) be selfadjointand lep € R (R) . Then there exists a unique
selfadjoint operatory (A) € B (H) such that ifp = ¢, — ¢, wherey,, ¢, are nonnegative and
upper semi-continuous functions definedRyrtheny (A) = ¢, (A) — ¢, (A) . The mapping
¢ — ¢ (A) is a homomorphism ok (R) into B (H) which is order preserving in the follow-
ing sense: ifp, ¢ € R (R) with the property thaty (s) < ¢ (s) for anys € Sp(A), then
v (A) < ¢ (A). Moreover, ifB € B (H) satisfies the commutativity conditiohB = B A, then
¢ (A)B =By (A).

5. THE SPECTRAL DECOMPOSITION OF SELFADJOINT OPERATORS
Let A € B(H) be selfadjoint and lep, defined for allA € R as follows

1, for —oo < s < A,
ox () =
0, for A < s < +o0.
Then for every\ € R the operator
(5.1) Ey\ =, (4)

is a projection which reduce$.

The properties of these projections are summed up in the following fundamental result con-
cerning the spectral decomposition of bounded selfadjoint operators in Hilbert spaces, see for
instancel?, p. 256]

THEOREM 5.1 (Spectral Representation Theorerhgt A be a bonded selfadjoint oper-
ator on the Hilbert space? and letm = min{\ |\ € Sp(4)} =: minSp(A) and M =
max {\|A € Sp(A)} =: maxSp(A). Then there exists a family of projectiof#,}, g,
called the spectral family oft, with the following properties

a) £, < E, for\ < \;
b) E,, 0o=0,Ey =IandE,,o, = E), forall A € R;
c) We have the representation

M
(5.2) A:/ AE).

m—0
More generally, for every continuous complex-valued functialefined orR and for every
¢ > 0 there exists & > 0 such that

(5.3) P (A) =D (M) [BEx, — By || <
k=1
whenever
AM<m=NN<..<A\_1<A\, =M,
(54) A — A1 < 0 for1 <k< n,

/\;C c [)\k—la/\k:] forl<k<n
this means that

(5.5) o (A) = / o (\) dEj,

m—0
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where the integral is of Riemann-Stieltjes type.

COROLLARY 5.2. With the assumptions of Theorém|5.1 forE, and ¢ we have the rep-
resentations

M
(5.6) v(A)x = / e (N dEy\x forallx € H
m—0
and
M
(5.7) ¢y = [ pNd(Bry) forallsye H
m—0
In particular,
M
(5.8) (p(A)x,z) = @ (AN d(Exz,z) forall x € H.
m—0

Moreover, we have the equality

M
(5.9 el = [ le O d| Byl forallz e .
m—0
The next result shows that it is legitimate to talk abdb€" spectral family of the bounded
selfadjoint operatod since it is uniquely determined by the requirements a), b) and c) in The-
orem 5.1, see for instancg, [p. 258]:

THEOREM 5.3. Let A be a bonded selfadjoint operator on the Hilbert spdéeand let
m = minSp (A) and M = max Sp (A). If {F)}, .z is a family of projections satisfying the
requirements a), b) and c) in Theor¢m|5.1, tHén= E, for all A € R whereFE), is defined by
G.D.

By the above two theorems, the spectral fanjily, }, ., uniquely determines and in turn is
uniquely determined by the bounded selfadjoint operdtorhe spectral family also reflects in
a direct way the properties of the operatbas follows, seed, p. 263-p.266]

THEOREM5.4. Let{E,},  be the spectral family of the bounded selfadjoint operator
If B is a bounded linear operator o/, thenAB = BA iff E,B = BE, forall A € R. In
particular E,A = AFE), forall A € R.

THEOREMS.5. Let { £, }, ; be the spectral family of the bounded selfadjoint operator
andp € R. Then

a) i is a regular value ofdi.e., A — I is invertible iff there exists & > 0 such that
Eu—@ = E}H—G;

b) pe Sp(A)iff E,_9 < E,.¢forall § > 0;

c) pis an eigenvalue ol iff £, _( < E,,.

The following result will play a key role in many results concerning inequalities for bounded
selfadjoint operators in Hilbert spaces. Since we were not able to locate it in the literature, we
will provide here a complete proof:

THEOREM 5.6 (Total Variation Schwarz’s InequalityL.et { £, }, . be the spectral family
of the bounded selfadjoint operater and letrm = min Sp (A) and M = max Sp(A). Then
for anyz,y € H the function\ — (E,z,y) is of bounded variation ofin — ¢, M| for any
e > 0 and we have the inequality
M

V (Eoe,y))

m—0

(TVSI) < [l lyll,
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M
Where\/ )z, y)) denotes the limitim._o, \/ ((Eyz,y)) .

m—e

PROOF If P is a nonnegative selfadjoint operator éyi.e., (Pz,x) > 0 foranyz € H,
then the following inequality is a generalization of the Schwarz inequalify in

(5.10) [(Pz,y)|* < (Pz,z) (Py,y),

foranyz,y € H.

Lete > 0. Now,ifd:m—e=1ty <ty <..<t,1 <t, =M isan arbitrary partition of
the intervallm — ¢, M|, then we have by Schwarz’s inequality for nonnegative operators| (5.10)
that

M

(5.11) \ (Eoz.y))

m—e

- { (8 - 52
< oup {Z (B = B) 200" (Bu — B 1) } -1

=0
By the Cauchy-Buniakovski-Schwarz inequality for sequences of real numbers we also have
that

(5.12) I
[n—1 142t 1/2
< Slcllp Z <(Eti+1 - Etz) L, l‘> [Z Etz+1 Etl Y, y>]
L i=0 | =0

[n—1 11/2 n—1 1/2
S Slcllp Z <(Etl'+1 - Etz) xz, x> sup [Z <(Eti+1 - Eh) Y, y>]

1=0

o 12 ¢y 1/2
:[\/«E(.)x,@)] V <E(>yy>] = llz| lv]

m—e

foranyz,y € H.
On making use of[(5.11) andl (5]12) and letting— 0+ we deduce the desired result
@VSD. a
6. JENSEN'S TYPE INEQUALITIES

6.1. Jensen’s Inequality. The following result that provides an operator version for the
Jensen inequalitis due to Mond & Péaric [5] (see alsoll, p. 5]):

THEOREM 6.1 (Mond- Péaric, 1993, B]). Let A be a selfadjoint operator on the Hilbert
spaceH and assume thatp (A) C [m, M] for some scalarsn, M with m < M. If fis a
convex function oifin, M|, then

(MP) f (Az, ) < (f (A) 2, )

for eachz € H with ||z|| = 1.

As a special case of Theor¢m|6.1 we have the followditper-McCarthy inequality

AJMAA Vol. 17(2020), No. 1, Art. 1, 319 pp. AIMAA


https://ajmaa.org

10 S. S. IRAGOMIR

THEOREM®6.2 (Holder-McCarthy, 19673]). Let A be a selfadjoint positive operator on a
Hilbert spaceH. Then

(i) (A"z,z) > (Az,z)" forall r > 1 andz € H with ||z| = 1;

(i) (A"x,z) < (Ax,z) forall 0 <r < 1andz € H with ||z| = 1;

(iii) If Aisinvertible, then A"z, z) > (Az,z)" forall r < 0 andz € H with ||z|| = 1.

The following theorem is a multiple operator version of Theofer 6.1 (see for insi&nme [
5]):

THEOREM 6.3 (Furuta-Mgic-Pe&aric-Seo, 2005/1]). Let A; be selfadjoint operators with
Sp(4;) C [m,M],j € {L,...,n} for some scalarsn < M andz; € H,j € {1,...,n} with
S0 Nzl = 1. If fis a convex function opin, M], then

(6.1) f (Z (Ajz;, x; ) < Z BETRRS

The following particular case is of interest.

COROLLARY 6.4. Let A, be selfadjoint operators withp (A4;) C [m, M], j € {1,...,n}
for some scalarsn < M. If p; >0, j € {1,...,n} with Z;‘:lpj =1, then

(6.2) f <<ijij7a:>> < <ijf(z4j)l’>$>,

foranyx € H with ||z|| = 1.
PrROOF. Follows from Theore@S by choosing = ,/p; -z, j € {1,...,n} wherex € H
with ||z]| = 1.

REMARK 6.1. The above inequality can be used to produce some norm inequalities for the
sum of positive operators in the case when the convex fungtismonnegative and monotonic
nondecreasing of, M| . Namely, we have:

(6.3) f( A; ) < ijf(Ag)

The inequality[(6.8) reverses if the function is concave(on/].
As particular cases we can state the following inequalities:
p

(6.4) ' oAl < X owAL
j=1 j=1
forp > 1and
n p n
(6.5) > opiAi|l =D opA ‘
j=1 j=1
for0 <p< 1.

If A; are positive definite for eache {1,...,n} then [6.4) also holds fqr < 0.
If one uses the inequality (6.3) for the exponential function, that one obtains the inequality

> pid; > <
j=1

whereA; are positive operators for eaghe {1,...,n}.

exp (A;)

(6.6) exp (
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6.2. Reverses of Jensen’s Inequalityin Section 2.4 of the monograph][there are nu-
merous interesting converses of the Jensen’s type inequalify (6.1) from which we would like to
mention only two of the simplest.

The following result is an operator version of the well known Lah-Riianieverse of the
Jensen inequality for real functions of a real variable, see for instdiice |

THEOREM®6.5. Let A; be selfadjoint operators withp (4;) C [m, M], j € {1,...,n} for
some scalarsn < M andx; € H,j € {1,...,n} with 3 7 | |z;]|* = 1. If fis a continuous
convex function defined dm, M|, then

n

6.7) D (f(A) ;)

j=1

<! FM)Y ((Aj —mlI) xj,25) +f(m)z<(M[—Aj)xj>%>] :

~“M-—-m

j=1 j=1
THEOREM 6.6 (MiCic-Seo-Takahasi-Tominaga, 1998])[ Let A; be selfadjoint operators
with Sp (4;) C [m, M], j € {1,...,n} for some scalarsn < M andz; € H,j € {1,...,n}
with 37, |;||> = 1. If £ is a strictly convex function twice differentiable pn, M], then for
any positive real number we have

(6.8) D (A aya5) < af (Z (ijj,xj>) +6,

J=1 J=1

where
B = pgto+vy—af(to),

_ S (M) — f(m) _ Mf(m)—mf (M)
By = M—m T M —m

and
S7HEL) ifm< () <M

to=4 M if M < f'71 ()

m if f/~1 (%f) <m.
The case of equality was also analyzed, 3¢@] 61] but will be not stated in here.

6.3. Operator Monotone and Operator Convex Functions.We say that a real valued
continuous functiorf defined on an interval is said to beoperator monoton€ it is monotone
with respect to the operator order, i.eAifand B are bounded selfadjoint operators with< B
andSp(A),Sp(A) C I,thenf(A) < f(B). The function is said to beperator convex
(operator concavgif for any A, B bounded selfadjoint operators withy (A4) , Sp (A) C I, we
have

(6.9) fIA=A)A+AB] < (=) (1= A) f(A)+Af(B)
forany\ € [0, 1].

EXAMPLE 6.1. The following examples are well know in the literature and can be found for
instance inl1, p. 7-p. 9]where simple proofs were also provided.

(1) The affine functiorf (t) = a+ [t is operator monotone on every interval for alle R
andg > 0. It is operator convex for altv, 5 € R;
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(2) If f, g are operator monotone, anddf, 3 > 0 then the linear combinatioa f + (g is
also operator monotone. If the functiofisare operator monotone anf, (t) — f (t)
asn — oo, thenf is also operator monotone;

(3) The functionf (¢) = t* is operator convex on every interval, however it is not operator
monotone om0, co) even though it is monotonic nondecreasing on this interval;

(4) The functionf (t) = t* is not operator convex off), cc) even though it is a convex
function on this interval;

(5) The functionf (t) = 1 is operator convex orf0, co) and f () = —1 is operator
monotone orj0, co) ;

(6) The functionf (¢) = Int is operator monotone and operator concave(0rmo) ;

(7) The entropy functiorf (t) = —¢Int is operator concave o0, co) ;

(8) The exponential functiofi(¢) = ¢’ is neither operator convex nor operator monotone
on any interval ofR.

The following monotonicity property for the functiofi(t) = ¢" with » € [0, 1] is well
known in the literature as tHedwner-Heinz inequalitgnd was established essentially in 1934

THEOREMG.7 (Léwner-Heinz Inequality)Let A and B be positive operators on a Hilbert
spaceH.If A> B > 0,thenA” > B" forall r € [0,1].

The following characterization of operator convexity holds, 3¢@] 10]

THEOREM 6.8 (Jensen’s Operator Inequality)et H and K be Hilbert spaces. Lef be a
real valued continuous function on an intervalLet A and A; be selfadjoint operators off
with spectra contained id, for eachj = 1,2, ..., k. Then the following conditions are mutually
equivalent:

(i) f is operator convex od;
(i) f(C*AC) < C*f(A)C for every selfadjoint operatord : H — H and isometry
C:K— H e, C*C = 1g;
(i) f(C*AC) < C*f(A)C for every selfadjoint operatod : H — H and isometry
C:H— H;

(iv) f <Zf:1 OjAjCj> < S8 Crf(4;)C; for every selfadjoint operatod; : H — H

and bounded linear operatoss; : K — H, with Z;‘Zl C:Ci =1k (j=1,...k);

) f (Zle CjAjCj> < 30 Cif (A)) C; for every selfadjoint operatod; : H — H
and bounded linear operators; : H — H, with Z?Zl C:Ci=1g(j=1,...k);
(vi) f (2;?:1 PjAij> < Z?Zl P; f (A;) P; for every selfadjoint operatod; : H — H

and projectionP; : H — H,with >0 | Py =15 (j =1,...k).
The following well known result due to Hansen & Pedersen also holds:
THEOREM 6.9 (Hansen-Pedersen-Jensen’s InequalitgX. ./ be an interval containing
and let f be a real valued continuous function defined.biLet A and A; be selfadjoint oper-

ators onH with spectra contained id, for each;j = 1,2, ..., k. Then the following conditions
are mutually equivalent:

(i) fis operator convex od and f (0) < 0;
(i) f(C*AC) < C*f (A)C for every selfadjoint operatod : H — H and contraction
C:H— Hie.,C*C < 1g;

i) f (Zle CjAjCj> < S8 Crf(4;) C for every selfadjoint operatod; : H — H
and bounded linear operators; : H — H, with Z?zl C:C; < 1u(j=1,...k);
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(iv) f(PAP) < Pf(A) P for every selfadjoint operatad : H — H and projectionP.

The case of continuous and negative functions is as folldyg. [13]:

THEOREM6.10. Let f be continuous of), oo). If f () < 0 forall t € [0,0), then each
of the conditions (i)-(vi) from Theorem 6.8 is equivalent with

(vii) — f is an operator monotone function.

COROLLARY 6.11. Let f be a real valued continuous function mapping the positive half
line [0, c0) into itself. Thenf is operator monotone if and only ffis operator concave.

The following result may be stated as wdl p. 14]:

THEOREMG6.12. Let f be continuous on the intervél, r) with » < co. Then the following
conditions are mutually equivalent:
(i) fis operator convex and (0) < 0;
(i) The functiont — @ iS operator monotone ofv, r) .

As a particular case of interest, we can state thigb[ 15]:

COROLLARY 6.13. Let f be continuous ofD, co) and taking positive values. The function

f is operator monotone if and only if the function- % IS operator monotone.

Finally we recall the following result as well p. 16]:

THEOREM®6.14. Let f be a real valued continuous function on the interyak |«, co) and
bounded below, i.e., there exists € R such thatn < f (¢) for all ¢t € J. Then the following
conditions are mutually equivalent:

(i) fis operator concave ou;
(i) f is operator monotone oM.

As a particular case of this result we note that, the funcfi¢f) = ¢" is operator monotone
on [0,00) if and only if 0 < r < 1. The functionf (¢) = t" is operator convex of0, oo) if
eitherl <r <2or—1 <r <0and is operator concave ¢f, co) if 0 <r < 1.

7. GRUSS T YPE INEQUALITIES

The following operator version of the Griss inequality was obtained by MondGaréan
[6]:

THEOREM 7.1 (Mond-Péaric, 1993, p]). LetC;, j € {1,...,n} be selfadjoint operators
on the Hilbert spacéH, (.,.)) and such thain; - 1y < C; < M; -1y forj € {1,...,n},
wherely is the identity operator od{. Further, letg;, h; : [m;, Mj] — R, j € {1,...,n} be
functions such that

foreachj € {1,...,n}.
fz; € H,j €{1,...,n} are such thab™" | ||z;||* = 1, then

Z (9 (C) h; (Cj) zj, 25) — Z (95 (C) wj, 25) - Z (h; (Cy) xj, ;)
(72) < @)
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If C;,5 € {1,...,n}are selfadjoint operators such tisat (C;) C [m, M|forj € {1,...,n}
and for some scalars < M and ifg,h : [m, M] — R are continuous then by the Mond-
P&aric inequality we deduce the following version of the Gruss inequality for operators

n n n

(7.3) D (g (CHR(C) gy a) = (g (Ch)ag,as) - > (h(Cy)wj,5)

j=1 j=1 Jj=1

< @) -7,

wherez; € H,j € {1,...,n} are such thab™" | [|z;|* = 1 andy = minepmang(t),
® = maxyepma 9 (1), 7 = Milyep g b (t) andl = maxepm g b (1) .

In particular, if the selfadjoint operata@r satisfy the conditiortp (C') C [m, M] for some
scalarsn < M, then
(7.4) (g (C)h(C)z,z) — (g (C) z,z) - (L (C) z,2)| <

foranyz € H with ||z|| = 1.

(@ —p) (T —9),

SN
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CHAPTER 2

Inequalities for Convex Functions

1. INTRODUCTION

Jensen’s type inequalities in their various settings ranging from discrete to continuous case
play an important role in different branches of Modern Mathematics. A simple search in the
MathSciNetdatabase of the American Mathematical Society with the key words "jensen" and
"iInequality” in the title reveals more than 300 items intimately devoted to this famous result.
However, the number of papers where this inequality is applied is a lot larger and far more
difficult to find. It can be a good project in itself for someone to write a monograph devoted to
Jensen’s inequality in its different forms and its applications across Mathematics.

In the introductory chapter we have recalled a number of Jensen’s type inequalities for con-
vex and operator convex functions of selfadjoint operators in Hilbert spaces. In this chapter we
present some recent results obtained by the author that deal with different aspects of this well
research inequality than those recently reported in the su@@y They include but are not
restricted to the operator version of the Dragomir-lonescu inequality, Slater’s type inequalities
for operators and its inverses, Jensen’s inequality for twice differentiable functions whose sec-
ond derivatives satisfy some upper and lower bounds conditions, Jensen’s type inequalities for
log-convex functions and for differentiable log-convex functions and their applications to Ky
Fan’s inequality.

Finally, some Hermite-Hadamard's type inequalities for convex functions and Hermite-
Hadamard’s type inequalities for operator convex functions are presented as well.

All the above results are exemplified for some classes of elementary functions of interest
such as the power function and the logarithmic function.

2. REVERSES OF THE JENSEN INEQUALITY

2.1. An Operator Version of the Dragomir-lonescu Inequality. The following result
holds:

THEOREM 2.1 (Dragomir, 2008/d]). Let! be an interval andf : I — R be a convex and
differentiable function o (the interior of I) whose derivativg” is contlnuous on.If Aisa
selfadjoint operators on the Hilbert spa¢éwith Sp (A) C [m, M] ci, then
21 0= (f(A)z,z) = f((Ax,2)) < (f' (A) Az, ) — (Az,x) - ([ (A) 2, 2)
foranyx € H with ||z]| = 1.

PROOF Sincef is convex and differentiable, we have that

fO=fs)<f @) (t—s)
foranyt,s € [m, M].
Now, if we chose in this inequality = (Az,z) € [m, M] foranyx € H with ||z]| = 1
sinceSp (A) C [m, M], then we have

(2.2) f @)= f (A, z)) < f'(1) - (t — (Az, 7))
foranyt € [m, M]anyxz € H with ||z| = 1.

15
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If we fix z € H with ||z = 1 in (2.2) and apply the propertly|(P) then we get
([ (A) = f ((Az,2)) 1u] z, 2) < (f'(A) - (A — (Az,2) 1y) @, )
for eachz € H with ||z|| = 1, which is clearly equivalent to the desired inequality (2uL).

COROLLARY 2.2 (Dragomir, 2008/]). Assume thaf is as in the Theorefn 2.1. ; are
selfadjoint operators wittbp (A4;) C [m, M| ci,je{l,....n} andz; € H,j € {1,...,n}
with =7 |l;|* = 1, then

(2.3) (0 <) Z (f (A)zj,25) — f (Z (Ajaj, x5)

n

<Z Aj)Ajxj, ;) — Z (Ajzj, x;) Z DETR DN
7=1

Jj=1

PROOF Asin [20, p. 6], if we put

Al 0 T
A= ( oo ) and T = ( : )
0 - A, z,

then we havesp (Z) C [m,M], ||z|| =1,

n

<f (f~1> z, 5> = zn: (f (Aj) zj, ;) , <ny 5> = (A, a))

7j=1 j=1
and so on B
Applying Theorenﬂl forl andx we deduce the desired resZ.B).

COROLLARY 2.3 (Dragomir, 2008)9)). Assume thaf is as in the Theorein 2.1. A; are
selfadjoint operators wittdp (A;) C [m, M] ci,je{l,...,n} andp; > 0,j € {1,...,n}
with 37 | p; = 1, then

24) (0<) <ij > —f <<iijjx,x>)
<ij ) Az a:> <ijA x x> : <jzz;pjf' (Aj)aj,:z:>.

for eachz € H with ||z|| = 1.

REMARK 2.1. The inequality[ (2]4), in the scalar case, namely

(2.5) (0< ij f (x;) (Zw)
< ijf' (zj) zj — ijfj : ijf' (;)

where z; i, j e {1,...,n}, has been obtained by the first time in 1994 by Dragomir &

lonescu, seell/].

The following particular cases are of interest:
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ExXAMPLE 2.1. a. Let A be a positive definite operator on the Hilbert spaéeThen we
have the following inequality:

(2.6) (0 <)In ((Az, z)) — (In (A) z,2) < (Az,z) - (A2, 2) — 1,
for eachz € H with ||z|| = 1.

b. If A is a selfadjoint operator o/, then we have the inequality:
2.7) (0 <) {exp (A) z, ) — exp ((Az, z))

< (Aexp (A) z,z) — (Az, z) - {exp (A) z, ) ,

for eachz € H with ||z|| = 1.

c.If p > 1 and A is a positive operator o, then
(2.8) (0 <) (APz,z) — (Az,2)’ < p [(APz,z) — (Az,z) - (AP 'z, 2)],
for eachz € H with ||z|| = 1. If A is positive definite, then the inequalify (2.8) also holds for

p <0.
If 0 < p < 1andA s a positive definite operator then the reverse inequality also holds

(29) <Ap{['727> - <Al‘,{1§>p >p [<Apl',$> - <AZE,I’> ’ <Ap_1l',l‘>} > 0,
for eachz € H with ||z|| = 1.
Similar results can be stated for sequences of operators, however the details are omitted.

2.2. Further Reverses.In applications would be perhaps more useful to find upper bounds
for the quantity
(f(A)z,z) — f({Az,z)), xeH with |[z] =1,
that are in terms of the spectrum margins)/ and of the functiory.
The following result may be stated:

THEOREM 2.4 (Dragomir, 2008/d]). Let/ be an interval andf : I — R be a convex and
differentiable function of (the interior of I) whose derivative’ is contlnuous on. If Aisa
selfadjoint operator on the Hilbert spadé with Sp (A) C [m, M] Cl then

(2.10) (0 <) (f (A) z,z) — f ((Az, )
(M = m) [If (A |® = (f (A) 2, 2)*]

Lo(f1 (M) = [ (m)) [||Az])® — (Az,z)?]""?

< }L(M—m) (f (M) = £ (m),

foranyz € H with ||z]| = 1.
We also have the inequality

@1 (09)(f (Wa.w) ~ f ((Ar,a)
< 5 (M = m) (7 (M) = ()
(Mx — Az, Ax — mz) (f (M) x — f'(A)z, f' (A)x — f (m) >]%

NI= o~

<

(A, 2) — Mg |(f (A) 2, 0) - LODLLC)
< }L(M—m) (f' (M) — f'(m)),
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foranyx € H with ||z|| = 1.
Moreover, ifm > 0 and f’ (m) > 0, then we also have

(2.12) (0=<)(f (A)z,z) — f((Az, z))
{ i L M=—m)(f'(M)—f'(m)) (Az,z) (f' (A) z,z),

/M (30 (m)
(VAT = i) (V/FO) = /Fm)) [Aw.) (" (), )]

foranyz € H with ||z|| = 1.

PROOF We use the following Griss’ type result we obtaineddh [

Let A be a selfadjoint operator on the Hilbert spdég (.,.)) and assume thaip (A) C
[m, M] for some scalars: < M. If handg are continuous ofin, M] andy := minyepy, a b (t)
andl’ := maxem,m] b (t),then

(2.13)

=
N

)g(A)z,z) — (h(A)z,2) - (g (A) z, )]
AT =) [llg (A) 2| = (g (A) 2, 2)2] "

Far-nio-o)

for eachr € H with ||z|| = 1, whered := minycpy, 1 g (t) andA == maxcpm a9 (1) -
Therefore, we can state that

l\DIn—~

(2.14) (Af (A) z,z) — (Az,x) - (f' (A) 2, x)
< 50— m) [ Wl (f (W]
< 3 (M = m) (' (M) — f' (m)

and

(2.15) (A (A)z,z) — (Az, z) - (f'(A) 7, )
<5 (1O~ £ () [Ae] ~ (Az, )]
< 3 (M = m) (' (M) ~ f' (m)

for eache € H with ||z|| = 1, which together with[(2]1) provide the desired result (.10).
On making use of the inequality obtained [if}:[

(2.16) [(h(A) g (A)z,2) — (h(A)z,2) (9 (A) 2, 2)|

o=

(
1
4
B { [(Fz = h(A)z, f(A) 2 —qz) (Ar — g (A) 2,9 (A) = dx)]*

[ (A) &, 2) = 52| [{g (A) 2, 2) — 252

2

)
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for eachr € H with ||z|| = 1, we can state that

(Af'(A) z,2) — (Az, z) - (f' (A) 2, 7)

f
< 3 (M —m) (7 (M) = f' ()
{ [(Mz — Az, Az — mx) (f' (M) x — f"(A)z, f' (A)x — f'(m) )]%

(Az, ) M+m” £ )%x)_f’(M);rf’(m)‘.

for eache € H with ||z|| = 1, which together with[(2]1) provide the desired redult (.11)

Further, in order to prove the third inequality, we make use of the following result of Griiss
type obtained in{]:

If v and) are positive, then

(2.17) (B (A) g (A)z,z) — (h(A)z,2) (g (A) 7, )]
LA (h (A) 2, 2) (g (A) 2, 7)
<

N

(VE =) (VA= V3) [(h (4),2) (g (4) 2, 2)
for eachr € H with ||z|| = 1.
Now, on making use of (2.17) we can state that
(Af(A)a,z) = (Az,z) - (f'(A) 2, z)

1, (M-m)(f'(M ) f(m))
b ORI (42, 2) (' (A) ).

<

(VT = vim) (VFOI) = /T (m)) [(Az, ) (' (A) )]

for eachz € H with ||z|| = 1, which together with[(2]1) provide the desired regult (R.¥2).

COROLLARY 2.5 (Dragomir, 2008/d]). Assume thaf is as in the Theorein 3.4. K; are
selfadjoint operators wittbp (A,) C [m, M] ci,je{1,...,n}, then

Jj=1 J=1
(

(2.18)  (0<)> (f(A)aj ) — f (Z (ijj,xj>)

5 (M —m) [z;; I (A el = (S5 ( (A 2, x»ﬂ -

IN

00 - ) [ e (S ) |
(O = m) (£ (M) = 1 (m).

.-lklr—‘,

foranyz; € H,j € {1,...,n} with >0, [lz;]* = 1.
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We also have the inequality

foranyxz; € H,j € {1,...,n} with 320, [lz;]* = L.
Moreover, ifm > 0 and f' (m) > 0, then we also have

n

(2.20) 0=<)) (f(A) ;) — f <Z <Aj~”f?j71‘j>>

j= j=1
.

1

| (M=m) (' (M) = (m)) n

1’ \/Mmf,(M)f’(m) Z] 1 <A xj7l'j> ijl <f/ (A]) ,I‘j’ ],‘]> ,
1

(VAT = vim) (VFOM) = /F ()
< [0 () S F (A )|

IN

\

foranyz; € H,j € {1,...,n} with >0 | [lz;]* = 1.
The following corollary also holds:

COROLLARY 2.6 (Dragomir, 2008/d]). Assume thaf is as in the Theorein 3.1. K; are
selfadjoint operators wittbp (A;) C [m, M] ci,je{l,...,n} andp; > 0,j € {1,...,n}
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with 37 | p; = 1, then

(221 (0% <ijf (Aj>x,w> -/ <<ijij,x>)

97 1/2
5+ (M —m) [zp 17 (A - <i1pjf' <Aj>x,x> ] ,
<
97 1/2
5 (£ () = £ (m) [z P lAsal” - <2 ijjx,x> ] ,
< 3 (M —m) (7 (M) = ' (m)

foranyz € H with ||z]| = 1.
We also have the inequality

(2.22) (0<) <ijf<Aj>x,x> —f <<ijij,x>)

<X r—my (7 ) - )

N

[ilpj (Mzx — Ajx, Ajx — mx)]
iz

1/2
B [;pj (f'(M)z — [ (Aj)z, [/ (Aj) z — [ (m) x)] :

<Z ijjx,x> — Mim <ijf’ (A)) x,x> — f/(M);rf/(m)
j=1 j=1

(M —m) (f (M) = f" (m)),

foranyz € H with ||z|| = 1.
Moreover, ifm > 0 and f' (m) > 0, then we also have

(2.23) (0<) <ijf (4;) l’ax> —f <<ijij,x>>

( M—m f/ M _f/ m n n
! \/M)rif'((M))f’(y(n))) <Zj=1 ijjx,:r;> <Zj=1 pif’ (Aj)l’ailf>,

(VT - i) (VFOD - V7))
< [(Sapdsen) (Sans A as)]

foranyz € H with ||z|| = 1.

W=

<

FT.

IN

\
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REMARK 2.2. Some of the inequalities in Corollgry .6 can be used to produce reverse
norm inequalities for the sum of positive operators in the case when the convex fufigion
nonnegative and monotonic nondecreasingoon/| .

For instance, if we use the inequalify (2.21), then we have

(2.:24) (0 < )| nif (4) —f( _ijAj)
< SO —m) (7 (M) = f (m)).

Moreover, if we use the inequality (2]23), then we obtain
(225 (0<) |3 pif (4) —f( ijAj )

(1 (M—m)(f"(M (A

e /Mmf (M (AN

< !
(\/M—m)(w (0T m)[[| 2 pss | || 2" (4)

2.3. Some Particular Inequalities of Interest. 1Consider the convex functiofi: (0, co) —
R, f (z) = —Inz. On utilising the inequality[ (2.10), then for any positive definite operaitor
on the Hilbert spacé/, we have the inequality

(2.26) (0 <)In((Az,z)) — (In(A) z, x)

(M =) [JA ] — At ]

N[

<
“m 1/2
M5t [l Azl® — (Az, 2)°]

1 (M —m)’
S S
— 4 mM
foranyx € H with ||z|| = 1.
However, if we use the inequality (2]11), then we have the following result as well

(2.27) (0 <)In((Az,z)) — (In (A) z,x)

o=

1 (M — m)®

4 mM
[(Mz — Az, Az — mzx) (M 'z — A e, A7 e — m™2)]2 |
[(Az,z) — M| (A~ e, 2) — S

<_—
_4 mM )

foranyz € H with ||z| = 1.
2. Now consider the convex functiofi : (0,00) — R, f(x) = zlnz. On utilising the
inequality (2.1D), then for any positive definite operatoon the Hilbert spacé’, we have the
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inequality

(2.28) (0<)(Aln (A) z,z) — (Az,z) In ((Az, z))
(M —m) [|In (eA) 2> — (In (eA) z,z)’]

1 1/2
2

I /2 - || Ax® ~ (Az, 2)2] "

(g %(M—m)ln %)

foranyz € H with ||z|| = 1.
If we now apply the inequality (2.11), then we have the following result as well

<

(2.29) (0<)(AIn(A) z,z) — <A9c z)In ((Ax, x))

(M — mln\/
m

{
1
<3
{ — Az, Ar—mzx) (In (M) x—In (A) z,In (A) z—1In (m) x)]? ,

NI

Az, z)y — MFm| ‘ (In(A)z,z) —InvmM

(M —m ln\/M>
2 m

foranyz € H with ||z| = 1.
Moreover, if we assume that > ¢!, then, by utilising the inequality (2.12) we can state
the inequality

(2.30) (0<)(AIn(A)x,z) — (Az,x) In ((Az, x))

1. (Mfm)ln\/g
2 \/Mmln(eM) In(em) <A3§', $> <h’1 (614) xz, I’> 3

IN

(\/M N \/@ <V1n (eM) = /In (em)> [(Az,z) (In (eA) 2, )]? ,

foranyx € H with ||z|| = 1.
3. Consider now the following convex functioh: R — (0,00), f () = exp (ax) with

o > 0. If we apply the inequalitie§ (2.10), (2]11) and (2.12) fofz) = exp (ax) and for a
selfadjoint operator, then we get the following results

(2.31) (0 <) (exp (@A) z,z) — exp (o (Ax, x))
a(M —m) [||eXp (@A) xHQ — (exp (@A) $,x)2] 1/2

N[ =

<
a (exp (aM) — exp (am)) [||A$||2 - <Ax,x>2} 12

( i (M — m)(exp(aM)-eXp(am)))7

N[ =
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and
(2.32) (0 <) {exp (aA) z,x) — exp (a (Ax, x))
< 10 (M —m) (exp (aM) — exp (am))

[(Mz — Az, Az — ma)]"/?
X [(exp (M) x — exp (aA) z,exp («A) x — exp (am) z)]

=

|<A337 T) — @| ‘(exp (aA) z,z) — eXp(O‘M);LeXP(O‘m)

(= Ja O =) (exp (@) — exp am)

and
(2.33) (0 <) {exp (@A) 2, z) — exp (o (Az, z))
o G (Ax, 1) (exp (o) ,2),

o X

SN (VAT - i) (e (22) — exp
X [(Ax, x) (exp (@A) z, )]

foranyx € H with ||z|| = 1, respectively.

Now, consider the convex functiofi: R — (0,00), f () = exp (—fx) with 5 > 0. If we
apply the inequalities (2.10) and (2}11) fbfx) = exp (—Sz) and for a selfadjoint operatot,
then we get the following results

(2.34) (0 <) {exp (—BA) 2, x) — exp (—B (Az, z))
{ (M —m) [lexp (—BA) z||* — (exp (—BA) z, 2)?]
< B x
- (exp (—Bm) — exp (—BM)) [|| Az|® — (Az,)?]"

(g iﬁ (M —m) (exp (—fm) — exp (_ﬁM)))

<3

)

N

1/2

[

[

and
(235) (O <) <6Xp (_614) Z, l‘> — eXp (_6 <AJZ, l‘))
< 36 (M —m) (exp (~Bm) — exp (~M))

Mx — Az, Az — ma)]"?
[{(exp (=SM)x — exp (—BA) x,exp (—FA) z — exp (—fm) x)]? ,

N[

} A[E CC exp (_ﬁA) x, a:,> - exp(_ﬁM)-Qi-EXp(—,Bm)

< 5M m) (exp (—Fm) — exp (— ﬁM)))

foranyz € H Wlth ||z|| = 1, respectively.
4. Finally, if we consider the convex functiofi : [0,00) — [0,00), f(z) = z” with
p > 1, then on applying the inequalities (2]10) ahd (2.11) for the positive operatee have
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the inequalities

(2.36) (0 <) (APz, z) — (Az, x)?
9 . 971/2
L (M = m) [ Ar ] — (A7 ta,2)’]
<pXx
Lo (Mt — ) [|| Ax|? — (Ax,2)?]

(S ip (M —m) (MP~! — mp—l))

and
(2.37) (0 <) (APzx,x) — (Az, z)?

<

p(M —m) (M'p*1 — mpfl)

[(Mz — Az, Az — mx) (MP 'z — AP~1g AP 1o — m”‘lwﬂ% ;
-p -1 —1
|<Ax,x> _ @| ‘<Ap—1x,:v> _ M%

<§ ;lp(M —m) (M = mpl))

foranyxz € H with ||z|| = 1, respectively.
If the operatorA is positive definite(rn > 0) then, by utilising the inequality (2.12), we
have

(2.38) (0 <) (APz,z) — (Az,z)?

L OEmOP ) (A, 2) (AP, 3,

4 MP/QmP/2

<px

(VET = ) (MO0 — P [( Az, ) (4, )]

foranyx € H with ||z|| = 1.

Now, if we consider the convex functigh: [0, c0) — [0, 00) , f () = —2P withp € (0,1),
then from the inequalitie$ (2.1L0) arid (2.11) and for the positive definite opetaterhave the
inequalities

(2.39) (0 <) (Ax, z)? — (APz, z)

D=

1/2
(M = m) ||| 471a]* — (A7, 2’|
< pX

1/2

D=

S(mPt = M) [[| Az |)” — (Az, 2)°]

(S %p (M —m) (m" = M’H))
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and

(2.40) (0 <) (Az,z)’ — (APx, x)

p(M —m) (mp’1 — Mp’l)

[(Mz — Az, Az — mx) (MP~ 'z — AP~1g, AP 1o — mp_lx”% ;
-p 1 1
|(Az, ) — MFm| ‘(Ap_la:,@ — M mr

(S 1P (M —m) (m?™! Mpl))

foranyx € H with ||z|| = 1, respectively.
Similar results may be stated for the convex function(0, co) — (0, 00), f (x) = z? with
p < 0. However the details are left to the interested reader.

3. SOME SLATER TYPE INEQUALITIES

3.1. Slater Type Inequalities for Functions of Real Variables.Suppose that is an in-
terval of real numbers with mtendrandf I — Ris a convex function od. Thenf is
continuous ori and has finite left and right derivatives at each pomt dfloreover, ifx, y el
andz <y, thenf’ (z) < fi (z) < f. (y) < f. (y) which shows that botl’ and f’ are non-
decreasing function oh It is also known that a convex function must be differentiable except
for at most countably many points.

For a convex functiorf : I — R, the subdifferential off denoted by f is the set of all

functionsy : I — [—o0, 00| such thatp <I> C Rand

f(x)>f(a)+(x—a)p(a) foranyz,ac l.
It is also well known that iff is convex on/, thendf is nonempty,f”, f\ € 0f and if
p € df, then
f(x) <)< fi(z) foranyzel
In particular,y is a nondecreasing function.

If f is differentiable and convex dnthendf = {f'} .
The following result is well known in the literature #ee Slater inequality:

THEOREM3.1 (Slater, 198137]). If f : I — R is a nonincreasing (nondecreasing) convex
function,z; € I,p; > Owith P, :=>""  p; > 0and>_ | p; (x;) # 0, wherep € df, then

(3.1) —Zpl i) <f(§jllf);j;(g)i))'

As pointed out inlp, p. 208], the monotonicity assumption for the derivativeean be
replaced with the condition

Zizl pitp ()
which is more general and can hold for suitable point$ and for not necessarily monotonic
functions.

el,
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3.2. Some Slater Type Inequalities for Operators.The following result holds:

THEOREM3.2 (Dragomir, 2008/1(]). Let/ be an interval andf : I — R be a convex and
differentiable function om (the interior of /) whose derivativef” is continuous on. If A is a
selfadjoint operator on the Hilbert spadé with Sp (A) C [m, M] cland f’ (A) is a positive
definite operator orf{ then

33  o0<f (M) (A o)

A 2,2)
/ <Af/ (A) I,JZ> <Af/ (A) ZL’,J}> - <ASL’,ZL’> <f/ (A) [L‘,SL’>
=f ( () 2,2) ) [ () z,7) ’

foranyz € H with ||z]| = 1.

PROOF Sincef is convex and differentiable dnthen we have that

(3.4) fiis)-t=s) < f(t)=f(s) < f(t)-(t—9)
foranyt,s € [m, M].

Now, if we fix ¢ € [m, M] and apply the property [P) for the operatbrthen for any: € H
with ||z|| = 1 we have

(3.5) (f'(A) - (t-1g = A)w,x) <([f (t) - 1u — [ (A)] 2, 2)
<{f@)-(t-1g—A)z,x)
foranyt € [m, M] and anyr € H with ||z|| = 1.
The inequality[(3.5) is equivalent with

(3.6) t(f (A)z, x) — (f'(A) Az, z) &) ={f(A)z, )

<
< )t =1 (1) (Az,x)
for anyt € [m, M]anyx € H with ||z| = 1.

Now, sinceA is selfadjoint withm/ < A < MI and f'(A) is positive definite, then
mf' (A) < Aff(A) < Mf'(A),i.e,m (f (A)z,z) < (Af (A)z,x) < M{f (A)x,x) for
anyz € H with ||z|| = 1, which shows that

to := W € [m,M] foranyze H with [z| =1

Finally, if we putt = ¢, in the equation[(3]6), then we get the desired refulf (1.3).
REMARK 3.1. Itis important to observe that, the condition tffiatA) is a positive definite
operator onH can be replaced with the more general assumption that
(Af" (A) z, z)
(f" (A) z,z)

which may be easily verified for particular convex functigis

(3.7) ei foranyze H with |z| =1,

REMARK 3.2. Now, if the functions is concave dmnd the condition?) holds, then we

have the inequality
B8  0<(f(Ara)—f (%)
(A (A)z,x)\ [(Az, z) (f' (A) 2, z) — (Af' (A) 2, x)
<7 (e | () ,2) |
foranyz € H with ||z| = 1.
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The following examples are of interest:

ExaAMPLE 3.1. If A is a positive definite operator oH, then
(3.9) (0 <) (n Az, z) —n ((A7",2) ") < (A, 2) - (A72,2) — 1,
foranyz € H with ||z|| = 1.

Indeed, we observe that if we consider the concave fungtio0, o) — R, f (¢) = Int,
then
(Af' (A)z,z) 1 . B
FAos (Ao € (0,00), foranyzre H with |z| =1
and by the inequality (318) we deduce the desired resulf (3.9).
The following example concerning powers of operators is of interest as well:

ExaMPLE 3.2. If A is a positive definite operator oH, then for anyz € H with ||z|| = 1
we have

(3.10) 0 < (APz, z)P! — (AP g, x)’

< p(APx, x)"" [(Apx,x) — (Az,z) (AP 'z, x)]
forp>1,
(3.11) 0< (AP 'z, 2)" — (APz,z)P

< p(APx, x)P~? [(Az, z) (AP 2, z) — (AP, )]
for0<p<1,and

(3.12) (APg, 2)P~! — (AP 'z, )’

0<
< (—p) (APz, 2)" "% [(Az, x) (AP 'z, 2) — (APz, 7))

forp < 0.

The proof follows from the inequalitie§ (3.3) arjd (3.8) for the convex (concave) function
f(t) =1t p e (—00,0)U[l,00) (p€(0,1)) by performing the required calculation. The
details are omitted.

3.3. Further Reverses.The following results that provide perhaps more useful upper bounds
for the nonnegative quantity

(AfT(A)z, x) -
f(— —{(f(A)z,z) forze H with x| =1,
e ) " W) &l
can be stated:

THEOREM3.3 (Dragomir, 2008/1(]). Let/ be an interval andf : I — R be a convex and
differentiable function on (the interior of I) whose derivativef’ is continuous ori. Assume

that A is a selfadjoint operator on the Hilbert spa¢éwith Sp (A) C [m, M| ciand f'(A)is
a positive definite operator of. If we define

L (AF (e
BUL A= ey ( <ff<A>x,x>>
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then

313  (0<)f (<Af / “‘)”"’?) (A o)

(fr(A)z,x)
(M —m) [ (AP = (' (A) 2 2)?]
(f', A;x) 1/2
5 () (M) = f' (m) [ Ax]]® — Az, )’]

< L —m) (7 1) — () B A )

N[

W

and

@14 (0<)f (%) (A )

B
{KMx — Az, Az —ma) (f (M)z — f' (A)z, f' (A)z — f' (m) 2)]?,
1
1

for anyx € H with ||z|| = 1, respectively.
Moreover, ifA is a positive definite operator, then

< B(f', A;x)
{i RULLOT B (A ) ([ (4) 2, 7)
(VAT i) (/T )~/ o) ) (A ) (' (4) )]

foranyz € H with ||z]| = 1.

PROOF We use the following Griss’ type result we obtaineddh [

Let A be a selfadjoint operator on the Hilbert spdég (.,.)) and assume thaip (A) C
[m, M| for some scalars: < M. If h andg are continuous ofin, M] andy := mingepm a b ()
andl’ := max;cjm i b (t) , then

(3.16) [(h(A) g (A)z,2) = (h(A)z,2) - (g (A) z, )]

(
5 (=) [l (Al ~ (g (4) . 2)?)""

(heia-s)

for eachw € H with ||z|| = 1, whered := minycpm, a1 g (1) @ndA 1= max;cpm, 1 g (1) -
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Therefore, we can state that

(3.17) (AS (A)2,) = (Aw, ) - (' (A) 2,2
< 5O —m) [ ()l = (7 (A a?]
< 3 (M = m) (' (M) ~ f' (m)

and

(3.18) (AS (A)2,) = (Aw, ) - (' (A) 2,2
<57 () = f ) [Ae? = (A, ]
< 3 (M = m) (7 (M) = f'(m)

for eachz € H with ||z|| = 1, which together with[(3]3) provide the desired result (B.13).
On making use of the inequality obtained|ifj [

(3.19) [(h(A) g (A)z,2) — (h(A)z,2) (9 (A) 2, 2)|

[N

(

1

4

{ [(Tz —h(A)z, f(A)x —yx) (Ar — g (A)z,9 (A) x — ox)]2
|<h(A)[L’,.T> - F_;W’ ’<9(A>$7x> - %‘ )

for eachr € H with ||z|| = 1, we can state that

(Af' (A) z,2) = (Az, z) - (f' (A) 2, 7)
(M —m) (f* (M) = f" (m))

f
1
=3l
{ (Mx — Az, Az — mz) (f' (M) xz — f"(A)z, f (A)x— [ (m)x)]?,

AZE l’ M—&—m{ ‘ f/ )l’,[E) o fl(M);f/(m)‘;

for eache € H with ||z|| = 1, which together with[(3]3) provide the desired result (B.14).
Further, in order to prove the third inequality, we make use of the following result of Griss
type obtained in{]:
If v andJ are positive, then

(3.20) [(h(A) g (A) z,2) — (h(A)z,2) (g (A) 2, )]
{ LB (1 (A) 2, 2) (g (A) 2, ),

(VT = vA) (VA= V8) [(h (A)2,2) (g (A) w,2))?

for eachx € H with ||z|| = 1.

<
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Now, on making use of (3.20) we can state that
(3.21) (Af' (A)z,z) — (Az,z) - (f (A) z, x)

1 (M—m)(f"(M)—f'(m)) !
4 \/Mmf’(M)f’(m) <Al’, I) <f (A) x, l’> 3

IA

+1

(322)  (0<)f (

<

(VM = vm) (VIQD) = (m)) Az, 2) {f (A) 2, 2)]2
REMARK 3.3. We observe, from the first inequality jn (3.15), that
AfAaez) 1 (M=—m) (M) fm)
which implies that
(AF W)\ (1 =) (¢ () = 5 () o
I ( <f'<A>x,x>)§f ([4 A () F (m) Az, >>’
Now, the first inequality in[(3.15) implies the following result
(AP (A a)\ o
i) U@
1
4/ Mmf (M) ' (m)
v ([1 (M —m) (/' M;—f’(m)) O

for eache € H with ||z|| = 1, which together with[(3]3) provide the desired result (B.15).
(1 _) A (A - / /
(Az, ) (f' (A z,2) =4 /Mmf (M) f'(m)
for eachr € H with ||z|| = 1, sincef’ is monotonic nondecreasing adds positive definite.
M —m) (f (M) — f" (m))
(
L VMmp (M) f(m)

(Ax, x>) (Az, ),

for eachx € H with ||z|| = 1.
From the second inequality ip (3]15) we also have

323  (0<)f (%) (f (A) )

< (VM = vim) (VF D) = /7 (m))

. ([1 (M —m) (f' (M) = f' (m))
4 /Mmf (M) f (m)
for eachr € H with ||z|| = 1.

+1

e [ ]

REMARK 3.4. If the condition thatf’ (A) is a positive definite operator oA from the

Theorenj 3.8 is replaced by the conditipn {3.7), then the inequalitied (3.13) anp (3.16) will still

hold. Similar inequalities for concave functions can be stated. However, the details are not
provided here.

3.4. Multivariate Versions. The following result for sequences of operators can be stated.

THEOREM 3.4 (Dragomir, 2008,/10]). Let/ be an interval andf : / — R be a convex
and differentiable function oh (the interior of /) whose derivativef’ is continuous on. If
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A;, 7 € {1,...,n} are selfadjoint operators on the Hilbert spagewith Sp (A;) C [m, M| ci
and

> i (A (Ay) g, 2) o
> (f(Ay) g, 25)
foreachz; € H,j € {1,...,n} with 3" [|z;]|* = 1, then

A f’ Tj, T "
G2 =g (Zz f<ff<(j>ljij>>)‘z<f (As) o2
> (A1 (Ag) 7, 25)
E] L (T (Ay) @y, 2y)
A (Ag) g ag) = D00 (A, ) D00 (1 (Ay) 2y, 25)
Zg L (1 (Ay) g, y) ’

for eachz; € H,j € {1,....n} with 3" | [lz;]* = 1.

(3.24)

</f

PrRoOOF Follows from Theorem 3]2. The details are omittgd.

The following particular case is of interest

COROLLARY 3.5 (Dragomir, 2008/1(]). Let! be an interval andf : / — R be a convex
and differentiable function oh (the interior of ) whose derivativef” is continuous on. If
A;,j € {1,...,n} are selfadjoint operators on the Hilbert spagewith Sp (4;) C [m, M] ClI
and forp; > O with 37, p; = 1 if we also assume that

<Z?:1 piA;f (4)) =, fff>
<Z1j1:1pjf/ <Aj>x795>

for eachz € H with ||z|| = 1, then

(3.27) 0<f (<<zjzjnlijf/f(i ))37 ;>) - <ipjf(/lj)x,x>
j=1Dj j) T, J=1

/ (<Z§Llpj14jf' (Aj)x,a:>)

< f

(Srmr () ea)

x FZ?W”' () ) = (s (Sl (4) x>]
<Z?:1pjf’ (Aj)x,x>

(3.26) cl

Y

for eachz € H with ||z|| = 1.

PrROOF. Follows from Theore4 on choosing = /p; - =, j € {1,...,n}, where
p; >0,5€{l,...,n},> " p; =1andx € H, with ||z| = 1. The details are omitted

The following examples are interesting in themselves:
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ExampPLE 3.3. If A;, j € {1,...,n} are positive definite operators dfti, then

(3.28) (0 <) Z (InAjz;,z;) —In !(Z <Ajlg;-j,xj>> ]

j=1 j=1

<Z (Ajxj, x;) - Z<A xj,xj>

7j=1

for eachz; € H,j € {1,....n} with 3", [la;]|* = 1.
Ifp; > 0,5 € {1,...,n}with> ", p; = 1, then we also have the inequality

(3.29) (0 <) <zn:pj lnij,x> —In <<zn:ijj_1x,x>) ]
< <zn:ijjx,x> . <zn:ijj_1x,:v> -1,

for eachz € H with ||z|| = 1.

4. OTHER INEQUALITIES FOR CONVEX FUNCTIONS

4.1. Some Inequalities for Two Operators.The following result holds:

THEOREMA4.1 (Dragomir, 2008/11]). Let/ be an interval andf : I — R be a convex and
differentiable function on (the interior of I) whose derivativeg’ is continuous on. If Aand
B are selfadjoint operators on the Hilbert spagewith Sp (A), Sp (B) C [m, M] Ci, then
(4.1) (f'(A)z,z) (By,y) — (' (A) Az, z)

< {(f(B)y.y) — (f (A) z,x)
< (f'(B) By.y) — (Az,z) (/' (B)y.y)

foranyz,y € H with ||z|| = |ly|| = 1.
In particular, we have

(4.2) (f' (A)z,z) (Ay,y) = (f' (A) Az, )
(f (A)y,y) = {f (A)z,z)

(f'(A) Ay, y) — (Az,z) (f' (A) y,)

foranyz,y € H with ||z|| = ||y|| = 1 and

(4.3) (f'(A)x,x) (Bx,x) —
(f(B)z,z) —(f(A
(f(B) Bx,z) — (Az,z

<
<

<
<

foranyz € H with ||z]| = 1.

PROOF Sincef is convex and differentiable dnthen we have that

(4.4) frs)-(t—s) < f(t) = fs) < f1(t)-(t—9)

foranyt, s € [m, M].
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Now, if we fix ¢ € [m, M| and apply the property [P) for the operatbrthen for any: € H
with ||z|| = 1 we have

(4.5) (f'(A)- (- 1y = Az z) <([f () - 1u — [ (A)] 2, 2)

<
< (1) (t 1y — A)z,2)
foranyt € [m, M] and anyr € H with ||z|| = 1.

The inequality[(4.p) is equivalent with

(4.6) t(f (A)z,x) — (f'(A) Az, z) f&) = {f(A)z,z)

< T
< frt)t—f(t) (Az,z)
foranyt € [m, M] and anyr € H with ||z|| = 1.
If we fix © € H with ||z|| = 1 in (4.6) and apply the propertly|(P) for the operatarthen
we get
((f (A)x,) B~ (f' (A) Az,x) 1)y )
<{[f(B) = {f (A) z,z) Lu]y,y)
<

([f'(B) B — (Az,z) f'(B)ly,y)
for eachy € H with ||y|| = 1, which is clearly equivalent to the desired inequality (4uL).

REMARK 4.1. If we fixz € H with ||z|| = 1 and chooseB = (Az,z) - 15, then we
obtain from the first inequality irj (4.1) the reverse of the Mond#?e inequality obtained by
the author inl@]. The second inequality will provide the Mond-&eiC inequality for convex
functions whose derivatives are continuous.

The following corollary is of interest:

COROLLARY 4.2. Let] be an interval andf : I — R be a convex and differentiable func-
tion oni whose derivativef’ is continuous on. Also, suppose that is a selfadjoint operator
on the Hilbert spaced with Sp (A) C [m, M| ci. If g is nonincreasing and continuous on
[m, M| and

(4.7) f'(A)[g(A) —A] =0
in the operator order oB (H) , then
(4.8) (fog)(A) = f(A)

in the operator order oB (H ) .
PROOF If we apply the first inequality fronj (4]3) faB = g (A) we have

(4.9) (f' (A)z,z) (g (A) w, ) — (f' (A) Az, x)
<(f(g(A))z,z) = (f(A)z,z)
anyz € H with [|z| = 1.
We use the followingCebysSev type inequality for functions of operators established by the
author in BJ:
Let A be a selfadjoint operator withp (A) C [m, M] for some real numbers. < M. If

h,g : [m, M] — R are continuous anslynchronous (asynchronous) [m, M|, then
(4.10) (h(A)g(A)z,x) > (<) (h(A)z,z) - (g (A) z, x)

foranyz € H with ||z| = 1.
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Now, sincef’ and g are continuous and are asynchronousnlM], then by (4.10) we
have the inequality

(4.11) (f'(A) g (A)z,z) < (f'(A)z,z) - (9 (A) 7, z)

foranyz € H with ||z|| = 1.
Subtracting from both sides gf (4]11) the quantify (A) Az, z) and taking into account,
by (4.7), that(f" (A) [g (A) — A]z,z) > 0 for anyz € H with ||z|| = 1, we then have

) —
0<(f"(A)g(A) - Alz,z)

= (f"(A) g (A)z,z) — (' (A) Az, z)

< (f'(A)z,z) (g (A)z,2) — (f' (A) Az, )
which together with[(4]9) will produce the desired regult](4s8).

We provide now some particular inequalities of interest that can be derived from Theorem

4.1
N EXAMPLE 4.1. a. Let A, B two positive definite operators di. Then we have the inequal-
ities
(4.12) 1— (A 'z, 2) (By,y) < (In Az, z) — (In By, y)
< (Az, x) <B_1y7y> -1

foranyz,y € H with ||z|| = ||y|| = 1.
In particular, we have
(4.13) 1— (A2, 2) (Ay,y) < (In Az, z) — (In Ay, y)
< (Az, x) <A*1y,y> -1
foranyx,y € H with ||z|| = |ly|]| = 1 and
(4.14) 1— (A2, 2) (Bz,z) < (ln Az, z) — (In Bz, z)
< (Az,z) (B 'z, z) — 1

foranyz € H with ||z|| = 1.
b. With the same assumption fdrand B we have the inequalities

foranyx,y € H with ||z|| = |ly|| = 1.
In particular, we have

(4.16) (Ay,y) — (Az,z) < (Aln Ay, y) — (In Az, ) (Ay, y)
foranyz,y € H with ||z]| = ||y|| = 1 and
(4.17) (Bzx,x) — (Az,x) < (Bln Bz, x) — (In Az, z) (Bz, )

foranyz € H with ||z|| = 1.

The proof of Example follows from Theorenfl 4]1 for the convex functignz) = —Inx
while the proof of the second example follows by the same theorem applied for the convex
function f (z) = x In x and performing the required calculations. The details are omitted.

The following result may be stated as well:

AJMAA Vol. 17(2020), No. 1, Art. 1, 319 pp. AIMAA


https://ajmaa.org

36 S. S. IRAGOMIR

THEOREM4.3 (Dragomir, 2008/11]). Let! be aninterval and : / — R be a convex and
differentiable function ot (the interior of I') whose derivativg” is continuous on. If Aand
B are selfadjoint operators on the Hilbert spaéewith Sp (A), Sp (B) C [m, M] ci, then

(4.18) [ ({(Az, ) ((By,y) — (Az, x))
<{(f(B)y,y) — f ((Az,z))
<{(f"(B) By,y) — (Az,z) (f' (B) y,y)

foranyz,y € H with ||z|| = ||y|| = 1.
In particular, we have

(4.19) [ ((Az, ) ((Ay,y) — (Az, z))

< {(f(A)y,y) — [ (Az,z))

< (f'(A) Ay, y) — (Az, 2) (f' (A) y,y)
foranyz,y € H with ||z|| = ||y|| = 1 and
(4.20) ' ((Az, z)) ((Bx, x) — (Az, z))

< (f(B)x,z) — f ((Az,x))

< (f'(B) Bz,z) — (Az,z) (' (B) =, )
foranyx € H with ||z|| = 1.

PROOF Sincef is convex and differentiable dnthen we have that

(4.21) fis)-(t=s)< f(t)=f(s)< [ (t)-(t—s)
foranyt,s € [m, M].
If we chooses = (Az, z) € [m, M|, with afixz € H with ||z|| = 1, then we have

(4.22) f Az, x)) - (t = (Az, 2)) < f(t) = f ((Az,2)) < f'(1) - (t = (Az, )

for anyt € [m, M].
Now, if we apply the property (P) to the inequalify (4.22) and the opetdtdhen we get

(4.23) (f' ({(Az,z)) - (B — (Az, ) - 1n) y,y)
<({[f (B) = f ({(Az, ) - Luly, y)
< (f'(B) - (B—(Az,z) - 11) y,y)
foranyz,y € H with ||z|| = ||ly|| = 1, which is equivalent with the desired res{lt (4.18).

REMARK 4.2. We observe that if we chooge= A in (4.20) ory = x in (4.19) then we
recapture the Mond-Raric inequality and its reverse frorn (2.1).

The following particular case of interest follows from Theolenj 4.3

COROLLARY 4.4 (Dragomir, 2008/11]). Assume thaf, A andB are as in Theorefn 4.3. If,
either f is increasing orjm, M| and B > A in the operator order o8B (H) or f is decreasing
and B < A, then we have the Jensen’s type inequality

(4.24) (f (B)x,z) = f ((Az,z))
foranyx € H with ||z|| = 1.

The proof is obvious by the first inequality in (4]20) and the details are omitted.
We provide now some particular inequalities of interest that can be derived from Theorem

4.3:
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EXAMPLE 4.2. a. Let A, B be two positive definite operators di. Then we have the
inequalities

(4.25) 1 — (Az,z)™" (By,y)

foranyx,y € H with ||z|| = |ly|| = 1.
In particular, we have

(4.26) 1 — (Az,z)"" (Ay,y)

foranyx,y € H with ||z|| = |ly|| = 1 and

(4.27) 1— (Az,2)"" (Bx, x)

foranyz € H with ||z|| = 1.
b. With the same assumption fdrand B, we have the inequalities

(4.28) (By,y) — (Az,z) < (BlnBy,y) — (By,y) In ((Az, x))

foranyx,y € H with ||z|| = |ly|| = 1.
In particular, we have

(4.29) (Ay,y) — (Az,z) < (Aln Ay, y) — (Ay, y) In ((Az, 7))
foranyx,y € H with ||z|| = |ly|| = 1 and
(4.30) (Bx,x) — (Az,z) < (Bln Bz, z) — (Bz,z) In ((Az, x))
foranyz € H with ||z]| = 1.
4.2. Inequalities for Two Sequences of OperatorsThe following result may be stated:

THEOREM4.5 (Dragomir, 2008/11]). Let/ be aninterval and : / — R be a convex and
differentiable function ot (the interior of /) whose derivative’ is continuous on. If A; and
B; are selfadjoint operators on the Hilbert spaéewith Sp (A;), Sp (B;) C [m, M| ci for
anyj € {1,...,n},then

n n n

(4.31) Z (f'(Aj) zj,25) Z (Bjys» yj) — Z (' (A) Ajzj, )

=2 {(Bi)yj i) = Z(f (A) 2, 2;)
<D F(By) Biygyys) = > (Ajzgoay) D (' (By) ys v)

j=1 j=1 j=1

foranyz;,y; € H,j € {1,...,n}with 37, [lzll* = 327, lyl* = L.
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In particular, we have

(4.32) Z (f' (A)) z;,2;) Z (A s) — (f' (Aj) Ay, ;)
< Z(f (Aj) Yj» Y5) Z(f (A7) zj, z5)
< Z(f/ (Aj) Ajyj,y5) — : <ijjvxj>z<f (Aj) vss y5)

foranyx;,y; € H,j € {1,...,n} with 3" [|l||* = 7, [|ly;]|* = 1 and

n n n

(4.33) Z (f'(A) xj, 25) Z (Bjxj,xj) — Z (f'(Ay) Ajzj, )

< 4 (f (Bj) xj, ;) —ZU (Aj) zj, ;)
Si@t( ) Bjzj, x;) i (A5, ;) i (f"(Bj) ;s 5)

J=1

foranyz; € H,j € {1,....,n}with}"_ [|l;]|* = 1.

ProoF Follows from Theorer 4]1 and the details are omitged.

The following particular case may be of interest:

COROLLARY 4.6 (Dragomir, 2008/11]). LetI be an interval andf : I — R be a convex
and differentiable function oh(the interior of /') whose derivative’ is continuous on. If A,
and B; are selfadjomt operators on the Hilbert spaéewith Sp (A;),Sp(B;) C [m, M] Cl

forany;j € {1,...,n}, then for anyp;,q; > Owith 3°7 | p; = >°7, ¢; = 1, we have the
inequalities

(4.34) <ijf’ (Aj):v>$> <Z qujy,y> - <Zp] A~$,x>
< <Z ij(Bj)y>y> - <ijf(Aj)337I>
<qu By, y> <ZP;‘AJ‘=T>93> <Z%‘f’ (Bj)y,y>

foranyx,y € H with ||z|| = |ly|| = 1.
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In particular, we have

(4.35) <ijf/ (Aj)%x> <Z qujy,y> - <ZPJ i) Ajx 1’>

< <Z qu(Aj)y>y> - <ijf(Aj)x,x>
<Z qf By, y> <ijij,a:> <Z q;f' (Aj)y,y>

foranyz,y € H with ||z|| = ||y|| = 1 and

(4.36) <ijf'<Aj>x,x> <ij3jx,m> <Zp] Am>

< <ijf(3j)%$> - <ijf(Aj)x>$>
< <Zp] ) Bz x> — <ijij,$> <ijf' (Bj)x,x>

foranyz € H with ||z|| = 1.

PROOF. Follows from Theorem 4{5 on choosing = /p;-=,y; = /3;-y,j € {1,...,n},
wherep;,q; > 0,5 € {1,...,n}, ZJ 1P =295 =1andz,y € H, with ||z = ||y|| = 1.
The details are omitte(i

EXAMPLE 4.3. a. LetA;, B;, j € {1,...,n}, be two sequences of positive definite opera-
tors onH. Then we have the inequalities

n n

(4.37) 1— Z (A2, 2;) Z (B,y;,y;)

n

< Z (InAjz;,x;) Z In B;y;, y;)
7j=1

j—1
<Z (Ajx;, xj) Z<B y],yj> 1

foranyz;,y; € H,j € {1,...,npwith> 7, IIOCJ-II2 = lyll” = 1.
b. With the same assumption fdr, and B; we have the inequalities

(4.38) > By, ) — Y (Ajag, ;)
=1 =1
<Y (BilnBjy;y;) — Y (In Ay, x5) Y (Biy;,u;)
j=1 Jj=1 J=1

foranyz;,y; € H,j € {1,....n} with 37, [|lz;|* = 7, |y l* = 1.
Finally, we have
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EXAMPLE 4.4. a. LetA;, B;, j € {1,...,n}, be two sequences of positive definite opera-
tors onH. Then for any;,¢; > 0with 337, p; = 3", ¢; = 1, we have the inequalities

(4.39) 1- <ijA;1x,x> <Z qujy,y>
j=1 Jj=1
<Zp]~ lnij,x> — <Z 4 lnBjy,y>
j=1

j=1

< <ij14j$,$> <Z C]ij_l?/,y> -1
j=1 j=1

foranyx,y € H with ||z|| = |ly|| = 1.
b. With the same assumption fdr, B;, p; andg;, we have the inequalities

(4.40) <Z qujy,y> - <ijij,x>
P =1
< <Z 4; B; lnBjy>y> - <ij lnAj%iB> <Z qujy,y>
=1 J=1

j=1

IN

foranyz,y € H with ||z|| = ||y|| = 1.

REMARK 4.3. We observe that all the other inequalities for two operators obtained in Sub-
section 3.1 can be extended for two sequences of operators in a similar way. However, the
details are left to the interested reader.

5. SOME JENSEN TYPE INEQUALITIES FOR TWICE DIFFERENTIABLE FUNCTIONS

5.1. Jensen’s Inequality for Twice Differentiable Functions.The following result may
be stated:

THEOREMS.1 (Dragomir, 2008/12]). Let A be a positive definite operator on the Hilbert
spaceH and assume thaip (A) C [m, M] for some scalarsn, M with0 <m < M. If fisa
twice differentiable function ofm, M) and forp € (—o0,0) U (1, c0) we have for some < I'
that

t2_p "
then
(5.2) v (A2, z) = (Az,2)") < (f (A) 2, 2) — [ ({(Az, z))
< I ({(APz,z) — (Az, z)")
for eachz € H with ||z|| = 1.
If
t2_p "
(5.3) 6§m~f (t) <A forany te (m,M)
and for som& < A, wherep € (0, 1), then
(5.4) 0 ((Az,z)" — (APz,2)) < (f (A) 2, z) — f ((Az,z))

<
< A ((Ax,x)? — (APz, 1))
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for eachz € H with ||z|| = 1.

ProoF. Consider the function.,, : (m,M) — R given byg,, (t) = f (t) — 7t* where
p € (—00,0) U (1,00) . The functiong, , is twice differentiable,

gy, () = f"(t) —p(p—1)t"?

foranyt € (m, M) and by [(5.1) we deduce thag, is convex on(m, M) . Now, applying the
Mond & Petaric inequality forg, , we have

I/\

((f(A) =yA") z,2) — [f ({Az, 2)) — v (Az, 7)"]
<f (A) T, T > f((AJ?,(E>) -7 [<Apx7x> - <A(E,:L‘>p]

which is equivalent with the first inequality ip (5.2).

By defining the functioryr, : (m, M) — R given bygr, (t) = I't? — f (¢) and applying
the same argument we deduce the second p4drt ¢f (5.2).

The rest goes likewise and the details are omitied.

REMARK 5.1. We observe that if is a twice differentiable function ofm, M) andy :=
infye (mar) f7 (), @ 1= SUP,cary [ (t), then by ) we get the inequality

1

(5.5) 5@ (A%, 2) — (A2, 2)*] < (f (A)z,2) - f ((Az, 2))

< %CID [(Az,2) — <ASL’,1’>2}

for eachr € H with ||z|| = 1.
We observe that the inequalify (5.5) holds for selfadjoint operators that are not necessarily
positive.

The following version for sequences of operators can be stated:
COROLLARY 5.2 (Dragomir, 2008/11]). Let A, be positive definite operators witfp (A;) C

m, M] C (0,00) j € {1,...,n}. If fis atwice differentiable function ofm, /) and for
p € (—o0,0) U (1, 00) we have the conditiof (§.1), then

(5.6)

Z<A xj,xj> (Z A-xj,xj>> ]
< Z i) xj,x;) — f (Z <ijjvxj>)

j=1

Z(A Tj,a;) — (;i A»xj,xj>>p]

foreachr; € H,j € {1,...,n}with 3" [lz;]* = 1.
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If we have the conditior (5.3) fore (0, 1), then

(5.7) 6 [(Z (Ajl’j,xﬁ) - Z<A§%‘>9ﬁj>]

Jj=1 J=1

IN

Z (f (Ay)xj,25) — f (Z <Aj$j>%‘>)

j=1

(5 i) -5 )

j=1 j=1

<A

foreachs; € H,j € {1,...,n}with 37 [lz;]* = 1.
ProoF Follows from Theorerm 5|13

COROLLARY 5.3 (Dragomir, 2008/11]). Let A, be positive definite operators witfp (A;) C
[m, M] C (0,00) j€{l,...,n}andp; > 0,5 € {1,...,n}with}>"  p; = 1. If f is a twice
differentiable function orimn, M) and forp € (—o0,0) U (1, 00) we have the condition (3.1),

then

(5.8) v [<zn:ij§x,:v> - <zn:ijjx,x>

< <ijf(f4j)$a$> —f <<ijij7I>>
<T [<iij§x,x> — <iijja:,x> ]

for eachz € H with ||z|| = 1.
If we have the conditior (5.3) fore (0, 1), then

(5.9) ) [<ipjz4jx,x> - <iij§’x,x>

< <ijf(Aj)x,x> —f <<ijij,a:>>
<ijij,x> = <ijA§$,x>]

for eachz € H with ||z|| = 1.

PrROOF. Follows from Corollar on choosing; = /p; -z, j € {1,...,n}, where
p; >0,j€{l,....,n}, > p; =1andz € H,with |[z| = 1. The details are omitteds

<A

REMARK 5.2. We observe that if is a twice differentiable function ofym, M) with
—00 <m < M < o0, Sp(4;) C [m,M],je{l,...,n}andy = inficiman f' (), P =
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SUDyeman) £ (1), then

(5.10) ® [Z (Afj,@;) — (Z <Amv%'>> ]

< Z i xjxg) — f <Z <ijj’xj>>
. N z
<o Z<A32$J%> - <Z <ijj,xj)> ]

for eachr; € H,j € {1,...,n} with 327 [|z;[|* = 1.
Also, ifp; > 0,5 € {1,...,n} with>°7_ p; =1, then

(5.11) ® [<ijz4j2$,$> — <ijAj:E,x> ]
< <ijf(Aj)x,x> —f <<ijij,a:>>
) |:<ZpJA§x7:E> — <ijij,x> ]

The next result provides some inequalities for the funcfiavhich replace the casgs= 0
andp = 1 that were not allowed in Theorgm b.1:

THEOREM5.4 (Dragomir, 2008/11]). Let A be a positive definite operator on the Hilbert
spaceH and assume thaip (A) C [m, M| for some scalarsn, M with0 <m < M. If fisa
twice differentiable function o, M) and we have for some < I' that

(5.12) y<t* f(t)<T forany t€ (m,M),
then
(5.13) v (In ((Az,z)) — (In Az, z)) (A)z,z) — f ((Az, z))

<(f
for eachz € H with ||z|| = 1.

If
(5.14) §<t-f"(t)<A forany te (m,M)
for somej < A, then
(5.15) 0 ((Aln Az, z) — (Az,x) In ((Ax, x)))

< {(f(A)z,z) - f ((Az,x))
< A((Aln Az, z) — (Az,z) In ((Azx, x)))

for eachz € H with ||z|| = 1.

PrROOF Consider the function, , : (m, M) — R given byg, o (t) = f(t) + vInt. The
functiong, q is twice differentiable,

9rp () = " (t) = t7*
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for anyt € (m, M) and by |(5.12) we deduce that, is convex onm, M) . Now, applying the
Mond & Petaric inequality forg, o we have

<{(f (A) +yInA)z, z) — [f ((Az, 2)) + v In ((Az, 2))]
= (f(A)z,2) = f ((Az, 2)) — 7 [In ({(Az, 2)) — (In Az, )]

which is equivalent with the first inequality ip (5]13).

By defining the functior : (m, M) — R given bygr (t) = —I'Int— f (¢) and applying
the same argument we deduce the second pdrt of| (5.13).

The rest goes likewise for the functions

gs1 (t) = f(t) —dtlnt and gap(t) = Atlnt — f(¢)
and the details are omitted.
COROLLARY 5.5 (Dragomir, 2008/11]). Let A, be positive definite operators wiifp (A;) C

[m, M] C (0,00) j € {1,...,n}. If fisatwice differentiable function apn, /1) and we have
the condition|(5.112), then

(5.16) 0 <ln (Z <Aa:j,xj>> -

Jj=1

< Z Nz, — f <Z (Ajxj, x; )
7=1
<T (ln (Z (Ajxj, xj) ) Zn: InAjz;, x; )

Jj=1

3

<ln Ajl'j, $]>>

foreachz; € H,j € {1,...,n}with 3" [lz;]* = 1.
If we have the condition (5.1L4), then

(517) ) (Z <A] In ijja ZL’j) — Z <Ajl‘j, Ij> In (Z <Ajl’j7 $J>>>

j=1 j=1 j=1
< Z i) i i) = f (Z <Ajmj7$j>)
=1
<A (Z (AjIn Ay, o) = Y (Ajy,2;) In (Z <Aj$j,$j>>>
j=1 j=1 j=1

foreachs; € H,j € {1,...,n}with 3" [lz;]* = 1.

The following particular case also holds:

COROLLARY 5.6 (Dragomir, 2008[11]). LetA; be positive definite operators wiffp (A4;) C
[m, M] C (0,00) j €{1,...,n}andp; > 0,5 € {1,...,n}with} 7" p; = 1. If f is atwice
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differentiable function orim, A7) and we have the conditiop (5]12), then

oo @(@W,x»_@pﬂw@»

< Z i)z, x;) — f ( <ijj7xj>>

=1

<r <1n (<zp,4> - <zp 1n,4jx,x>>

for eachz € H with ||z|| = 1.
If we have the condition (5.114), then

B (<iijj lnij,x> - <ji1pjz4jwax> In <<]i1pj14j‘”"”>)>

(5.19) < Z i) = f (Z <Ajfcjaxj>>

j=1

A <<j21ijj lnij,x> — <jiijjx,x> In <<jiijjx,x>>)

for eachz € H with ||z|| = 1.

5.2. Applications. It is clear that the results from the previous section can be applied for
various particular functions which are twice differentiable and the second derivatives satisfy the
boundedness conditions from the statements of the Thegrehis .1, 5.4 and the[Remark 5.1.

We point out here only some simple examples that are, in our opinion, of large interest.

1. For a givena > 0, consider the functiorf (t) = exp (at),t € R. We havef” (t) =
a?exp (at) and for a selfadjoint operatot with Sp (A) C [m, M] (for some real numbers
m < M) we also have

w:= inf f"(t)=a’exp(am) and® := sup f’(t) = a’exp(aM).
te(m,M) te(m,M)

Utilising the inequality[(5.5) we get
(5.20) —a”exp (am) [(A%z,z)—(Axz, x>2}
<(exp (aA) z,z) — exp ((aAx, ))

N[ —

o? exp (M) [<A2x,x>—<Ax,x>2] ;

for eachr € H with ||z|| = 1.
Now, if 5 > 0, then we also have

A exp (DA~ (A, ]
<(exp(—BA)z,x)—exp (— (BAz, z))
< 0 exp(-fm) [(A%, z) — (Ar, 2)?]

for eachx € H with ||z|| = 1.

(5.21)
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2. Now, assume thal < m < M and the operatod satisfies the conditiom - 15 <
A < M - 1g. If we consider the functiory : (0,00) — (0,00) defined byf (t) = 7
with p € (—o00,0) U (0,1) U (1,00). Thenf” (t) = p(p— 1) t*~% and if we considetp :=
infye(m,ar) f” ( ) and® := sup;¢(,, an) f” (t) , then we have

o=pp—1)mP 2 & =p(p—1)MP? forpc |2, 00),
p=plp—1)M" 2 &=p(p—-1)m’? forpe(1,2),
p=plp—-1)m 2, d=p@p-1)M"* forpe(0,1),

and
p=plp—1)MP 2 O=p(p—1)m'> forpe (—o00,0).

Utilising the inequality [(5.6) we then get the following refinements an reverses of Holder-
McCarthy’s inequalities:

(5.22) %p (p—1)mP—2 [<A2x x> — <Ax,x>2}

< (APx,x) — (A, z)’

< %p (p—1) MP~2 [<A2x,x> — (Az, x}ﬂ forp € [2,00),
(5.23) %p( — 1) MP72 [(A%z,2) — (Az, 7)7]

< (APx,x) — (Az,z)’

< %p (p—1)m?? [(Az,z) — (Ax, x}ﬂ forp € (1,2),
(5.24) %p (1—p) MP~? [(A’z,x) — (Az, :)3>2}

< (Az,z)? — (APz, x)

< %p(l —p)mP? [<A2x, x> — (Az, :c)Q} forp € (0,1)
and
(5.25) %

(b — 1) M7 [(A%,2) — (Az,2)’]
< (APz,z) — (Ax,x)?
1

IN

5P (p—1)mP? [(APz,z) — Am,m>2} forp € (—o0,0),

for eachr € H with ||z|| = 1.

3. Now, if we consider the functiorf : (0,00) — R, f(t) = —Int, thenf” (¢) = 72
which gives thaty = M~2 and® = m~2. Utilising the inequality[(5.5) we then deduce the
bounds
(5.26) %M‘2 [(Az,z) — (Aa:,x)Q]

<In((Az,x)) — (In Az, x)

< 1 2[(A%2,2) — (Ax,2)?]

M

for eachx € H with ||z|| = 1.
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Moreover, if we consider the functiofi : (0,00) — R, f(¢) = tInt, thenf” (t) = ¢!
which gives thatp = M~! and® = m~!. Utilising the inequality[(5.5) we then deduce the
bounds

(5.27)

for eachr € H with ||z|| = 1.

REMARK 5.3. Utilising Theoren 5]1 for the particular valuepf= —1 we can state the
inequality

(5.28) %w (A '2,2) — (Az,2) ) < (f (A)z,2) — f (A, )
< %\IJ (<A_1x,x> — (Ax,x)fl)

for eachx € H with ||z|| = 1, provided thatf is twice differentiable orfm, M) C (0, c0) and

Y= inf #f"(t) while V= sup f"(t)
te(m, M) te(m,M)
are assumed to be finite.
We observe that, by utilising the inequalify (5.28) instead of the inequality (5.5) we may
obtain similar results in terms of the quantity 'z, z) — (Az,z)~", = € H with ||z| = 1.
However the details are left to the interested reader.

6. SOME JENSEN'S TYPE INEQUALITIES FOR LOG-CONVEX FUNCTIONS

6.1. Preliminary Results. The following result that provides an operator version for the
Jensen inequality for convex functions is due to Mond anthA&[32] (see alsol20, p. 5]):

THEOREM 6.1 (Mond-Péaric, 1993, B2]). Let A be a selfadjoint operator on the Hilbert
spaceH and assume thatp (A) C [m, M] for some scalarsn, M withm < M. If fis a
convex function ofm, M], then

(MP) f (A, z)) < (f (A) z, )
for eachz € H with ||z|| = 1.

Taking into account the above result and its applications for various concrete examples of
convex functions, it is therefore natural to investigate the corresponding results for the case of
log-convex functionsramely functions : I — (0, o) for whichln f is convex.

We observe that such functions satisfy the elementary inequality

(6.1) FUA—=t)a+tb) < [f(a)]" " [f D)

for anya,b € I andt € [0,1]. Also, due to the fact that the weighted geometric mean is
less than the weighted arithmetic mean, it follows that any log-convex function is a convex
functions. However, obviously, there are functions that are convex but not log-convex.

As an immediate consequence of the Mondd€ inequality above we can provide the
following result:
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THEOREMG6.2 (Dragomir, 2010/15]). Let A be a selfadjoint operator on the Hilbert space
H and assume thatp (A) C [m, M| for some scalarsn, M withm < M. If g : [m, M] —
(0, 00) is log-convex, then

(6.2) 9 ((Az,z)) < exp(Ing (A)z,z) < (g(A)z,z)
for eachz € H with ||z|| = 1.

PrROOF Consider the functiorf := In g, which is convex orjm, M] . Writing for f
we getln [g ((Az,z))] < (lng(A)z,z), for eachz € H with ||z|| = 1, which, by taking the
exponential, produces the first inequality|in {6.2).

If we also use[(MP) for the exponential function, we get

exp (Ing (A) z,) < (exp[Ing (A)]z,z) = (g (A) z,2)
for eachx € H with ||z|| = 1 and the proof is completa.

The case of sequences of operators may be of interest and is embodied in the following
corollary:

COROLLARY 6.3 (Dragomir, 2010/15]). Assume thay is as in the Theorefn §.2. A; are
selfadjoint operators witlbp (4,) C [m,M], j € {1,...,n}andz; € H,j € {1,...,n} with
S [l = 1, then

(6.3) g (Z <Ajl‘jal’j>> < exp <Zlng (45) $j=$j>
< <Zg(Aj)xj,:cj>.

PrRoOF Follows from Theorem 6/2and we omit the detags.

In particular we have:

COROLLARY 6.4 (Dragomir, 2010/15]). Assume thay is as in the Theorefn §.2. i; are
selfadjoint operators wittsp (A;) C [m, M] Cl, j € {1,...,n} andp; > 0, j € {1,...,n} with
> 1 pj =1, then

(6.4) g <<ijij,x>> < <H g (Aj)]" 1’»1‘>

< (St r)
j=1
for eachz € H with ||z|| = 1.
PrROOF. Follows from Corollar by choosing = /p; - =, j € {1,...,n} wherex € H
with ||z]| = 1. &
It is also important to observe that, as a special case of Thgor¢m 6.1 we have the following
important inequality in Operator Theory that is well known as the Holder-McCarthy inequality:

THEOREM 6.5 (Holder-McCarthy, 19672€]). Let A be a selfadjoint positive operator on
a Hilbert spaceH. Then

(i) (A"z,z) > (Az,z)" forall r > 1 andz € H with ||z| = 1;

(i) (A"x,z) < (Ax,z) forall 0 <r < 1andz € H with ||z| = 1;

(iii) If Aisinvertible, then A"z, z) > (Ax,z) " forall r > 0 andz € H with ||z| = 1.
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Since the functiory (¢) = ¢~" for » > 0 is log-convex, we can improve the Holder-
McCarthy inequality as follows:

PROPOSITIONG.6. Let A be a selfadjoint positive operator on a Hilbert spalle If A is
invertible, then
(6.5) (Az,2)”" <exp(In (A™") z,z) < (A 7"z, z)
forall » > 0 andx € H with ||z| = 1.

The following reverse for the Mond-Baric inequality that generalizes the scalar Lah-
Ribaric inequality for convex functions is well known, see for instar2@ p. 57]:

THEOREM6.7. Let A be a selfadjoint operator on the Hilbert spaéé and assume that
Sp(A) C [m, M] for some scalarsn, M withm < M. If f is a convex function ofm, M|,
then

M — (Ax,x
(6.6) (f (42,2 < LoD 0)

M—-—m

(Az,x) —m

f () + =

- f (M)
for eachz € H with ||z|| = 1.
This result can be improved for log-convex functions as follows:

THEOREMG6.8 (Dragomir, 2010/15]). Let A be a selfadjoint operator on the Hilbert space
H and assume thatp (A) C [m, M] for some scalarsn, M withm < M. If g : [m, M] —
(0, 00) is log-convex, then

(6.7) (g(A)z,z) < <[[g (m)]% g (M>]A,QT;H} z) x>

< Moty BT )
and
(6.8 9 ({Az,2)) < [g ()] [g (M) TR

Mlg—A A-mlpy
< ([l ()] g ()] 7| 2, 2)
for eachz € H with ||z|| = 1.

PROOF Observe that, by the log-convexity @fwe have

M —t t—m
(6.9) g(t)—g(M_m-m+M_m~M)

< [g (m)]rr=r [g (M)]r=r

foranyt € [m, M].
Applying the property[(P) for the operatdr, we have that

(g (A)z,z) < (V(A)z,2)

for eachz € H with ||z|| = 1, whereV (¢) := [g (m)]¥-m [g (M), t € [m, M]. This
proves the first inequality i (6.7).
Now, observe that, by the weighted arithmetic mean-geometric mean inequality we have

M-t t—m M —t t—m
g (M)

lg (m)] = g (M= < - g (m) + 57—

foranyt € [m, M].
Applying the property[(P) for the operatdrwe deduce the second inequality[in (6.7).
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Further on, if we use the inequalify (6.9) foe= (Az, z) € [m, M| then we deduce the first
part of (6.8).

Now, observe that the functioh introduced above can be rearranged to read as

g (M )] =
U(t)=g(m)|——= t e m, M
(0 =g m) |20 m, M
showing that¥ is a convex function ofm, M| .
Applying Mond-P&aric’s inequality for we deduce the second part of (6.8) and the proof
is complete gy

The case of sequences of operators is as follows:

COROLLARY 6.9 (Dragomir, 2010/15]). Assume thag is as in the Theorei §.2. i; are
selfadjoint operators wittbp (A4;) C [m,M], j € {1,...,n} andz; € H,j € {1,...,n} with
S0 lla]? = 1, then

(6.10) > (9(A)) zj,25)

< (3 |lo ) gy M)]Aj”fﬂ%m>
M — n—lAJJ7j T‘lzlAjjvj_
< MEE )y Zn Iy
and
(6.11) g(l <A]azj,xj>>
M-57_ (A ej.2;) n_y(ajz5.0;)-m
<lg(m)] = [g (M) e
- <Z Lo )] F g ) >

In particular we have:

COROLLARY 6.10 (Dragomir, 2010/15]). Assume thay is as in the Theorefn §.2. H;
are selfadjoint operators witlip (A4;) C [m, M] Cl, j € {1,...,n}andp; >0, j € {1,...,n}
with 37 | p; = 1, then

(6.12) <ijg (A) M>
: <ij g (m)] "7 [g ()] B >

_ M — <%TZA]L$> g(m) + <Z?:1 ijjx,x> -m |
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and

(6.13) g <<zn:ijjx,x>>

]W*<E] 1pJA]zz> <ZJ 1pJAjzz> m

<lg(m)] o [g(M) m
= <ij g ()] 3 [g (M) > .

The above result from Theorém 5.8 can be utilized to produce the following reverse inequal-
ity for negative powers of operators:

PROPOSITIONG.11. Let A be a selfadjoint positive operator on a Hilbert spalelf A is
invertible andSp (A) C [m, M] (0 <m < M), then

(6.14) <A_TJU,:1:> < <|:mAIAlIHmAMAJVIm:nH:| T1‘7$>
M — (Az,z) _  (Az,x)—m
< - ' 7. LT e AV A
- M-m mn M —m
and
. M—(Az,2) (Asz)—m T
(6.15) (Az,2) ™ < [g(m) 5 g (M) 5|

g < [m A41V11H77LAMAAImTIrf{:| - .T, x>
forall » > 0 andz € H with ||z| = 1.

6.2. Jensen’s Inequality for Differentiable Log-convex Functions.The following result
provides a reverse for the Jensen type inequality| (MP):

THEOREM 6.12 (Dragomir, 20089]). LetJ be an interval andf : J — R be a convex
and differentiable function od (the interior of.J) whose derivative” is continuous on. If A
is a selfadjoint operators on the Hilbert spagewith Sp (A) C [m, M] C J, then

(6.16) (0 <) {f (A)z,2) — f ((Az, )
< (f'(A) Az, z) = (Az,x) - (f' (A) 2z, )
foranyz € H with ||z|| = 1.
The following result may be stated:

PROPOSITIONG6.13 (Dragomir, 2010/1[5]). Let.J be aninterval and; : / — R be a dif-
ferentiable log-convex function anwhose derivative’ is continuous od. IfAisa selfadjoint
operator on the Hilbert spac with Sp (A) C [m, M] C J, then

exp(Ilng (A) z, z)
9 ({(Az, )

< exp [(g' (A) [g (A)] " Az, x) — (Az,z) - (¢ (A) [g (A)] " 2, )]
for eachz € H with ||z|| = 1.

(6.17) (1<)
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PrOOF It follows by the inequality[(6.16) written for the convex functign= In g that
(Ing(A)z,z) < Ing ((Az,z))
+ (g (A) [g (A)] " Az, ) — (Az,z) - (¢ (A) [9(A)] "z, z)

for eachx € H with ||z|| = 1.
Now, taking the exponential and dividing gy (Ax, z)) > 0 for eachz € H with ||z| = 1,
we deduce the desired res(lt (6.17).

COROLLARY 6.14 (Dragomir, 2010[1F]). Assume thay is as in the Propositiop 6.13 and
A, are selfadjoint operators withp (A4;) C [m, M] cdje{l,...n}.
Ifandz; € H,j € {1,...,n} with 37 |z;]|* = 1, then

exp <Z@:1 Ing (4;)x;, :Ej>
9 (X5 (A2 x]>)

<Zg A$],$]>

- Z (Ajzj ;) - Y (g (A) [g (A)] ™ ay, %>] :

j=1

(6.18) (1<)

< exp

Ifp; > 0,7 €{1,...,n} with3"7 , p; =1, then

(6.19) 1< (T o (4P 2. )

g <<Z?:1pjz4j$,fﬂ>>
< exp Kipjg' (A))[g (A" Aja, $>

- ij (Ajz,z) - ij (g (A4) [g(A4))] ", x>]

for eachz € H with ||z|| = 1.

REMARK 6.1. LetA be a selfadjoint positive operator on a Hilbert spatdf A is invert-
ible, then

(6.20) (1 <) (Az,z)"exp(In (A7) z,z)
< exp [7’ ((Ax,ac) . <A*1x,x> — 1)}

forall r > 0 andz € H with ||z| = 1.

The following result that provides both a refinement and a reverse of the multiplicative
version of Jensen’s inequality can be stated as well:

THEOREM 6.15 (Dragomir, 2010/15]). LetJ be an interval and; : J — R be a log-
convex differentiable function ahwhose derivative’ is continuous od. If Ais a selfadjoint
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operators on the Hilbert spackE with Sp (A) C [m, M| C 3, then

gUdw,z) x,T T, T
(g (A)z,z) : 1
< m < <exp [9 (A) [g (4] (A= (Az, z) 1H)} x7$>

for eachz € H with ||z|| = 1, wherely denotes the identity operator dt.

ProokE Itis well known that ifh : J — R is a convex differentiable function oh then the
following gradient inequalityholds

h(t)—h(s) > (s)(t—s)

foranyt, s eld.
Now, if we write this inequality for the convex functidn= In g, then we get

(6.22) Ing(t) —Ing(s) > i],((j)) (t—s)
which is equivalent with

9
(6.23) 00 g e |2 (0 5

foranyt, s eld. .
Further, if we takes := (Az,z) € [m, M| C J, for a fixedz € H with ||z|| = 1, in the
inequality [6.28), then we get

"((Az, x))

g () > g({(Az,z))exp [g (

oAz, 7 <A‘T"”’“">)}

for anyt )
Utilising the property[(P) for the operater and the Mond-P&aric inequality for the expo-
nential function, we can state the following inequality that is of interest in itself as well:

(6.24) (g (A)y,y)
> (o) (oxp | 2005 (4 o) 1) )

> g (anahe [T ((ag,) — (as,a))

for eachr,y € H with ||z|| = [Jy|| = 1.
Further, if we puty = x in (6.24), then we deduce the first and the second inequality in

©.2).

Now, if we replaces with ¢ in (6.23) we can also write the inequality

g9 (1)
g (t)exp {g(t) (s —t)l <g(s)
which is equivalent with
g ()
(6.25) 90 < g (e | L1 - 0]

for anyt, s )
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Further, if we takes := (Az,z) € [m, M] C J, for a fixedz € H with ||z| = 1, in the
inequality [6.25), then we get

9(0) < gtz a))exp | T4 (¢~ (s, )

for anyt )
Utilising the property[(P) for the operate, then we can state the following inequality that
is of interest in itself as well:

(6.26) (9(A)y,y)
< g ((Az, z)) (exp [¢' (A) [9 (A)] 7" (A — (Az,2) 1n)] v, v)

for eachz,y € H with ||z|| = ||y|| = 1.
Finally, if we puty = = in (6.26), then we deduce the last inequality{in (6.4L).

The case of operator sequences is embodied in the following corollary:

COROLLARY 6.16 (Dragomir, 2010[1[F]). Assume thay is as in the Propositiop 6.13 and
A; are selfadjoint operators withp (4;) C [m, M] CJ,j € {1,...,n}.
lfandz; € H,j € {1,...n} with 3" ||z;]|* = 1, then

(6.27) 1

[ (S (Aagay)) n
(S Sy (v Swean) o)

- > i1 (g (Ay) zj,25)
g (Z?:l (Aﬂjal"j>>

< <Z exp |g' (4)) [g (4] (Aj = (A, ) 1H>] $j>$j>-
j=1 j=1
Ifp; > 0,5 €{1,...,n} with} 7, p; = 1, then for eachx € H with ||z| =1

o [e((Shaes))
(6.28) 1§<;pj p[g(<2?1pﬂ"4ﬂ’x>>

<Z?:1 pig (4;) z, l’>
<
()

< <ij exp | g (4;) [g (A)]™ (Aj - <ZP;‘AJ%$> 1H>] xl’> :
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REMARK 6.2. LetA be a selfadjoint positive operator on a Hilbert spatdf A is invert-
ible, then

(6.29) 1< <exp [r (lH — (Ax, x>_1 A)] x, x>
< (A7x,x) (Az,x)" < (exp [r (1g — (Az,z) A")] 2, 2)
forallr > 0 andz € H with ||z| = 1.
The following reverse inequality may be proven as well:

THEOREM 6.17 (Dragomir, 2010/15]). LetJ be an interval and; : J — R be a log-
convex differentiable function ahwhose derivative’ is continuous on. If Ais a selfadjoint
operators on the Hilbert spacl with Sp (4) C [m, M] C J, then

6.30 (O fy ) 0. 2)
(6.30) 1<) (A, )
3 <g (A) exp [(MlH_AZ‘)_(i_mlH) (Z(%) - gg/%)ﬂ v x>
- () a)
1 (M) g'(m)
< exp [z (M =m) (i(M) ) gg<m>)]

for eachz € H with ||z|| = 1.

PROOF. Utilising the inequality[(6.22) we have successively

g((1L= N1+ 2s) O
(6.31) 7 (5) > exp {(1 A) (5 (t )}
and

g((T=X)t+ As) "(t)
(6.32) 0 > exp {—Ag(t) (t— 8)]

for anyt, s €J and any\ € [0, 1] .
Now, if we take the powen in the inequality [(6.3]1) and the poweér— X in (6.33) and
multiply the obtained inequalities, we deduce

g (O [9 (s))"
(6-33) g((L=X)t+ As)

[u_m(gs;;—z’ési><t—s>]

for anyt, s €J and any\ € [0,1] .
Further on, if we choose if (6.88)= M,s = m and\ = /=%, then, from [(6.3B) we get
the inequality

(6.34) o)
(M—u)(u—m) (g (M) g (m)
<ow [ S (00~ 0
which, together with the inequality
(M —u) (u— m) 1
M —m Z_l (M = m)
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produce

(6.35) lg (M) [g (m)] =
< gluyerp | (TLE) T )
ot (200 S0

foranyu € [m, M].

If we apply the property[ (P) to the inequalify (6/35) and for the operdtare deduce the
desired resultn

COROLLARY 6.18 (Dragomir, 2010/15]). Assume thag is as in the Theorein 6.[L7 ant,
are selfadjoint operators withp (A4;) C [m, M| CJ,j € {1,...,n}.
fz; € H,je{l,...,n}with3"  |z;||* = 1, then

Mig—A;

Aj—mlH
S (o OO [y ) 55 )
> i1 (9 (Ay) 24, 25)
n H_Aj A]-—m H ! / m
S (oo [Batacem (-] o)
< A
Zj:l (g (Aj) Ty, xj>

o[ (20D _4m)]

Ifp; > 0,7 €{1,...,n} with3 "7 | p; = 1, then for eachx € H with [|z| =1

6.36) (1<)

<ZLH%MM@f%3vamf%”ﬁ%x>
1<
e <Z?:1 pig (Aj)90717>
- <Z?:1 pjg (A;) exp [(MlHiﬁl\})_(ffimlH) <Z((AA4J)) - g/(m)ﬂ a:,x>
N <Z?:1Pj9 (Aj)$,$>

< exp E (M —m) (i/((]]\\j)) N i(%ﬂ .

REMARK 6.3. LetA be a selfadjoint positive operator on a Hilbert spaicéf A is invertible
andSp (A) C [m, M] (0 <m < M), then

(6.37)

(o OO g ()55 0,0

. 1<
638 (1<) )
—_r T MIH—A A—mlH
(Ao s e) gy
- (A—rx, x) =P
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6.3. Applications for Ky Fan’s Inequality. Consider the functiog : (0,1) — R, g (¢) =
()", r > 0. Observe that for the new functioh: (0,1) — R, f (t) = Ing (t) we have

t

1 _27"(1—25)
t(1—1t) and f" (1) = m fort € (0,1)

showing that the functiop is log-convex on the intervgD, 1) .

If p; > 0fori € {1,...,n} with " p;, = 1 andt; € ( ,3) fori € {1,...,n}, then by
applying the Jensen inequality for the convex functfofwith » = 1) on the mtervaI(O, 1) we
get

_imPiti
(6.39) = v b 1_t :

which is the weighted version of the celebrakgdFan’s inequality see B, p. 3].
This inequality is equivalent with

t; - Z?:lpiti ’

i=1

wherep; > 0 fori € {1,...,n} with Y1, p, = Landt; € (0,3) fori € {1,...,n}.
By the weighted arlthmetlc mean - geometric mean mequallty we also have that

i '(1—t')t_1>ﬁ(1_ti)pi
. Pi i)ty =2 ti

giving the double inequality

(6.40) Z pi(l—t)t;" > H
= sz' (1—t) (ZI%E) .

The following operator inequalities generalizifg (6.40) may be stated:

f1(t) =

PROPOSITIONG.19. Let A be a selfadjoint positive operator on a Hilbert spakelf A is
invertible andSp (A) C (0,3), then

(6.41) (A (g — A) z,2) > exp(ln (A" (1g — A)) z,2)
> (((1H — A)z,x) (Ax,x>_1)T

for eachz € H with ||| = 1 andr > 0.
In particular,

(6.42) (A7'(1g — A)z,z) > exp(ln (A" (1g — A)) z,z)
> (g — A)z, ) (A, z) !
for eachz € H with ||z|| = 1.

The proof follows by Theorein 6.2 applied for the log-convex functigt) = ()", r >
0,t€ (0,3).
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PROPOSITIONG.20. Let A be a selfadjoint positive operator on a Hilbert spaelf A is
invertible andSp (A) C [m, M] C (0,1), then

(6.43) ((1g — A)A™) 2,2)
3 L A )
(|50 ) e
<M—(Am,x)‘(1—m)r+(Ax,x>—m.(1—M)T
- M-m m M—-—m M

1—<Ax,x>>*

and
6.44
(649 (s
r(M—(Az,x)) r({(Az,xz)—m)

1—m\ ™M-m  [1—M\ Mm
< | ——
(%) )
r(]VIleA) T(AfmlH)
1—m M—m 1—M M—m
<<{(T) () ]>

for eachz € H with ||z|| = 1 andr > 0.

The proof follows by Theoretn 6.8 applied for the log-convex functjgn) = (1)",r >
0,t€(0,3).

)
Finally we have:

PROPOSITIONG.21. Let A be a selfadjoint positive operator on a Hilbert spakelf A is
invertible andSp (A)  (0,1), then

exp(In((1y — A) A™") z,z)
((1 — (Azx, z)) <Ax,x>_1)r
<exp [r ((Az,z) - (A7 (1y — A7 z,x)y—{(1g — A7 z,z))]

(6.45) (1<)

and
(6.46) 1< (exp[r(1- (Az,z)) ™" (1 — (Az,z) ™ A)] z,z)
(g —A)A™) 2, z)
((1 = (Az,2)) (Az,2) ")
< {exp [r(1y — A7t ((Az,2) A" — 1p)] z,2)
for eachz € H with ||z|| = 1 andr > 0.

The proof follows by Propositign 6.3 and Theoilem 6.15 applied for the log-convex function

g(t)= ()", r>0,t € (0,3). The details are omitted.

6.4. More Inequalities for Differentiable Log-convex Functions. The following results
providing companion inequalities for the Jensen inequality for differentiable log-convex func-
tions obtained above hold:

THEOREM 6.22 (Dragomir, 2010,16]). Let A be a selfadjoint operator on the Hilbert
spaceH and assume thasp (A) C [m, M] for some scalarsn, M with m < M. If g :
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J — (0,00) is a differentiable log-convex function with the derivative continuous/ @md
[m, M| C J, then
(¢ (A) Az, z)  (g(A) Az, 2) (¢ (A)z,x)
6.47 exp { .
©40 @) (gAna (gA)r)
{g(A) lng<A>x,z>]
1

CXP | T gz )
- (9(A)Az.z) =
9 ( (9(A)z,) )
for eachz € H with ||z|| = 1.
If

(©)

then

(6.48) eXp[ (< {o'(4) xxwx> ( L Aa: x> {4y (A)x,;§>)]

(g’ (A) Az, z)

M U e for eache € H with ||z = 1,
(o (A)z.2) Il

idles ) (g(A)ax

(¢ (A)Az,x
o ()
(4 > 1,
(g(A) Ing(A)z,x) lng(A)M: ) -
(9(A)z,x)

exp <
for eachz € H with ||z|| = 1.

PROOF By the gradient inequality for the convex functibng we have
g (t) g (s) (t—s)
g(t) g(s)
foranyt, s € J, which by multiplication withg (¢) > 0 is equivalent with

(6.50) g)(t—s5)>gt)ng(t)—g(t)Ing(s) >

foranyt, s € J.
Fix s € J and apply the propertﬂP) to get that

(6.51) (¢ (A) Az, z) — s (¢ (A) x, )
> (g(A)Ing (A)z,x) — (g (A)z,z)Ing (s)

(6.49) (t—s)>Ing(t)—Ing(s) >

g ()~ s9(1)

g (s)
> Ag(A)x,x) —s{g(A)x,x
= ((Ag (A) z,z) — s (g (A) z, 7))
foranyx € H with ||z|| = 1, which is an inequality of interest in itself as well.
Since (g (A) Az, z)
g T,T .
~— L ¢ [m,M] foranyz € H with [|z]| =1
o0 [m, M] for any el
then on choosing := ;(fgﬁg’? in (6.51) we get
: (g(A) Az, z)
g (A) Az, x) — ——+-~~——— (g (A)z,2x
(o (4) Az, 2) = SR (4) 0, 2)

>0

- Y

> (g(A)Ing (4)z,2) = (g (A)z,2)Ing (M)

{9 (A)z,z)
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which, by division with(g (A) z, z) > 0, produces
{g'(A) Az, z) (g(A) Az, z) (g (A)z, )
(652 GA e lg@ea  {g(A)za)
(g(A)ngA)z,z) | ({g(A) Az, z)
> T ey e (0 >m>)20
foranyz € H with ||z|| = 1.
Taking the exponential ih (6.52) we deduce the desired inequiality| (6.47).

Now, assuming that the condltlol(C) holds, then by choosing A)—A;“?) in (6.51) we

get
0= (g(A)ng (A),2) = (g (A)z,2) Ing (%)
1 (g (AAzx) /
>’ g%; (<A9(A)x,x> - %@m)x,@)
which, by dividing with(g (A) =, ) > 0 and rearranging, is equivalent with
653) ¢ (Bas) (<g/< ) Av,z)  (Ag(A) x,@)
g (%) (g (A)z,x)  (g(A)z,)

z)
WAz o

{g'(4) Az, ar)) (g (A)Ing(A)z,
> In
- 9( (g (A)z,2)
foranyz € H with ||z| = 1.
Finally, on taking the exponential i (6]53) we deduce the desired ineqyality (@.48).

REMARK 6.4. We observe that a sufficient condition fof (C) to hold is that eithes) or
—g' (A) is a positive definite operator df.

COROLLARY 6.23 (Dragomir, 2010/1[6]). Assume thatl andg are as in Theoretn 6.22. If
the condition|(C) holds, then we have the double inequality

(9’ (A) Az, x) (g(A)Ing (A) z, )
(6:59) 1“g< ¢ (A, ) ) LR
(g (A) Ax, 2)
= 1“9( g (A) 1) ) ’

foranyz € H with ||z]| = 1.

REMARK 6.5. Assume thatl is a positive definite operator oH. Since forr > 0 the
functiong () = ¢t~ is log-convex on(0, co) and

(9 (A) Ax,z)  (A7"w, )

(g (Aa,x) (A7 1z,2)

for anyz € H with ||z|| = 1, then on applying the inequality (6]54) we deduce the following
interesting result

>0

 n(f) i o (4222)

foranyz € H with ||z| = 1.
The details of the proof are left to the interested reader.
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The case of sequences of operators is embodied in the following corollary:

COROLLARY 6.24 (Dragomir, 2010/16]). LetA;, j € {1,...,n} be selfadjoint operators
on the Hilbert spacé! and assume thafp (A,) C [m, M| for some scalars:, M withm < M
and eachj € {1,...n}.If g : J — (0,00) is a differentiable log-convex function with the
derivative continuous od and[m, M] C .J, then

(6.56)

oxp > i1 (9 (Ay) Ay, ;)
> i (9 (Aj) @, 25)
2 (g (Ay) Ajag ) D050 (9 (A)) @, w))
Yo g (Ay) my ) 300 (g (Ay) mj,25)
> 5_1(9(A;) Ing(Aj)xj,xs)
Lo [ e )T;.2;)
- ( 7:1(9(Aj)ijjij>>
I\ S Ay

.,

for eachz; € H, j € {1,...,n} with 37 ||z;|* = 1.
If

> =1 (9 (Ay) Ajy, ;)

6.
(6.57) > i1 (g (Ag) zj, )

for eachz; € H,j € {1,...,n} with 3" [|z;]|* = 1, then

/ ( 7:1<g’(Aj)Aj$j@j>)
To1(g (Aj)zj,25)

<Z?:1<g’(Aj)Aﬂj@j>)
>oi1(g (Aj)zj,25)

y <E?:1 (9 (A7) g,y 305 (A (Aj)mjﬁﬁ)]

(6.58) exp

> (g (Ag) zj, ) > i1 (9 (Aj) zj,75)
g( ?:1(9’(&)14]‘%@]‘))
Y1 (g (A ,x5)
> J >
T ex <2?=1<9(Aj)lng(Aj)xj:xj>) z 1,
P\ o 6 05)

for eachz; € H,j € {1,...,n} with 30, [l;|* = L.

The following particular case for sequences of operators also holds:
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COROLLARY 6.25 (Dragomir, 2010/1€]). With the assumptions of Corollafy 6]24 and if
p; > 0,75 €{1,..,n} with Z?lej =1, then
<Z?:1 pig (4;) Ajz, $>
(Siomsg (4w, 2)
<Z?:1 pig (4;) Ajz, 1‘> <Z?:1 pig (4;)z, $>
(Siamg )y (Siapg(4)e,a)

(X pig(4;) 1ng<Aj>x,m>}
> 1

(6.59) exp

<Z;’L:1 pjg(Aj):c,x>

; ( (S0 pig(A))Aj,a) )

(X7o1pig(Aj)a)

exp {
>

for eachz € H, with ||z|| = 1.
If

<Z?:1 pig (A7) Ajz, l’>
(Siapig (A)w.a)

(6.60) eJ

for eachz € H, with ||z|| = 1, then

q ( <Z}L:1 pjg/(Aj)Aj$,z> )

(> g/ (Ay)z)

g ( (71 pig (Aj)Aja.z) )

<Z?:1 Pjg'(x“j)m,z)

(Sioamg (A Am ey (i pAig (Aj) @)

(6.61) exp

X _
(Siimg (A)e o)y (Sipg(4)w,7)
g (301 pig' (Aj)Ajz.z)

. (S ps9/(Ag)a,zy -

(X0 pig(A) Ing(Aea) \
eXp( (X0, prg(Ay)o.a)

for eachz € H, with ||z|| = 1.

PROOF. Follows from Corollar by choosing = ,/p;-z, j € {1,....n} wherex € H
with ||z = 1. n

The following result providing different inequalities also holds:

THEOREM 6.26 (Dragomir, 2010,/16]). Let A be a selfadjoint operator on the Hilbert
spaceH and assume thatp (A) C [m, M] for some scalarsn, M with m < M. If g :
J — (0,00) is a differentiable log-convex function with the derivative continuous/ and
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[m, M] c J, then

662 (ow|s ) (a- G, ) o)

g(4)
( <g<A)Ax,m>>
9\ (gAyz,z)

- <exp {g/ (_<?§?fi§1f_;§>) Ag() - LS ()
g <<9(A)Aw7x>) (g(A)x, )

(9(A)z,z)

for eachz € H with ||z|| = 1.
If the condition [(C) from Theorem 622 holds, then

(g/EA)A:v ) )

(6.63) <exp [g/ (:
> (o (gl ) o)

for eachz € H with ||z|| = 1.

PROOF By taking the exponential ifi (6.50) we have the following inequality

©64)  cxply (0 (t—s)) (g(“)g(t)m T (g 0) - s9 )]
. X - — Xp | ——~ -
P o) =Tl
foranyt,sej. ]
If we fix s € J and apply the propertﬂP) to the inequal.64), we deduce

(6.65) (explg (A) (A — slg)]x,x)
- <(i<<f>))g(A)$’$>
> (e [0 (49 (4) = 59 (4) | )

for eachx € H with ||z|| = 1, wherely is the identity operator of/.
By Mond-Pe&aric’s inequality applied for the convex functiesp we also have

(6.66) <exp {gg () (4g (4) = sg (A))} m>

for eachs € J andz € H with |jz]| = 1.
Now, if we chooses := A2 < 1, Al in (6.65) and (6@6) we deduce the desired

(9(A)z,z)
result [6.6P).
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Observe that, the inequality (6]64) is equivalent with

g/<5) - M g(t) . .
T o) —ta0)] = (2] 2 ewld (0]

(6.67) exp [

foranyt, s € J. ]
If we fix s € J and apply the propertﬂP) to the inequal.67) we deduce

(6.68) <exp {‘Z/((j)) (sg (A) — Ag (A))] x,x>
> ((9(9) g (A7) )
> (exp[g' (A) (slpg — A)] z, x)
for eachr € H with ||z|| = 1.
By Mond-P&aric’s inequality we also have
(6.69) (exp g (A) (sly — A)]z,x) = exp[s (¢’ (A) z,x) — (¢’ (A) Az, x)]

for eachs € J andz € H with ||z]| = 1.
Taking into account that the conditidn|(C) is valid, then we can choose in| (6.68) and (6.69)

% to get the desired result (6,63).

REMARK 6.6. If we apply, for instance, the inequalify (6.62) for the log-convex function
g (t) =t71 t > 0, then, after simple calculations, we get the inequality

(6.70) (o (i) )

> <(<A’1x, :z:> A’l)Ai1 x, x>

() )

> 1

for eachr € H with ||z|| = 1.
Other similar results can be obtained from the inequdlity {6.63), however the details are left
to the interested reader.

S =

6.5. A Reverse Inequality. The following reverse inequality is also of interest:

THEOREM 6.27 (Dragomir, 2010,16]). Let A be a selfadjoint operator on the Hilbert
spaceH and assume thatp (A) C [m, M] for some scalarsn, M with m < M. If g :

J — (0,00) is a differentiable log-convex function with the derivative continuous/ @md
im, M| C J, then

Mrfhns) Ul
(6.71) (1<) : (m)]exp (Ing Eg/l()j\i)]x)
o L= (4 )
(M — (Az,2)) (Az,2) —m) (¢ (M) ¢ (m)
=P | M—m (9<M)—g<m>>]
1 g (M) ¢ (m)
< exp g (M =m) (g<M> - g<m>)}
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for eachz € H with ||z|| = 1.

ProoF Utilising the inequality[(6.49) we have successively

(6.72) Ing((1—A\)t+As)—Ing(s) > (1—\) ZI((;) (t— s)
and
(6.73) Ing((1—A)t+As) —Ing(f) > —Agg((tt)) (t—s)

for anyt, s €J and any\ € [0,1] .
Now, if we multiply (6.72) by\ and [6.78) byl — A and sum the obtained inequalities, we
deduce

(6.74) (1=XNIng(t) +Alng(s) —Ing((1 =)t + As)
gt _dgs)
<=0 |(5g - 5i) o)

for anyt, s €J and any\ € [0, 1] .
Now, if we choose\ := {{=", s := m andt := M in (6.74) then we get the inequality

M—

——lng (M) + ]\Aj__u g (m) = Ing (u)
. [(M—U) (w—m) (g'(M) gl(m))]

M —m g(M)  g(m)

(6.75)

for anyu € [m, M].
If we use the property (P) for the operatémwe get

W#lng(M)+Wlng(m)—<lng(A)x,x>

[ comed (1)

(6.76)

for eachx € H with ||z|| = 1.

Taking the exponential ifh (6.76) we deduce the first inequality in {6.71).

Now, consider the functioh : [m, M] — R, h(t) = (M —t) (t —m). This function is
concave inNm, M| and by Mond-Péaric’s inequality we have

(M1lyg — A)(A—mly)x,z) < (M — (Az,z)) ((Az,z) — m)

for eachz € H with ||z|| = 1, which proves the second inequality fn (6.71).
For the last inequality, we observe that

(M —(Az,2)) (Az,2) —m) < - (M —m)’,

B |

and the proof is completq.

COROLLARY 6.28 (Dragomir, 2010[1[6]). Assume thag is as in Theorerh 6.27 and; are
selfadjoint operators wittbp (4;) C [m, M| CJ,j € {1,...,n}.
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ifandz; € H,j € {1,...n} with 3", ||z;]|* = 1, then

n n
M-3%_ 4 <Ajzj7zj> Yo <Ajzj’zj>_m

6.7 R ) s 1 7))
exp (3 (Ing (A7) w,2;))
(S (Mg — Aj) (A — mlg) xy, ;) (g' (M) ¢ <m>)]

< exp

: M =m g (M)~ g(m)
M —m

. E Y- (g' () o <m>>] |

g(M)  g(m)
Ifp; > 0,5 €{1,...,n} with Z?lej =1, then

1&17<E;’7‘:1 ij]-x,ac> <E?:1 ijjac,x>7m

I AT e
j=1 19 4 Tx,x

S (M1 — A)) (Aj —mly) wj, ) (g (M) g (m)
| : M—m (i(Mfgg(m))]
| (= (20 () )

- M—m
(M) g (m)
- (?(M) - "me))

1 (M) g (m)

< exp {Z (M =m) (gguw) - “C;(m))}

for eachz € H with ||z|| = 1.

REMARK 6.7. LetA be a selfadjoint positive operator on a Hilbert spatdf A is invert-
ible, then

(Az,z)—M m—(Az,z)
m M-m M—-m

(6.79) (1<) exp (In A1z, )

(M1 — A) (A—mlH)z,x)}

< ex
>~ €Xp Mm

(M — (Az, 7)) ((Az, ) — m)]

< ex

_1(M—m)2

< exp 4 mM ]

forall x € H with ||z| = 1.
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7. HERMITE -HADAMARD 'S TYPE INEQUALITIES

7.1. Scalar Caself f: I — Ris a convex function on the interval then for anya, b €
with a # b we have the following double inequality

b
(HH) H(*50) <52 [ roa < TSI,

This remarkable result is well known in the literature asteemite-Hadamard inequalitf29)].
For various generalizations, extensions, reverses and related inequalitié, E2je[[19],
[21], [24], [25], [27], [29] the monograph18] and the references therein.

7.2. Some Inequalities for Convex FunctionsThe following inequality related to the
Mond-P&aric result also holds:

THEOREM7.1 (Dragomir, 2010/14]). Let A be a selfadjoint operator on the Hilbert space
H and assume thaip (A) C [m, M] for some scalarsn, M withm < M.
If fis a convex function opn, M], then

- ORI B CES TR PRI
- f((Az,z)) 4+ f(m+ M — (Az, ))
- 2

m+ M
>
> (22
for eachz € H with ||z|| = 1.

In addition, ifz € H with ||z]| = 1 and (Az, z) # =M then also

f (A, z)) + f (m + M — (Az, )

(7.2) 5
) /m+M(Ax,x> <m+ M)
> — f(u)du> f )
;M - <A$7 .CI?> (Az,x) 2
PROOF Sincef is convex ornm, M| then for each: € [m, M| we have the inequalities
M —u u—m
7. M
(7.3) T () + e (M)
M —u u—m
> =
S s =B
and
M —u u—m
(7.4) T (M) ] (m)

M—-—m M —-—m
=f(M+m—u).
If we add these two inequalities we get
f(m)+ (M) = f(u)+ f(M+m—u)

for anyu € [m, M], which, by the property (P) applied for the operatbrproduces the first
inequality in [7.1).

Zf(M_uM—i— u—mm)
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By the Mond-Péaric inequality we have
(f((m+M)lg—A)z,x) > f(m+ M- (Az,z)),

which together with the same inequality produces the second inequality in (7.1).

The third part follows by the convexity gf.

In order to prove[(7]2), we use the Hermite-Hadamard inequglity (HH) for the convex func-
tions f and the choiceg = (Ax,x) andb = m + M — (Ax,x) .

The proof is completeg

REMARK 7.1. We observe that, from the inequality (7.1) we have the following inequality
in the operator order aB (H)

(7.5) [f(m)gf(M)] > f(A)+f((m2+ M) 1y — A)
m+ M
Zf( 5 >1H,

where f is a convex function ofim, M| and A a selfadjoint operator on the Hilbert spafle
with Sp (A) C [m, M| for some scalars:, M with m < M.

The case of log-convex functions may be of interest for applications and therefore is stated
in:

COROLLARY 7.2 (Dragomir, 2010/14]). If g is a log-convex function oim, M|, then

(7.6) g(m)g (M) = exp (Infg (A) g (m+ M) 1y — A 2,0)
> \/g ((Ax,x>)g (m + M — <A1‘,$>)

m+ M
>
>0 (")
for eachz € H with ||z|| = 1.

In addition, ifz € H with ||z]| = 1 and (Az, z) # =M then also

(7.7) V9 ({Az,2)) g (m+ M — (Az, 7))
2 m+M—(Ax,x)
> exp [% ~Ar) /<A$7$) Ing (u)du

m+ M

The following result also holds

THEOREM 7.3 (Dragomir, 2010,14]). Let A and B selfadjoint operators on the Hilbert
spaceH and assume thaip (A), Sp (B) C [m, M] for some scalarsn, M withm < M.
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If fis a convex function opn, M|, then

7.8)  f (<A—;Bx,x>)

[f (1 =1){Az, ) + ¢ (B, ) + [ (t (Az,z) + (1 — 1) (Bz,7))]

§[f((1—t)A+tB)+f(tA+(1—t)B)]m,x>

<M <A+Bx $>
- M—m

IN
/\[\D|)_\
—_

(HPz,z) —m

L ()

f(m) +

for anyt € [0, 1] and eachr € H with ||z|| = 1.
Moreover, we have the Hermite-Hadamard’s type inequalities:

(7.9) f (<A;Bx,x>)

< /Olf((l —t) (Az,x) +t (Bx,x))dt

< <[/01f((1—t)A+tB)dt} xx>

M — <A+—Bx,x> <A+—Bx,:r;> —m
T )+

M—-—m

<

f (M)

eachr € H with ||z|| = 1.
In addition, if we assume thd@ — A is a positive definite operator, then

(7.10)  f (<A ; Bx,x>) (B = A)z,)
< /<<B$’I>f(u)du <{((B-A4)z,z) <[/01f((1 —t)A+tB)dt} xm>

Azx,x)
M — <A+—Bx ) A+BSB ,T) —m

g<<B—A>x,as>[ T (m) 4 A f(M)]-

PROOF It is obvious that for any € [0, 1] we have
Sp((1—t)A+tB),Sp(tA+ (1—t)B) C [m,M].

On making use of the Mond-Earic inequality we have

(7.11) f((1—=t)(Az,x) +t (Bx,x)) < (f (1 —t) A+ tB)z,x)
and
(7.12) ft(Az,x) + (1 —t)(Bx,x)) < (f (tA+ (1 —1t) B) z,x)

for anyt € [0, 1] and eachr € H with ||z|| = 1.
Adding (7.11) with [[7.1R) and utilising the convexity ffwe deduce the first two inequali-

ties in (7.8).
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By the Lah-Ribar inequality [6.6) we also have

(7.13) (f(1—=t)A+tB)z,x)
M —(1—1t)(Az,z) —t (Bzx,x)
< i - om)
N (1—1) (Ax,]@—_i—:n(Bx,m}—m F )
and
(7.14) (ftA+ (1 —t)B)z,z)
M —t(Ax,z) — (1 —t) (Bz,x)
< -G - (m)
+t<A:z:,x>+(]\1/[—_t3n<B:c,x> —m Fan

foranyt € [0, 1] and eachx € H with ||z| = 1.
Now, if we add the inequalitie§ (7.]13) with (7]14) and divide by two, we deduce the last part

in (7.8).
Integrating the inequality overe [0, 1], utilising the continuity property of the inner prod-
uct and the properties of the integral of operator-valued functions we have

(7.15)  f (<A;Bx,x>>

< % [ P =1 (Ara) 1 (B

+/0 F(t(Az,2) + (1 — ) (Bz, 2)) dt}

< %Uolf(u—t)A+tB)dt+/01f(tA+(1—t)B)dt] x:v>

M — MTBIB,$> <A+TB:L’,x>—m
< YR f(m)+ M —m f(M).
Since
/0 f((1—=1¢) <Ax,x>+t(B:v7a:))dt:/0 ft(Az,z) + (1 —t) (Bx,x))dt
and

/1f((1—t)A+tB)dt:/1f(tA+(1—t)B)dt

then, by [(7.1p), we deduce the inequaljty {7.9).
The inequality[(7.10) follows fronj (7/9) by observing that fé@z, z) > (Ax, =) we have

-1 Ba,x))dt = ! " wya
[ sta-oen semraya = mts [

Ax,xz)

for eachx € H with ||z|| = 1. &
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REMARK 7.2. We observe that, from the inequalities [7.8) (7.9) we have the following
inequalities in the operator order 6f(H)

(7.16) %[f((l ) A+IB)+ f(tA+(1—1)B)]
MH—A;_B #—mlH
< f(m) W —m +f(M)w,

wheref is a convex function ofin, M] and A, B are selfadjoint operator on the Hilbert space
H with Sp(A), Sp(B) C [m, M] for some scalars:, M with m < M.

The case of log-convex functions is as follows:

COROLLARY 7.4 (Dragomir, 2010/14)). If g is a log-convex function oim, M|, then

(7.17) g (<A;Bm,$>)
<Vg((1 —t)(Az,z) +t(Bz,z)) g (t (Az,z) + (1 —t) (Bz,z))
Sexp< [lng((l—t)A—i—tB)—i—lng(tA—{—(1—t)B)]x,a:>

N2 Az
S g (m) M—m g (M) M—m

for anyt € [0, 1] and eachr € H with ||z|| = 1.
Moreover, we have the Hermite-Hadamard’s type inequalities:

()

(1 —1t)(Az,z) +t (Bx,x)) dt}

[
sou{[ [ o= s10a])

AP0 (AgBa)m

<glm) g (M)

for eachz € H with ||z|| = 1.
In addition, if we assume tha® — A is a positive definite operator, then

((B=A)z,x)
(7.19) g (<A;Bx,a:>>

(Bz,x)
/ Ing (u)du
(Az,x)

< exp [((B—A)x,x><[/011ng((1—t)A+tB)dt} xx>]

]W—<A+TB.1‘,:D> <‘Wgz,m>—m] <(B—A)LL‘,SC>

N | —

< exp

< exp

g(m) g (M)

for eachz € H with ||z|| = 1.

From a different perspective we have the following result as well:
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THEOREM 7.5 (Dragomir, 2010,14]). Let A and B selfadjoint operators on the Hilbert
spaceH and assume thaip (A), Sp (B) C [m, M| for some scalarsn, M withm < M. If f
is a convex function ofin, M|, then

(7.20) s (<Aw°> ; (By, y>)

< / F (1= 1) (A, 2) + (By, ) dt

< <[/01f((1_t)A+t<By,y> 1H)dt] m>
< U (A)a0)+ 7 (By. )
< U () + (7 (B)y.)

and

(721)  f <<Ax’x> . <By’y>) < <f (A+ <B§”y> 1H) :Ux>

1
<([[ ra-nasemyn i) os)
0
for eachz,y € H with ||z]| = |ly]| = 1.

PROOF For a convex functiorf and anyu,v € [m, M| andt € [0, 1] we have the double
inequality:

(7.22) f(u;rv)g%[f((l—t)u+tv)+f(tu+(1—t)v)]
<51 )+ )]
Utilising the second inequality ifi (7-22) we have
(7.29 S 1 (U= 0wt 1By, ) + f (bu+ (1) (By, )]
< 3 1F )+ 1 (By.y))

foranyu € [m, M], t € [0,1] andy € H with ||y|| = 1.
Now, on applying the property (P) to the inequallty (7.23) for the opetatee have
1
5 [(F (A=) A+t (By,y))z,2) +(f (tA+ (1 1) (By,y)) z, )]
1
<5 [{f(A)z2)+ F(By,y)]
foranyt € [0, 1] andz,y € H with ||z| = ||y|| = 1.
On applying the Mond-Raric inequality we also have

(7:25)  1£ (1= 1) {Ar,2) + ¢ (By.y)) + f (¢ (Az, ) + (1~ 1) (By.p))]

(7.24)

< SUF (=) A+ (Byy) 1) w,a) + {F (A + (1~ 1) (By,y) L), )]

for anyt € [0,1] andz,y € H with ||z|| = ||y|| = 1.
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Now, integrating ovet on [0, 1] the inequalities| (7.24) and (7.,25) and taking into account
that

/ (f(Q1—=t)A+t(By,y) ly)x,x)dt

/ FUEA+ (1= 1) (By,y) L) 7, 2) dt
<Uf 1—tA+t(Byy>1H)dt]:caz>

and

/Of((l—t) <A$,$>+t<3y,y>)dt=/o f(t{Az, x) + (1 = 1) (By,y)) dt,

we obtain the second and the third inequality{ in (7.20).
Further, on applying the Jensen integral inequality for the convex fun¢tive also have

/0 £ (1 1) (A, 2) + t (By, y)) dt

> p ([ 10 -0+t o))

_, (<Ax,x> t <By,y>)

for eachz,y € H with ||z|| = ||y|| = 1, proving the first part of (7.20).
Now, on utilising the first part of (7.22) we can also state that

(7.26) f (—“+ <QBy’y>>
< U= utt (By,)) + f (tut (1= 1) {By.p))

foranyu € [m, M], t € [0,1] andy € H with ||y|| = 1.
Further, on applying the property|(P) to the inequality (J7.26) and for the opetai@ get

<f (A+ (BQy,y> 1H) x’x>

< % [(f(1=t)A+t(By,y) lu)x,x) + (f tA+ (1 — 1) (By,y) 1g) v, )]

for eachz,y € H with ||z|| = [ly|| = 1, which, by integration ovet in [0, 1] produces the
second inequality irf (7.21). The first inequality is obvioms.

REMARK 7.3. It is important to remark that, from the inequalities (}.20) and [7.21) we
have the following Hermite-Hadamard’s type results in the operator ordBr( &f) and for the
convex functionf : [m, M] — R

(7.27 PR < [ p -0 A By )
< U (A) + £ By ) 1

for anyy € H with ||y|| = 1 and any selfadjoint operators B with spectra inNm, M] .
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In particular, we have from (7.27)

(7.28) f(““‘z”> 1H) < [ r-nas g

< 3 1F(A) + 1 ({Av. ) L)
foranyy € H with ||y|| = 1 and

(7.29) f (A+251H> < /1f((1—t)A+tslH)dt
0

[f (A) + [ (s) 1x]
foranys € [m, M].

As a particular case of the above theorem we have the following refinement of the Mond-
P&aric inequality:

COROLLARY 7.6 (Dragomir, 2010,14]). Let A be a selfadjoint operator on the Hilbert
spaceH and assume thatp (A) C [m, M] for some scalarsn, M withm < M. If fis a
convex function oifim, M|, then

(7.30) ((Az, ) < <A+ (Az, 7) 1H> xx>

<Uf 1_tA+t<Am>1H)dt] >

[(f (A)z,2) + | ((Az, 2))] < (f (A) 2, ) .

Finally, the case of log-convex functions is as follows:

IN

l\DI»—t

COROLLARY 7.7 (Dragomir, 2010/14)). If g is a log-convex function oim, M|, then
A B
(7.31) J (< x, ) + y,y>)

2

< exp [/Ollng((l—t)(A:v,a:)+t(By,y>)dt]

gexp<{/ollng((1—t)A+t(By,y>1H)dt] a::v>

and

732) o (et Buah)

2
< exp <lng (A + <B2y,y) 1H) x,x>

§exp<[/ollng((1—t)A+t(By,y>1H)dt] :L’x>
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and
(7.33) 9 ((Az, z))
< exp <1ng (A + <A;’ ?) 1H) x, £E>
1
< exp<{/ Ing((1—t)A+t{Azx,x)1y) dt} a:,$>
0
1
< exp |5 g (4),2) + Ing (A 2)]| < xp g (4),2)
respectively, for eachk € H with ||z|| = 1 and A, B selfadjoint operators with spectra in
[m, M] .

It is obvious that all the above inequalities can be applied for particular convex or log-
convex functions of interest. However, we will restrict ourselves to only a few examples that are
connected with famous results such as the Hélder-McCarthy inequality or the Ky Fan inequality.

7.3. Applications for Hélder-McCarthy’s Inequality. We can improve the Holder-McCarthy’s
inequality above as follows:

PROPOSITION7.8. Let A be a selfadjoint positive operator on a Hilbert spalde
If » > 1, then

, A+ (Az,z) 15\’
(7.34) (Az,x)" < << 5 ) x,x>

< <[/01((1—t)A+t(Ax,x> lH)Tdt] x,x>
1
2

<

foranyz € H with ||z]| = 1.
If 0 < r < 1, then the inequalities reverse in (7]34).
If Aisinvertible and- > 0, then

(7.35) (Az,2)™" < <(A i <A2‘”’$> IH)_T:C, x>

<{ (1—=t) A+t (Az,z) 1y)" Tdt}x,x>
5 [(A772,2) + {Az,2)7] < (A7"rz)

IN

foranyz € H with ||z|| = 1.

Follows from the inequality] (7.31) applied for the power function.
Since the functiom (¢t) = ¢~" for r > 0 is log-convex, then by utilising the inequality (7}33)
we can improve the Holder-McCarthy inequality as follows:
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PROPOSITION7.9. Let A be a selfadjoint positive operator on a Hilbert spafelIf A is
invertible, then

(7.36) (Az,x)"" <exp <ln (A + (Az, ) 1H) _Tx,:zr>

2
1
< exp < [/ In((1—t)A+t{Ax,z)1y)"" dt} :B,a:>
0
< exp B [(InA™"2,z) + In (A, x>_rﬂ <exp(lnA~"z,z)
forall » > 0 andz € H with ||z| = 1.

Now, from a different perspective, we can state the following operator power inequalities:

PROPOSITION7.10. Let A be a selfadjoint operator witlhp (A) C [m, M] C [0, c0), then

T+ M AT M)1y — A)
(7.37) M A (M) = A)
2 2
S (Az,z)" + (m+ M — (Az, z))" o (m+M "
- 2 - 2
for eachz € H with ||z|| = 1 andr > 1.
If 0 < r < 1then the inequalities reverse in (7]37).
If Ais positive definite and > 0, then
T+ M AT M)ly — A"
(738) oM z< +(m+ M1y —4) xx>
2 2
- (Av,2)"" + (m+ M — (Az,x))™" S (m - M)T
- 2 - 2

for eachz € H with ||z|| = 1.

The proof follows by the inequality (7.1).
Finally we have:

PROPOSITION7.11. Assume thatl and B are selfadjoint operators with spectralfim, M| C
[0,00) andx € H with ||z|| = 1 and such that Az, z) # (Bx,x) .
Ifr>1orre (co,—1)U(—1,0) then we have

T .T.%‘r—"_l .%'JZT—H
(7.39) <<A;B>x’x> Srir(A(Agi ) = <B, >

< <Ml((1—t A+ tB) dt :z:x>

M — <A+Bx x> N A'g T, x)—m
M —m m M —m

< M".

If 0 < r < 1, then the inequalities reverse in (7]39).
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If A andB are positive definite, then

o () <

< <[/01((1—t)A+tB)1dt1 xa:>

M (M80a) (M) m

(M —m)M

7.4. Applications for Ky Fan’s Inequality. The following results related to the Ky Fan
inequality may be stated as well:

|

S
|

2
3

PROPOSITION7.12. Let A be a selfadjoint positive operator on a Hilbert spakelf A is
invertible andSp (A) € (0,3), then

(7.41) (1 — A)z,2) (Az,2) 1)

< exp <1n (lg — A+ {1y — A) z,2) 1g) (A + (Az, z) 1H)71)T:1:,x>

< <exp [/01 Im((1—t)(1lg—A) +t{(lg —A)z,z) 1y)
x (1 —t) A+t (Az, ) 1H)—1]"dt} a:x>

< exp B [<ln [(1g —A) A z,2) +In (((1g — A) 2, 2) (Az, x)l)TH
<exp(ln[(1y — A) A’l]rx,x>
foranyz € H with ||z]| = 1.

It follows from the inequality[(7.33) applied for the log-convex functipn (0,1) — R,
g(t) = (%)T,r > 0.

PROPOSITION7.13. Assume that! is a selfadjoint operator witt5p (A) c (0,1) and
s € (0, %) . Then we have the following inequality in the operator ordeBgfH ):

(7.42) In[[(2—8)1y — Al (A+ slg) "]

< /1 In ([(1—ts) 1y — (1 —1¢) Al ((2 —t)A+tslH)‘1) dt

< % (m (1 — A) A7) +1n (1 - S>T1H> .

If follows from the inequality |(7.29) applied for the log-convex functign (0,1) — R,
g(t)= ()", r>0.

8. HERMITE -HADAMARD 'S TYPE INEQUALITIES FOR OPERATOR CONVEX
FUNCTIONS

8.1. Introduction. The following inequality holds for any convex functigindefined oriR

8.1) (b—a)f (“;b) < /abf(a:)d:v

< (b—a)w, a,b e R.
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It was firstly discovered by Ch. Hermite in 1881 in the jourNdthesis(see R9]). But this
result was nowhere mentioned in the mathematical literature and was not widely known as
Hermite’s result'86].

E.F. Beckenbach, a leading expert on the history and the theory of convex functions, wrote
that this inequality was proven by J. Hadamard in 1&)3Ip 1974, D.S. MitrinovE found Her-
mite’s note inMathesiq29]. Since [8.1) was known as Hadamard’s inequality, the inequality is
now commonly referred as the Hermite-Hadamard inequédiy; [

Let X be a vector space, y € X, x # y. Define the segment

[z, y] == {1 =)z +ty, t € [0, 1]}.
We consider the functioffi : [, y] — R and the associated function
1]

9(,y) : [0,1] = R, g(z,y)(t) :== fI(1 = )z + ty], L € [0, 1].

Note thatf is convex onz, y] if and only if g(z, y) is convex on0, 1].
For any convex function defined on a segmleng] C X, we have the Hermite-Hadamard
integral inequality (seed] p. 2])

(8.2) / <$T+y) < [ 10— e+t < o)+ 50)

which can be derived from the classical Hermite-Hadamard inequflity (8.1) for the convex
functiong(z,y) : [0,1] — R.

Sincef(z) = ||z||” (z € X and1 < p < o0) is a convex function, we have the following
norm inequality from[(8]2) (se@B, p. 106])

]l + lyll”

< [ e wrar < IR

(8.3)

foranyz,y € X.

Motivated by the above results we investigate in this paper the operator version of the
Hermite-Hadamard inequality for operator convex functions. The operator quasilinearity of
some associated functionals are also provided.

A real valued continuous functighon an intervall is said to beoperator convex (operator
concave)f

(OC) FA=A)A+AB) < (2)(1-A)f(A)+Af(B)

in the operator order, for al € [0, 1] and for every selfadjoint operater and B on a Hilbert
spaceH whose spectra are contained/inNotice that a functiory is operator concave i f is
operator convex.

A real valued continuous functiofi on an intervall is said to beoperator monotonéf it
is monotone with respect to the operator order, e B with Sp(A),Sp(B) C I imply
f(A) < f(B).

For some fundamental results on operator convex (operator concave) and operator monotone
functions, se€d(] and the references therein.

As examples of such functions, we note tlfi@t) = ¢" is operator monotone dfi, oo) if and
only if 0 < r < 1. The functionf (t) = t" is operator convex off), co) if either1 < r < 2 or
—1 <r < 0and is operator concave @0, co) if 0 < r < 1. The logarithmic functiory (¢) =
In ¢ is operator monotone and operator concavélono). The entropy functioryf (t) = —tInt
is operator concave off), co). The exponential functioh(t) = ¢’ is neither operator convex
nor operator monotone.
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8.2. Some Hermite-Hadamard’s Type Inequalities.We start with the following result:

THEOREM 8.1 (Dragomir, 2010,13]). Let f : I — R be an operator convex function
on the intervall. Then for any selfadjoint operatord and B with spectra in/ we have the
inequality

w0 (NI ()

g/lf((l—t)A+tB)dt

S%{f(A-;B> +f(A>;f(B)} <§ f(A);rf(B))_

PROOF First of all, since the functiorf is continuos, the operator valued integral

/1f((1—t)A+tB)dt

exists for any selfadjoint operatorsand B with spectra in/.

We give here two proofs, the first using only the definition of operator convex functions and
the second using the classical Hermite-Hadamard inequality for real valued functions.

1. By the definition of operator convex functions we have the double inequality:

8.5) f(C;D) <

f(1=t)C+tD)+ f((1—1t)D +tC)]

il

<1+ (D)

for anyt € [0, 1] and any selfadjoint operato€sand D with the spectra if.
Integrating the inequality (8.5) overe [0, 1] and taking into account that

/1f((1—t)C’+tD)dt:/1f((1—t)D+tC)dt

then we deduce the Hermite-Hadamard inequality for operator convex functions

(HHO) f(C;D>§/01f((1—t)C+tD)dt
< [F(C)+ (D)

that holds for any selfadjoint operatarsand D with the spectra if.
Now, on making use of the change of variable- 2t we have

1/2

f((1—t>A+tB)dt:%/Olf((l—u)AMA;B) du

0

and by the change of variable= 2t — 1 we have

! 1! A+ B
1/2f((1—t)A—|—tB)dt:§/0f((l—u) 5 —i—uB)du.
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Utilising the Hermite-Hadamard inequalify (HHO) we can write

f(3A:B> g/olf((l—umw"l;B) du
A(232)

A+ 3B L A+ B
f( —23 )S/Of((l—u) —ig_ —i—uB)du

<zl (57

which by summation and division by two produces the desired r¢sult (8.4).

2. Consider now: € H, ||z|| = 1 and two selfadjoint operator$ and B with spectra in/.
Define the real-valued functian, 4  : [0,1] — Rgivenbyy, 4 5 (t) = (f (1 —=t) A+tB)x,z).
Sincef is operator convex, then for amy, t, € [0, 1] anda, 8 > 0 with o + 5 = 1 we have

Pa,a,5 (Ot + Bt2)

= (f (1 = (a1 + fBtz)) A+ (aty + Bt2) B) z, x)
<a(f((I-t)A+tB)z,z)+ 8(f ([(1-12) A+ t2B]) z, )
= ap, ap (1) + Bpsap (t2)

showing thatp, 4 p is a convex function of0, 1] .
Now we use the Hermite-Hadamard inequality for real-valued convex functions

g(‘“rb) < /bg(s)dsgw

and

2 “b—a 9
to get that
1 2 szAB(())—}_(prB :
Y AB (Z) < 2/ o (t)dtg ik, 5 WA, (2)
0
and 1 (1)
3 pr,A7B B + pr7A7B (1)
(px,A,B - < 2/ SOI,A,B (t) dt < 2
4 1/2 2

which by summation and division by two produces
1 3A+ B A+ 3B
e () (57)) )
1
< / (F((L—t)A+tB)z,x) dt
0
1 A+ B f(A)+ f(B)
< = :
<5 ([ (557) HEE )
Finally, since by the continuity of the functiohwe have

/01<f((1—t)A+tB)x,x)dt:</01f((1—t)A+tB)dtx,x>

foranyx € H, ||z|| = 1 and any two selfadjoint operatarsand B with spectra in/, we deduce

from (8.8) the desired result (8.4.
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A simple consequence of the above theorem is that the integral is closer to the left bound
than to the right, namely we can state:

COROLLARY 8.2 (Dragomir, 2010/13]). With the assumptions in Theorém|8.1 we have the
inequality

(8.7) (og)/o f((l—t)A+tB)dt—f(A+B>
gw_/lf((l—tmﬂfz)dt.

REMARK 8.1. Utilising different examples of operator convex or concave functions, we can
provide inequalities of interest.
If » € [-1,0] U [1, 2] then we have the inequalities for powers of operators

e (57) =)s[(57) (55|
3/01((1—t)A+tB)rdt

<1KA+B) +AT+BT] << A7"+BT>
~- 2 2 2 - 2

for any two selfadjoint operatord and B with spectra in(0, o) .
If » € (0, 1) the inequalities in(8]8) hold with > " instead of’ < ”.
We also have the following inequalities for logarithm

(8.9) (m <A;B) z) % {m <3A: B) +n <AZ3B>}
> /Olln((l —t)A+tB)dt

> % [ln (A;B) N ln(A)%Q—ln(B)} (2 1n(A)42rln(B))

for any two selfadjoint operatord and B with spectra in(0, o) .

8.3. Some Operator Quasilinearity Properties.Consider an operator convex function
f I ¢ R — R defined on the interval and two distinct selfadjoint operators, B with
the spectra inf. We denote by A, B] the closed operator segment defined by the family of
operators{(1 —t) A+ tB, t € [0,1]} . We also define the operator-valued functional

(8.10) Ap(A,Bit)i=(1—t) f(A) +tf(B) = f(1—t) A+tB) >0

in the operator order, for antye [0, 1].
The following result concerning an operator quasilinearity property for the functibpal -; )
may be stated:

THEOREM8.3 (Dragomir, 2010/13]). Letf : I C R — R be an operator convex function
on the intervall. Then for each4, B two distinct selfadjoint operatord, B with the spectra
in I andC € [A, B] we have

(8.11) (0 <)Af (A, Cit) + Ap (C,Bit) < As (A, Bit)

for eacht € [0,1], i.e., the functionalA; (-, -;¢) is operator superadditive as a function of
interval.
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If [C, D] C [A, B], then
(8.12) (0<)Af(C,Dit) < Ap (A, Bt)

for eacht € [0,1], i.e., the functionalA; (-, -;¢) is operator nondecreasing as a function of
interval.

PROOF LetC = (1 —s) A+ sBwiths € (0,1). Fort € (0,1) we have
A (C,Bit)=(1—=t)f(1—s)A+sB)+tf(B)
—f((1=t)[(1—s)A+sB]+tB)
and
Ap(A,Cit) =1 —t) f(A)+tf((1—s)A+sDB)
—f((1=t)A+t[(1—-s)A+sB])
giving that
(8.13) Af (A, Cit)+ Af (C,Bst) — Ay (A, B;t)
= f((1—8)A+sB)+ f((1—t)A+1tB)
—f((I=t)(1=s)A+[(1—t)s+t]|B)— f((1 —ts) A+tsB).

Now, for a convex functiorp : I C R — R, where/ is an interval, and any real numbers
t1, 19, s1 ands, from I and with the properties that < s; andt, < s, we have that

@ (t1) — ¢ (t2) <P (51) — ¢ (52).

(8.14) <
1 — o §1 — S2
Indeed, since is convex on/ then for anyu € I the functiony : I\ {a} — R
p () —v(a)
1) =
U =

is monotonic nondecreasing where is defined. Utilising this property repeatedly we have
pt) —plta) _ w(s1) =@l _ plta) —w(s1)

tl_tQ - Sl—tQ t2—81
¥ (s2) — ¢ (s1) _¥ (s1) — ¥ (s2)
SS9 — S1 51 — S2

which proves the inequality (8.]L4).

For a vectorz € H, with ||z|| = 1, consider the functiorp, : [0,1] — R given by
o, (t) = (f((1 —t)A+tB)z,x).Sincef is operator convex ohit follows thaty, is convex
on [0, 1] . Now, if we consider, for given, s € (0,1),

ty:=ts<s=:syandty:=t <t+ (1 —1t)s=: sg,

then we have
@y (t1) = (f (1 —ts) A+ tsB) x,x)

and
@p (t2) = (f (1 —1) A+tB)x,x)
giving that
0, (1) = 0 (t2) _ <[f((1 —ts) A+ tsB) — (1 —t>A+tB>} i l,>
tl - tQ t(S — 1) ’ .
Also

P, (51) = (f (1 =) A+ sB)z, )

AJMAA Vol. 17(2020), No. 1, Art. 1, 319 pp. AIMAA


https://ajmaa.org

INEQUALITIES FORFUNCTIONS OFSELFADJOINT OPERATORS 83

and
pr (82) = (f(A =) (A=) A+ [1—1t)s+1] B)x,x)
giving that
Py (51) =, (2)
_ <f((1—s)A+sB)—f((l—t)(l—s)A+[(1—t)s+t]B)x m>
t(s—1) e

Utilising the inequality [(8.14) and multiplying with(s — 1) < 0 we deduce the following
inequality in the operator order

(8.15) f((1—ts)A+tsB)— f((1—t)A+tB)
>f((1—=s)A+sB)— f(1—-t)(1—s)A+[1—-t)s+t]|B).

Finally, by (8.13) and (8.15) we get the desired regult (8.11).
Applying repeatedly the superadditivity property we have[€arD] C [A, B] that

Af (A,C;t) —f—Af (C,D;t) +Af (D,B;t) < Af (A,B;t)

giving that
0 S Af (A,C;t) —|—Af (D,B;t) S Af (A,B;t) - Af (C,D;t)
which proves[(8.12)x

Fort = % we consider the functional
ApAB) =, (L) 2 [AESB) (AL
f ) . f )y Ly 9 9 9 )

which obviously inherits the superadditivity and monotonicity properties of the functiopgl -; ) .
We are able then to state the following

COROLLARY 8.4 (Dragomir, 2010,13)). Let f : I ¢ R — R be an operator convex
function on the interval. Then for eac, B two distinct selfadjoint operatord, B with the
spectra in/ we have the following bounds in the operator order

. A+C C+B A+ B
(8.16) égmp( ! )+f( ! )—f@ﬂzf( : )
and
(8.17) sup [igliigﬁ—f(C+D>}
C,DE[A,B] 2 2
LI (A28
2 2

PrROOF. By the superadditivity of the functiona\; (-, -) we have for eacl’ € [A, B] that
f(A)+ f(B) iy (A+B)

2 2
f(A)+1(C) A+C\ | f(O)+[(B) C+B
2——77———f<—7—)+——77———f( 2 )
which is equivalent with
8.19) H(59) (57) =1 (557,
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Since the equality case if (8]18) is realized for eithe= A or C = B we get the desired

bound [8.1B).
The bound?) is obvious by the monotonicity of the functiahal -, -) as a function of
interval. i

Consider now the following functional
Ly (A B;t) = f(A)+ [(B) = f(1-t) A+1tB) - f((1-t) B+1A),

where, as abovef : ¢ € X — R is a convex function on the convex sgtand A, B € C
while t € [0,1].

We notice that

Ff (A, B;t) = Ff (B,A;t) = Ff (A, B; 1-— t)
and
Ff (A,B;t) = Af (A,B;t) +Af (A,B,l —t) Z 0

forany A, B € C andt € [0,1].

Therefore, we can state the following result as well

COROLLARY 8.5 (Dragomir, 2010,13]). Let f : I ¢ R — R be an operator convex
function on the interval. Then for each4, B two distinct selfadjoint operatord, B with the
spectra in/, the functionall's (-, -; ) is operator superadditive and operator nondecreasing as
a function of interval.

In particular, ifC' € [A, B] then we have the inequality

1

(8.19) 5[f((l—t)A+tB)+f((1—t)B+tA)]

g%[f((l—t)A+tC’)+f((1—t)C+tA)}

+%[f((l—t)C+tB)+f((1—t)B+tC)]—f(C)'

Also, if C, D € [A, B] then we have the inequality
(8.20) f(A )+ f(B)—f(1—=t)A+tB)— f((1—t)B+tA)
> f(O)+ (D)= f(A=-t)C+1tD) = f((1—1)C+1tD)

foranyt € [0,1].
Perhaps the most interesting functional we can consider is the following one:

(8.21) @f(A,B):w_/lf(u—tmﬂmdt.

Notice that, by the second Hermite-Hadamard inequality for operator convex functions we have
that©, (A, B) > 0 in the operator order.
We also observe that

1 1
(8.22) ®f(A,B):/ Af(/LB;t)dt:/ As (A B:1—t)dt.
0 0

Utilising this representation, we can state the following result as well:

COROLLARY 8.6 (Dragomir, 2010,13]). Let f : I € R — R be an operator convex
function on the interval. Then for eac, B two distinct selfadjoint operatord, B with the
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spectra in/, the functional®; (-, -) is operator superadditive and operator nondecreasing as a
function of interval. Moreover, we have the bounds in the operator order

(8.23) (ﬁﬁm[41U«1—0A+¢C)+f«l—w0+w3ﬂﬁ—j104
:iélful—ty4+t3ﬁﬁ

and

(8.24) aiﬁﬂiiﬁagllgl—[ff«1—oo+¢py%

:ﬂﬂ%ﬂ@_Avm—oAumﬁ

REMARK 8.2. The above inequalities can be applied to various concrete operator convex
function of interest.

If we choose for instance the inequalify (8.24), then we get the following bounds in the
operator order

T Dr 1
(8.25) sup {QLi————/)al—tﬂ?+tDYd4
C,De[A,B] 2 0
AiB

. KWuwAHmwu

wherer € [—1,0] U [1, 2] and A, B are selfadjoint operators with spectrainco) .
If » € (0,1) then

1 '8 'S
(8.26) sup L/ «1—%)0—%ﬂjﬁdt—fz—ilzw
C,D€[A,B] 0 2
1 T T
:i/(u—ﬂA+¢BYﬁ—f1;B,
0

andA, B are selfadjoint operators with spectra/inoo) .
We also have the operator bound for the logarithm

' In (C) + In (D)
(8.27) Cﬁggﬂ{élm“b—@O+¢Dﬁﬁ— ) }
Z/lln((l—t)AthB)dt— ln(A);ln(B)7

whereA, B are selfadjoint operators with spectra/inoo) .
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CHAPTER 3

Inequalities for the Ceby$ev Functional

1. INTRODUCTION

The Cebyseyor in a different spellingChebyshev inequalitwhich compares the inte-
gral/discrete mean of the product with the product of the integral/discrete means is famous in
the literature devoted to Mathematical Inequalities. It has been extended, generalised, refined
etc...by many authors during the last century. A simple search utilising either spellings and the
key word "inequality” in the title in the comprehensiMathSciNetdatabase of thAmerican
Mathematical Societgroduces more than 200 research articles devoted to this result.

The sister result due to Griiss which provides error bounds for the magnitude of the dif-
ference between the integral mean of the product and the product of the integral means has
also attracted much interest since it has been discovered in 1935 with more than 180 papers
published, as a simple search in the same database reveals. Far more publications have been
devoted to the applications of these inequalities and an accurate picture of the impacted results
in various fields of Modern Mathematics is difficult to provide.

In this chapter, however, we present only some recent results due to the author for the
corresponding operator versions of these two famous inequalities. Applications for particular
functions of selfadjoint operators such as the power, logarithmic and exponential functions are
provided as well.

2. CEBYSEV’'S INEQUALITY

2.1. éeby§ev’s Inequality for Real Numbers. First of all, let us recall a number of clas-
sical results for sequences of real numbers concerning the celeReldgdev inequality.

Consider the real sequendes— tuples a = (ay,...,a,), b = (by,...,b,) and the non-
negative sequenge = (pi,...,p,) With P, := > p; > 0. Define theweightedCebysev's
functional

(2.1) T, (p;a,b) ;= Pi Zpia'ibi - Pi Zpiai : Pi sz‘bi-
"oi=1 "oi=1 "oi=1

In 1882 — 1883 Cebysev[f] and [8] proved that ifa andb are monotonicin the same
(opposite) sense, then

(2.2) T, (p;a,b) > (<)0.

In the special casp = a > 0, it appears that the inequality (.2) has been obtained by
Laplace long befor€ebysSev (see for examplg], p. 240]).

The inequality [(2.R) was mentioned by Hardy, Littlewood and Polya in their sudgly [
in 1934 in the more general setting of synchronous sequences, iz.bifire synchronous
(asynchronous this means that

(2.3) (a; —a;) (b; —b;) > (<)0foranyi,j € {1,...,n},
then [2.2) holds true as well.

88
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A relaxation of the synchronicity condition was provided by M. Biernacki in 195}, [
which showed that, i, b aremonotonic in meamm the same sense, i.e., fé}, := Zlepi,
k=1,...,n—1;

1 k 1 k+1
(2.4) Fk;piaig (>) PM;piai, ke{l,...,n—1})
and

1 k 1 k+1
(2.5) Fk;pibé(z) Pm;pibi, ke{l,...,n—1},

then [2.2) holds with > ". If if a, b are monotonic in mean in the opposite sense then (2.2)
holds with “ < .

If one would like to drop the assumption of nonnegativity for the componenis tien
one may state the following inequality obtained by Mitrinband Péaric in 1991, BbQ]: If
0< P, <P,foreachie {1,...,n— 1}, then

(2.6) T.(p;a,b) >0

provideda andb are sequences with the same monotonicity.

If a andb are monotonic in the opposite sense, the sign of the inequality (2.6) reverses.

Similar integral inequalities may be stated, however we do not present them here.

For other recent results on tkEbySev inequality in either discrete or integral form &}e [
[19], [20Q], [26], [39], [40], [51], [49], [52], [57], [58], [59], and the references therein.

The main aim of the present section is to provide operator versions f@ehgSev inequal-
ity in different settings. Related results and some particular cases of interest are also given.

2.2. A Version of theéebyéev Inequality for One Operator. We say that the functions
f,g : |a,b] — R are synchronous (asynchronoush the intervalla, b] if they satisfy the
following condition:

(f @) = f(s)(g(t) —g(s)) = ()0 foreacht, s € [a,b].

It is obvious that, iff, ¢ are monotonic and have the same monotonicity on the interval
la, ], then they are synchronous @n b] while if they have opposite monotonicity, they are
asynchronous. 5

For some extensions of the discr&@ebySev inequalityor synchronous (asynchronous)
sequences of vectors in an inner product space 4afd [41].

The following result provides an inequality @ebySev type for functions of selfadjoint
operators.

THEOREM 2.1 (Dragomir, 2008,/30]). Let A be a selfadjoint operator wittbp (A) C
[m, M| for some real numbers. < M. If f, g : [m, M] — R are continuous and synchronous
(asynchronous) ofm, M], then

2.7) (F(A)g(A)z,x) > (<) (f (A) z,2) - (g (A) z, x)
foranyz € H with ||z|| = 1.

PROOF We consider only the case of synchronous functions. In this case we have then

(2.8) F@gt)+f(s)g(s) = f(t)g(s)+ f(s)g(t)

for eacht, s € [a, b].
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If we fix s € [a, b] and apply the property [P) for the inequality (2.8) then we have for each
x € Hwith ||z] = 1 that

(F(A) g (A) + [(s)g(s)Lm)a,x) = ((g(s) f(A) + [ (s)g(A))w, ),
which is clearly equivalent with
(2.9) (f(A)g(A)z,z)+ [ (s)g(s) 2 g(s) (f (A)z,x) + [ (s) (g (A) z, z)

for eachs € [a, b] .
Now, if we apply again the property|(P) for the inequality {2.9), then we have foy any!
with ||y|| = 1 that

((f(A)g(A)z,2)1u+ f(A)g(A)y,y)
> ((f(A)z,2) g (A) + (g (A)z,z) [ (A)) y,9),
which is clearly equivalent with

(2.10) (F(A)g(A)z,x) +{f(A) g(A)y,9)
= (f(A)z,2) (g (A)y,y) +(f (A y,9) (9 (A) z, 1)
for eachr,y € H with ||z|| = ||y|| = 1. This is an inequality of interest in itself.

Finally, on makingy = = in (2.10) we deduce the desired resplt[2¥).

Some particular cases are of interest for applications. In the first instance we consider the
case of power functions.

EXAMPLE 2.1. Assume that! is a positive operator on the Hilbert spa¢é andp, g > 0.
Then for eaclx € H with ||z|| = 1 we have the inequality

(2.11) (APHag 1) > (APx,z) - (A%z, @) .

If Ais positive definite then the inequalify (2.11) also holdsgfer < 0.
If A is positive definite and either> 0,¢ < 0 or p < 0,q > 0, then the reverse inequality

holds in [2.11).

Another case of interest for applications is the exponential function.

EXAMPLE 2.2. Assume that is a selfadjoint operator oit/. If o, 3 > 0 or o, 3 < 0, then
(2.12) (exp [(a+ B) Al z,x) > (exp (aA) z,z) - (exp (BA) z, )

for eachz € H with ||z|| = 1.
If eithera > 0,3 < 0ora < 0,5 > 0, then the reverse inequality holds jn (2.12).

The following particular cases may be of interest as well:
EXAMPLE 2.3. a. Assume tha# is positive definite angd > 0. Then
(2.13) (APlog Az, x) > (APx,z) - (log Ax, x)

for eachz € H with ||z|| = 1. If p < 0 then the reverse inequality holds [n (2.13).
b. Assume thatl is positive definite andp (A) C (0,1).1f r,s > 0orr,s < 0 then

(2.14) (g = AN (g =A%), 2)
> <(1H — A’")_1 a:,:c> . <(1H — As)_1 x,x>

for eachz € H with ||z|| = 1.
If eitherr > 0,s < 0orr <0,s > 0, then the reverse inequality holds [n (Z.14).
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REMARK 2.1. We observe, from the proof of the above theorem that,ahd B are self-
adjoint operators anflp (A), Sp (B) C [m, M], then for any continuous synchronous (asyn-
chronous) functiong, g : [m, M| — R we have the more general result

(2.15) (f(A)g(A)z,z) +(f(B)g(B)y,y)
> () (f(A)z,z) (g (B)y,y) + (f(B)y,y) (9 (A) z, )

for eachz,y € H with ||z|| = |Jy|| = 1.

If f: [m,M] — (0,00) is continuous then the function®, f¢ are synchronous in the
case whem, ¢ > 0 or p, ¢ < 0 and asynchronous when either- 0,¢g < 0orp < 0, > 0.1In
this situation ifA and B are positive definite operators then we have the inequality

(2.16) (7 (A)z, @) + (fP1(B) y,y)
= (fP(A)z,x) (f1(B)y,y) + (/" (B)y,y) (/" (A) z,x)

for eachz,y € H with ||z|| = ||y|| = 1 where eithep,q > 0orp,q < 0.1f p > 0,¢g < 0or
p < 0,¢ > 0 then the reverse inequality also holds[in (2.16).

As particular cases, we should observe thapfer ¢ = 1 andf () = ¢, we get from|(2.1])
the inequality

(2.17) (A’z,2) + (B%,y) > 2 (Az,z) (By,y)

for eachz,y € H with ||z|| = [|y|| = 1.
Forp = 1 andg = —1 we have from[(2.1]6)

(2.18) (Az,z) (B 'y, y) + (By,y) (A", x) <2
for eachr,y € H with ||z|| = ||y|| = 1.

2.3. A Version of theCeby3ev Inequality for» Operators. The following multiple oper-
ator version of Theorefm 2.1 holds:

THEOREM 2.2 (Dragomir, 2008,[30]). Let A; be selfadjoint operators witlyp (A4,) C
[m, M| for j € {1,...,n} and for some scalars: < M. If f,g: [m, M] — R are continuous
and synchronous (asynchronous)|en M|, then

n

(2.19) Z (f (43) g (Aj) 2, 2))

n n

> ()Y (A mg, ) - Y (g (A xj,a5)

j=1 j=1
for eachz; € H,j € {1,....n} with 3" [lz;]* = 1.

PROOF Asin [44, p. 6], if we put

Al 0 T
g:( P ) and %( : )
0 - A, T,

then we havesp (ﬁ) C [m,M], ||z|| =1,

n

(£ () (A) 7.7) = 347 (43) g (A 23,5).

J
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(F(A)E5) =3 0 () ) and (g (D) £.5) = 3 ta (A 25,1

Jj=1 7=1
Applying Theorel forl andz we deduce the desired res.lﬂ).
The following particular cases may be of interest for applications.

EXAMPLE 2.4. Assume thatl;, j € {1,...,n} are positive operators on the Hilbert space
H andp,q > 0. Then for each; € H,j € {1,...,n} with 37 ||z,||* = 1 we have the
inequality

(2.20) <Z Ap+q:c],:cj> > Z <A T, ;) Z <A;1-:z:j,:cj>.

7j=1

If A, are positive definite then the |nequaI|.20) also holdsyfar< 0.
If A; are positive definite and eithgr > 0,¢ < 0 or p < 0,9 > 0, then the reverse
inequality holds in[(2.20).

Another case of interest for applications is the exponential function.

EXAMPLE 2.5. Assume that!;, j € {1,...,n} are selfadjoint operators ofl. If o, 5 > 0
ora, 3 <0, then

(2.21) <Zexp [(a+5) Aj] :L"j»fcj>

jfl
> Z exp (aA;) z;, ;) Z exp (BA;) xj, x;)
7=1 J=1
foreachs; € H,j € {1,...,n}with 3" [lz;]* = 1.
If eithera > 0,3 < 0ora < 0,5 > 0, then the reverse inequality holds jn (2.21).
The following particular cases may be of interest as well:

EXAMPLE 2.6. a. Assume thatl;, j € {1,...,n} are positive definite operators apd> 0.
Then

(222) <Z A? lOg ijjv l’j> > Z <A§)Ij’ J;j> . Z <10g AjIj, Q?j)
j=1 j=1 j=1

for eachz; € H,j € {1,...,n} with 37| |z;||> = 1. If p < 0 then the reverse inequality

holds in [2.2D).
b. If A; are positive definite andp (A4;) C (0,1) for j € {1,...,n} then forr,s > 0 or
r,s < 0 we have the inequality

(2.23) <i (1 — A7 (g — A3 2y, xj>

j=1
>3 (= A) )3 (- A4 )
=1 i=1

for eachz; € H,j € {1,....n} with 3", [la;]* = 1.
If eitherr > 0,s < 0orr <0,s > 0, then the reverse inequality holds [n (Z.23).
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2.4. Another Version of theéebyéev Inequality for n Operators. The following differ-
ent version of th&€ebysSev inequality for a sequence of operators also holds:

THEOREM 2.3 (Dragomir, 2008,30]). Let A; be selfadjoint operators witlyp (A4;) C

[m, M| forj € {1,...,n} and for some scalars. < M. If f, g : [m, M] — R are continuous
and synchronous (asynchronous)(en M|, then
(2.24) <ijf(Aj)g(Aj)l‘,$>

j=1

<) <ijf(Aj)$an> : <ijg (Aj)$7f€>7

foranyp; > 0,5 € {1,...,n}with3"7  p; = 1andz € H with [[z| = 1.
In particular

(2.25) <% > F (A <Aj>x,x>

= S) <%Zf("4j)xvx> ’ <%ZQ(AJ')*T7$>7

for eachz € H with ||z|| = 1.

PrROOFE We provide here two proofs. The first is based on the inequélity](2.15) and gener-
ates as a by-product a more general result. The second is derived from Thedrem 2.2.
1. If we make use of the inequality (2]15), then we can write

(2.26) (f (A5) g (Aj) x,x2) + (f (Bk) g (Br) ¥, y)
> (<) (f(Aj) 2, 2) (g (Br) y,y) + (f (Br) y,y) (g (4;) z,z) ,

which holds for any4; and B;, selfadjoint operators witp (A;), Sp (Bx) C [m,M], j. k €
{1,...,n} and for each:,y € H with ||z|| = ||ly|| = 1.

Now, if p; > 0,q, > 0,5,k € {1,...,n}and}_7_ p; = >_;_, qx = 1 then, by multiplying
(2.28) withp; > 0,q, > 0 and summing ovey andk from 1 to n we deduce the following
inequality that is of interest in its own right:

(2.27) <ijf(Aj)g( > <Z%f (Bx) g (By)y, y>

> (<) <ijf(f4j)$a$> <Z kg (Bk)yay>
+ <Z ar.f (Bk)y,y> <ijg (A) xas>

for eachr,y € H with ||z|| = |ly|| = 1.
Finally, the choiceB), = Ay, ¢, = pr andy = x in (2.27) produces the desired res[lt (2.24).
2. In we choose in Theorefn 2.2, = \/p; -, j € {1,...,n}, wherep; > 0,j €
,p; = landz € H, with ||z|| = 1 then a simple calculation shows that the
mequallty @) become (2]24). The details are omitged.

REMARK 2.2. We remark that the case= 1 in (2.24) produces the inequalify (2.7).
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The following particular cases are of interest:

EXAMPLE 2.7. Assume thatl;, j € {1,...,n} are positive operators on the Hilbert space
H,p; > 0,5 €{1,...,n}with}>7_ p; = 1andp,q > 0. Then for eachx € H with ||z|| =1
we have the inequality

(2.28) <ijA§+qx,x> > <ijA§x,x> : <ijA;1.x,x>.
j=1 j=1 j=1

If A;,7 € {1,...,n} are positive definite then the inequalify (2.28) also holdgfar < 0.
If A;,7 € {1,...,n} are positive definite and either> 0,¢ < 0 orp < 0,¢ > 0, then the
reverse inequality holds ifi (2.28).

Another case of interest for applications is the exponential function.

EXAMPLE 2.8. Assume thatl;,j € {1,...,n} are selfadjoint operators o/ andp; >
0,j€{l,....,n}with}>" p;=1.1fa,3>00ra,g <0,then

(2.29) <ij exp [(o + f) Aj]37’f’5>
<Zp] exp (a4;) > <Zp] exp (BA;) x, >

for eachz € H with ||z|| = 1.
If eithera > 0,3 < 0ora < 0,5 > 0, then the reverse inequality holds jn (2.29).
The following particular cases may be of interest as well:

EXAMPLE 2.9. a. Assume thatd;,j € {1,...,n} are positive definite operators on the
Hilbert spaceH, p; > 0,5 € {1,...,n} with Z;‘lej =1landp > 0. Then

(2.30) <ijA§ log ij,x>

Jj=1

> <ijA§x,x> : <ij log Aja:,x> :
j=1

Jj=1

If p < 0 then the reverse inequality holds [n (Z.30).
b. Assume thatd;,j € {1,...,n} are positive definite operators on the Hilbert space
H,Sp(A;) C (0,1)andp; > 0,5 € {1,...,nfwith}>"  p; = 1. Ifr,s > 0orr,s < 0then

(2.31) <ij (g —A5) " (1 — A;)1$,x>
> <ij (1H - A;)il $’,IL’> . <Zp] (]-H — A;)il $’x>

for eachz € H with ||z|| = 1.
If eitherr > 0,s < 0orr < 0,s > 0, then the reverse inequality holds [n (2. 31).

We remark that the following operator norm inequality can be stated as well:
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COROLLARY 2.4. Let A, be selfadjoint operators withp (4,) C [m, M]forj € {1,...,n}
and for some scalars: < M. If f, g : [m, M] — R are continuous, asynchronous pn, ]
andforp; > 0,5 € {1,...,n} with}"7 | p; = 1the operatory -7, p; f (A;) g (4;) is positive,
then
<

(2.32)

> pif (4)9(4))
j=1
PROOF We have from[(2.24) that

0< <ijf(Aj)g(Aj)%$> < <ijf(/1j)l’7$> : <ij9 (Aj)l’»l‘>
j=1 j=1 j=1
for eache € H with ||z|| = 1. Taking the supremum in this inequality ovee H with ||z|| = 1
we deduce the desired resiilt (2.3g).

The above Corollary 2/4 provides some interesting norm inequalities for sums of positive
operators as follows:

ijf (4;) ijg (45)

ExamMPLE 2.10.a. If A;,j € {1,...,n} are positive definite and either > 0,¢ < 0 or
p<0,9>0,thenforp; > 0,5 € {1,...,n} with Z;‘:lpj = 1 we have the norm inequality:

(2.33) > A< S Tp AR 1Y py Al
j=1 j=1 j=1
In particular
(2.34) L< D omAT| 1D piAyT
j=1 Jj=1
foranyr > 0.

b. Assume thatd;,; € {1,...,n} are selfadjoint operators o andp; > 0,j €
{1,...,n}pwith3"7  p; = 1. Ifeithera > 0,3 <0ora < 0,3 > 0, then

(2.35) > pjexpl(a+ B) A
j=1
<> pjexp(ad)) ' D piexp (BA)|-
j=1 =1
In particular
1< | pjexp (v4;)] - i > “pjexp (—y4;)| -
=1 i=1
for any~ > 0.

2.5. Related Results for One Operator.The following result that is related to ti@ebysev
inequality may be stated:

THEOREM 2.5 (Dragomir, 2008,/30]). Let A be a selfadjoint operator wittbp (A) C
[m, M| for some real numbers. < M. If f, g : [m, M] — R are continuous and synchronous
on[m, M], then

(2.36) (f(A)g(A)z,x) = {f (A)z,2) - (g (A) z, z)
> [(f (A)z,z) — f ((Az,2))] - [g (Az, 2)) = (9 (A) 2, 2)]
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foranyx € H with ||z|| = 1.
If f, g are asynchronous, then

(2.37) (f(A)z,z)- (g (A)z,x) = (f (A)
> [(f (A)z,z) — f ((Az,2))] - [(g
foranyz € H with ||z]| = 1.

9(A)z, )
(A)z,2) — g ((Az, z))]

PROOF. Sincef, g are synchronous and < (Az,x) < M foranyxz € H with ||z|| = 1,
then we have

(2.38) [f () = f ({Az, 2))] [g (t) — g ((Az,2))] = 0

for anyt € [a,b] andx € H with ||z| = 1.
On utilising the property (P) for the inequalify (2]38) we have that

(2.39) ([f (B) = f ((Az, 2))] 9 (B) — g ((Az, )]y, y) = 0

for any B a bounded linear operator wikp (B) C [m, M] andy € H with ||y|| = 1.
Since

(2.40) (If (B) = f ((Az, )] [g (B) — g ({(Az, )]y, y)
=(f(B)g(B)y,y) + f ({(Az,z)) g ((Az, z))

— (S (B)y,y) g ((Az,z)) — f ({(Az,2)) {9 (B) y, ),

then from [2.3P) we get

(f (B)g(B)y,y) + [ ((Az,2)) g ((Az, z))
> (f(B)y,y) g ((Az,z)) + f ((Az,2)) (9 (B) y,y)
which is clearly equivalent with

(2.41) (f(B)g(B)y,y) = (f(A)y,y) - (9(A)y.y)
> [(f (B)y,y) — [ ({(Az, 2))] - [g ((Az, ) — (9 (B) y,y)]
for eachr,y € H with ||z|| = ||y|| = 1. This inequality is of interest in its own right.

Now, if we chooseB = A andy = x in (2.4]), then we deduce the desired result (2.86).
The following result which improves th@ebysev inequality may be stated:

COROLLARY 2.6 (Dragomir, 2008/30]). Let A be a selfadjoint operator witlyp (A) C
[m, M] for some real numbers. < M. If f, g : [m, M] — R are continuous, synchronous
and one is convex while the other is concave:anlM |, then

(2.42) (f(A)g(A)z,z) = (f (A)z,z) - {9 (A) z, 7)
> [(f(A)z,z) — | (Az,2))] - [g ((Az,2)) = (g (A) z,2)] = 0
foranyz € H with ||z]| = 1.
If f, g are asynchronous and either both of them are convex or both of them concave on
[m, M], then
(2.43) (f (A)z,z) - (g (A)z,z) — (f (A)
> [(f(A)z,z) — | ((Az,z))] - [(g

foranyz € H with ||z]| = 1.

A)x,x)

g(
(A)z,2) — g ((Az,2))] > 0

AJMAA Vol. 17(2020), No. 1, Art. 1, 319 pp. AIMAA


https://ajmaa.org

INEQUALITIES FORFUNCTIONS OFSELFADJOINT OPERATORS 97

PROOF The second inequality follows by making use of the result due to Mond&aiie
see by, [54] or [44, p. 5]:

(MP) (h(A)z,z) > (<) h ((Az, 2))

foranyxz € H with ||z|| = 1 provided thatA is a selfadjoint operator witl§p (A4) C [m, M|
for some real numbers. < M andh is convex (concave) on the given interyed, M| .

The above Corollary 26 offers the possibility to improve some of the results established
before for power function as follows:

ExAMPLE 2.11.a. Assume thatl is a positive operator on the Hilbert spaée If p € (0, 1)
andq € (1,00), then for eachr € H with ||z|| = 1 we have the inequality

(2.44) (APt 0y — (APz,z) - (A%, x)
> (A2, z) — (Ax, x)] [(Az, 2)* — (APx, x)] > 0.

If Ais positive definite and > 1,¢ < 0, then

(2.45) (APz,z) - (A%, ) — (APT 0z, x)
> [(A%2, z) — (Ax, )] [(APz, z) — (Az,2)"] > 0
for eachz € H with ||z|| = 1.
b. Assume tha# is positive definite angd > 1. Then
(2.46) (APlog Az, x) — (APx, x) - (log Az, x)
> [(APz, z) — (Az, x)"] [log (Ax, x) — (log Ax,x)] >0

for eachz € H with ||z|| = 1.

2.6. Related Results fom Operators. We can state now the following generalisation of
Theorenj 2.p for. operators:

THEOREM 2.7 (Dragomir, 2008,30]). Let A; be selfadjoint operators witlyp (A4,) C
[m, M| for 7 € {1,...,n} and for some scalars, < M.
(i) If f,g:[m,M] — R are continuous and synchronous fen, M], then

n n n

(2.47) Z <f (Aj)g(A )x]7xj> f(A )x],xj> Z <g (AJ) xj’xj>

7j=1 j=1

> [Z(f( )xj, ;) f(Z (Ajzj, x;) )]

X [g (Z (Ajxj, x; )
j=1 j:1

for eachz; € H,j € {1,...,n} with > 77, |z;]|> = 1. Moreover, if one function is convex
while the other is concave dm, M], then the right hand side af (2.47) is nonnegative.

M:

ZEJ,.T]
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(i) If f, g are asynchronous opn, M|, then

n n n

(2.48) Y oF A @)Y (g (A wy,ay) = (f (A) g (A)) 25, ;)

J=1 J=1 J=1

foreachz; € H,j € {1,...,n} with 37, |z;]|> = 1. Moreover, if either both of them are
convex or both of them are concave[en 1], then the right hand side af (2.48) is nonnegative
as well.

PROOF. The argument is similar to the one from the proof of Thedrem 2.2 on utilising the
results from one operator obtained in Theofen 2.5.

The nonnegativity of the right hand sides of the inequalifies {2.47)[and (2.48) follows by the
use of the Jensen’s type result froddl[ p. 5]

(2.49) Y (A zj,25) > (S)h (Z <ijj,xj)>

j=1

for eachz; € H,j € {1,...,n} with 37 |z;]|> = 1, which holds provided thati; are
selfadjoint operators witlp (4,) C [m, M] for j € {1,...,n} and for some scalara < M
andh is convex (concave) ojm, M] .

The details are omittea

EXAMPLE 2.12. a. Assume thatl;, j € {1,...,n} are positive operators on the Hilbert
spacef. If p € (0,1)andq € (1,00) ,thenforeachr; € H,j € {1,...,n}with3> "7, AR
1 we have the inequality

n

(250) Z<A§H—q.’ﬁ],l’3> —Z<A§$],£If]> . Z<A31‘],$J>
i=1 j=1

j=1

> Z(A‘jxj,wﬁ - (Z <Aj$j>37j>)
X [(Z <Aj~”7ja~’lfj>> —Z(Aﬁ'l’j,xﬁ]
o j= j=
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If A; are positive definite angd > 1, ¢ < 0, then

(2.51) Z Apxj,:cj> Z<Aq:cj,:cj> Z Ap+qxj,:1:j
Z (Afaj,x;) — (Z <ijjvfﬁj>)

j=1

Z(A Tj,a;) — (; A-xj,xj>>p]

zo

for eachz; € H,j € {1,....n} with 3", [la;]* = 1.
b. Assume that; are positive definite ang > 1. Then

(252) Z <A§ IOg AZEj, ZEj> — Z <A§J]j, J]j> : Z <10g Ajl’j, CL’j>
=1 =1 =1
j ) j ; ;
Z (Afaj, ;) — (Z <Ajflfj>f’3j>> ]
j=1
[Z log (A;xj, z;) — log (Z (ijj,xj>)]
j=1
>0

for eachz; € H,j € {1,....n} with 3", [lz;]* = 1.
The following result may be stated as well:

THEOREM 2.8 (Dragomir, 2008,30]). Let A; be selfadjoint operators witlyp (A;) C
[m, M| for 7 € {1,...,n} and for some scalars, < M.
(i) If f,g:[m,M] — R are continuous and synchronous fen, M], then

(2.53) <ij $>

e (e
(o) (v
g (o))

foranyp; > 0,5 € {1,...,n}with>°"_ p; = 1andz € H with ||z[| = 1. Moreover, if one is
convex while the other is concave jon, M|, then the right hand side af (2.53) is nonnegative.
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(i) If f, g are asynchronous opn, M|, then

(2.54) <ijf (Aj)$7x> : <ZP;’9 (Aj)$,x>

- ijf (45) g (4)) =, fl?>

{
(S s (S )
(Sneitree)-o( (e

foranyp; > 0,5 € {1,...,n} with Z?lej = landz € H with ||z|| = 1. Moreover, if either
both of them are convex or both of them are concavénon/], then the right hand side of
(2.54) is nonnegative as well.

X

PrROOF. Follows from Theore7 on choosing = /p; - =, j € {1,...,n}, where
pi >0,j€{l,...,n}, >0 p;=1andx € H, with ||z = 1.

Also, the positivity of the right hand term ifi (2]53) follows by the Jensen’s type inequality
from the inequality9) for the same choices, namely- ,/p; - =, j € {1,...,n}, where
p;>0,5€{l,....,n}, > " p; =1andz € H, with [[z| = 1. The details are omitted

Finally, we can list some particular inequalities that may be of interest for applications.
They improve some result obtained above:

EXAMPLE 2.13. a. Assume that};,; € {1,...,n} are positive operators on the Hilbert
spaceH andp; > 0,5 € {1,...,n} with}>7_, p; = 1. If p € (0,1) andq € (1, 00), then for
eachz € H with ||z|| = 1 we have the inequality

(2.55) <ijA§+qx,$> - <ijA§x,m> : <ijA;1-x7.r>
—1 j=1 j=1
n n 4q
<ijA?x,ac> — <ijij,x> ]
J=1 J=1

jl
[ )

>

X

v
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If A;,j € {1,...,n} are positive definite ang > 1, ¢ < 0, then
(2.56) <ijA§x,x> : <ijA§x,x> - <ijA§+qx,oc>
j=1 j=1 j=1

(o) (o)
[

>0

for eachz € H with ||z|| = 1.
b. Assume that;, j € {1,...,n} are positive definite angd > 1. Then

(2.57) <ijA§ log ij,x> - <ijA§x,x> : <ij log ij,a:>
j=1

j=1 j=1

n n P
j=1 j=1
X [log <ijij,x> — <ij log ij,:c>]
=1 j=1

0

v

for eachz € H with ||z|| = 1.

3. GRUSSINEQUALITY

3.1. Some Elementary Inequalities of Griiss Typeln 1935, G. Gruss45] proved the
following integral inequality which gives an approximation of the integral of the product in
terms of the product of the integrals as follows:

1 b
d
— /a g(z)dz

2 oo,

4¢ 8) (' =),

(3.1)

wheref, g : [a,b] — R are integrable ofu, b] and satisfy the condition

(32) b<f@)<d, A <g(e)<T

for eachx € [a,b] , whereg, @, ~, T are given real constants.
Moreover, the constaritis sharp in the sense that it cannot be replaced by a smaller one.
In 1950, M. Biernacki, H. Pidek and C. Ryll-Nardjewskil, Chapter X] established the
following discrete version of Griss’ inequality:
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Leta = (a1,...,a,), b= (by,...,b,) betwon—tuples of real numbers such tha¥ a; <
Rands <b, < Sfori=1,...,n. Then one has

1 n
DIUEED WA !

=1

< 121 - l) s

where[z] denotes the integer part of « € R.

For a simple proof of (3]1) as well as for some other integral inequalities of Griss type, see
Chapter X of the recent boolbl]. For other related results see the papdid4], [11]-[9],
[12]-[13], [[15]-[37], [43], [56€], [62] and the references therein.

(3.3)

3.2. AnlInequality of Gruss’ Type for One Operator. The following result may be stated:

THEOREM3.1 (Dragomir, 2008/31]). Let A be a selfadjoint operator on the Hilbert space
(H;(.,.)) and assume thaip (A) C [m, M| for some scalarsn < M. If f andg are continu-
ous onjm, M] and~y := minyep,,ag f (t) @ndI’ := maxycp,,ar f (¢) then

(3.4) 1(f(A) g (A)y,y) —(f(A)y,y)-(g(A)z,x)

v+T
—— Ug (W) y,y) = {g(A)z, )]

1 2 2 1/2

<5 - = [lg (Al +{g(A)z,2)" = 2(g(A) 2, ) (g (A) y,9)]
foranyz,y € H with ||z|| = ||y|| = 1.

PROOF First of all, observe that, for eache R andz,y € H, ||z| = ||y|| = 1 we have

the identity
(3.5) (F(A) = A1) (9(A) = (g (A) z,2) - 1u) y,y)

= ([ (A)g(A)y,y) = A-[g(A)y,y) — (g (A) z,z)]
—{g(A)z,z) (f(A)y,y).
Taking the modulus ir] (35) we have
(3.6) [(f(A)g(A)y,y) —A-[g(A)y,y) —
—(9(A)z,2) (f (A)y,y)|
=((g(A) = (g(A)z,z) 1)y, (f (A) = A 1m)y)]
<llg(A)y—(g(A)z,z)ylllf(A)y -yl

= [llg (A ylI* + (g (A) 2, 2)* — 2 (g (A) z, ) (g (A) v, 9)]
x || f(A)y — Ay

< [llg (A yll* + (g (A) z, 2)* — 2 (g (A) 2, 2) (g (A) 5, v)]
x|[f(A) = A-1g|

foranyz,y € H, [lz| = [lyl = 1.
Now, sincey = mingepmar f (t) @andT = maxiepm ) f (), then by the property {P) we
have thaty < (f (A) y,y) < I for eachy € H with ||y|| = 1 which is clearly equivalent with

(F w9y~ 1o Il < 5 (

(g (A)z,x)]

1/2

1/2

I'—7)
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or with
+T 1
((r -5 1) )| < 50 =)
for eachy € H with |ly|| = 1.
Taking the supremum in this inequality we get
v+T 1
— 1y <= (-
-5 0] < f -,

which together with the inequalitl (3.6) applied for= - produces the desired resi{ilt (3.4).

As a particular case of interest we can derive from the above theorem the following result
of Griiss’ type:

COROLLARY 3.2 (Dragomir, 2008/31]). With the assumptions in Theorém|3.1 we have
3.7) [(f(A) g (A)z,z) = (f(A)z,z) - (9 (A) z,z)]

% T = [lg (A z)* - (g (A) z,z)°]

(s1r-n@-9)

for eachz € H with ||z|| = 1, whered := mincp, 2 g (t) and A 1= maxepm g 9 (1) -

1/2

PrROOF. The first inequality follows fron (3]4) by putting= .
Now, if we write the first inequality i (3]7) fof = g we get

0< llg(A)al® — (g (A) z,2)* = (g* (A) 7, 2) — (g (4) 7, 2)?
< 3 (A =0 [lg (Aol ~ (g (A)z, )]
which implies that
(g (A) 2l — (g (A) 2, 2)?] " <

for eachr € H with ||z|| = 1.
This together with the first part df (3.7) proves the desired bownd.

<5 (a-0)

The following particular cases that hold for power function are of interest:

ExamMpPLE 3.1. Let A be a selfadjoint operator witlyp (A) C [m, M| for some scalars
m < M.
If Ais positive(m > 0) andp, ¢ > 0, then

(3.8) (0 <) (AP, 2) — (APx, z) - (A%, T)
< o (M7 — ) [[[ Atz — (Avz, 2)?) "
< - (P — ) (M7 — )

for eachz € H with ||z|| = 1.
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If Ais positive definit¢m > 0) andp, ¢ < 0, then

(3.9) (0 <) (AP, :C> (APx,x) - (A%, )
1 M™P — 1/2
<1 ML HLAQ I° = (A%, )’
M-P —p N[~4 _ 4

1
- Z_l M—-—rm=P  M-Im—1

for eachz € H with ||z|| = 1.
If Ais positive definit¢m > 0) andp < 0, ¢ > 0 then

(3.10) (0 <) (AP, z) - (A%, z) — (APT2, x)
1 MP—m™ 9 971/2
S S M ormr A% - (A%, 2)"]
1 M7P—m™?
e Mq _ q
ST 3w MY

for eachz € H with ||z|| = 1.
If Ais positive definit¢m > 0) andp > 0, ¢ < 0 then

(3.11) (0 <) (AP, z) - (A%, ) — (APT 2, x)
< 5 - (7 — ) [ Az — (A, )]
M4 — ma

M—am—14

< = (MP—mP)

1
4
for eachz € H with ||z|| = 1.

We notice that the positivity of the quantities in the left hand side of the above inequalities

(3.9)-(3.11) follows from the Theorem 2.1.

The following particular cases when one function is a power while the second is the loga-
rithm are of interest as well:

ExAMPLE 3.2. Let A be a positive definite operator wifp (A) C [m, M] for some scalars
0<m< M.

If p > 0then
(3.12) (0 <)(APIn Az, z) — (APx,x) - (In Az, )

L (7 — ) [|ln A — (In A, 2)%] '

I /2 | 4P| = (AP, 2)%]

M
[g—-(Mp—mp)ln —
2 m

<

—_

for eachz € H with ||z|| = 1.
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If p < 0then
(3.13) (0 <) (APz,z) - (In Az, x) — (AP In Az, z)
L M2om? [y Ag||? — (In Az, 2)?]

2 M—Pm~P

/2[4 ]2~ (AP, 2)7]?

[ 1 MP—m> M

<

for eachz € H with ||z|| = 1.

3.3. An Inequality of Griss’ Type for n Operators. The following multiple operator
version of Theorem 3l1 holds:

THEOREM 3.3 (Dragomir, 2008,[31]). Let A; be selfadjoint operators witlyp (4,) C
[m, M| for j € {1,...,n} and for some scalars. < M. If f,g: [m, M] — R are continuous
and~y := mingep,a f (1) @andI := maxycpn, g f (¢) then

(3.14) S (FA) g (A yiw) =D F (A yi ) - Y (9 (Ay) ), a5)
j=1 j=1 j=1
T Z( i) Y5> Y5) Z j) 55 T5)
j=1 J=1

% I —7) [Z lg (A7) y5lI* + (Z@(Aj)xj,:cj))

[N

_QZ D Z<9(Aj)yj7yj>]

j=1
for eachr;,y; € H,j € {1,...,n}with 37 flayl* = 37 [ly;|* = 1.
ProoF Follows from Theorer 3|13
The following particular case provides a refinement of the MontaREresult.

COROLLARY 3.4 (Dragomir, 2008/31]). With the assumptions of Theorem|3.3 we have

(3.15) Z (f (A7) g (Aj) xj,25) — Z (f (Aj) g, 25) - Z (9 (4j) zj, ;)
J—l j= n j= e
<5-(=7) ZHQ ) agl® — (Z (g (Aj)xja%)) ]

(gi(r—vm—f»)

for eachx; € H,j € {1,...,n} with 37 [|z;|* = 1 where§ := minyepn, g (t) and
A = maxyepm,m g (1) .
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ExAMPLE 3.3.LetA;, j € {1,...,n} be aselfadjoint operators withip (4,) C [m, M],j €
{1,...,n} for some scalarsn < M.
If A; are positive(m > 0) andp, ¢ > 0, then

(316) (0 S) Z <A§+qx]’, l’j> — Z <A§$]’, .ZE]'> : Z <A;I-[L'j, l’j>
j=1 j=1 j=1

97 1/2
1 - .
<3 [ g - (3 ()
j=1 j=1
< 1O =) (a1 = )
foreachs; € H,j € {1,...,n}with 3" [lz;]* = 1.
If A; are positive definit¢mn > 0) andp, ¢ < 0, then
(3.17) (0 <) Z <A§+q$j,$j> - Z <A§9€j7 %‘> : Z <A?$ja$j>
j=1 j=1 J=1
97 1/2
1 _
<3 M (S~ (35 ()
1 M pM q __ —q
{< 4 M- mr M-9m ]

for eachx; € H,j € {1,....n} with 3" [lz;]* = 1.
If A; are positive definit¢m > 0) andp < 0, ¢ > 0 then

(3.18) (0< Z A x],x]> Z<Aqxj,xj> Z p+qxj,xj
1
” 1 1/2

<3 M [l - (3 ()

7j=1

for eachz; € H,j € {1,....n} with 3", [la;]* = 1.
If A; are positive definit¢mm > 0) andp > 0, ¢ < 0 then

(3.19) (0 <) Z <A§x],a:j> Z (A QZJ,SL’J> Z <Ap+q:cj,:c]>
j=1 J=1
7 1/2

1 . -
< 50— ) |3 g - (3 ()
j=1 J=1

1 M~ —m™1
Z(MP Py — "
[S 4 ( m’) M—am~1 }

foreachr; € H,j € {1,...,n}with 3" [lz;]* = 1.
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We notice that the positivity of the quantities in the left hand side of the above inequalities

(3.16)-[3.19) follows from the Theorem 2.1.
The following particular cases when one function is a power while the second is the loga-
rithm are of interest as well:

EXAMPLE 3.4. Let A; be positive definite operators wifp (A;) C [m, M],j € {1,...,n}
for some scalare < m < M.

If p > 0then
(3.20) (0 <) Z (APIn Ajzj, x;) — Z (Alaj x;) - Z (In Ajx;, ;)
j=1 j=1 j=1
, 57 1/2
5 - (MP —mP) |:Z;’L:1 ([In A" — (E?:l (hlAj%'vxﬁ) }
<
M n P ||? n P ks
i3 | 145~ (S ()
\
1 M
S (MP—mP M
< 5 (MP —mP)In m]

foreachr; € H,j € {1,...,n}with 3" [lz;]* = 1.

If p < 0then
(3.21) (0 <)Z<A .TJ,ZE] Z (InAjx;, x;) Z<A InA; 3:],;1:]>
Jj=1 j=1 j=1
( o , 7 1/2
Pl [T I A~ (S gy )|
<

7 1/2
1n\/g‘ [Z?ﬂ 145"~ (E;ll <A§f"j»5'fj>> ]

[ 1 M™P—m? M]
<

-2 M—-Pm—p n m

for eachz; € H,j € {1,....n} with 3" | [lz;]* = 1.

3.4. Another Inequality of Griiss’ Type for n Operators. The following different result
for n operators can be stated as well:

THEOREM 3.5 (Dragomir, 2008,31]). Let A; be selfadjoint operators witlyp (4,) C
[m, M| for j € {1,...,n} and for some scalars. < M. If f andg are continuous otfin, M|
and+y := mingepm, g f (t) andI' := max;epm g f () then for anyp; > 0,5 € {1,...,n} with
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>j—1 pj = 1 we have

(3.22) ‘<Zpkf (Ax) g (Ax) v, y>
_o*n

5 <Zpkg (Ak)y,y> - <ijg (4;) Ifr>]
k=1 Jj=1

- <Zpkf (Ak)y,y> : <ijg (4;) :L‘m>

< % [Zm lg (Ax) yl* =2 <Zpkg (Ar) yay> <ijg (4;) 1?7$>

. 07 1/2
+<ijg (A])max> )
j=1

for eachz,y € H with ||z|| = ||y|| = 1.

ProOF. Follows from Theore3 on choosing= ,/p;-x,y; = \/p;-y,J € {1,...,n},
wherep; > 0,5 € {1,...,n}, > 7 p; = landz,y € H, with ||lz[| = [[y[| = 1. The details
are omitted s

REMARK 3.1. The case = 1 (thereforep = 1) in (3.22) provides the result from Theorem
B3.1.

As a particular case of interest we can derive from the above theorem the following result
of Griiss’ type:

COROLLARY 3.6 (Dragomir, 2008/31]). With the assumptions of Theorem|3.5 we have

<Zpkf (Ar) g (Ax) z x> <Zpkf (Ap) @ >-<ipkg (Ak>x,x>

1/2

n n 2
(3.23) §¥ > Hg(Ak)xHQ—<Zpkg(Ak)x,x>
k=1 k=1

<

for eachx € H with ||z]| = 1, whered := minscjm ) g (1) @NdA 1= maxycpm,a g (¢) -

(=) (8-0)

N

PrROOF Itis similar with the proof from Corollary 3|2 and the details are omitged.

The following particular cases that hold for power function are of interest:

EXAMPLE 3.5. LetA;, j € {1,...,n} be aselfadjoint operators witkip (4;) C [m, M],j €
{1,...,n} for some scalarsn < M andp; > 0,5 € {1,...,n} with Z;‘:lpj = 1.
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If A;, 7€ {1,...,n} are positive(m > 0) andp, g > 0, then

k=1 k=1 k=1

97 1/2

<

N | —

) |37 el — <zpkAzx,x>
k=1 k=1

< 5O ) (07 = )

for eachz € H with ||z|| = 1.
If Aj,je{l,...,n} are positive definit¢mn > 0) andp, ¢ < 0, then

(3.25) (0 <) <ZpkA£+qx,x> - <Zpkz4£x,x> . <Zp,€AZx,x>
k=1 k=1 k=1
57 1/2

1 M P
Y e — Zpk | Af|® — <Zpkf4kl" l“>

L M —m M-
=4 Mrmr M-imd

for eachz € H with ||z|| = 1.
If A;,je{l,...,n} are positive definit¢m > 0) andp < 0, ¢ > 0 then

(3.26) (0 <) <ZpkAix,x> : <ZpkAzx,x> — <ZpkAi+qa:,x>
k=1 k=1 k=1
5 1/2

1 M P ) -
< N (St (Yt
k=1

1 MP—m™P
- q_ 4
{S 4  M-Pm~p (M m )1

for eachz € H with ||z|| = 1.
If A;,je{l,...,n} are positive definitém > 0) andp > 0, ¢ < 0 then

(3.27) (0 <) <ZpkA§x,a:> : <ZpkAZx,x> - <ZpkAi+qx,:E>
k=1 k=1 k=1
1 1/2

1 n
<5 (0 =) |3 | fel - <ZpkAkx >

1 M1 —m™1
- P _ P
{< 1 (MP—m )—_qm_q }

for eachz € H with ||z|| = 1.

We notice that the positivity of the quantities in the left hand side of the above inequalities

(3.24)-[3.27) follows from the Theorem 2.1.
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The following particular cases when one function is a power while the second is the loga-
rithm are of interest as well:

EXAMPLE 3.6. Let A;, j € {1,...,n} be positive definite operators withp (4;) C
m, M|, j € {1,...,n} for some scalar$) < m < M andp; > 0,5 € {1,...,n} with

Z?:l pj =L
If p > 0then

(3.28) <ZpkAZ lnAkx,x> - <ZpkA£x,x> . <Zpk lnAk.x,x>
k=1 k=1 k=1

" n 1/2
(P =) - [y e Ay = (R peIn Ay, )|

DO [

<
. . 1/2
In /2 (S Al = (1 e, )
1 M
< = (MP—mP)Iny/ —
2 m
for eachz € H with ||z|| = 1.
If p < 0then
(3.29) (0 <) <ZpkA£m,x> : <Zpk lnAkm,m>
k=1 k=1
— <ZpkA£ lnAkx,:c>
k=1
—P_m~P n n 1/2
3 e [Zk:lpk I Az ||* = (34, pw lﬂAka@z]
<

n " 1/2
In /2[5 Al = (5 e, )

1 M™P—m™® M
< = Iny/ —

=2  M-rmor m
for eachz € H with ||z|| = 1.

The following norm inequalities may be stated as well:

COROLLARY 3.7 (Dragomir, 2008,31]). Let A; be selfadjoint operators witlhp (4;) C
[m, M]forj € {1,...,n}and for some scalams. < M.If f,g: [m, M| — R are continuous,
then for eaclp; > 0,5 € {1,...,n} with Z?zlpj = 1 we have the norm inequality:

ijf (4;) ijg (4;)

+1 0= (B -3),

wherey := mingejm g f (1), I := maxyepm g f(t) , 0 := minyepm a9 (1) andA := maxiepn an g (1) -

<

(3.30)

ijf(Aj)g(Aj)
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ProoF Utilising the inequality[(3.23) we deduce the inequality

<Zpkf (Ar) g (Ay) :cx>
<Zpkf <Ak>as,x>‘ :

+ 107 (A -)

for eachz € H with ||z|| = 1. Taking the supremum ovefz|| = 1 we deduce the desired
inequality [3.3D) x

EXAMPLE 3.7. a. Let A;, j € {1,...,n} be a selfadjoint operators witl¥p (4;) C
m,M],j € {1,...,n} for some scalarsn < M andp; > 0,5 € {1,...,n} with Z?lej =
1.

If A;,je{l,...,n}arepositive(m > 0) andp, ¢ > 0, then

Z pRAT Z peAL Z PrAL
=1 =1 =1
1

5 (M7 =) (M =)

If A;,je{l,...,n} are positive definit¢m > 0) andp, ¢ < 0, then

n n
D_peAR || peA
k=1 k=1

1 MP—mPM9—m
Y1 T Mormer Meimed
b. Let A;, j € {1,...,n} be positive definite operators witblp (4;) C [m,M], j €
{1,...,n} for some scalar® < m < M andp; > 0,5 € {1,...,n} with3 "% p; = 1.
If p > 0then

<

<Zpkg (A m>

(3.31) <

n

Z Pk AZ+q

k=1

(3.32) <

k=1 k=1 k=1
1 M
+§-(]\/[p—mp)ln E

4. MORE INEQUALITIES OF GRUSSTYPE

4.1. Some Vectorial Gruss’ Type Inequalities.The following lemmas, that are of interest
in their own right, collect some Griss type inequalities for vectors in inner product spaces
obtained earlier by the author:

LEMMA 4.1 (Dragomir, 2003 & 200423], [28]). Let(H, (-,-)) be an inner product space
over the real or complex number fiekd u,v,e € H, ||e|| = 1, anda, 3,7, € K such that

(4.1) Re (fe —u,u — ae) >0, Re (de —v,v —ve) >0
or equivalently,

(4.2)

€ €

H a+f3
u—

1
< 15—l
5 _2| ol

1

|-
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Then

(43) |<U7U> - <U, €> <€7 U>|
1
<118 alld -1
{ [Re (Be — u,u — ae) Re (0e — v, v — ’yeﬂ% ,

€)= =2 [{o, ) - 222].

The first inequality has been obtained &8] (see also27, p. 44]) while the second result
was established i12B] (see also27, p. 90]). They provide refinements of the earlier result from
[16] where only the first part of the bound, i.%.Lﬁ — al |0 — 7| has been given. Notice that, as
pointed out in[R28], the upper bounds for the Griss functional incorporated ifj (4.3) cannot be
compared in general, meaning that one is better than the other depending on appropriate choices
of the vectors and scalars involved.

Another result of this type is the following one:

LEMMA 4.2 (Dragomir, 2004 & 2006.24], [29]). With the assumptions in Lemial4.1 and
if Re (@) > 0,Re (67) > 0 then

(44) |<u7 U> - <u7 €> <€7 U>‘

(1 [B=al|d—|
< u,e) (e, v)|,
4 [Re(8) Re(57)] 2 [(u, e} {e, vl

IN

N|=

(912 Rl ) (1591 2 e 571 )
| xllwe) (e o).

The first inequality has been established2d][(see B7, p. 62]) while the second one can
be obtained in a canonical manner from the reverse of the Schwarz inequality gi2&h intje
details are omitted.

Finally, another inequality of Griss type that has been obtainéf]r{gee also27, p. 65])
can be stated as:

LEMMA 4.3 (Dragomir, 2004,25]). With the assumptions in Lemtnaj4.1 and ift —a,
0 # —~ then

(4.5) [(u,v) — (u,e) {e, )]
1 [B-all6—~
4 1B+l +|2

[N

[(lJell + [€u, ) (o]l + v, e)D)]* -

4.2. Some Inequalities of Griuss’ Type for One Operator.The following results incor-
porates some new inequalities of Griss’ type for two functions of a selfadjoint operator.

THEOREM4.4 (Dragomir, 2008/32]). Let A be a selfadjoint operator on the Hilbert space

(H;(.,.)) and assume thaip (A) C [m, M| for some scalarsn < M. If f andg are contin-
uous on[m, M| and vy := minsepa f (¢), I' := maxyemag f (1), 0 := mingepm g (1) and
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A := maxyep,, v g (1) then
(4.6) [(f(A)g(A)z,z) — (f(A)z,2) (g (A) 2, 7)|

< (C=) (a0

{ [Tz — f (A)z, f (A)z —yz) (Az — g (A) 2, g (A) & — 62)]? ,
(f (A), ) — 52| (g (A) @, 2) — 252,

for eachz € H with ||z|| = 1.
Moreover ify and ¢ are positive, then we also have

(4.7) [(f(A)g(A)z,z) — (f(A)z,z) (g (A) z, 7)]

L 8 (f (A)z,2) (g (A) w, ),

IN

=

(VI = vA) (VA= VB) [(f (A),) g (A) 2,2}
while forT" + v, A + § # 0 we have
(4.8) [(f(A) g (A)z,z) = (f(A)z,x) (g (A) z, )]

I (T (A0
4 +4]1A + )2

< [(1F (A all + 1f (A) 2, 2)]) (lg (A) ] + g (A) 2, 2)])]2

for eachz € H with ||z|| = 1.

IN

PROOF. Sincery := minyecpn ) f (), I' := maxicpmng f (1), 6 = mingep,an g (t) and
A = maxepm, ) ¢ (t) , the by the property (P) we have that

Y 1lg < f(A)<T-1g and 6-15<g(A) <A-1y
in the operator order, which imply that

(4.9) [f (A) =~ -1 1 — [ (A)]
[A-1y =g (A)]lg(A) =6 - 1x]

0 and
0

in the operator order.
We then have fronj (4]9)

([f(A)=~- 11y — f(A)]z,z) >0
and
([A-1g—g(A)]lg(A) —d-1g|z,z) >0,

for eache € H with ||z|| = 1, which, by the fact that the involved operators are selfadjoint, are
equivalent with the inequalities

(4.10) (e — f(A)z, f(A)x —~yx) > 0 and
(Ax—g(A)x,g(A)x —dz) >0,

for eachx € H with ||z|| = 1.
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Now, if we apply Lemma 4]1 for = f(A)z, v = g(A)z, e = z, and the real scalars
I',~v, A andé defined in the statement of the theorem, then we can state the inequality

411)  |[(f(A)z,g(A)z) — (f (A) z,2) (x,g (A) z)|
S )
{ Re Iz — f (A) @, f (A)x — va) Re (Ax — g (A) z, g (A) & — 82)]7 ,

[ (A)az) =52 (g -5

I

for eachr € H with ||z|| = 1, which is cIearIy equwalent with the inequalify (4.6).
The inequalities[(4]7) andl (4.8) follow by Lemina]4.2 and Lemma 4.3 respectively and the
details are omittec

REMARK 4.1. The firstinequality irf (4]7) can be written in a more convenient way as
‘ (fA)gAaz) | 1 =9)(A=9)
for eachr € H with ||z|| = 1, while the second inequality has the following equivalent form

g (d) ) — Az, x A) 2. )2
[(f (A)z, ><(A >]1/2 [(f (A)z,2) (g (A) z,7)]

< (- 3) (VE- V9

for eachr € H with ||z|| = 1.
We know, from B(] that if f, g are synchronous (asynchronous) functions on the interval
[m, M], i.e., we recall that

[f (&) = f(s)lg(t) =g (s)] (=) <0 foreacht,s € [m, M],
then we have the inequality

(4.14) (f(A)g(A)z,2) = (<) (f(A)z,2) (9(A) z,2)

for eachz € H with ||z|| = 1,providedf, g are continuous oifin, M] and A is a selfadjoint
operator withSp (A) C [m, M].

Therefore, iff, g are synchronous then we have frgm (4.12) and frfom {4.13) the following
results:

(4.12)

(4.13)

(f(A)g(A)z, x) 1 =7 (A-9)
(413) VS D g @ea) 151y
and
(4.16) < VAIDTD) ey ) (g (A) 2,

[(f (A)z,z) (g (A) z,2)]"?
< (\/f . ﬁ) (\/Z _ \/5)

for eachr € H with ||z|| = 1, respectively.
If f, g are asynchronous then

G AWgAae) 1 =) (A=)
#17) O e g (D) 1 yAs
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and

(4.18) 0 < [(f (A)a,2) (g (A) ,2)]"/* - <{i

< (V- 7) (V59

for eachx € H with ||z|| = 1, respectively.

It is obvious that all the inequalities from Theor¢m|4.4 can be used to obtain reverse in-
equalities of Griiss’ type for various particular instances of operator functions, see for instance
[31]. However we give here only a few provided by the inequalifies (4.15)[and|(4.16) above.

ExAmMPLE 4.1. Let A be a selfadjoint operator witlyp (A) C [m, M| for some scalars
m < M.
If Ais positive(m > 0) andp, ¢ > 0, then

(AP, 7)

) < —
(4.19) S eay (Auzg)
_1 (0 — ) (M7 — )
— 4 MpTﬂmpTﬂ
and
p+q
(4.20) WD) 4,y - (A%, )]

<
T [(Arz, @) - (Avz, )]
< (=) (31 )
for eachz € H with ||z|| = 1.

If A is positive definitém > 0) andp, ¢ < 0, then

(AP*ig, )

. < —

*.21) O Wy (o !

1 (M7 —m™?) (M~ —m™9)

< 4 M-EL B
2 m- 2

and

p+q
(4.22) 0< (A", ) (AP, z) - (A%, z)] /2

for eachz € H with ||z|| = 1.

Similar inequalities may be stated for either- 0,¢ < 0 orp < 0,q > 0. The details are
omitted.

ExXAMPLE 4.2. Let A be a positive definite operator wifp (A) C [m, M] for some scalars
1<m< M. Ifp>0then

(APIn Az, x)
. <
(4.23) 0= (Arz, x) - (In Ax, x)

(MP —mP)In &

Mimsv/InM -Inm

-1

1
< .
— 4
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and

(AP In Az, z)
[(Arz, z) - (In Az, z)]"/?
< (M% _m%) [\/W—\/ﬁ :

(4.24) 0

IN

— [(APx, x) - <lnA93,:17>]1/2

for eachz € H with ||z|| = 1.

4.3. Some Inequalities of Griuss’ Type forn Operators. The following extension for
sequences of operators can be stated:

THEOREM 4.5 (Dragomir, 2008,[32]). Let A; be selfadjoint operators witlyp (4,) C
m, M] for j € {1,...,n} and for some scalarsn < M. If f and g are continuous on
[m, M| andy := minep,a f(t), T' := maxicpmag f (1), 0 := mingep, g g (t) and A =
maXem,M] J (t) then

Z (f (A7) g (Ay) xj,25) — (f (Aj) zj, ;) (9 (Aj) x5, 25)
@25) < (C-7)(a-0)

foreachz; € H,j € {1,...,n}with 3" [lz;]* = 1.
Moreover ify and ¢ are positive, then we also have

Z (f(A5)g (A])xj7‘r]> - Z (f (Aj) ), ;) (g (Aj) zj, 5)
(1SR S W) a3 (A am),

AJMAA Vol. 17(2020), No. 1, Art. 1, 319 pp. AIMAA


https://ajmaa.org

INEQUALITIES FORFUNCTIONS OFSELFADJOINT OPERATORS 117

while forI" 4+ v, A + 9§ # 0 we have

(4.27) P ks)) (A_5)1
_‘f (T + 1A +4])7

n 1/2
x ((ijm»%ﬁ> +

" 1/2
X (Z Hg(Aj)%’jHQ) +

for eachz; € H,j € {1,....n} with 3", [la;]* = 1.

n

> (A 2y, a5) )

j=1
) ] 1/2

PrRoOOF Follows from Theorem 4l4. The details are omittgd.

REMARK 4.2. The firstinequality irf (4.26) can be written in a more convenient way as

n

> (g (A) xj,2;)

=1

2 ([ (A3) g (A)) ), ) B
(4.28) ST Ay S g Ay
1 M=) @)
=1 e

for eachz; € H,j € {1,

...,n}with 3" [|z;]|* = 1, while the second inequality has the
following equivalent form

(4.29) > i1 (f (A5) g (Ag) x5, 35) -
S (A ) - S (g (Ay) 5, 5)]

n n 1/2
- [Z (F(A) w5 - Y g (Aj)fja%)]

j=1 j=1

< (VT-7) (V5 )

for eachz; € H,j € {1,...,n} with 37 ||z, = 1.

We know, from B(] that if f, g are synchronous (asynchronous) functions on the interval
[m, M|, then we have the inequality

n

(4.30) Z (f (A5) g (Aj) x5, 25)

n n

> () (A mjm) - Y (g (Ay) 2y, 75)

J=1 J=1

foreachz; € H,j € {1,...,n} with 7 |z;]|* = 1,providedf, g are continuous ofin, M]
and A, are selfadjoint operators withip (4,) C [m, M], j € {1,...,n}.
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Therefore, iff, g are synchronous then we have frgm (4.28) and frjom {4.29) the following
results:

> i (F(A5) g (A)) x5, 35)

(4.31) VS S e S g A apay)
_1 -y (A-3)
R .v;

and

(4.32) 0< > i1 ([ (45) 9 (A)) 25, 25) -
|0 (A ) - S 9 (A 35)]

n n 1/2
- [ (f(Aj)wja)- Y g (Aj)iﬁjaxﬁ]

Jj=1 Jj=1

< (VT -7) (Va- o)

foreachr; € H,j € {1,...,n}with 377 |z;]|* = 1, respectively.
If f,gare asynchronous then

> i1 (f(A)) g (Ay) zj,25)

(4:33) VST A ) S (g (A, a)
NG
TR
and
M N n 1/2
(4.34) 0< Z(f(Aj)%‘Jﬂ'Z(g(Aj)%ﬂUﬁ]

:Z;'Lzl (f (Aj)xj,xj> . 2?21 (g (Aj) xj,xj>]1/2
< (VE-V7) (VB - V5)

foreachr; € H,j € {1,...,n} with 377, |z;]|* = 1, respectively.

It is obvious that all the inequalities from Theor¢m|4.5 can be used to obtain reverse in-
equalities of Gruss’ type for various particular instances of operator functions, see for instance
[31]. However we give here only a few provided by the inequalifies (4.31)[and|(4.32) above.

EXAMPLE 4.3. Let A; j € {1,...,n} be selfadjoint operators withp (4,) C [m, M],
j€{1,...,n} for some scalarsn < M.
If A; are positive(m > 0) andp, ¢ > 0, then

] 1 <Ap+qxj s Lj >

(4.35) 0< — 1
Z] 1<A :E],x]> Z] 1<A x],:c]>
1 (M = ) (M9 — o)
< - ptq ptq
4 M= m 2
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and
Sy (AT, )

[Z?Zl (AP ;) -0 <A;1‘xj,xj>:|l/2
- n 1/2
; (Ajesas) . <A3‘”¢"ﬁ%>]

) (= m)

for eachz; € H,j € {1,....n} with 3", [lz;]* = 1.
If Ais positive definitdm > 0) andp, g < 0, then
Z?:1 <A§+qxj7 xj> _
Sy (A, ) - 00 (A, ;)
1 (M —m™P)(M9—m™9)

(4.36) 0<

B

IS
[NJiS)
[ SIS
[S]Y

g(Mf—m —-m

1

(4.37) 0<

S 4_1 . M_Z)Qjm_¥
and
n n 1/2
(4.38) 0< ) (AP a;) - <A?wj,fcj>]
j=1 J=1

Z?:l <A§+q7"’ :c>
- - - 1/2
[23:1 <A§xj>xj> ' Zj:l <A;]‘xj’ x]ﬂ

(M5 —mb) (M — )
M_%m_¥
foreachs; € H,j € {1,...,n}with 3" [lz;]* = 1.

Similar inequalities may be stated for either- 0,¢ < 0 orp < 0,q > 0. The details are
omitted.

<

EXAMPLE 4.4. Let A be a positive definite operator wifp (A) C [m, M] for some scalars
1<m< M. Ifp>0then

> (AT In Ay, )

(4.39) 0< = = -1
Zj:l <A§$jv$j> : Zj:l (ln ijja xj>
< 1 (MP—mP)In
4 MEimivInM-lnm
and
Zﬁzl <Ap In Aj[Ej,l‘j>
(440) 0= n : : n 1/2
[ijl (Afwj, ;) - 305 (I Aja, l’j)}
n n 1/2
- Z <A§ZL’j,ZEj> . Z <ln Aj.fj, I]>]
J=1 j=1

< (Mg—mg) [\/W—\/M]
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for eachz; € H,j € {1,....n} with 3" | [la;]* = 1.

Similar inequalities may be stated fpr< 0. The details are omitted.
The following result forn operators can be stated as well:

COROLLARY 4.6. Let A; be selfadjoint operators withp (A,) C [m, M|forj € {1,...,n}
and for some scalars: < M. If f andg are continuous ofvn, M| and+y := mingepm g f (1),
= maxtEmM] f(t), 6 := mingepm g (t) and A = maxeim g () then for anyp; >
0,j€{L,...,n}with3°%  p; = 1 we have

for eachz € H, with ||z||* = 1.
Moreover ify and ¢ are positive, then we also have

( i~%§iﬁ<ipjf<z4j>x,x>-<ipjg<Aj>m,x>,
(4.42) < ( > ( >
i f

(B (8
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while forT" 4+ v, A + § # 0 we have

ij 1”$> - <ijf(14j)1’aff> : <ij9 (Aj)l’afﬁ>‘

1 )(A-0)
Zf [|F+7||A+5|]

<ijf(Aj)$>$>>
)]1/2

1/2
((zpj )

1/2 n

x <ij g (A4;) x| ) + <ijg (Aj)x,x>
7=1
for eachz € H, with ||z = 1.

PROOF. Follows from Theorem 4]5 on choosing = /p; - @, j € {1,...,n}, where
p; >0,5€{l,...,n}, Z;‘:lpj = landx € H, with ||z|| = 1. The details are omitted

(4.43) <

X

REMARK 4.3. The firstinequality irf (4.42) can be written in a more convenient way as
<Z?:1pjf(Aj)9(Aj)$ax>
(Sipif (A e,y (S pag (4)) 2.

_1 (T (A-0)
=41 A

for eachz € H, with ||z||> = 1, while the second inequality has the following equivalent form
(Sioamf (A7) g (A a.)
n n 1/2
[<Zj:1 pif (4;) :13,:17> : <Zj:1 p;ig (4;) :E,I‘>}

n n 1/2
- [<ijf(/4j)93>93> : <ij9 (Aj)f’f>i'f>]

< (VI-vA) (VA - V5)
for eachz € H, with ||z|* = 1.

We know, from B(] that if f, g are synchronous (asynchronous) functions on the interval
[m, M|, then we have the inequality

(4.46) <ijf (4;) 9 (Aj>x,w>

> (<) <ijf(Aj)$»fE> : <ijg (Aj)90>ff>

for eachs € H, with ||z||* = 1, providedf, g are continuous ofin, M] and A; are selfadjoint
operators withSp (A4;) C [m, M],j € {1,...,n}.

(4.44) ~1

(4.45)
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Therefore, iff, g are synchronous then we have frgm (4.44) and from [4.45) the following
results:

<z] 0if (A7) g (A;) )

o " < i Dif (Aj)x, @ < i=1Pig (45) z, x> !
<1 - ><A )
4 I'vAo

and

(4.48) <Z 1 pif (A;) g(4)) z, a:>

K =1 Pif (Aj) @ $> <Z?=1P19(Aj)$’l’>]l/2

(o) )]
< (V= vi) (VA - Vi)

for eachx € H, with ||z|| = 1, respectively.
If f, g are asynchronous then

<zj pif (A7) 9 (A7) @)

(4.49) 0<1—-
<Z] 1 pif (Aj) v, @ < j= 129 ( )$a$>
L (T—y)(A- 6>
! VIvAS
and

3

- " 1/2
(4.50) 0< < pjf(Aj)$7$> : <ij9 (Aj)37733>]
L \i=1 =1

(S (A (4))2.)
:<Z?:1pjf (4) x’x> ' <Z§L:1Pjg (Aj)l',l‘>:| V2
< (VI-v7) (VA-V3)

for eachr € H, with ||z|| = 1, respectively.

The above inequalitie§ (4.47)[- (4]50) can be used to state various particular inequalities as
in the previous examples, however the details are left to the interested reader.

5. MORE INEQUALITIES FOR THE CEBYSEV FUNCTIONAL

5.1. A Refinement and Some Related Resultd he following result can be stated:

THEOREM 5.1 (Dragomir, 2008,33]). Let A be a selfadjoint operator wittbp (A) C
[m, M| for some real numbers:. < M. If f,g : [m,M] — R are continuous withy :=
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Minefm g g (t) aNdA 1= max;epm g g (t) , then

(5.1) 1C(f,9:A;2)]

< 2 (A= 8) (I (4) ~ (f (A) 7,2} - 1u]2,)

1
<5 (A=0)CA(f, fi A,
foranyz € H with ||z|| = 1.
PROOF. Sinced := minsejm, a9 (t) andA := max;cpm a9 (t) , We have

A+ 1
_ < = —
5 ’_Z(A 9),

(5.2)

g(t)

for anyt € [m, M| and for anyz € H with ||z| = 1.
If we multiply the inequality[(5.2) withf (t) — (f (A) z, )| we get
A+9 A+

(59 F@90) = (F (A)a)g(t) = S72F () + =2 (f (A)w,a)

< S A=D1 0= (A e,

for anyt € [m, M] and for anyr € H with ||z|| = 1.
Now, if we apply the property (P) for the inequalify (b.3) and a selfadjoint opefatwith
Sp(B) C [m, M], then we get the following inequality of interest in itself:

(5.4) [(f(B)g(B)y,y) — (f (A)z,2) (g (B)y,y)

_A+49 A+0

5 (f(B)y,y) + 5 (f(A)z,z)

(A=0)(|f (B) = (f(A)z,z)  1uly,y),

foranyz,y € H with ||z|| = ||y|| = 1.
If we choose in[(5J4) = z andB = A, then we deduce the first inequality jn (5.1).
Now, by the Schwarz inequality il we have
(If (A) = (f(A)z,2) - 1n|z, x)
< [If (A) = {f (A) z,z) - 1u|z|
=f(A)z = (f(A)z,z) |
= [If () al* = {f (A) 2, 2)7]
= C'2(f, f; Az,
for anyz € H with ||z|| = 1, and the second part df (5.1) is also proved.

<

N | —

1/2

Let U be a selfadjoint operator on the Hilbert spdéé (., .)) with the spectrumSp (U)
included in the intervalm, M| for some real numbers, < M and let{ £}, be itsspectral
family. Then for any continuous functiofi: [m, M] — R, it is well known that we have the
following representation in terms of the Riemann-Stieltjes integral:

59 G5 = [ F0d(E),
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for anyx € H with ||z|| = 1. The functiong, (\) := (E,x, z) is monotonic nondecreasirmn
the intervaljm, M/] and

(5.6) g:(m—0)=0 and g, (M)=1

foranyx € H with ||z|| = 1.
The following result is of interest:

THEOREMS.2 (Dragomir, 2008/33]). Let A and B be selfadjoint operators withp (A) , Sp (B) C
[m, M| for some real numbers: < M. If f : [m, M| — R is ofr — L—Hdlder type, i.e., for
agivenr € (0,1] and L > 0 we have

[f(s) = f @) < LJs—t[" foranys,t € [m, M],
then we have the Ostrowski type inequality for selfadjoint operators:

m+ M
2

S —

57) 1) =4 (yall <[5 0 = m) +

foranys € [m, M] and anyx € H with ||z|| = 1.
Moreover, we have

(5.8) [(f(B)y,y) — (f (A) z, z)|
<{|f(B) = {f(A)z,z) - 1u[y,y)
<L [%(M—m)+<B_m_'2_M'1H yy>] :

foranyz,y € H with ||z|| = ||y|| = 1.

PROOF We use the following Ostrowski type inequality for the Riemann-Stieltjes integral
obtained by the author ii2P]:

59) PO -ul- | (1) du 0|

S —

gLE(b—aH

for anys € [a, 0], provided thatf is of r — L—H®0lder type ona, b , v is of bounded variation

b
on [a, b] and\/ (u) denotes the total variation afon [a, b] .
Now, applying this inequality for: (\) = g, (\) := (E\z,x) wherex € H with ||z| =1
we get

(5.10) 'f<8) - [ )

m—0

m+ M
2

S

SL[%(M—m)jL

which, by [5.%) and (5]6) is equivalent with (.7).
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By applying the property (P) for the inequalify (b.7) and the oper&tare have
(ILF (B) = (f(A)z,z) - Luly,y)
} Y, y>

§L<mewm+3—m+M m
2 2
1 T
§L<{§(M—m)+ B — m;M '1H:| y,y>
1 M "
= Emmwm+<3—m+ ywﬂ
foranyz,y € H with ||z|| = ||y|| = 1, which proves the second inequality jn (5.8).

2
Further, by the Jensen inequality for convex functions of selfadjoint operators (see for in-
stancel44, p. 5]) applied for the modulus, we can state that

(M) [(h (A) z, 2)| < (|h (A)]z,x)

foranyx € H with ||z|| = 1, whereh is a continuous function opm, M| .
Now, if we apply the inequality (M), then we have

(I (B) = (f(A)z,2) - luly,y)| < (|f (B) = (f (A z,2)  1u|y,y)
which shows the first part of (5.8), and the proof is complgte.

gy

REMARK 5.1. With the above assumptions ffirA and B we have the following particular
inequalities of interest:

511) (25 - G| < Loy
and
(5.12) |f ((Az, z)) — (f (A) z, z)]
gLEmwwwﬂmL@—sz},
foranyz € H with ||z|| = 1.
We also have the inequalities:
(5.13) [(f(A)y,y) = (f(A) z, )]
<A (A) = (f(A)z,z) 1uly,y)
SLE(M—m)—F<A—m;M'1H y,y>} ;
foranyz,y € H with ||z|| = ||y|| = 1,
(5.14) (Lf (B) = f(A)]z,x)
<{lf (B) = (f(A)z,z) - 1y|z,z)
§LB(M—m)+<B—m+M~1H x,x>]
and, more particularly,
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foranyz € H with ||z| = 1.
We also have the norm inequality

m+ M

(5.16) IF(B) - F(A) < L E (M —m)+ HB _ iy

The following corollary of the above Theorém .2 can be useful for applications:

COROLLARY 5.3 (Dragomir, 2008/33]). Let A and B be selfadjoint operators withp (A) , Sp (B) C
[m, M| for some real numbers, < M. If f : [m, M] — R is absolutely continuous then we
have the Ostrowski type inequality for selfadjoint operators:

(5.17) 1f(s) = (f(A)z, z)|
[5 (M —m) + |s — =] 1/ oo pmng ¥ f'€ Loo [m, M5

= it f'e L, [m, M],

(3O =m) s =220 g g > 1Ay,

foranys € [m, M]and anyz € H with ||z[| = 1, where||-||, ., ,,, are the Lebesgue norms,
ie.,

1]l o,y = €55 sup|[h (2)]]
te[m,M]

M 1/p
[ (/ |h(t)|p> , p>1.

m

and

Moreover, we have
(5.18) [(f(B)y,y) = (f (A) z,2)]|
<A{If(B) = (f(A)z,z) - luly,y)
(252 4+ (B = 5 1u |y )] 1 ey T S/ € Loo [m, M];

A

17l if f"eL,[m,M],
pimMl p g > 1,0+ =1,

Q=

(5 (B = =55 - Laly.y)]

foranyx,y € H with ||z|| = |ly|| = 1.

Now, on utilising Theorerh 5|1 we can provide the following upper bound foCieySev
functional that may be more useful in applications:

COROLLARY 5.4 (Dragomir, 2008/33]). Let A be a selfadjoint operator witlyp (A) C
[m, M| for some real numbers: < M. If g : [m,M] — R is continuous withy :=
Minsefm,a g (1) aNd A := maxiepm,a g (1) , then for anyf : [m, M] — R of r — L—H0lder
type we have the inequality:

(5.19) |C(f,9; A; 2)]
m+ M
2

gy

g%(A—é)L[%(M—m)+<'A—

foranyz € H with ||z|| = 1.
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REMARK 5.2. With the assumptions from Corollgry .4 fpand A and if f is absolutely
continuos orjm, M|, then we have the inequalities:

(5.20) |C(f,g; A; )|

SN
[3 (M —m) + (JA =M A2, 0)] | llapman 1 J'€ Lo [m, M];
% if f € Lo [m, M],

l]\/[_m_|_ A_Ml x,T Va f/ m
[2( ) ﬂ 2 H‘ >] "’bivM}]Lq>>L%+%:1

foranyz € H with |jz|| = 1.

5.2. Some Inequalities for Sequences of OperatorsConsider the sequence of selfadjoint
operatorsA = (Ay,..., A,) with Sp(4;) C [m, M] for j € {1,...,n} and for some scalars
m < M. If x = (z1,...,2,) € H" are such thap _;_, |z;||> = 1, then we can consider the
following Cebysev type functional

C(f,9:A,%) ==Y (f(4A)) g (A)) zj, ;)

j=1
=D (f(A) zj,25) (9 (Aj) z;j, ;)
j=1 j=1
As a particular case of the above functional and for a probability sequercé, ..., p,),
i.e.,p; >0forje{l,...,n}and} "7, p; = 1, we can also consider the functional

C(f,g:A,px) = <ijf(Aj)g(Aj):v,x>

- <ijf(Aj)$a$> : <ij9 (Aj)x>$>

wherex € H, ||z|| = 1.

We know, from BQ] that for the sequence of selfadjoint operatdrs= (A, ..., A,) with
Sp(A;) C [m, M]for j € {1,...,n} and for the synchronous (asynchronous) functipns:
[m, M| — R we have the inequality

(5.21) C(f,9:A,x) > (<)0

foranyx = (v1,...,2,) € H" with 3°7 |z;]|> = 1. Also, for any probability distribution
p=(p1,...,pn) @nd anyz € H, ||z|| = 1 we have

(5.22) C(f.g:A,px) > (<)0.
On the other hand, the following Griss’ type inequality is valid as v&]: [

523 C (.9 A )| < 5 (=) [C (9,9: A, )]
<10 >-9)
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for anyx = (21,...,2,) € H™ with -7 ||lz;||> = 1, where f andg are continuous on
[m, M] andy := mingepan f (1), I' := maxepm g f (1), 0 := mingem g (f) andA =
maXiem,m] g (t) .

Similarly, for any probability distributiop = (p4, ..., p,) and anyr € H, ||z|| = 1 we also
have the inequality:

(5.24) C(f.9: A, pa)| < = - (T =) [C(g.9; A, p,a)]

(s1r-2>-9).

We can state now the following new result:

THEOREMS.5 (Dragomir, 2008/33]). Consider the sequence of selfadjoint operatlrs-
(Ay,...,A,) with Sp(A;) C [m,M] for j € {1,...,n} and for some scalars: < M. If
f.g : [m, M] — R are continuous with := mincp, a9 (1) @and A 1= maxem g g (1)

then
[Ej, IE]'>

(5.25) 1C(f,9;: A;x)|

<

(A=0)) <‘f (Aj) = > (f (A) zi, ) - 1

k=1

1
2 :
7j=1
1
5 (A =0)C2(f, 1 Ax),
foranyx = (1,...,2,) € H" such thaty>" | [|z;]|* = 1.
PrRoOF Follows from Theorerp 51 and the details are omitged.
The following particular results is of interest for applications:

COROLLARY 5.6 (Dragomir, 2008,/33]). Consider the sequence of selfadjoint operators
A = (A,...,A,) with Sp(4;) C [m, M] for j € {1,...,n} and for some scalars: < M.
If f,g: [m,M] — R are continuous with := mincp, a9 (1) and A := maxsepm i g (t)
then for anyp; > 0,7 € {1,...,n} with Z?lej = landx € H with ||z|| = 1 we have

(5.26) 1C(f,9; A, px)]
:r,x>

1 n
<5A- <ZPJ - <Zpkf(f4k)$,93> Lu
k=1
1
<S(A-0)CY(f.f;Apa).
PROOF In we choose in Theore@a@ = /P -, j €{1,...,n}, wherep; > 0,j €
,p; = landz € H, with ||z|| = 1 then a simple calculation shows that the
mequallty @) becomef (5]26). The details are omitged.

In a similar manner we can prove the following result as well:

THEOREM 5.7 (Dragomir, 2008,/33]). Consider the sequences of selfadjoint operators
A= (A, ... A,),B=(B,...,B,) with Sp(4;),Sp(B )g[m,M]forje{l,...,n}
and for some scalars, < M. If f : [m, M] — R is ofr — L—Hdlder type, then we have the
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Ostrowski type inequality for sequences of selfadjoint operators:

(5.27) |f(8) = (f (A xj,1;)

j=1

m+ M
2

S —

SLB(M—mH

foranys € [m, M] and anyx = (z1,...,z,) € H" such that _7_, z;])* = 1.

Moreover, we have

n n

D AF B ys ) — D (f (Ax) e, i)

j=1 k=1

(5.28)

n

< Z <|f(Bj) — D ([ (Ap) zp, a) - 1y

k=1

1 n
gL[E(M—m)+Z<

j=1

yj>yj>
ijyj>] )

foranyx = (z1,....24),y = (Y1, ..., ya) € H* such thaty"_ [lz;]> = S0 [|y; | = 1.

M
Bj_m—i—

gy

COROLLARY 5.8 (Dragomir, 2008/33]). Consider the sequences of selfadjoint operators
A = (Al,...,An>7 B = (Bl,...,Bn) with Sp(AJ),Sp(B]) - [m,M] forj S {1,,71}
and for some scalarsyx < M. If f : [m, M] — R is of r — L—H®dlder type, then for any
pj > 0,5 € {l,...,n}with3%  p; = 1andz € H with [|z|| = 1 we have the weighted
Ostrowski type inequality for sequences of selfadjoint operators:

(5.29) |f(8) - <ijf(Aj)ﬂfal’>

1
2

m+ M
2

SL{ (M—m)+‘s—

foranys € [m, M].
Moreover, we have

<Zij(Bj)y7y> - <Zpk:f (Ak)x>33>‘
< <Z g |f (Bj) — <Zpk:f (Ak)if>$> 1p y,y>
SLI%(M—m)+<qu m M yy>] :

2
foranyg, > 0,k € {1,...,n} with}",_, g» = 1 andz,y € H with ||z|| = |ly| = 1.

(5.30)

B; — Ay

5.3. Some Reverses of Jensen’s Inequalityt is clear that all the above inequalities can
be applied for various particular instances of functigrendg. However, in the following we
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only consider the inequalities

(5.31) |f ((Az, z)) — (f (A) z, )|
<L [%(M—m)—i—‘(Ax,x)— m;M ]

foranyx € H with||z|| = 1, where the functiorf : [m, M| — Ris of r — L—Hdlder type, and
(5.32)  [f ((Az,2)) — (f (A) , )]
[5 (M —m) + [(Az, 2) = ZEE (] 'l e sy » 1F F'E Lo [, M]
= if f'e L, [m, M]:
p > 1,%—1—%: 1

[5 (M —m) + [{Az, x) — 2EXE | N g -

for anyx € H with ||z|| = 1, where the functiory : [m, M| — R is absolutely continuous on
[m, M|, which are related to théensen’s inequalitfor convex functions.

1. Now, if we consider the concave functigh: [m, M] C [0,00) — R, f(¢) = " with
r € (0,1) and take into account that it is of— L—H0older type with the constart = 1, then
from (5.31) we derive the following reverse for thiélder-McCarthy inequalitf48]

foranyx € H with ||z|| = 1.
2. Now, if we consider the functiong : [m, M] C (0,00) — R with f(t) = ¢* and
s € (—00,0) U (0,00), then they are absolutely continuous and

sM®=!  fors € [1,00),
||f/Hoo7[m,M] =

|s|m*~! fors e (—o0,0)U(0,1).

m+ M

(5.33) 0<(A"z,z) — (Az,z)" < B (M —m) + ‘(A:c,@ —

If p > 1, then

M 1/p
1y =1 ([ e0ar)

MP(—D+1_gpp(s—1)+1 Hr ifs#£1— 1
p(s—1)+1 s P

= |s]
[In (22)]"/7 ifs=1-1.

m

On making use of the first inequality frorh (5/32) we deduce for a given (—oc,0) U
(0, 00) that

(5.34) [(Az, z)° — (A’z, )|

(Ax,x) —

< E(M—m)%—

m+ M
2

{ sMs=t  fors € [1,00),
X

|s|m*~ fors € (—o0,0)U(0,1).

foranyz € H with ||z| = 1.
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The second part of (5.82) will produce the following reverse ofifd¢der-McCarthy in-
equalityas well:

m+ M |17
2

(MP<51)+1—mF<51)+1>1/p if s #£1-1
p

p(s—1)+1

< 1o |5 07 = m) + (o) -

M\1l/p oo 1
[ID(E)} |fS—]_—E
foranyx € H with ||z|| = 1, wheres € (—o0,0) U (0,00),p > 1 and% + é = 1.

3. Now, if we consider the functiorf (¢) = Int defined on the intervdin, M| C (0,00),
then f is also absolutely continuous and

(m~! for p = oo,
et \ /P
1 g = | () forp>1,
In (%) forp=1.

Making use of the first inequality if (5.B2) we deduce
(5.36) 0 <In((Az,z)) — (In(A) z,x)

< |50 = m)+ |4z - LA

2
and
(5.37) 0 <In((Az,z)) — (In(A) z, x)

m+ M
2

q Mpfl _ mpfl 1/p
| (5= m)
forany= € H with [|z|| = 1, wherep > 1 and} + 1 = 1.

Similar results can be stated for sequences of operators, however the details are left to the
interested reader.

< B(M—m)—i—'(Aa:,:c>—

5.4. Some Particular Gruss’ Type Inequalities. In this last section we provide some par-
ticular cases that can be obtained via the Griiss’ type inequalities established before. For this
purpose we select only two examples as follows.

Let A be a selfadjoint operator withp (A) C [m, M] for some real numbers. < M. If
g : [m, M] — R is continuous with} := minc,, a1 g (t) @NAA := max,cm ar g (t) , then for
any f : [m, M] — R of r — L—H®dlder type we have the inequality:

(5.38) [(f(A) g(A)z,z) — (f(A) z,z) - (g (A) z,z)]
1 T
).

§§(A—5)L[%(M—m)+<'A—m+M

foranyz € H with ||z| = 1.
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Moreover, if f is absolutely continuos dm:, M|, then we have the inequalities:
(5.39) [(f(A)g(A)z,z) = (f(A)z,z) (9(A)z,z)|
<z (a5
[% (M —m)+ <\A — miM. 1H\ x,x>] Hf/Hoo,[m,M] if f'€ Lo [m, M];

if f'e L, [m, M],

[% (M —m)+ <‘A - % : lH‘ x,x>]1/q ||f/||p,[m,M] p,q > 1’110_%: 1

foranyx € H with ||z|| = 1.

1. If we consider the concave functigh: [m, M| C [0,00) — R, f (t) = ¢" withr € (0,1)
and take into account that it is of— L—Hdlder type with the constarit = 1, then from [5.3B)
we derive the following result:

(5.40) (A" (A) 2, ) — (A", x) - (g (A) , )|
1 1 M
<S(a-9) {E(M—m)+<‘A— mt
foranyz € H with ||z|| = 1, whereg : [m, M] — R is continuous withd := mincpy, a1 g (£)
andA := maxejm, g (t) -

Now, consider the functiog : [m, M] C (0,00) — R, ¢g(t) = t? with p € (—o0,0) U

(0, 00). Obviously,
MP —mP if p >0,
A—-§=

gy

MZom 2 if p <0,
and by [(5.4D) we get for any € H with ||z|| = 1 that

(5.41) 0< (A*Pz,x) — (A'x, x) - (APx, )

< 5 (M7 — ) B(M—m)+<‘A—sz-1H

whenp > 0 and

(5.42) 0< (A'z,z) - (APz,x) — (A" Pz, )
m+ M

1 MP—m™P |1 "
< .- " |z _ — .
S Ry = [2 (M —m)+ <'A 1y x,x>1 ,
whenp < 0.
If g : [m,M] C (0,00) — R, g(t) = Int, then by (5.4D) we also get the inequality for
logarithm:
(5.43) 0<(A"lnAz,z) — (A"z,x) - (In Az, x)

Sln\/g- E(M—m)+<'A—mJ;M-1H

foranyz € H with ||z|| = 1.
2. Now consider the functiong, g : [m, M| C (0,00) — R, with f (t) = ¢* andg (t) = t*
with s, w € (—o0,0) U (0, 00) . We have

sMs=!  fors e [1,00),
1 Wl oo sy =

|s|m*~! fors e (—o0,0)U(0,1).
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and, forp > 1,

MP(—D+1_gpp(s—1)+1 Hr ifs#£1— 1
p(s—1)+1 s P

1M gm0y = I8

[In (22)]"/7 ifs=1-1.
If w > 0, then by the first inequality ifj (5.89) we have
(5.44) [(A*TYz ) — (A, x) - (AVz, 7))
g?M”—WﬂBM%ﬂm+qA—m+M-waﬂ

sM*=t  fors e [1,00),
|s|m*~1 fors € (—o0,0) U (0,1).

foranyz € H with ||z| = 1.
If w < 0, then by the same inequality we also have
(5.45) |(A*TV2,2) — (A°z, x) - (A%x, z)|
1 MW —-—m™" |1
< = (M - A—
=9 T Mwmv b( my+<‘
sMs=t  fors e [1,00),

m+ M

gy

)

|s|m*~ fors € (—o0,0)U(0,1),

foranyx € H with ||z|| = 1.
Finally, if we assume that > 1 andw > 0, then by the second inequality in (5/39) we have

(5.46) (A Yz, x) — (Az, x) - (A%, )|
1 1 M 1
5 “’—m)[5(]\/[—771)+<‘A—mJr 1y .21:,:1:>]
p(s—1)+1_,p(s—1 l/p .
M Sheb ) if s #1—1
) ifs=1—1,
p
while forw < 0, we also have
(5.47) [(ATz,2) — (A%, x) - (AVz, z)|
<Ly Mo M Ha
—wmmw {g(M—m)+<‘A—m+ 1y :c,x>]

2
MP(S 1)+17mp(s e\ P £1-—1
(s—1)+1 P

) ifs=1-1,
p

wheregq > 1 with | + é =l andr € H with ||z| = 1.
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6. BOUNDS FOR THE CEBYSEV FUNCTIONAL OF LIPSCHITZIAN FUNCTIONS

6.1. The Case of Lipschitzian Functions.The following result can be stated:

THEOREM 6.1 (Dragomir, 2008,/34]). Let A be a selfadjoint operator wittbp (A) C
[m, M| for some real numbers, < M. If f : [m, M] — R is Lipschitzian with the con-
stantL > 0 andg : [m,M] — R is continuous withy := minscm g () and A :=
maxye(m, ) g (t) , then

(6.1) C (f, g5 A; )]
< (A= 0) L{tas(A)w,2) < (A~ 6) LC (e, e Ara)
for anyx € H with ||z|| = 1, where
Ca (t) = (|t~ 1y — Alz,2)
is a continuous function opn, M], e (t) =t and
(6.2) C e e; As) = || Az — (Az,2)* (> 0).

PrROOF First of all, by the Jensen inequality for convex functions of selfadjoint operators
(see for instancedd, p. 5]) applied for the modulus, we can state that

M) [{h(A)z,2)| < (|h(A)]z, )

for anyxz € H with ||z|| = 1, whereh is a continuous function o, M| .
Sincef is Lipschitzian with the constarit > 0, then for anyt, s € [m, M| we have

(6.3) [f () = f(s)| < Lt = s].

Now, if we fix ¢ € [m, M] and apply the property [P) for the inequality (6.3) and the operétor
we get

(6.4) (IF (&) -1a = f(A)]z,2) <Lt 1g — Az, 2),

foranyz € H with ||z|| = 1.
Utilising the property[(M) we get

1f ) = (f Az 2)=[(f(t) 1y — f(Az,2) <(f () 1z — [ (A)|z, )
which together with[(6]4) gives
(6.5) 1f () = {f (A)z,2)| < Llag (1)

for anyt € [m, M| and for anyr € H with ||z|| = 1.
Sinced := mingepy,, a9 (1) anNdA = maxem . g (t) , We also have

_A;L(S'gl(A_(s)

66 e :

for anyt € [m, M] and for anyz € H with ||z| = 1.
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If we multiply the inequality|[(6.p) with[(6]6) we get

A+6 A+9

(6.7) F@g@) = {f(A)z,2)g(t) - —5—F ) + ——(f(A)z,2)
g%@_aLmdw:%@—aquH—m%@
g%@-&LQtM—AﬁL@W
:%(A—aﬂmgﬁﬂxy—uA%xu+¢a”{

for anyt € [m, M| and for anyr € H with ||z|| = 1.
Now, if we apply the property (P) for the inequalify (6.7) and a selfadjoint opefatwith
Sp(B) C [m, M], then we get the following inequality of interest in itself:

(6.8) (f(B)g(B)y,y) — (f(A)z,z){g(B)y,y)

A+ At

T<f(3)y,y>+T<f(A)x,x>

IN

(A=06)L{las (B)y,y)

(A—é)L<(<A2x,x> 1y — 2<Ax,x>B+B2)1/2y,y>

VA AN
N RN~ DN~

(A—9)L (<A233, x> — 2(Az, ) (By,y) + <BQy, y>) ,

foranyz,y € H with ||z|| = ||y|| = 1.
Finally, if we choose in[(6]8) = » andB = A, then we deduce the desired result[(6uL).

In the case of two Lipschitzian functions, the following result may be stated as well:

THEOREM 6.2 (Dragomir, 2008,34]). Let A be a selfadjoint operator wittbp (A) C
[m, M| for some real numbers: < M. If f,g : [m,M] — R are Lipschitzian with the
constants., K > 0, then
(6.9) IC(f,g9; A )| < LKC (e, e; As ),
foranyz € H with ||z]| = 1.

PROOF Sincef, g : [m, M] — R are Lipschitzian, then

[f ()= f ()] < Lt —s[ and g (t) — g (s)] < K[t — s
for anyt, s € [m, M|, which gives the inequality
[f (&) g(t) = f(t)g(s) = f(s)g(t)+ f(s)g(s)] < KL (t* —2ts + 5%

foranyt,s € [m, M].
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Now, fix ¢ € [m, M] and if we apply the propertie§|(P) arid|(M) for the operatare get
successively
(6.10) [f () g () = (g (A)z, ) f(t)
—(f(A)z,z)g(t)+(f (A) g (A) z,z)|
[(Lf @) g@)-1a—f(t)g(A)—F(A)g{t)+f(A)g(A)]z,z)
(If @) g@)-1a—f{)g(A)—f(A)g(t)+ f(A)g(A)|zz)
KL{(* 1y —2tA+ A*) z,z)
= KL (* = 2t (Az,z) + (A’z, 2))
foranyx € H with ||z|| = 1.

Further, fixe € H with ||z|| = 1. On applying the same properties for the inequality (6.10)
and another selfadjoint operatBrwith Sp (B) C M], we have

[m,
(6.11) [(f(B)g(B)y,y) — (g (A)x,x) (f (B)y,y)
—(f(A)z,2) (g (B)y,y) + (f (A) g (A) z, z)]

= [([f (B)g(B) —{g(A)z,z

f(A)z,x)g(B)

|/ (B)g(B) = (g9(A)z,z) f(B)

—(f(A)z,x)g(B) + (f(A) g (A)z,x) Luly,y)

< KL{(B*>=2(Az,z) B+ (A’z,2) 1) y,y)
= KL ((B*,y) — 2(Az,z) (By,y) + (A%z, 1))

foranyz,y € H with ||z|| = ||y|| = 1, which is an inequality of interest in its own right.
Finally, on makingB = A andy = = in (6.11) we deduce the desired resplt (68€).

IAINA

6.2. Some Inequalities for Sequences of Operator€£onsider the sequence of selfadjoint
operatorsA = (Ay,..., A,) with Sp(4;) C [m, M] for j € {1,...,n} and for some scalars
m < M. If x = (z1,...,2,) € H" are such thap >, |z;]|> = 1, then we can consider the
following Cebysev type functional

C(f,9;A,%) ==Y ([ (A7) g(A)) x), ;)

j=1

3
3

As a particular case of the above functional and for a probability sequereé;, ..., p,),
i.e.,p; >0forje{l,...,n} andzyzlpj = 1, we can also consider the functional

(f?g7A pa . <Zp] $>

- <ijf(f4j)x>$> : <ij9 (Aj)x>$>

AJMAA Vol. 17(2020), No. 1, Art. 1, 319 pp. AIMAA

wherez € H, ||z|| = 1.


https://ajmaa.org

INEQUALITIES FORFUNCTIONS OFSELFADJOINT OPERATORS 137

We know, from BQ] that for the sequence of selfadjoint operatdrs= (A, ..., A,) with
Sp(A;) C [m, M]for j € {1,...,n} and for the synchronous (asynchronous) functipns:
[m, M| — R we have the inequality

(6.12) C(f,9:A,x) > (<)0
foranyx = (v1,...,2,) € H" with 3°7 |z;||> = 1. Also, for any probability distribution
p=(p1,...,p,) @and anyz € H, ||z|| = 1 we have
(6.13) C(f,9:A,p,x) > ()0,
On the other hand, the following Gruss’ type inequality is valid as Va€lJ: [

(6.14) C(fg: A X <5 (T =7)[C(g.9: A, %)

(s1r-n@-9)

foranyx = (z1,...,2,) € H" with }77 |z;||> = 1, where f and g are continuous on
[m, M| andy = mingepan f (1), I' := maxcpmn f (1), 0 := mingeman g (t) andA =

maxeim,m) 9 (t) -
Similarly, for any probability distributiop = (py,...,p,) and anyr € H, ||z|| = 1 we also
have the inequality:

(6.15) C(f. ;A pa)| < = (T —7)[C(g.9: A, p.)]?

(sjr-m@-9).

We can state now the following new result:

THEOREM 6.3 (Dragomir, 2008/34]). LetA = (Ay,..., A,) be a sequence of selfadjoint
operators withSp (A;) C [m, M] for j € {1,...,n} and for some scalars: < M. If f :
[m, M] — R is Lipschitzian with the constardt > 0 andg : [m, M| — R is continuous
With § := minsejm a7 g (t) aNdA 1= max;ejm g g (t) , then

(6.16) C (g A < 5 (A=) LD (Eaue (Ax) o0, 0)

< (A =6)LC (e, e; A;x)

for anyx = (w1,...,2,) € H"with 3", ||z;]|* = 1, where

n

Cas (t) ==Y (It 1y — Ayl z;,2;)

J=1

is a continuous function opn, M], e (t) =t and

(e, €5 A;x) Z | Az;* — (Z (Ajl’j?l’j>) (=0).

7=1

PrRooOF Follows from Theorer@l. The details are omittgd.

As a particular case we have:
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COROLLARY 6.4 (Dragomir, 2008,34]). Let A = (A,,..., A,) be a sequence of selfad-
joint operators withSp (A4;) C [m, M| for j € {1,...,n} and for some scalars: < M. If
f : [m, M] — R s Lipschitzian with the constadt > 0 andg : [m, M| — R is continuous
With ¢ := minepm a g (t) @NdA := maxyep, g g (t) , then foranyp; > 0,5 € {1,...,n} with
> i—1pj = landx € H with ||z[| = 1 we have

where

is a continuous function opn, M| and

n n 2
C(e,e; A, pxr) = ij || Az;||* — <ijij,x> (>0).
j=1 j=1

PROOF In we choose in Theore@a@ = /-, j €{1,...,n}, wherep; > 0,j €
{1,....n},>" p; = landz € H, with ||z|| = 1 then a simple calculation shows that the
inequality @) becomef (6]17). The details are omitied.

In a similar way we obtain the following results as well:

THEOREM6.5 (Dragomir, 2008/34]). LetA = (A4,..., A,) be a sequence of selfadjoint
operators withSp (A4;) € [m, M] for j € {1,...,n} and for some scalars. < M. If f, g :
[m, M] — R are Lipschitzian with the constanis K > 0, then

(6.18) |C(f,9;A,x)| < LKC (e,e; A, x),
foranyx = (z1,...,a,) € H"with 37 [|z;]|* = 1.

COROLLARY 6.6. Let A = (A4,,...,A,) be a sequence of selfadjoint operators with
Sp(A;) C [m, M]forj e {l,...,n} and for some scalars. < M. If f,g: [m, M] — R are
Lipschitzian with the constanis K > 0, then foranyp; > 0,5 € {1,...,n} with Z?zlpj =1
we have
(6.19) |C(f,9:A,p,x)| < LKC (e,e; A, p,x),
foranyz € H with ||z]| = 1.

6.3. The Case of p, &) —Lipschitzian Functions. The following lemma may be stated.

LEMMA 6.7. Letu : [a,b] — Randy, ® € R with & > ¢. The following statements are
equivalent:

(i) The functionu — ££% - ¢, wheree (t) = ¢, t € [a,b], is 5 (® — ) —Lipschitzian;

(i) We have the inequality:

(6.20) o< w <& foreach t,sec[ab witht#s;
(i) We have the inequality:
(6.21) pt—s)<u(t)—u(s) <d(t—s) foreacht, s e [a,b] witht > s.

Following [47], we can introduce the concept:
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DEFINITION 6.1. The functioru : [a,b] — R which satisfies one of the equivalent condi-
tions (i) — (iii) is said to bgy, ®) —Lipschitzian ona, b] .

Notice that in#7], the definition was introduced on utilising the statement (iii) and only the
equivalence (i}= (iii) was considered.

Utilising Lagrange’s mean value theoremve can state the following result that provides
practical examples dfp, ) —Lipschitzian functions.

PROPOSITIONG.8. Letu : [a,b] — R be continuous ofu, b] and differentiable orfa, b) . If

(6.22) —oo <7v:= inf (1), sup u' (t) =T < oo
te(a,b) te(a,b)

thenu is (v, ") —Lipschitzian ona, b] .
The following result can be stated:

THEOREM 6.9 (Dragomir, 2008,[34]). Let A be a selfadjoint operator wittbp (A)
[m, M| for some real numbers. < M. If f : [m, M] — R is (¢, ®) —Lipschitzian ona,
andg : [m, M] — R is continuous with} := min;cj, a9 (1) and A := maxicpm, a9 (
then

C
b

),

(6.23) C(f g: Aw) — #0(679%9%)
< }l (A= 6)(® — @) (las (A)z,2)
< (A=) (@) COle,e: Aix)

foranyz € H with ||z| = 1.

The proof follows by Theore@ 1 applied for t%e{@ ) —Lipschitzian functionf —
5”*—‘5 e (see Lemm@?) and the details are omitted.

THEOREM 6.10 (Dragomir, 2008,34]). Let A be a selfadjoint operator wittsp (A) C
[m, M| for some real numbers: < M and f,g : [m, M| — R. If fis (¢, ®) —Lipschitzian
andg is (¢, V) —Lipschitzian ona, b] , then

o +
(6.24) C(f g Asa) — S”c<e g; A )
1\ [0} \\J
— ;rwc(f,e;fl;x)Jr —QHO' ;wC(e,e;Asﬂﬁ)

< 1@ =) (T —4)C (e, Ara),

foranyz € H with ||z|| = 1.

The proof follows by Theore@.Z applied for tléQCD ) —Lipschitzian functionf —

£42 . ¢ and the} (¥ — 1) —Lipschitzian functiony — *+ - e. The details are omitted.
Similar results can be derived for sequences of operators, however they will not be presented
here.
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6.4. Some Applications.ltis clear that all the inequalities obtained in the previous sections
can be applied to obtain particular inequalities of interest for different selections of the functions
f andg involved. However we will present here only some particular results that can be derived
from the inequality

(6.25) IC(f,9; Asx)| < LKC (e, €; A; )

that holds for the Lipschitzian functions and g, the first with the constant > 0 and the
second with the constaif > 0.

1. Now, if we consider the functiong g : [m, M] C (0,00) — Rwith f (t) =, g (t) = t¢
andp,q € (—o00,0) U (0,00) then they are Lipschitzian with the constarits= || f'||_, and
K =, - Sincef’ (t) =pt*~* g (t) = ¢t *, hence

pMP~1 forp e [1,00),
1l =
[p|mP~t forp € (—o0,0) U (0,1)
and
gMa1'  forq € [1,00),
19l o = .
lglmi~1 for q € (—o0,0) U (0,1)

Therefore we can state the following inequalities for the powers of a positive definite oper-
ator A with Sp (4) C [m, M| C (0, 00).
If p,g > 1, then

(6.26) (0 ) (AP ) — (AP, x) - (A2, x)

<
< pgP 0 (| Ax]]? - (Av,2)?)

for eachr € H with ||z|| = 1.
If p>1andq € (—o0,0) U (0,1), then
(6.27) |(APH 9z, 2) — (APz, x) - (A%, z)]
< plgl MY it (|| Az|) — (Az, 2)°)

for eachr € H with ||z|| = 1.

If p € (—00,0)U (0,1) andg > 1, then
(6.28) |(APtag, o) — (APz, ) - (A%, )]
< plgMtmP Tt (|| Az|)* — (Az, 2)?)

for eachr € H with ||z|| = 1.
If p,q € (—o0,0)U(0,1), then

(6.29) |(APHig, 2) — (APx,z) - (Alz, z)]
< |pg| mP? (|| Az|® — (Az, x)?)

for eachr € H with ||z|| = 1.
Moreover, if we take = 1 andg = —1 in (6.27), then we get the following result

(6.30) (0 <) (Az,z) - (A e, 2) —1 <m™2 (|| Az|? — (Az,2)?)
for eachx € H with ||z|| = 1.
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2. Consider now the functiong g : [m, M] C (0,00) — R with f (t) = t",p € (—00,0) U
(0,00) andg (t) = Int. Theng is also Lipschitzian with the constaif = |¢'|| = m™".
Applying the inequality[(6.25) we then have for any H with ||z|| = 1 that
(6.31) (0 <)(APIn Az, z) — (APx,x) - (In Az, z)

< pMP~'m~! (HAmH2 - (Ax,x>2)
ifp>1,
(6.32) (0 <) (APIn Az, z) — (APx,x) - (In Az, z)

pm?? (|| Az]|* — {Az, x)°)

ININA

if p(0,1) and
(6.33) (0 <) (APz,z) - (In Az, z) — (AP In Az, z)

(—p)m?~? (| Az|* — (Az, z)?)

VANRVA

if pe (—00,0).
3. Now consider the functiong, g : [m,M] C R — R given by f () = exp (at) and
g (t) = exp (Bt) with a, 5 nonzero real numbers. It is obvious that

exp (aM) fora >0,
1/l = lerl %

exp (am) fora <0
and
exp (BM) for 5> 0,
19'llo = 18] x :
exp (fm) for(3 <0
Finally, on applying the inequality (6.25) we get
(0 <) (exp[(a+ B) Al z,z) — (exp (A) z, x) - (exp (BA) z, x)
exp [(a + B) M] fora, >0,
< afl (IAz]* - (Az,2)?) x

exp[(a+ B)m] fora,B <0
and
(0 <) (exp (aA) 2, 2) - (exp (84) 2,7} — {exp [(a+ B) A] 2, 2)

exp (aM + pm) fora>0,5<0

< lag] (| Az||* = (Az, 2)*) x {
exp (am + M) fora <0,5>0

for eachx € H with ||z|| = 1.

7. QUASI GRUSS T YPE INEQUALITIES

7.1. Introduction. In[16], in orderto generalize the above result in abstract structures the
author has proved the following Griss’ type inequality in real or complex inner product spaces.

THEOREM7.1 (Dragomir, 1999/1€]). Let(H, (., .)) be aninner product space ov&r(K = R,C)
ande € H, |le|]| = 1. If p,~,®,T are real or complex numbers andy are vectors in{ such
that the conditions

(7.1) Re (Pe — z,x — pe) > 0and Re (I'e — y,y — ve) > 0
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hold, then we have the inequality

1
The constang is best possible in the sense that it can not be replaced by a smaller constant.

For other results of this type, see the recent monogr2agleaind the references therein.

Let U be a selfadjoint operator on the complex Hilbert sp@e(., .)) with the spectrum
Sp (U) included in the intervalm, M| for some real numbers: < M and let{E\,}, be its
spectral family Then for any continuous functiofi : [m, M] — C, it is well known that we
have the followingspectral representation theorem in terms of the Riemann-Stieltjes integral

M
(7.3) FO) = [ roae,
m—0
which in terms of vectors can be written as
M
7.4) G e = [ F0dEBa),

for anyz,y € H. The functiong, , (\) := (E\z,y) is of bounded variatioron the interval
[m, M] and

ey (m —0) =0andg,, (M) = (z,y)
foranyz,y € H. Itis also well known thay, (\) := (E\z, x) is monotonic nondecreasirand
right continuouson [m, M].

7.2. Vector Inequalities. In this section we provide various bounds for the magnitude of
the difference

(f(A)z,y) — (2,y) (f (A) z, 7)
under different assumptions on the continuous function, the selfadjoint operatéf — H
and the vectors, y € H with ||z|| = 1.

THEOREM7.2 (Dragomir, 2010/35]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrunfp (A) C [m, M| for some real numbers: < M and let{E\}, be its
spectral family. Assume thaty € H, ||z|| = 1 are such that there exists I" € C with either

(7.5) Re (T'z —y,y —yz) >0

or, equivalently

v+T
2

1. If f: [m,M] — Cis a continuous function of bounded variation pn, /], then we
have the inequality

(7.6) [(f(A)z,y) — (2, y) (f (A) z, z)]|

1
<0 —~].
T _2| ol

< ax (Exz,y) — (Bxz,z) (z, )| \/ (f)
< max (B ) (1y = Bx) o)) (ol = [ ) ) 7V ()
<5 (Il = o)) 2\ () = 0 =21V ().
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2. If f : [m, M] — Cis a Lipschitzian function with the constaht> 0 on [m, M|, then we
have the inequality

(7.7) [(f (A)z,y) — (. y) (f (A) z,2)]

gL/“|wwyww@awuwnw

m—0

<L (Il = Vb [ () (1~ B i
(Il = [y, 2)[2)* (M1 = Ay, 2) 2 (A = ml) , 2) 2
(M —m) L (|l = |y, 2)[*)""?

3. If f: [m, M] — R is a continuous monotonic nondecreasing functiorjran}/|, then
we have the inequality

<I
<! <Ir_ym-mr
-9 = Y m) L.

(78)  [{F(A)x,y) — (w.1) (f (A) 2, 2)]
< / ) — (B ) )l df ()

m—0

< (Il = [y, 2)[2) 2 / (Exe.2) (L — By) o) 2 df (V)
< (

on1/2
lyll* = ¢y, 2)[)

(F (M) Lag = £ (A) @,2) ((F (A) = f (m) Lar) 2,)
3L 00 = £ )] (ll = 1)) < 30 =1 [F () = £ (m)].

PrROOF First of all, we notice that by the Schwarz inequalityiinwe have for any, v, e €
H with |le|| = 1 that

X

IN

1/2 1/2
(7.9) [(u,0) = (u,e) (e, )| < ([full® = [(u, e) ") (Ilol* = [, e) ")
Now on utilizing (7.9), we can state that
1/2 1/2
< (1Exe|® = [{Exa, ) ") (lull” = |(y, 2)[")
forany\ € [m, M].
SinceF), are projections and’, > 0 then
(7.11) |Exall? — [(Exe, 2)|* = (Baz, ) — (Exz, z)?
1
= (E\z,z) ((1g — E)\) z,z) < 1

forany\ € [m, M| andx € H with ||z| = 1.
Also, by making use of the Griiss’ type inequality in inner product spaces obtained by the
author in [L6] we have

(7.12) (Il ~ Ly ) )% < S0 =4l
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Combining the relations (7.10)-(7]12) we deduce the following inequality that is of interest in
itself

(7.13)

(Exz,y) — (Exz,x) (2,9)]
< ((Baz, @) (Ln = Bx)z,2))' (lyll* = [(y. ) )

(Il ~ Ky 2))* < 30—

1/2

N)I}—t

forany\ € [m, M].
It is well known that ifp : [a, b] — C is a continuous function; : [a, b] — C is of bounded

variation then the Riemann-Stieltjes integﬁlp (t) dv (t) exists and the following inequality
holds

(7.14)

bt dv ()] < max (0] ()
[roao) :

t€la,b]

Where\/ (v) denotes the total variation ofon [a, ] .

Utiliasing this property of the Riemann-Stieltjes integral and the inequality [7.13) we have

715 |[" (B - (B ol o)
< max [(Exz,y) = (B, @) (@,9)| \/ (F)

< max ((Baz,@) (1g — By) a,a) " (Il = (. 2)2) " \/ ()

AE[m,M]

<

N | —

(Il = Ky ) )\ () < 10 =1V ()

m

for z andy as in the assumptions of the theorem.
Now, integrating by parts in the Riemann-Stieltjes integral and making use of the spectral
representation theorem we have

(7.16) / (B = (B o)) 4 O
(BExz,y) — (Exz, @) (z,9)] f VY,

/ f ) d[(Bre, ) — (Exe, z) ()]

M

= (z,y) f( ) d(E\z, ) — f Q) d(Exz,y)

) (A ) — (F(A)ary)

which together with[(7.15) produces the desired refuli (7.6).
Now, recall that ifp : [a,b] — C is a Riemann integrable function and: [a,b] — C is
Lipschitzian with the constart > 0, i.e.,

|f (s) — f(t)| < L|s—t| foranyt,s € [a,b],
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then the Riemann-Stieltjes integrﬁp (t) dv (t) exists and the following inequality holds

/:p@)dv(t)] <t [ bl

Now, on applying this property of the Riemann-Stieltjes integral we have (7.13) that

/mji (Exz,y) — (Exx,x) (x,y)] df ()\)‘

(7.17)

<1 / Bz, y) — (Ext, z) {z, y)| dA

<L (Il = 1)) | (B} (1 = Bx)2,2))' A

If we use the Cauchy-Bunyakovsky-Schwarz integral inequality and the spectral represen-
tation theorem we have successively

(7.18) /M (Bxz,z) (1 — By) z, z))? dX
([ e d@ 1 - eaa)”
[ (Ext, x) - /m ]: Ad <Ew,x>} 1/2

X

[ Ly — By a) AL /M Ad((lH—EA)x,x)}

m—0

(Mly — Az, z)* (A= mly)z,z)"?.

On utilizing (7.18), [(7.1]7) and (7.16) we deduce the first three inequalitiés in (7.7).
The fourth inequality follows from the fact that

(M1ly —A)z,x) (A —mly)x, z)
< i[«MlH —A)z,x)+ (A —mly) :p,x)]Q =

The last part follows from{ (7.12).
Further, from the theory of Riemann-Stieltjes integral it is also well known that if
la,b] — C is of bounded variation and : [a,b] — R is continuous and monotonic nonde-

creasing, then the Riemann-Stieltjes integﬁ@ (t)d andf Ip (t)| dv (t) exist and

/abp(t)dv(t)' g/ab|p(t)|dv(t)

Utilising this property and the inequality (7]13) we have successively

/M (Exz,y) — (Exe,x) (z,y)] df (/\)’

(M —m)>.

AN,

(7.19)

(7.20)

m—0

< / (B = (B, o) 4 O

< (lyl* = [ty z)*) " / (Exe, o) (1g — Ex) z,2)) 2 df (1)

m—0
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Applying the Cauchy-Bunyakovsky-Schwarz integral inequality for the Riemann-Stieltjes inte-
gral with monotonic integrators and the spectral representation theorem we have

(7.21) / (B (1 = By ) (3

M

(B, 2) df () ﬂ]/2[jfk[((1H——£A)agx)df(A4]/2

m—0 m—0

|
{ (Eyz,x) m—O — . f(A)d(EAx xﬁ v
e

<

1/2
X —E)\ (13 l’ m 0 f 1H—E)\)x,x>]

M)l —f Mﬁxwm« m—f(ﬂmx@m
< 2[ (M) = 1 (m)]
and the proof is completq.

REMARK 7.1. If we drop the conditions an, y, we can obtain from the inequalitigs (]7.6)-
(7.7) the following results that can be easily applied for particular functions:

1. If f: [m,M] — Cis a continuous function of bounded variation jem, M|, then we
have the inequality

(7.22) [(f (A)a,9) l2l® = (2, 9) (f (A) z,2)

1 1/2M
< 5 lall® (ol llelP = 1w 2)%) 7/ ()

foranyx,y € H,xz # 0.
2. If f: [m, M] — Cis a Lipschitzian function with the constaht> 0 on [m, M], then
we have the inequality

(7.23) [ (A) ) ] = () 4 (A) 2, )]
< L (Il 2l ~ (g, )") "
X (Mg = A)a2) (A = mg) )]/
< 5 (M = m) L el (Il al® ~ Ly, ) )

foranyz,y € H,x # 0.
3. If f: [m,M] — R is a continuous monotonic nondecreasing functioriron}/|, then
we have the inequality

(7.24) (F (A)a,y) a]* — (2,9) {f (A) 2,2)|
< (Il Il? = 1y, 2))
< [((f (M) 1 = f (A)) 2, 2) ((f (A) = £ (m) 1g) 2, 2)]"/?
< 1) = £ )] el (Nl = L))"
foranyx,y € H,x # 0.

We are able now to provide the following corollary:
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COROLLARY 7.3 (Dragomir, 2010/35]). With the assumptions of Theorém|7.2 and if
[m, M] — Ris a(p, ®)-Lipschitzian function then we have

(7.25) [(f(A)z,y) = (,y) {f (A) z, z)|

(

<5@=9) [ By = (Bur.a) (o) )
3@ =) (P = 1)) [ (Baa) (1 = B )
1

<5 (@ =) (Iyl* = Ky, 2}

X (Mly — A)z,z)"* (A —mly) z, z)"/?
< 3 —m) (@ — ) (Iol]* ~ l{y. 2) )
< S I0 = (M —m) (@~ ).

The proof follows from the second part of Theo@ 7.2 applied foé—t(nb— p)-Lipschitzian

function f — % - e by performing the required calculations in the first term of the inequality.
The details are omitted.

7.3. Applications for Gruss’ Type Inequalities. The following result provides some Griss’
type inequalities for two function of two selfadjoint operators.

PROPOSITION7.4 (Dragomir, 2010,.35]). Let A, B be two selfadjoint operators in the
Hilbert spaceH with the spectraSp (A), Sp (B) C [m, M| for some real numbers: < M
and let{ £, }, be the spectral family o. Assume thaj : [m, M] — R s a continuous function
and denote: := mincjm a7 g (t) aNdN = maxepm a9 (1) -

1. If f: [m,M] — Cis a continuous function of bounded variation pn, /], then we
have the inequality

(726)  |(f (A9 (B)w) — (f (A)2,0) (g (B) w,)
< max [(Exe,g(B)2) = (Bxa,x) (.9 (B)0) \/ (1)

< max (Bxr.w) (1 = By a.a)"”

foranyx € H, ||z| = 1.
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2. If f : [m, M] — Cis a Lipschitzian function with the constaht> 0 on [m, M|, then we
have the inequality

(7.27)

< L(llg(B)al* = (g (B)z,)*)"*
< (Exz,z) (1 — By) z, z))"* dX

< L(llg(B)al* - g (B)z,2)[2)"*
X (M1g — A)z, 22 (A — mly) z, z)/2
(M —m)L (||g(B)x||2 — g (B)x,x>|2)

(N—n)(M—m)L

1/2

IN

IN

1
2
1
4

foranyz € H, ||z|| = 1.
3. If f: [m, M] — R is a continuous monotonic nondecreasing functiorj-an)/|, then
we have the inequality

(7.28)

(f(A)z,g(B)z) = (f(A)z,z) (g (B)z,z)|

< [(Exz, 9 (B) ) — (Exv, x) (x,9 (B) )| df (M)

m—0

< (llg (B)z|l* = |{g (B) z,z) ")

x (Bxz,z) ((1g — Bx) ,) " df (M)

1/2

1/2

< (llg (B)z|* = [{g (B) z,z)[*)
X {(f (M) 1y — f(A)) 2, ) 2 ((f (A) — f (m) 1), 2) "/

[ (M) = £ (m)] (g (B) || = [{g (B) ,)[*)""?

foranyz € H, ||z|| = 1.

PROOF. We notice that, since := mincp,, a9 (1) andN := maxycp,ar g (), thenn <
(9 (B)z,z) < N which implies thatg (B) x — nz, Mz — g (B)z) > 0foranyz € H, ||z|| =
1. On applying Theorein 7.2 foy = Bz, I’ = N andy = n we deduce the desired result.
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REMARK 7.2. We observe that if the functigitakes real values and ig@, ®)-Lipschitzian
function on[m, M|, then the inequality (7.27) can be improved as follows

(7.29) (f

<

~—~

A)a, g (B)x) = (f (A)z,2) (9 (B) z, )]

<@—w/ (Ext g (B)x) — (Ex, z) (g (B) 2)| d\

m—0

1/2

IA

X
S\L\ﬂ»—t DO |

(@—¢) (lg(B)z]|” — [{g (B)z,2)[)

. (Bxz,z) (1 — By z, 2))* dA

(@ —¢) (lg(B)z||* - (g (B) z,2)[)
M1y — Az, 2)* (A —mly)z, z)?
(M —m) (@ —¢) (lg(B)z|* — (g (B) z,2)[)

(N =n) (M —m)(®—¢)

1/2

(VAN
DN | —

X

1/2

[\
O x| =

<

foranyz € H, ||z|| = 1.

7.4. Applications. By choosing different examples of elementary functions into the above
inequalities, one can obtain various Griss’ type inequalities of interest.

For instance, if we choosg g : (0,00) — (0,00) with f (t) = t?, g (t) = t? andp,q > 0,
then for any selfadjoint operators B with Sp (A),Sp(B) C [m, M] C (0,00) we get from
(7.28) the inequalities

(7.30) |(APx, Blx) — (APz,x) (Blx, z)|

< (1Bl = | of)" [ (Baa) (1 = By ) 0~ tay

< (IB% ] — |(B %, z) %) (MP1y — A7) 2, 2) "2 (A7 — mPLyy) 2, )2
< 5 (M7 — ) (B2l — (B, ) )7 < (M7 — ) (7 — )

foranyz € H with ||z|| = 1, where{E, }, is the spectral familpf A.
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The same choice of functions considered in the inequality [7.29) produce the result

(7.31)

where

(7.32)

(APx, Blx) — (APz, x) (Blx, )]
A, ([|B%|? = (B, 2)?)

(Bxz, z) (1 — By) z, z))Y? dA

X (VAN
[\DI»—t
g

3
=

o (1B — (B2, z)[?)"?
MP1y — AP)z, )2 (AP — mP1y) @, z)'/?

IA

DN | —
e

X
PN

(M —m) A, (| B%|* — |(B%, x)*)""*

(AN (VAN
O — x| —

(M7 = m?) (M —m) A,

MP=t —mPtifp>1
A, i=pX

Ml-P_ml-p
M1=pPml-r

ifo<p<l.

foranyz € H with ||z| = 1.

Now, if we choosef (t)

(7.33) |(ln Az, Blx) — (In Az, x) (Blz, x)|
< (|B%|* — |(B',x)) "

x/ (Bxa, ) (1 — By) z, 2))Y* A~ 'dA

m—0

< (1B%|? - |{B"2, z)[*) *

x (In M1y —InA)z, )" (In A — Inmly)z, z)?

IN

M
< (IB%|? = |(Bz, 2)?)* Iny | =
m
1 M
(M9 —m9)Iny/ —
2 m

AJMAA Vol. 17(2020), No. 1, Art. 1, 319 pp.

=Int,t > 0 and keep the samgthen we have the inequalities

AJMAA


https://ajmaa.org

INEQUALITIES FORFUNCTIONS OFSELFADJOINT OPERATORS 151

and
(7.34) |{ln Az, Biz) — (In Az, x) (Bx, )]

<3 (%) (1B ~ (B, 2)) "
></ (Ex,a) (1 — Bx) 2, 7)) d

m—0
) 1Bl = [ )

M1y — Az, 2)* (A —mlg)z,z)?

(M—m)2 a2 q 2
W(HB zl|* = (B, z)|°)

(M —m)*
mM

IN

N | —
VR
s‘i

3

X

1/2

[\
Ol — x|

IN
3

_ m‘l)

foranyx € H with ||z|| = 1.

8. Two OPERATORS GRUSS T YPE INEQUALITIES

8.1. Some Representation Results/\Ve start with the following representation result that
will play a key role in obtaining various bounds for different choices of functions including
continuous functions of bounded variation, Lipschitzian functions or monotonic and continuous
functions.

THEOREMS8.1 (Dragomir, 2010,3€]). Let A, B be two selfadjoint operators in the Hilbert
spaceH with the spectraSp (A), Sp (B) C [m, M| for some real numbers: < M and let
{Ex}, be the spectral family o and{F},}  the spectral family oB. If f, g : [m, M] — C are
continuous, then we have the representation

(8.1) (f(A)z,g(B)z) — (f (A) z,2) (z, 9 (B) )
- /_0 (/ ) (Exx,x) (x, F,x) — (Exx, F,x)]d (g (,u))) d(f(\)

0
foranyx € H with ||z]| = 1.

PROOF Integrating by parts in the Riemann-Stieltjes integral and making use of the spectral
representation theorem we have

©.2) / [(Bry) ~ (Baa.o) @) df )
= [(BExt,y) — (Exz,x) {2, y)] F (DI,
T UB.) = (Bye.2) (2.9)]

= (z,9) f( d(Ex\z, ) / J (N d(Ex\z,y)
m—0

= (z,y) (f(A)z,2) = ([ (A,
foranyz,y € H with ||z| = 1.
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Now, if we chosey = g (B) z in (8.2) then we get that

©3 | (Bg(B)) = (B (a9 (BY0) df )
= (.9 (B)2) (f (4) 2.2) = {J (). (B) )

foranyz € H with ||z| = 1.

Utilising the spectral representation theorem fowe also have for each fixede [m, M]

that

(8.4) (B, g (B)x) — (Exr,x) (z, 9 (B)x
= <EA91:,/mA:[0g(u) dF x> (Exz, @ <x 1) dF x>
ZAMog(u)d(<Exx,Fx (Exz, x) /mMO d({z, F,x))

foranyz € H with ||z| = 1.
Integrating by parts in the Riemann-Stieltjes integral we have

/ 709(u)d (Bxz, Fux)) = g(p) (Bxz, Fua)lh - / y (Exz, Fyx) dg ()

= 900 (Bra) = [ (B By d o 0)

and
[ swate ) = 9@ i~ [ Bt
- g(M)—/mO@Fwd( (),
therefore
89 [ s@ase R - B [ ot Ba)
= o () ()~ [ (e B o 1)
) (900~ [ oy ata )

_ /_0 (Exz,7) (x, Fyx) — (Exz, Fya)] d (g (1))

foranyxz € H with ||z|| = 1 and\ € [m, M].
Utilising (8.3)-(8.%) we deduce the desired result|(8ul).
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REMARK 8.1. In particular, if we takéd? = A, then we get from[(8]1) the equality

(8.6) (f(A)z, g (A)x) — (f (A) z,2) (x,9 (A) )

g
([ ) By BB ato ) 4 3

—0 m—0

for anyx € H with ||z|| = 1, which for g = f produces the representation result for the
variance of the selfadjoint operatfr( A) ,

(8.7) I1f (A)z[|* = (f (A) z,z)”
- /_0 (/_ (Exz,z) (z, E,x) — (Exx, E,x)] d(f (H))) d(f(\)

0

foranyx € H with ||z|| = 1.

8.2. Bounds for f of Bounded Variation. The first vectorial Griss’ type inequality when
one of the functions is of bounded variation is as follows:

THEOREMS8.2 (Dragomir, 2010,3€]). Let A, B be two selfadjoint operators in the Hilbert
spaceH with the spectraSp (A),Sp(B) C [m, M] for some real numbers: < M and
let { £}, be the spectral family oft and {F,}, the spectral family of3. Also, assume that
f :[m, M] — Cis continuous and of bounded variation pn, M| .

1. Ifg : [m, M] — Cis continuous and of bounded variation pn, M|, then we have the
inequality

(8.8) [(f (A)z,g(B)x) = (f (A) z,z) (x,9 (B) )]

< max |[(E\z,z)(z, F,x) — (Exx, F,x)| \/ (9) \/ (f)

(\p)€lm,M]?

< E 1y —E 1/2
< Dex, [(Exz,r) (1g — E)\) 7, 7))

x max [(F,o) (tn = B e o]\ @V () < 1V @V ()

1 =

foranyx € H with ||z]| = 1.
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2. If g : [m, M] — C is Lipschitzian with the constait > 0 on[m, M|, then we have the
inequality

(8.9) [(f(A)z,g(B)z) = (f(A)z,2){z,9(B) )]

M
< K max [ (Exz,x) (x, Fx) — <E,\x,FMx>\du] (f)

s <k

<K \/ £ Jnax [(Exz,z) (Ly — By) z, )]/

< [(Fuz,z) (1g — F)x, )] dp
< %K\A? (M1y — B)a, o) (B — mly)z, 2)/?
1 M

foranyx € H with ||z]| = 1.
3. Ifg: [m, M] — Ris continuous and monotonic nondecreasing:enl/|, then we have
the inequality

(8.10) [(f(A)z,g(B)x) = (f (A)z,z) (x,9 (B) )]

< s [ (Bvr.) (0 ) = (B ) g 0] V0

<]k

< \/ max [(Exz,z) (1 — )z, z)]"”

< é\/ M) 1y — g (B)2,2)"2 (g (B) — g (m) 1) 3, 2)1"

< i[g(M)—g(m)]\/(f)

foranyz € H with ||z|| = 1.

ProOF 1. Itis well known that ifp : [a,b] — C is a continuous function : [a,b] — Cis

of bounded variation then the Riemann-Stieltjes integfai (t) dv (t) exists and the following
inequality holds

(8.11)

/abp<t>dv<t>\<max| P\ 0)

t€la,b]

Where\/ (v) denotes the total variation ofon [a, ] .
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Now, on utilizing the property (8.11) and the identity (8.1) we have

(8.12) [(f (A)z,g(B)z) — (f(A)z,z) (x,9 (B)z)|
< max / (Bxa, ) {, Fr) — (Bxe, Fua) d g ()| \/ (F)

foranyz € [m, M].
The same inequality (8.111) produces the bound

(8.13) max

AE[m,M]

[ (B o F) ~ B Bl (o )

< max [ max |(E\z,x) (z, F,z) — (E\x, FHIH] \/ (f)

T A€m,M] | p€lm,M]
M
= max |[(Ehz,z){(x, F,z) — (Exx, Fx)| \/ (f)
()l g ' \W{

foranyz € [m, M].

By making use of{(8.12) anfl (8.[13) we deduce the first paft of (8.8).

Further, we notice that by the Schwarz inequalitydnwe have for any,, v,e € H with
le]| = 1 that

(814) |<U, U> - <U, 6> <€7 U>|

1/2
(Ihall® = [ e)*) 7 (ol = v, e)[)
Indeed, if we write Schwarz’s inequality for the vectars- (u, ¢) e andv — (v, €) e we have

[(u=(u,e)e,v = (v, e)e)| < lu—(u,e)ell[lv—{v,e)ell

1/2

IA

which, by performing the calculations, is equivalent wjth (8.14).
Now, on utilizing [8.14), we can state that

(8.15) |(Exx,x) (z, F”a:> — (E)x, FHSUH
< (|1Exe|® = [(Baz, 2)[*) " (1 Fp)® = |(Fu, 2)?) 2

forany\, p € [m, M].
SinceE) andF), are projections andy, F,, > 0 then

(8.16) | Exz|”® — [(Exx, x)|? = (Exz, z) — (Bha, )

= (Bye,2) (1w — B z,2) < 4
and
(8.17) |~ |(Fu, )P = (B ) (L — ) ) <

forany\, u € [m, M] andx € H with ||z|| = 1.

Now, if we use[(8.1b)F(8.17) then we get the second pait of (8.8).

2. Further, recall that ip : [a,b] — C is a Riemann integrable function and [a,b] — C
is Lipschitzian with the constarit > 0, i.e.,

If (s) = f(t)| < L|s—t| foranyt,s € [a,b],
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then the Riemann-Stieltjes integrﬁp (t) dv (t) exists and the following inequality holds

/abp@)dv(t)\ <t [ bl

If we use the inequality] (8.18), then we have in the case whisnLipschitzian with the
constantk’ > 0 that

(8.18)

8.19
(8.19) Acim.M]

[ ) o) (B )] )|

M
< K max [/ [(Exz,x) (x, Fx) — (Exx, F )| d,u}
m—0

AE[m,M]

for anyz € H with ||z|| = 1 and the first part of (8]9) is proved.
Further, by employing (8.15)-(8.]L7) we also get that

M
(8.20) max / (Exx,x) (x, F,x) — (Exx, Fux)| dp
xe[m,M] J,._o

< E gy — F i
< Jax [(Bxe,2) (lg — Bx) 2, 7))

< [ Baa) (= F)aa)] d

m—0
foranyz € H with ||z|| = 1.

If we use the Cauchy-Bunyakovsky-Schwarz integral inequality and the spectral represen-
tation theorem, then we have successively

8.21) | R (= B dy

< l Y R durﬂ VM ((1H—Fu)x,x>dur/2

m—0 m—0

[Fx . —/M ud(Fux,@]l/Q

m—0

[ = Eahullly~ [ pd (= Bz

m—0

(M1y — B)z,2)"* (B — mly)z,z)"/?

foranyx € H with ||z|| = 1.

On employing now[(8.79)-(8.21) we deduce the second palrt df (8.9).
The last part of[ (8]9) follows by the elementary inequality

Y

(8.22) af < }1 (a+B8)?,a8>0

for the choicex = ((M1y — B) z,z) andfg = ((B — mly) z, x) and the details are omitted.
3. Further, from the theory of Riemann-Stieltjes integral it is also well known that if
p : [a,b] — C is of bounded variation and : [a b] — R is continuous and monotonic

nondecreasing, then the Riemann-Stieltjes mtegfrajs(t )dv (t andf Ip (t)| dv (t) exist and
[roan]< [perwo
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Now, if we assume thaj is monotonic nondecreasing om, /], then by |(8.2B) we have
that

M
(8.24) e | [ (o) (0 Fa) = (B F)]a 1)
" M
< o | [ B (0 Fur) — (B, Byl dy )

foranyz € H with ||z| = 1.
Further, by employing (8.15)-(8.]L7) we also get that

(8.25) [ (Bya) (5, ) = (B Bl dg
< max [(Bye.z) ((Ly — By .o}l
2
<[ WR) (= B )] dg

for anyz € H with ||z|| = 1. These prove the first part 4f (8]10).

If we use the Cauchy-Bunyakovsky-Schwarz integral inequality for the Riemann-Stieltjes
integral with monotonic nondecreasing integrators and the spectral representation theorem, then
we have successively

(8.26) / (Fu, ) (L — Ey) 2, 2) " dg (1)

m—0

< | " (B, ) dg ol " J "  — Fa)dg )] "
|

1/2
g<u>d<Fux,x>}

M 1/2
<[ (= B)zbg Wy~ [ oGl - F)ao)
m—0
(g (M) 1y —g(B))z.2)"* (¢ (B) — g (m) L)z, 2)" ",
foranyz € H with ||z|| = 1.
Utilising (8.28) we then deduce the last part[of (8.10). The details are omitted.

Now, in order to provide other results that are similar to the Griiss’ type inequalities stated
in the introduction, we can state the following corollary:

COROLLARY 8.3 (Dragomir, 2010,3€]). Let A be a selfadjoint operators in the Hilbert
spaceH with the spectrunbp (A4) C [m, M] for some real numbers: < M and let{E\},
be the spectral family ofl. Also, assume that : [m, M] — C is continuous and of bounded
variation on[m, M| .
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1. If g : [m, M] — Cis continuous and of bounded variation pn, M|, then we have the

inequality

(8.27) [(f(A)z, g (A)x) = (f(A) z,x) (x,9 (A) )]
< \ MQ?;(M]Q (Exz,z) (z, E,x) — (Exe, E )| \/ (9) \/ (f)
< /\g{ﬁ)&} [(Exz,z) (g — E)) z, 2) \/ \/
< VoV

foranyz € H with ||z]| = 1.

2. If g : [m, M] — C is Lipschitzian with the constait > 0 on [m, M|, then we have the

inequality

(8.28) [(f (A)z,g(A)x) = (f(A)z,z) (2,9 (A) x)]

> _
< K max [ /m i\(EAx,@ (2, Eyz) — (Exe, Eye) !dul\j/

AE[m,M]

<K\/ max [(Exz,z) (1y — E)) z, z)]"/*

)\EmM]

() (B

X
3\

VAN
N | —

K

<]k

() (M1 — Az, 2)* (A —mly)z,z)?

—m)\/ (f)

IN
PN

foranyx € H with ||z]| = 1.

AJMAA Vol. 17(2020), No. 1, Art. 1, 319 pp.


https://ajmaa.org

INEQUALITIES FORFUNCTIONS OFSELFADJOINT OPERATORS 159

3. If g : [m, M] — Ris continuous and monotonic nondecreasingen}M |, then we have
the inequality

(8.29) [(f(A)z, g (A)x) — (f(A) 2, 2) (x,9 (A) x)]

M

< mox [ [ [(Buw.a) (0, Byr) — (Bro By g 00| V()

m—0 m

<V () max, [(Bra.o) (1 = By)v,)]”

foranyz € H with ||z|| = 1.

REMARK 8.2. The following inequality for the variance ¢f( A) under the assumptions that
Ais a selfadjoint operators in the Hilbert spaéevith the spectrund’p (A) C [m, M] for some
real numbersn < M, {E\}, is thespectral family ofA and f : [m, M] — C is continuous
and of bounded variation dm:, M| can be stated

(8.30) 0 < |If (A)zl]* = (f (A) z,z)?

< max [(Ez,z)(z,E,.x) — (Exz, E )|
() €[m,M)?

< Jex, [(Exz,z) (g — E)) 2, 3)] [\/ (f)] = 411

foranyx € H with ||z|| = 1.

8.3. Bounds for f Lipschitzian. The case when the first function is Lipschitzian is as
follows:

THEOREMS8.4 (Dragomir, 2010:36]). Let A, B be two selfadjoint operators in the Hilbert
spaceH with the spectraSp (A),Sp(B) C |[m, M] for some real numbers: < M and
let { £}, be the spectral family oft and {F,}, the spectral family of3. Also, assume that
f :[m, M] — Cis Lipschitzian with the constardt > 0 on [m, M] .
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1. Ifg: [m, M] — C s Lipschitzian with the constadt > 0 on[m, M|, then we have the
inequality

(8.31) [(f (A)z,g(B)x) = (f (A)z,2) (x,9 (B) )]

M M
<LK / / (Exe, 2) (x, Fyx) — (Exz, Fy)| dpd)
m—0 Jm—0

< LK/ . (Exz,z) (1g — B)) z, 2)]* dA

<[ B (1 = B a,a)] " dy
<LK [{(M1yg — A)z,z) ((A—mlg)z, z)]"?
x [(M1y — B)z,z) (B —mly)z,z)"* < LK (M —m)?

foranyz € H with ||z|| = 1.
2. If g : [m, M] — R is continuous and monotonic nondecreasing:enl/| , then we have
the inequality

(8.32) [(f (A)z

M
m

g (B)x) = (f(A)z,z) (x,9 (B) z)|
{

/ [(Exz,z) (x, F,a) — (Exx, Fa)| dg () dA

-0

IN

L
<L N [(Bxz,z) (1 — By) z, z)]"/* dA

m—0
M

< [ (B (G~ B e,a)] dg ()

< LMy — Az, z) (A= mly)z,z)]"?
X [{(g (M) 1 = g (B)) z,2) (9 (B) — g (m) 1) 2, 2)]"/*
(

foranyz € H with ||z|| = 1.

PrOOF. 1. We observe that, on utilizing the propefty (8.18) and the idetity (8.1) we have

839 1/ (A)eg(B)r) — {f ()2 7) (2,9 (B)2)
<t 4B o ) - (B ]l )]

foranyz € H, ||z|| = 1.
By the same property (8.]L8) we also have

(8.34) [ o) o, Fo) — (B Fun] d g (u))'

m—0

M
S K/ (Exz,x) (x, F,x) — (Exx, F,x)| dp
m—0

foranyxz € H, ||z|| = 1 and\ € [m, M].
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Therefore, by[(8.33) and (8.34) we get
(8.35) [(f (A)z, 9 (B)x) = (f (A) z,2) (z,9 (B) )|

M M
< LK/ / (Exx,x) (x, Fx) — (Exx, Fx)| dud)

foranyz € H, ||z| = 1, which proves the first inequality ifi (8.31).
From (8.15){(8.1]7) we have
(8.36) [(Exz,x) (x, Fx) — (Exx, Fx)|
< [(Baz, ) (L — Bx) z,2))? [(Fuz, 2) (L — Fp) 2, 2)]"?

foranyx € H, ||z|| = 1 and\, u € [m, M].
Integrating orjm, M]” the inequality|(8.36) and utilizing the Cauchy-Bunyakowsky-Schwarz
integral inequality for the Riemann integral we have

(8.37) /M /M |(Exx,x) (x, F,x) — (Exx, Fx)| dpd)

< /_0 Bz, 2) (g — By) 2, 2)] 2 d\

< [ (B (ln - F)a,a) " dy

[/mﬂi (1g — Bx) 2, 2) dk}

{/MO Eyx,x d)\}

x[ Y P d,u]m [/m]\:[O«lH—F#)x,@du}

Integrating by parts and utlllzmg the spectral representation theorem we have

M M
/ (Bxz,z)d\ = (Ew,x))\lffo—/ A (E\z, )

m—0 m—0

= M- (Ax,z) = (M1ly — A)x,z),

1/2 1/2

1/2

/—0 (1g — Ex)z,z)d\ = (A —mlyg)zx, z)

and the similar equalities fdB, providing the second part df (8/31).
The last part follows fron{ (8.22) and we omit the details.
2. Utilising the inequality[(8.23) we have

/ (Exz,x) (x, FLx) — (Exx, F,x))d (g (@)

m—0

(8.38)

< / (Exz, z) (x, Fyz) — (Exe, Fu)) dg (1)

m—0

which, together with[(8.33), produces the inequality

(8.39) [(f (A)z,g(B)z) —(f(A)z,z) (z,9 (B) )|
<1 / . / (Bs.a) (o Fy) = (B, ) d () 4

foranyz € H, ||z|| = 1.
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Now, by utilizing (8.36) and a similar argument to the one outlined above, we deduce the
desired resulf (8.32) and the details are omiteed.

The case of one operator is incorporated in

COROLLARY 8.5 (Dragomir, 2010,3€]). Let A be a selfadjoint operators in the Hilbert
spaceH with the spectrundp (A) C [m, M| for some real numbers. < M and let{E,}, be
the spectral family ofA. Also, assume thaf : [m, M| — C is Lipschitzian with the constant
L>0on[m,M].

1. If g : [m, M] — C is Lipschitzian with the constadt > 0 on [m, M], then we have the
inequality

(8.40) [(f(A)x,g(A)z) = (f (A) z,z) (2,9 (A) )]

M M
< LK/ / (Exx,x) (x, B,x) — (Exx, B,x)| dpd)

<LK ( / " (B o) (1 — By, ) dA)2

m—0

< LK (M1 — Az, 2) (A —mig)z,2)] < ELK (M = m)?

foranyx € H with ||z|| = 1.

2. Ifg : [m, M] — Ris continuous and monotonic nondecreasing:enl/| , then we have
the inequality

(8.41) [(f (A) 79(14)55 (f (A)z,z) (x, 9 (A) )|
SL - (Exz,x) (x, F,x) — (Exx, F,x)| dg (1) dA

<L [(Exz,z) (1g — By) z, 2)]Y? dA
. [( Bz, ) ((1n = Bu) x,2)]' dg (1)

< LU(Mg = A)z,a) (A= mly)e,2)]
< [((g (M) L = g (A)) 2,2) (g (4) = g (m) 1) v, )]
L(M —m)[g(M)—g(m)]

X

3

1
4
foranyz € H with ||z|| = 1.

REMARK 8.3. The following inequality for the variance ¢ A) under the assumptions that
Ais a selfadjoint operators in the Hilbert spdéeavith the spectruntp (A) C [m, M] for some
real numbersn < M, {E,}, is thespectral family ofA and f : [m, M] — C is Lipschitzian
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with the constanf. > 0 on[m, M| can be stated

(8.42) 0 < |If (A)zl* = (f (A) z,z)?

< L? . [(Exz,z) (1g — By) z, 2)]"? dA)
< LP{{(M1g—A)z,z) ((A—mlg)z,z)]
< }lﬁ (M —m)?

foranyx € H with ||z|| = 1.

8.4. Bounds for f Monotonic Nondecreasing.Finally, for the case of two monotonic
functions we have the following result as well:

THEOREMS8.6 (Dragomir, 2010,3€]). Let A, B be two selfadjoint operators in the Hilbert
spaceH with the spectraSp (A), Sp (B) C [m, M| for some real numbers: < M and let
{Ex}, be the spectral family o and{F},}  the spectral family oB. If f, g : [m, M] — C are
continuous and monotonic nondecreasingan /], then

(8.43) [(f(A)z, g (B)x) = (f(A)z,z) (x,9 (B) )]

< - (Exz,x) (x, F,x) — (Exx, F,x)| dg (1) df (N)
=/ . (Exe,) ((1u — Ex) @, )] df (\)

x (Fua, ) (L = )z, 2)]' " dg ()

foranyz € H, ||z|| = 1.

The details of the proof are omitted.
In particular we have:

COROLLARY 8.7 (Dragomir, 2010,3€]). Let A be a selfadjoint operators in the Hilbert
spaceH with the spectrunp (A) C [m, M| for some real numbers. < M and let{E,}, be
the spectral family of\. If f, g : [m, M] — C are continuous and monotonic nondecreasing on
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[m, M], then

(8.44) [(f (A)z,9(A)z) — (f (A) z,2) (x,9 (A) )|
< . 0|<E»rv ,x) (x, E,x) — (Exz, Eux)| dg (1) df (M)
< " (Exz,z) (1g — By z,2)]2df (V)

3
o

(E,z,z)((lg — E,) z, )% dg (1)
0

( Y1y — f(A) z,2) (f (A) = f (m) 1) z, z)]*/?
(9(M) 1y — g (A) z,2) (g (A) — g (m) 1)z, 2)]"/*

[f (M) = f(m)] g (M) — g (m)]

X
:\\

IN

x |

—~

A
-

foranyz € H, ||z|| = 1.
In particular, the following inequality for the variance ¢gf(A) in the case of monotonic
nondecreasing functiongholds:

(8.45) 0 < |If (A)al® = (f (A) z,z)?
< y _0|<E)\37 ) (v, B,x) — (Exr, Eyo)| df () df (N)
< ([ 1Bwa) (= B2 a1 >)
< [((f (M) 1y — f (A)) @) ((f (A) = f (m) L) &, )
< 1 1F (D)~ £ (m}?

foranyz € H, ||z|| = 1.

8.5. Applications. By choosing different examples of elementary functions into the above
inequalities, one can obtain various Griss’ type inequalities of interest.

For instance, if we choosg g : (0,00) — (0, 00) with f (t) =P, g (t) = t?andp,q > 0,
then for any selfadjoint operators B with Sp (A),Sp(B) C [m, M] C (0,00) we get from
(8.43) the inequalities:
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(8.46) |(APz, Blx) — (APx, x) (Blx, x)|

< pq/ / (Bxz,z) (z, F,x) — (Exx, Fua)| p? AP~ dud\
/M

By, z) (1 — By z, 2)]Y? AP ~LdA

3
S

< [ B (= B za)]

< ((MP1y — AP) 2, 2) (AP — mP1y) @, 2)]"/?
< (M1 — BY) e, ) {(BY — 1) ,)]

for anyx € H with ||z|| = 1, where{ E, }, is the spectral family ofi and{FM}# is the spectral
family of B.

When B = A then by theCeby3ev's inequality for functions of same monotonicity the
inequality [8.46) becomes

(8.47) 0 < (APzx, A%x) — (APx,x) (Alx, x)

M M
<pq / (Exz,z) (v, E,x) — (Exe, E,z)| pt™ ' NP~ dud\

< pq (Exz,z) (1g — By z, 2)]Y* A~ 1dA

mO

M
/ (E,z,z)((lg — E,) z, o) i dp

m—0

X

IN

(MP1y — AP) 2, 2) (AP — mPLy) @, )]
x [((M1y — BY) z,z) (BT — m1y) z, )]/

IN

1 (7 — ) (M7 — )

foranyx € H with ||z|| = 1 andp, ¢ > 0.
Now. define the coefficients

MP=t —mPtifp>1
(8.48) A, =px

Ml-P_mpl-p
Ml=pPml-p

if0o<p<l.
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On utilizing the inequality[(8.31) for the same power functions considered above, we can
state the inequality

(8.49) |(APz, Bix) — (APx, x) (Blz, )]
M M
< ApAq/ / |(Exz,x) (x, F,x) — (Exx, Fx)| dpd)
m—0Jm—0

59%%/'Kg%@«m—Eg%@WmA

m—0

< [ B (= o) d

m—0

< AA (Mg — A)z,z) (A—mly)z,2)]?
xWMM—Bm@Mw—mmmwﬂwg%@AAM—mV

foranyz € H with ||z|| = 1 andp, ¢ > 0.
In particular, forB = A we have

(8.50) 0 < (APz, Alx) — (APz, z) (A%, x)

M M
< ApAq/ 0/ ) (Exz,x) (x, B,x) — (Exx, E,x)| dud)

<an,(f (B (L — By )] dA)2

m—0
< 28, (Mg — A) ) (A —mi)2,2)] < T2, 0 (M —m)
foranyx € H with ||z|| = 1 andp, ¢ > 0.

Similar results can be statedjif< 0 or ¢ < 0. However the details are left to the interest
reader.
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CHAPTER 4

Inequalities of Ostrowski Type

1. INTRODUCTION

Ostrowski’s type inequalities provide sharp error estimates in approximating the value of a
function by its integral mean. They can be utilized to obtain a priory error bounds for different
guadrature rules in approximating the Riemann integral by different Riemann sums. They also
shows, in general, that the mid-point rule provides the best approximation in the class of all
Riemann sums sampled in the interior points of a given partition.

As revealed by a simple search in the data BathSciNebf the American Mathematical
Societywith the key words "Ostrowski" and "inequality” in the title, an exponential evolution
of research papers devoted to this result has been registered in the last decade. There are now
at least 280 papers that can be found by performing the above search. Numerous extensions,
generalisations in both the integral and discrete case have been discovered. More general ver-
sions forn-time differentiable functions, the corresponding versions on time scales, for vector
valued functions or multiple integrals have been established as well. Numerous applications in
Numerical Analysis, Probability Theory and other fields have been also given.

In the present chapter we present some recent results obtained by the author in extending
Ostrowski inequality in various directions for continuous functions of selfadjoint operators in
complex Hilbert spaces. As far as we know, the obtained results are new with no previous
similar results ever obtained in the literature.

Applications for mid-point inequalities and some elementary functions of operators such as
the power function, the logarithmic and exponential functions are provided as well.

2. SCALAR OSTROWSKI'S TYPE INEQUALITIES

In the scalar case, comparison between functions and integral means are incorporated in
Ostrowski type inequalities as mentioned below.
The first result in this direction is known in the literature as Ostrowski’s inequady [

THEOREM2.1. Let f : [a,b] — R be a differentiable function ofu, b) with the property
that|f’ ()| < M for all t € (a,b). Then

1 b 1 xr — atb ’
(2.1) ‘f(x)—m/ f(t)dt‘é Z+( b_;) (b—a)M

for all « € [a, b]. The constant is the best possible in the sense that it cannot be replaced by a
smaller quantity..

The following Ostrowski type result for absolutely continuous functions holds e[
[36]).
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THEOREM2.2. Letf : [a,b] — R be absolutely continuous da, b]. Then, for allz € [a, b],
we have:

I L

( ) I_L‘H’ 2 .
l:ﬁ( = ) } 0—a)[lf'll if f'e Lo [a,b];
z—a\P+1 —z\p+1 % 1 .
: (p+11)% [(b_a)p + (I;__“)p } (b—a)? Hf’Hq it f'e Ly[a, 0],
%—F%: 1, p>1;
g—afb
L[+ 1
where||-||. (r € [1, 00]) are the usual Lebesgue norms bp[a, b], i.e.,
9]l == ess sup |g (¢)]
te(a,b]
and
b ;
lgll, == </ lg ()] dt) , T € [1,00).
The constanté, -( 1—); and% respectively are sharp in the sense presented in Th = m2.1.
p+1)P

The above inequalities can also be obtained from the Fink resi88jroh choosing: = 1
and performing some appropriate computations.

If one drops the condition of absolute continuity and assumes fthatHolder continu-
ous, then one may state the result (see for instaB@jeand the references therein for earlier
contributions):

THEOREM2.3. Let f : [a,b] — R be ofr — H—H®blder type, i.e.,
(2.3) |f(z) = fW < Hlz—yl", forall z,y € [a,b],

wherer € (0,1] and H > 0 are fixed. Then, for alt € [a, b] , we have the inequality:

b
(2.9 r0 -5t [ o
H b—az\"! z—a\ ™ .
“r+1 (b—a) +(b—a) ](b—a).

The constantri—1 is also sharp in the above sense.

Note that ifr = 1, i.e., f is Lipschitz continuous, then we get the following version of
Ostrowski’s inequality for Lipschitzian functions (with instead ofH) (see for instancef])

1 b 1 r — b ?
(2.5) ‘f(x)—m/ f(t)dt‘g Z+< b_;) (b—a)L.

Here the constan}it is also best.
Moreover, if one drops the condition of the continuity of the function, and assumes that it is
of bounded variation, then the following result may be stated @&l [
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b
THEOREM2.4. Assume thaf : [a,b] — R is of bounded variation and denote Ry( f) its

] (f)

a

total variation. Then

_ atb
L 2

b—a

b
(2.6) ’f(w)—ﬁ/ f(t)dt’g %+

forall z € [a,b]. The constant is the best possible.

If we assume more abouft i.e., f is monotonically increasing, then the inequality {2.6)
may be improved in the following mannétd] (see also the monograp8d]).

THEOREM2.5. Let f : [a,b] — R be monotonic nondecreasing. Then forak [a, b], we
have the inequality:

@7) r0- 5 [ 1o

_ atb
2

b—a

—a
< |14
12

All the inequalities in7) are sharp and the constér’nﬂ; the best possible.

][f(b)—f(a)]-

For other scalar Ostrowski’s type inequalities, $<2j#] and [25).

3. OSTROWSKI'S TYPE INEQUALITIES FOR HOLDER CONTINUOUS FUNCTIONS

3.1. Introduction. Let U be a selfadjoint operator on the Hilbert spadé (.,.)) with
the spectruntp (U) included in the intervalm, M| for some real numbers: < M and let
{E\},cr be itsspectral family Then for any continuous functiofi: [m, M] — C, it is well
known that we have the followingpectral representatiotheorem in terms of th®iemann-
Stieltjes integral

31) G@)aa) = [ (B,

for anyx € H with ||z|| = 1. The functiong, (\) := (E,x, ) is monotonic nondecreasiran
the intervallm, M| and
(3.2) gz (m —0)=0andg, (M) =1

foranyz € H with ||z|| = 1.
Utilising the representatiorj (3.1) and the following Ostrowski's type inequality for the
Riemann-Stieltjes integral obtained by the autho/2ig[

(39 FE ) vl - [ 70w
<LE(b—a) ‘—a;by\j:/(u)
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for anys € [a, b] , provided thatf is of r — L—Holder type onla, b] (see [(3.1#) below)y is of

bounded variatioron [a, b] and\/ ) denotes theotal variationof « on [a, b] , we obtained
the following inequality of Ostrowskl type for selfadjoint operators:

THEOREM 3.1 (Dragomir, 2008/29)]). Let A and B be selfadjoint operators withp (A) ,
Sp(B) C [m, M] for some real numbers: < M. If f : [m, M] — R is of r — L—H®older
type, i.e., for a givem € (0,1 and L > 0 we have

(3.4) lf(s)— f(@t)| < L|s—t|" foranys,t e [m, M],

then we have the inequality:

35) 76 =4 Wyall <L |50 = m) +

for anys € [m, M| and anyx € H with ||z| = 1.
Moreover, we have

(3.6) [(f (B)y,y) — (f (A) z,z)]
<{(If(B) = (f(A)z,z) 1uly,y)
SLE(M m) + <B_m_'2_M'1H yy>] )

foranyz,y € H with ||z|| = |ly|| = 1.

With the above assumptions f¢r A and B we have the following particular inequalities of
interest:

(3.7) V(m+M>—vmmw>s§uM—mr
and
(3.8) |f ((Az, z)) = (f (A) z, z)|
1 m+ M|]"
< L{é(M m) ’(Ax ) 5 ] ,

foranyx € H with ||z|| = 1.
We also have the inequalities:

(3.9) [(F (A y,y) = {f (A z,2)]
< {|f (A) = (F(A) z,z) - Luly,y)

SLF(M—m)+< mt+ M

A— gy

2

)]

foranyz,y € H with ||z|| = ||y|| = 1,

(3.10) ([f (B) = f(A)]z,z)|
<{(f(B) = (f(A)z,z) 1u|z,x)

L[%(M—m)+< mt M

IN

B —

Ay

)]
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and, more particularly,

(3.11) (If (A) = (f (A) z,z) - 1g|z, x)
R

foranyz € H with ||z| = 1.
We also have the norm inequality

m+ M "
5 )
For various generalizations, extensions and related Ostrowski type inequalities for functions
of one or several variables see the monogr&ih4nd the references therein.

B —

1) B S| 0r-m)+

3.2. More Inequalities of Ostrowski’s Type. The following result holds:

THEOREM 3.2 (Dragomir, 2010,30])). Let A be a selfadjoint operator wittbp (A) C
[m, M| for some real numbers. < M. If f : [m,M] — R is ofr — L—H0lder type with
r € (0, 1], then we have the inequality:

(3.13) [f () = (f(A)z,2)] < L(|s - 1y — Az, z)"
< L[(s = (Aw,2))* + D* (A;2)] ",
for anys € [m, M| and anyx € H with ||z|| = 1, whereD (A;z) is the variance of the

selfadjoint operatord in x and is defined by
1/2

D (A;x) = (|| Aw]|® — (Az,2)*) ",
wherex € H with ||z|| = 1.

PROOF First of all, by the Jensen inequality for convex functions of selfadjoint operators
(see for instancedl, p. 5]) applied for the modulus, we can state that

(M) [{h(A) z, 2)] < (|h(A)] 2, z)

foranyxz € H with ||z|| = 1, whereh is a continuous function o, M| .
Utilising the property[(M) we then get
(3.14) [f(s) = (f (A, )| = [{f(s) 1z — f (A) 2, 2)]
<AIf(s) - 1u = f(A)| =z, z)
foranyx € H with ||z|| = 1 and anys € [m, M].
Sincef is of r — L—Holder type then for anyt, s € [m, M| we have
(3.15) [f(s) = F(®)] < Lls—t[".
If we fix s € [m, M] and apply the property [P) for the inequality (3.15) and the operaive
get
(3.16) (If () - 1u — f(A)]z,2) < L{s-1p — Al z,z)
< L{s -1y — Alz,z)"
where, for the last inequality we have used
1) then, by the Holder-McCarthy inequality

foranyz € H with ||| = 1 and anys € [m, M],
the fact that ifP is a positive operator ande (0,
[42],

(HM) (PTz,x) < (Pz,z)"
for anyz € H with ||z|| = 1. This proves the fist inequality if (3./3).
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Now, observe that for any bounded linear operdtave have
(7| 2,2) = (T 1) P 2,2) < (T*T) 2, 2)* = | T
foranyx € H with ||z|| = 1 which implies that
(3.17) (|s 1y — Az, 2)" <||sx — Ax]||"
= (s* — 2s (Az,z) + ||Ax||2)r/2
= [(s — (Az,2))* + || Az||* — {Az, 2)’]

foranyxz € H with ||z|| = 1 and anys € [m, M].
Finally, on making use of (3.14], (3/16) ad (3.17) we deduce the desired [esult @.13).

REMARK 3.1. If we choose irf (3.13) = ™ then we get the sequence of inequalities

r/2

m + M
(319 (M) - v e
<L m+M-1H—A T, T
2
r 9 r/2
<L (sz - <Ax,x>) + D? (A7)
1 |
<L Z—1(M—m)2+D?(A;g;)} < o L(M—m)
foranyx € H with ||z|| = 1, since, obviously,
2
("5 - o)) <3O —mp?
2 4
and
D? (A1) < ¢ (M —m)?

foranyx € H with ||z|| = 1.
We notice that the inequality (3.[18) provides a refinement for the r¢sult (3.7) above.

The best inequality we can get from (3.13) is incorporated in the following:

COROLLARY 3.3 (Dragomir, 2010/30]). Let A be a selfadjoint operator witlyp (A) C
[m, M| for some real numbers: < M. If f : [m, M] — R is of r — L—Holder type with
r € (0, 1], then we have the inequality

(3.19) f ((Az, z)) = (f (A) z, )| < L{{Az,x) - 1g — Al z,z)"
< LD" (A;x),
foranyx € H with ||z]| = 1.

The inequality[(3.13) may be used to obtain other inequalities for two selfadjoint operators
as follows:

COROLLARY 3.4 (Dragomir, 2010/30]). Let A and B be selfadjoint operators withp (A) , Sp (B) C
[m, M| for some real numbers: < M. If f : [m, M] — R is of r — L—Holder type with
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r € (0, 1], then we have the inequality

(3.20) [{(f (B)y,y) = (f (A)z,z)|
< L[((By,y) — (Az,2))" + D* (A;2) + D* (Bs y)]
foranyx,y € H with ||z|| = |ly|| = 1.

r/2

PrOOF If we apply the property (P) to the inequalify (3]13) and for the operBtahen
we get

3.21) (1 (B) — {f (A)2,2) Ll )
< L{[(B - (As,2) - 10)" + D* (Ai2) - 1] 5.

foranyz,y € H with ||z|| = ||y|| = 1.
Utilising the inequality[(M) we also have that

(3.22) [F (By,y) = (f (A)z,x)| <{|f(B) = {f (A z,2) - 1uly,y)

foranyz,y € H with ||z|| = ||y|| = 1.
Now, by the Holder-McCarthy inequality (HM) we also have

(829) ([(B = (Az,2) - 10)” + D* (As2) - 1] " .y )
< {[(B~(Az,2) - 1)* + D? (Ai2) - 14] y.y)"”

= (((By,y) — (Az,2))* + D* (A;2) + D* (B;y))

foranyz,y € H with ||z|]| = ||y|| = 1.
On making use of (3.21)-(3.23) we deduce the desired r¢suli (#20).

REMARK 3.2. Since

(3.24) D? (A;x) < le (M —m)?,

r/2

then we obtain fron (3.20) the following vector inequalities

(3.25) (f (A y,y) — (f (A) z, 2)|
< L[({Ay,y) — (Az,2))* + D* (A;z) + D? (Asy)] "

LBQWW%%A%@V+l04—mﬂN{

2
and

(3.26) [([f (B) = f (A)] z,z)]
<L [ (B — A)z,2)* + D* (A z) + D (B; )]
1 r/2
{ (B—A)z,z)° 5 (M — m)ﬂ .
In particular, we have the norm inequality

r/2
(3.27) IF(8) = FA < 2|18 = AP+ 5 0r = mf|

The following result provides convenient examples for applications:

AJMAA Vol. 17(2020), No. 1, Art. 1, 319 pp. AIMAA


https://ajmaa.org

INEQUALITIES FORFUNCTIONS OFSELFADJOINT OPERATORS 177

COROLLARY 3.5 (Dragomir, 2010,/30]). Let A be a selfadjoint operator witlyp (A)
[m, M] — R is absolutely continuous on

[m, M| for some real numbers, < M. If f :
[m, M], then we have the inequality:

(3.28) f () = {f (A) z,z)|
(s 1w = Az, ) [f'lpnanee S € Loo [m, M,

<
- , if f'eL,[m ,
\ (|s.1H—A|x,x>1/q||f||[m7M]7p p> 1, 1+[%:%7
( 1/2 oy
[(S—<A$,$>) +D2( )} ||f”[mM] Iff GLOO [m7M]>
= if f'€ L,[m, M]
= if f/ m, M|,
\ (s = (Az, 2))* + D> (A5 2) > | s P> 17%p+%: 1,

foranys € [m, M] and anyx € H with [|z|| = 1, where||f|| ,, ,; , are the Lebesgue norms

ie.,
essSUPepan [f' (1) 1f £ =00

”f,“[ M) = L
R /
(ﬁfM%ﬂPﬁ)p if 0 =p>1.

PROOF. Follows from Theorerh 3|2 and on tacking into account thét:ifm, M] — Ris
absolutely continuous om:, M|, then for anys, ¢ € [m, M| we have

[f (s) = f (@)

u) du

|3 — tlesssupepnan | (1) if '€ Loo [m, M]

/p
s — Y0 (F2 17 )P at)

|
REMARK 3.3. It is clear that all the inequalities from Corollaries|8.3] 3.4 and Remark 3.2
may be stated for absolutely continuous functions. However, we mention here only one, namely

IN

if f'e L,[m, M],p> 1,%%: 1.

(3.29) |f ((Az, 2)) = (f (A) z, )]
( ((Az,z) -1y = Az, ) |/ a0 " € Loo [m, M]

it £ € L, [m, M],
({Az,z) - 1 — Al z, 2)"* [y p>1, ]%p+ L1,

IN

( DA a0 TS E Lo [m, M]
< :
= if /€ L,[m,M],
\ Dl/q (A,x) ||f/||[m,M},p p > 1’%2—[5 = 1]
3.3. The Case of p, ®) —Lipschitzian Functions. The following result can be stated:
PROPOSITION3.6 (Dragomir, 2010,30]). Let A be a selfadjoint operator witlsp (A)
[m, M| for some real numberns, < M. If f : [m, M] — Ris (v, ') —Lipschitzian orjm, M|,

AIJMAA
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then we have the inequality
(3.30) |f ((Az, z)) = (f (A) z,2)| < 5 (T =) {[(Az,2) - 1g — Al 2, z)

<5T=7)D(Ax),

N~ DN —

foranyz € H with ||z]| = 1.

ProOF. Follows by Corollary 33 on taking into account that in this case we havel
andL =3 (T —~). 1

We can use the result (3]30) for the particular case of convex functions to provide an inter-
esting reverse inequality for the Jensen’s type operator inequality due to Mond Garit f43]
(see also4q, p. 5)):

THEOREM 3.7 (Mond-Péaric, 1993, 13]). Let A be a selfadjoint operator on the Hilbert
spaceH and assume thatp (A) C [m, M] for some scalarsn, M withm < M. If fis a
convex function ofm, M], then

(MP) f({Az, 2)) < (f (A) z, z)
for eachz € H with ||z|| = 1.

COROLLARY 3.8 (Dragomir, 2010/30]). With the assumptions of Theorem|3.7 we have the
inequality

(331)  (0<)(f(A)a2) - f ({Ar,2))
< 2 (f1(M) = 7 (m) ({Az,2) - 1y — A z,)
< 5 (F (M) = £ (m)) D (As2) < 5 (72 (M) = £} (m) (M —m)

for eachz € H with ||z|| = 1.
ProOOF. Follows by Propositiop 3]6 on taking into account that
fom)(t=s) < f(t)—f(s) < fL(M)(t—5s)
for eachs, t with the property thaf\/ >t > s > m. &
The following result may be stated as well:

PrRoPOSITION3.9 (Dragomir, 2010/30]). Let A be a selfadjoint operator witlsp (A) C
[m, M| for some real numbers, < M. If f : [m, M] — Ris (v, ') —Lipschitzian orjm, M] ,
then we have the inequality

3:32) 5 (A ) — (F (A) 2,
< 5 0= [5 O =)+ Az a) - "2

foranyz € H with ||z| = 1.

The following particular case for convex functions holds:
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COROLLARY 3.10 (Dragomir, 2010/30]). With the assumptions of Theorém|3.7 we have
the inequality

(3.33) (0 =) (f (A) z,2) — f ((Az,))
3 (700) = 71 m0) [3 0 =)+ (4}~

<

m—l—]\/[]

(\V]

for eachz € H with ||z|| = 1.

3.4. Related Results.In the previous sections we have compared amongst other the fol-

lowing quantities
f (m u M) andf ((Az, z))

with (f (A) x, ) for a selfadjoint operatad on the Hilbert spacé! with Sp (A) C [m, M| for
some real numbem < M, f: [m, M] — R afunction ofr — L—H®dlder type withr € (0, 1]
andz € H with ||z|| = 1.

Since, obviously,

1 M
< <M
<3 | fwasa
then is also natural to compage'— ff f (t) dt with (f (A) z, z) under the same assumptions
for f, A andz.
The following result holds:

THEOREM 3.11 (Dragomir, 2010,30]). Let A be a selfadjoint operator wittsp (A) C
[m, M] for some real numbers. < M. If f : [m, M] — R is ofr — L—Hdolder type with
r € (0, 1], then we have the inequality:

M
(3.34) ’Ml_m/ F(s)dt — (f (A)z,2)
! L(M—m)"
_l’_
r+1 r+1
K (552) o) () o)
_7“—|—1 m)",

for anyz € H with ||x|| =1.
In particular, if f : [m M] — R is Lipschitzian with a constant’, then

(3.35)

foranyz € H with ||z]| = 1.
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PROOF We use the following Ostrowski’s type result (see for instai@® p. 3]) written
for the functionf that is ofr — L—H0lder type on the intervdin, M] :

'Ml_m/me(S)dt_f(t)‘

L M—t r+1 t—m r+1
< . T
_7‘+1(M m) [(M—m) +<M—m)
for anyt € [m, M].
If we apply the propertie$ {P) and [M) then we have successively
’ 1 M

— [ (st (f (),

(3.36)

(3.37)

T
<(|irt [ 7@ s )a)
—ri1(M_m)r

) ) () )

which proves the first inequality in (3.34).

Utilising the Lah-Ribai inequality version for selfadjoint operators with Sp (A) C
[m, M| for some real numbers < M and convex functiong : [m, M] — R, namely (see for
instancel4q, p. 57]):

M — (Az, x)
M—-—m

(Az,x) —m

(g(4).2) < o=

g(m) +

foranyz € H with ||z|| = 1, then we get for the convex functign(t) := (

<(M.1H—A>T+1 > M — (Az, z)
- - a’/"x S—
M —m M—m

)T+l

g(M)

Moty

Y

and for the convex function (t) := (1\'}__”;

<(A—m.1H>T+1 > (Az,z) —m
M —m M —m

foranyz € H with ||z| = 1.
Now, on making use of the last two inequalities, we deduce the second gart 9f (3.34).

Since
W) ) () =)
a2

for anyx € H with ||z|| = 1, then on choosing = 1 in (3.34) we deduce the desired result
(3:39)-n

)

A
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REMARK 3.4. We should notice from the proof of the above theorem, we also have the
following inequalities in the operator order 8f( H)

63 |- (5 [ Fed)
(Bt (e
1

< L(M—m)" -1g.
—r+1 ( m) "

The following particular case is of interest:

COROLLARY 3.12 (Dragomir, 2010/30]). Let A be a selfadjoint operator witlp (A) C
[m, M| for some real numbers, < M. If f : [m, M] — Ris (v, ') —Lipschitzian orjm, M|,
then we have the inequality

T4y 1 /M F+7jn+M'

(3.39) kﬂ&%@ 5 M —m fs)dt + 9 2

<looyor—m

m

[\]

A
1

< (0 =) (M —m).

PROOF Follows by [3.35) applied for thg (I' — +)-Lipshitzian functionf — 2 - e.

_|_

X
B~ =

3.5. Applications for Some Particular Functions. 1. We have the following important
inequality in Operator Theory that is well known as the H6lder-McCarthy inequality:

THEOREM3.13 (Holder-McCarthy, 19674P]). Let A be a selfadjoint positive operator on
a Hilbert spaceH. Then

(i) (A"z,z) > (Az,z)" forall r > 1 andz € H with ||z| = 1;

(i) (A"x,z) < (Az,z) forall 0 <r < 1andxz € H with ||z| = 1;

(iii) If Aisinvertible, then A"z, z) > (Ax,z)” " forall r > 0 andz € H with [|z| = 1.

We can provide the following reverse inequalities:

PROPOSITION3.14. Let A be a selfadjoint positive operator on a Hilbert spafleand
0<r<1 Then

(3.40) (0 <) (Ax,z)" — (ATz,z) < (|(Az,z) - 1y — Alz,2)" < D" (A;x)
forall z € H with ||z| = 1.

PrRoOOF Follows from Corollary 33 by taking into account that the functjoft) = ¢" is of
r — L—Hdlder type withL = 1 on any compact interval df), co) . i

On making use of Corollafy 3.8 we can state the following result as well:

PROPOSITION3.15. Let A be a selfadjoint positive operator on a Hilbert spaie Assume
that Sp (A) C [m, M] C [0, ).
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() We have
(3.41) 0<(A"z,z) — (Az,z)"
g% (M —m N ((Az,z) - 1y — Al z, z)
S% (M™'—m ") D (A;2) Si (Mt —m™") (M —m)
forall » > 1 andx € H with ||z| = 1;

(i) We also have

(3.42) 0 < (Az,z)" — (A"z,x)
1 Ml—r _ ml—r
<y (S ) ) 1u = Al

- 2 ml-rM1-r ml-r M1-r

forall 0 < r < 1andz € H with ||z|| = 1;
(iii) If A is invertible, then

A (MY by < & (M) 4y

(3.43) 0<(A"z,z)— Aa:,:v> "
1 Mr-i—l m"
§§r< N[ ) [(Az,z) - 1y — A|z,x)
1 Mr+1 1 Mr+1 _ mrJrl
§§T<AW“mH1)D ZTCEWHEJT>“4—W>

forall » > 0 andz € H with ||z|| = 1.

2. Consider the convex functiof: (0,00) — R, f () = — Inz. On utilizing the inequality
(3.31), we can state the following result:

PROPOSITION 3.16. For any positive definite operatad on the Hilbert spaced with
Sp(A) C [m, M] C [0,00) we have the inequality
(3.44) (0 <)In((Az,z)) — (In(A) z,x)
M—m
T ([{Az, ) - 1y — Alz, x)

2

1 M—m 1 (M —m)’
Z. )< 2 M2 T
5 ar D) < g

IA
—_

IN

foranyz € H with ||z| = 1.
Finally, the following result for logarithms also holds:

PROPOSITION3.17. Under the assumptions of Proposition 3.16 we have the inequality
(3.45) (0<)(Aln (A) z,x) — (Az, z) In ({(Az, z))

gln\/g<|<Ax,x>-1H—A]x,x>
gln\/g-D(A;x) %(M m)ln\/g

foranyz € H with ||z|| = 1.
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REMARK 3.5. On utilizing the results from the previous sections for other convex func-
tions of interest such ag(z) = In[(1 — ) /z|, 2z € (0,1/2) or f () = In(1l +expz),z €
(—o0, 00) We can get other interesting operator inequalities. However, the details are left to the
interested reader.

4. OTHER OSTROWSKI INEQUALITIES FOR CONTINUOUS FUNCTIONS

4.1. Inequalities for Absolutely Continuous Functions of Selfadjoint Operators.We
start with the following scalar inequality that is of interest in itself since it provides a gen-
eralization of the Ostrowski inequality when upper and lower bounds for the derivative are
provided:

LEMMA 4.1 (Dragomir, 2010/47]). Let f : [a,b] — R be an absolutely continuous func-
tion whose derivative is bounded above and beloviuobl , i.e., there exists the real constants
~vandTl', v < I" with the property that < f’(s) < T for almost every € [a, ] . Then we have
the double inequality

| e )]
1 b
<fo) - [ foa
I'—~

for anys € [a, b] . The inequalities are sharp.

PROOF We start withMontgomery'’s identity

4.2) f(s)— / £ (1)t
1

b—a

b
:b_a/ (t—a)f’(t)dt+bia/s (t—="0) f'(t)dt

a

that holds for any € [a, b] .
Sincey < f'(t) < T for almost every € [a, b] , then

bza/:(t_a)dtgbia/as(t_a)f/(t)dtﬁbfa/:(t—a)dt

bfa/sb(b—t)dté bl [(b-t)f’(t)dtg br /:(b—t)dt

—a —a

and

foranys € [a,b].
Now, due to the fact that

/j(t—a)dt:%(s—a)2 <’ind/:(b—t)dt:%(b—s)2
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then by [4.2) we deduce the following inequality that is of interest in itself:

L [r(b—s) (s — o)

(4.3) T

foranys € [a,b].
Further on, if we denote by

A=v(s—a)’—T(b—s)> andB:=T (s —a)’ — v (b—s)’
then, after some elementary calculations, we derive that

B bI' — avy 2 [~y
A__(F_w(S_ F—v) T

(b—a)’

and

B=("-) (s—ar‘b”)g—%<b—a>2

which, together with[(4]3), produces the desired refulf (4.1).
The sharpness of the inequalities follow from the sharpness of some particular cases outlined
below. The details are omitted.

COROLLARY 4.2. With the assumptions of Lemmal4.1 we have the inequalities

(4.4) ;(b—a /f B dt — f(a) < %F(b—a)
and
@5) -0 <s0) -5 [ rwa<ro-o
and
(4.6) () -k [roa] < go-ne-o

respectively. The constaftis best possible inl (4.6).

The proof is obvious fron] (4]1) on choosing= a, s = bands = 32, respectively.

COROLLARY 4.3 (Dragomir, 2010,[d7]). With the assumptions of Lemina]4.1 and if, in
additiony = —a andI’ = § with o, 3 > 0 then

1 b b3 + ax 1 b—a
@7 i [roa- g (U < fean(552)
and

af + ba 1 b 1 b—a
(4.8) f(ﬁ+a )— — /f(t)dtgi-aﬁ(ﬁ+a>.

The proof follows from |( ) on choosing = 3% ¢ [q,b] ands = “E2 € [a,b],
respectively.
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REMARK 4.1. If f : [a,b] — R is absolutely continuous and

1F]log := ess sup [f" ()] < oo,
t€la,b]
then by choosing = — || /||, andT' = [|f’||, in (4.1) we deduce the classical Ostrowski’s

inequality for absolutely continuous functions. The constaint Ostrowski's inequality is best
possible.

We are able now to state the following result providing upper and lower bounds for ab-
solutely convex functions of selfadjoint operators in Hilbert spaces whose derivatives are bounded
below and above:

THEOREM4.4 (Dragomir, 2010/47]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrunsp (A) C [m, M| for some real numberns, < M. If f: [m, M] — Risan
absolutely continuous function such that there exists the real constamdI’, v < I" with the
property thaty < f’(s) < I" for almost every € [m, M|, then we have the following double
inequality in the operator order aB (H) :

I —
(4.9) _%'M—Zn
2
X <A_M11::;’W 1H) —FV(AI{:;n) 1H]
1 M

<t - (g0 [ f@de) 1

<L IT=7

-2 M-m

The proof follows by the property [P) applied for the inequality|(4.1) in Lernmja 4.1.

THEOREMA4.5 (Dragomir, 2010/47]). With the assumptions in Theorgm|4.4 we have in the
operator order the following inequalities

(4.10) ‘ﬂm—(Mimlfﬂm@-m

( _m+M " 2 , A ,
i (A | O = )1 € L M

L [ (A )™+ (Mp2) ] (g = )7 |71

(p+1)7 '
it e L, [m, M|,

IN

l 1 + A— m,-;—]b[ 1H
2+H M—

m

J s

The proof is obvious by the scalar inequalities from Thedrerh 2.2 and the prdperty (P).
The third inequality in[(4.70) can be naturally generalized for functions of bounded variation
as follows:
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THEOREM4.6 (Dragomir, 2010,47]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrundp (A) C [m, M| for some real numbers. < M. If f : [m, M| — Risa
continuous function of bounded variation pn, M|, then we have the inequality

(4.11) ’f(A)—(Mim/me(t)dt>-1H
A — mEMq M
S+ ﬁ]\m/(f)

where\/ (f) denotes the total variation of on [m, M]. The constant is best possible in

@)

PrRoOF Follows from the scalar inequality obtained by the authof},[namely

(@12) e FLLE ] V)

for anys € [a,b], wheref is a function of bounded variation da, b] . The constant is best

possible in[(4.12)a

a+b
2

b—a

2

4.2. Inequalities for Convex Functions of Selfadjoint Operators.The case of convex
functions is important for applications.
We need the following lemma.

LEMMA 4.7 (Dragomir, 2010/47]). Let f : [a,b] — R be a differentiable convex function
such that the derivativg’ is continuous ona, b) and with the lateral derivative finite and
f(b) # £ (a). Then we have the following double inequality

JL () = fi (a)
b—a

1
5

_bf/ b)_af-/q-() 2_ / "(a b—ua ’
[ b> f+()) f‘(b)f+<)(f’_(b)—f’+(a))]
< f(s

Bt < f'( )< a+b)

PROOF Sincef is convex, then by the fact thgt is monotonic nondecreasing, we have

%/j(t—a)dtgbl /S(t—a)f()dt<f,( )/s(t—a)dt

—-a J, a

ﬁ‘j/ (b—1t) dt<—/ (b—t) f dt<f/(a>/s (b—t)dt

foranys € [a, b], wheref’ (a) and f” (b) are the lateral derivatives inandb respectively.

(4.13) -

foranys € [a, b] .

and
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Utilising the Montgomery identity (4]2) we then have
fH@/S fuw/b
— a(t—a)dt—b S (b—t)dt

—a

<56 -y [ Fwa
<f,(s)/s(t—a)dt—gl(s)/b(b—t)dt

“b—a

—a
which is equivalent with the following inequality that is of interest in itself
1 ! . 2 pr \2
(414) =g @ (=) = 110 (b= 5]

b a
<16 [oasro (-5
foranys € [a,b].

A simple calculation reveals now that the left side[of (4.14) coincides with the same side of
the desired inequality (4.1.3).

We are able now to sate our result for convex functions of selfadjoint operators:

THEOREM4.8 (Dragomir, 2010/47]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrunbp (A) C [m, M] for some real numbers, < M. If f: [m, M| — Ris
a differentiable convex function such that the derivaffés continuous or{m, M) and with
the lateral derivative finite and” (M) # f. (m), then we have the double inequality in the
operator order ofB (H)

(4.15) _ % e (A]Q - ﬁ (m)
CMSfL(M) —mfl(m) O\’
: (A f (M) — 1H)

i (m)
M

7 <M>—Z<m>>2'1H
< f(A) - (Ml_m/me(t)dt) Ay < (A—m;M-lH) £ (A).

The proof follows from the scalar case in Lemma 4.7.

1 1 )

REMARK 4.2. We observe that one can drop the assumption of differentiability of the con-
vex function and will still have the first inequality ipn (4]15). This follows from the fact that the
class of differentiable convex functions is dense in the class of all convex functions defined on
a given interval.

A different lower bound for the quantity

- (s [ i)

m

expressed only in terms of the operatband not its second power as above, also holds:
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THEOREM4.9 (Dragomir, 2010,47]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrunbp (A) C [m, M] for some real numbers: < M. If f : [m,M] — R

is a convex function ofin, M|, then we have the following inequality in the operator order of
B (H)

(4.16) ﬂm—( ! /ff@ﬁ)mﬂ

M —m

> (ﬁLMf(t)dt> lu

M) (M 1y — A)+ f (m) (A= m - 1p)
M—m

PROOF It suffices to prove for the case of differentiable convex functions definéchoi/) .
So, by the gradient inequality we have that

F@O) = f(s)=(t=s)f(s)

foranyt,s € (m, M).
Now, if we integrate this inequality overe [m, M| we get

(4.17) (M —m) f(t) — / £ (s)ds

>AM(t—s)f’(s)ds

= [ [f(s)ds— (M —t)f(M)—(t—m)f(m)

for eachs € [m, M].
Finally, if we apply to the inequality (4.17) the property (P), we deduce the desired result
(4.18).u

COROLLARY 4.10 (Dragomir, 2010/27]). With the assumptions of Theorém|4.9 we have
the following double inequality in the operator order

(4.18) f(m) ; fon
z%{f(AHf(M)(M‘lH—]@)j;(m)(A—m&H)

v

(Ml_m/me(t)dt) Ay

PROOF. The second inequality is equivalent with (4.16).
For the first inequality, we observe, by the convexityfofle have that
M)Yt—m)+ f(m)(M —t
FODE=m) +Sm) (M=), 4
—m
for anyt € [m, M|, which produces the operator inequality

Now, if in both sides of{(4.19) we add the same quantity
SM)(M-1g —A)+ f(m) (A—m-1g)
M —m
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and perform the calculations, then we obtain the first paft of (4.18) and the proof is congplete.

4.3. Some Vector Inequalities.The following result holds:

THEOREM4.11 (Dragomir, 20107]). Let A be a selfadjoint operator in the Hilbert space
H with the spectruntp (A) C [m, M] for some real numbers: < M and let{E£,}, be its
spectral family. Iff : [m, M] — R is an absolutely continuous function @n, M|, then we
have the inequalities

@200 17 () (9)— (F (A)2.y)]
M
<V (Eyz,y))
m—0
(O m) s AP € L . ]
X /
[ —m) s — =gy, T I M
< Jlel o]
[% (M_m)—’_}s_%u Hf,Hoo if f/ELoo [va]
X /
3O —m)+ [s— gy, TS ol M2 L

foranyz,y € H ands € [m, M].

PROOF Sincef is absolutely continuous, then we have

/ﬂf )| du

L‘—SHIf’H if f' € Loo [m, M]

(4.21) |f(s)— f ()]

u) du

IN

[t =[S, 0 F € Lylm, M) p> 1, b4l =1,
foranys,t € [m, M].
It is well known that ifp : [a,b] — C is a continuous functions and: [a,b] — C is of
bounded variation, then the Riemann-Stieltjes integfq} (t)dv (t) exists and the following
inequality holds

b

/p@mMSmMWMV@,

tela,b]

Where\/ (v) denotes the total variation ofon [a, ] .
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Now, by the above property of the Riemann-Stieltjes integral we have from the representa-

tion (4.27) that

(4.22) | (s) (2, y) = (f (A) z,9)]
M
-/ <ﬂmawﬁwﬁ
M
< max |f (s |7>/0 (Eoe,v))
M
<V (Byr.y)
m—0
maxyepm,m) [t — S| || f' | & if f' € Ly [m, M]
X it
mMaXiem, M] |t — S\I/q Hf,Hp Tre 1 4_[757: 1]:

=F

M
where \/ ((E()z,y)) denotes the total variation ¢fz, y) andz, y € H.
m—0

Since, obviously, we hav@ax;c(yar [t — s| = 1 (M —m) + |s —

M
(4.23) F= \/ )T y>
m—0
(L (M —m)+ [s — 2] || /] if f' € Lo [m, M]
it f’ , MJ,
B01—m)+ s =2y, 1SS 2

foranyz,y € H.
The last part follows by the Total Variation Schwarz’s inequality and the details are omit-

ted. n

COROLLARY 4.12 (Dragomir, 2010/27]). With the assumptions of Theorem 4.11 we have
the following inequalities

A
@2n (452 ) o = ()
<l I
(L0 —m) + |z ot i e L, M)
X
1/q ffel 1
(501 )+ |2 —mga ]y, TS Dol 20>
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and
(4.23) 'fC”*M)@wwwﬂAnw>
< Jl«ll Iyl
3 (M —m)[|f']]. if f' € Lo [m, M]
X if
P (M —mya g, T Sel M)
p q ’

foranyz,y € H.
REMARK 4.3. In particular, we obtain from (4.8) the following inequalities

(4.26) |f ((Az, ) = (f (A) 2, )]

(M = m)+ Az, ) — BN 0 € Lo, M
< .
= . f £ L, m,M]|,
| O =)+ [(dn) — 2y, LA
and
@.27) (") - v
LM —m)flle € L M)
S 'f li
e Qr—myrpy, TS Bl M
P q !

foranyz € H with ||z| = 1.

THEOREM4.13 (Dragomir, 201047]). Let A be a selfadjoint operator in the Hilbert space
H with the spectruntp (A) C [m, M] for some real numbers: < M and let{E,}, be its
spectral family. Iff : [m, M| — R isr — H-Holder continuous orm, M|, then we have the
inequality

(4.28) £ (5) (@) — (F (A) 2,9)
M 1 + M
Hm\/0<Exy [QM m)+s—m2 ]
< H el Iyl |5 0 —m) + |5 - “E 2
foranyz,y € H ands € [m, M].
In particular, we have the inequalities
(4.29 ’f(<ﬁﬁ€»)<%y>—<f(Aﬁay4
< # ol [ 5 0 =) + | 5520 - LM
2 2
and
@so) | (") o ) < gt el ol O )
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foranyz,y € H.

PrROOF Utilising the inequality[(4.22) and the fact thAtis » — H-Hdlder continuous we
have successively

(4.31) 7 () (ery) — (F (A) e,
SIS —f(t)]d«Etx,y»\
< terfln?%lf@) -0l (Boz,y))
< H max |s — ' V (Eoe,y))

:H{%(M—m)%—

foranyz,y € H ands € [m, M].
The argument follows now as in the proof of Theofem .11 and the details are orpitted.

4.4. Logarithmic Inequalities. Considerthe identric mean
a if a=0b,
I =1(ab):= e a,b> 0;

and observe that
m i lntdt = ln [[ (CL, b)] .

If we apply Theorerh 4]8 for the convex functigrit) = — Int,¢ > 0, then we can state:

PROPOSITION4.14. Let A be a positive selfadjoint operator in the Hilbert spaflewith
the spectrumSp (A) C [m, M] for some positive numbefs < m < M. Then we have the
double inequality in the operator order &f (H)

1
If we denote byG (a,b) := v/ab the geometric mean of the positive numbers, then we
can state the following result as well:

m+M-A’1—1H.

PrROPOSITION4.15. With the assumptions of Propositipbn 4.14, we have the inequalities in
the operator order of3 (H)

(4.33) InG(m,M) -1y
InM-(M-1g—A)+Inm-(A—m-1p)
M —m

1
<Inl(m,M)- 1.

The inequality follows by Corollarly 4.10 applied for the convex functidi) = —In¢, ¢ >
0.

Finally, the following vector inequality may be stated
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PROPOSITION4.16. With the assumptions of Propositipn 4.14, for any € H we have
the inequalities

(4.34) {(z,y) Ins — (In Az, y)|

[5 (M —m) + [s — =52 ] 5,
< [l=[[ vl

[ (M —m)+ |5 — mM Hl/q (pjylp);\;;ﬁ::fl;

foranys € [m, M], wherep > 1, + 1 = 1.

5. MORE OSTROWSKI’S TYPE INEQUALITIES

5.1. Some Vector Inequalities for Functions of Bounded Variation.The following result
holds:

THEOREMS.1 (Dragomir, 2010/16]). Let A be a selfadjoint operator in the Hilbert space
H with the spectruntp (A) C [m, M] for some real numbers: < M and let{E,}, be its
spectral family. Iff : [m, M] — R is a continuous function of bounded variation fon, 1],
then we have the inequality

(5.1) 1 (s) (z,y) = {f (A) 2,9)]

s

< (Bow,2)'* (B 9)'*\/ ()

m

+ (g — B)w,2) (1 — By, ) 2\ (f)

< Jlal 1y (%\N}m %\/ V) D (sllﬂ!l@lli/(f))

m S

foranyz,y € H and for anys € [m, M].

PROOF We use the following identity for the Riemann-Stieltjes integral established by the
author in 2000 in1Q] (see alsod1, p. 452)]):

(5.2) [ (b) — u ()] £ (5) - / £ (t) du (1)
=/S[U<t)—u(a)]df(t)+/ u (t) — w ()] df (1),

foranys € [a, b], provided the Riemann-Stieltjes integﬁf (t) du (t) exists.

A simple proof can be done by utilizing the integration by parts formula and starting from
the right hand side of (5.2).

If we choose in[(62y = m,b = M andu (t) = (E.z,y), then we have the following
identity of interest in itself

[ Benao+ [ (E-mnde

foranyz,y € H and for anys € [m, M].
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It is well known that ifp : [a,b] — C is a continuous function and : [a,b] — C is of

bounded variation, then the Riemann-Stieltjes integ"fq} (t) dv (t) exists and the following
inequality holds
b

[ r@a) <m0V o

t€la,b]

where\/ (v) denotes the total variation ofon [a, ] .

Utiliging this property we have fronfi (5.3) that

(5.4) | (s) (2, 9) = (f (A) 2, )]
< /_0 (Eyx,y) df (t)‘—l— / <(Et—1H)5U:y>df(t)‘
StIEnaX|Eta:y|\/ +max| E,—1p) xy]\/ =T

foranyz,y € H and for anys € [m, M].
If P is a nonnegative operator di, i.e., (Pz,x) > 0 for anyz € H, then the following
inequality is a generalization of the Schwarz inequalitydin

(5.5) (P, y)* < (Pz,z) (Py,y)
foranyz,y € H.
On applying the inequality (5.5) we have
|<Eth‘, y>| S <Eth’, I’>1/2 <Ety7 y>1/2
and
((ly = E)z,y)| < ((ln = B w,2)* (1y — By, 9)'"?

foranyz,y € H andt € [m, M].
Therefore

(5.6) T < max (B 0)"? (B o) (1)

tefm,s] tem.s] v
M
+ t&aﬁ] (1 — Ey) x,x) / téﬁlsai}] (1g — E,) y,y)1/2 \S/ )
= (Byx,z)" <E8y’y>1/2\/ ()
) M
(L = B)2a) ™ (1~ B)y.9)' V(1)
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for anyz,y € H and for anys € [m, M], proving the first inequality ir (5]1).
Now, observe that

ngax{\/(f)v\/(f)}

m S

< [(Baa ) (Bayo) + (L = B 22) (e — B o))

Since
max{\/<f>,\/<f>} =sV+35 V-V

and by the Cauchy-Buniakovski-Schwarz inequality for positive real numbebs, a,, b-
(5.7) arby + aghy < (a2 +a2)"? (12 +13) "
we have
(B, 2)* (B, )" + (lg = By)2,2)"* (1n = By, )"
< [(Bar,o) + (L = B 2, 0))? [(Bay, ) + (L = By y)]°
= [zl lyll
foranyz,y € H ands € [m, M], then the last part of (5/1) is proven as waill.

REMARK 5.1. For the continuous function with bounded variatipn [m, M] — R if
p € [m, M| is a point with the property that

D M

V=V

m p

then from [(5.1) we get the interesting inequality

(5.8) 1F (p) (2, y) = (f (A) 2, y)] < %HH?H lyll\/ (/)

foranyz,y € H.
If the continuous functiory : [m, M] — R is monotonic nondecreasing and therefore of
bounded variation, we get frorn ($.1) the following inequality as well

(5.9) If (5) (,y) — (f (A) 2, )|
< By, 2)"* (Byy, )" (f (s) — f (m))
(g — By 2, 2) (L — By, )2 (F (M) = £ (5))

<ol (3 1) = 7 ) [ — L2 L G0N
(< el gl £ (M) ~ £ (m)

foranyz,y € H ands € [m, M].
Moreover, if the continuous functiofi: [m, M| — R is nondecreasing dm, M|, then the
equation
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has got at least a solution {m, M]. In his case we get fronj (5.9) the following trapezoidal
type inequality

(5.10) POV TOD oy (1 (A) )
< 3 el Il (7 (1) — £ (m)

foranyz,y € H.

5.2. Some Vector Inequalities for Lipshitzian Functions. The following result that in-
corporates the case of Lipschitzian functions also holds

THEOREMAS.2 (Dragomir, 2010/16]). Let A be a selfadjoint operator in the Hilbert space
H with the spectruntp (A) C [m, M] for some real numbers: < M and let{E,}, be its
spectral family. Iff : [m, M] — R is Lipschitzian with the constardit > 0 on[m, M], i.e.,

£ (s) = F (O] < L|s—1t| foranys,t € [m, M],
then we have the inequality

(5.11) |/ (s —(f(A)z,

3/
[/m (B ) (/m Etyydt)“
([ 1H_Etmt) ( 1H_Etyy>dt>”]

< L(|A - sly|x, x) <|A—31H|y,y>1/2
1/4

< L[D? (A:2) + (s 2> — Az, )]

1/4

< [ D* (Aiy) + (s Iyl = (Ay.9)’]

I/\

foranyz,y € H ands € [m, M], whereD (A; z) is the variance of the selfadjoint operatdr
in x and is defined by

D (A;x) = (|| Ax|? ] — (Az, 2)?) "

PROOF It is well known that ifp : [a,b] — C is a Riemann integrable function and:
la,b] — Cis Lipschitzian with the constarit > 0, i.e.,

|f(s)—f ()| < Ll|s—t| foranyt,s € [a,?],

then the Riemann-Stieltjes integ[ﬁﬁp (t) dv (t) exists and the following inequality holds

/:p@)dv(t)] <t [ bl
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Now, on applying this property of the Riemann-Stieltjes integral, we have from the repre-
sentation[(5]3) that

| (s) (z,9) = (f (A) z,9)]

/m () dr )‘
gL[/S |(Et:v,y)|dt+/SM|<(Et—1H)x,y>|dt} — LW

m—0

<

[ =)

foranyz,y € H ands € [m, M].
By utilizing the generalized Schwarz inequality for nonnegative operdgtorg (5.5) and the
Cauchy-Buniakovski-Schwarz inequality for the Riemann integral we have

(5.12) W< / (Bvr, )" (B, ) dt

m—0

/ (1 — B 2,2y (L — By )2 dt

( (B dt) v < /m (B dt) v
+ (/M (1 — E)a x>dt>1/2 (/SM<(1H—Et)y,y>dt>

=7

1/2

foranyz,y € H ands € [m, M].
On the other hand, by making use of the elementary inequility (5.7) we also have

1/2

(5.13) 7< (/ (Eyz,z) dt + /SM (1 — Bz, ) dt)

m—0

([ tBwma | (- By i)

foranyz,y € H ands € [m, M].

Now, observe that, by the use of the representafior} (5.3) for the continuous fugiction
[m, M] — R, f (t) = |t — s| wheres is fixed in[m, M] we have the following identity that is
of interest in itself

1/2

s

M
(5.14) <|A—S~1H|$,y>:/ (Etx,y>dt+/ (1g — Ey) z,y) dt

m—0
foranyz,y € H.

On utilizing (5.14) forx and then fory we deduce the second part pf (5.11).
Finally, by the well known inequality for the modulus of a bounded linear operator

(T2, ) <|[Ta| ],z € H
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we have

(|A =5 Lulw,0)'? < || Az — sal|'/* |l2] /2

4
= (| Az - 25 (Az,z) + 52 [l2*) " 1]

= [P alP ~ (Az,2)? + (s o — (A2, 2)] "

1/4

_ [D? (Asz) + (s |]* = (Aa:,x>)2] !

and a similar relation fog. The proof is thus completq.

REMARK 5.2. SinceA is a selfadjoint operator in the Hilbert spaflewith the spectrum
Sp(A) € [m, M], then

m+ M
2

M —m
<
- 2

1y 1u

4

giving from (5.11) that

(5.15) ’f (m - M) (w,y) — <A>x,y>‘

- [(/’:: e dt) 1/2 </mmiM (B, y) dt> 1/2
" (LfM (= B, ) dt) : ([n]\; (g — By, y) dt) 1/2]
v, y>1/2

1/2 M
a:,x> <‘A—mj; 1y

m+ M
2

(M —m) |lz[ [y

foranyz,y € H.
The particular case of equal vectors is of interest:
COROLLARY 5.3 (Dragomir, 2010,16]). Let A be a selfadjoint operator in the Hilbert

spaceH with the spectrundp (A) C [m, M] for some real numbers, < M. If f : [m, M] —
R is Lipschitzian with the constatt > 0 on [m, M|, then we have the inequality

(5.16) £ (s) [lz])* = (f (A) z, )]

< L[D* () + (s ol — (An, )]

foranyz € H ands € [m, M].
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REMARK 5.3. Animportant particular case that can be obtained ffom|(5.16) is the one when

s = <ﬁ§ ,x # 0, giving the inequality
Az, x
517) (45 bl - U Wy
]

< LD (A;z) < %L(M —m) |||

foranyx € H,z # 0.
We are able now to provide the following corollary:

COROLLARY 5.4 (Dragomir, 2010,16]). Let A be a selfadjoint operator in the Hilbert
spaceH with the spectrunbp (4) C [m, M| for some real numbers: < M and let{£)},
be its spectral family. Iff : [m, M] — R is a(p, ®) —Lipschitzian functions oifin, M| with
® > ¢, then we have the inequality

— (Ax,

(@ — ) [( /m | (Eaw) dt) - ( /m (Ewy) dt) -

1
=3
( (1g — Ey) x,x) dt) - (/SM (1g — Ev)y,y) dt) 1/2]
=+
L
2
<[P

(5.18) ‘(f ()2, ) s (e y) — £ () (o y>\

(@ — @) (|A - sly|z,2)* (|A — slu]y, y)"°

IN

(@) [D2 (A) + (s ol — Az, 2))"]
(s Il — (Ay. )] "
foranyz,y € H.

REMARK 5.4. Various particular cases can be stated by utilizing the inequality (5.18), how-
ever the details are left to the interested reader.

6. SOME VECTOR INEQUALITIES FOR M ONOTONIC FUNCTIONS

The case of monotonic functions is of interest as well. The corresponding result is incorpo-
rated in the following

THEOREMG.1 (Dragomir, 2010/16]). Let A be a selfadjoint operator in the Hilbert space
H with the spectruntp (A) C [m, M] for some real numbers: < M and let{E,}, be its
spectral family. Iff : [m, M] — R is a continuous monotonic nondecreasing function on
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[m, M|, then we have the inequality

(6.1) |f (8)(z,y) — (f (A) 2, )]

( meag0) ([ Eense)
(L

(- By dr >)1/2 (/SM<<1H—Et>y,y>df<t>)

IN

1/2

+

IN

(7 (A) = £ ) Ll 2, )2 (1 (A) = £ () Ll g )
(D (F (4)50) + (7 3) el = ¢f (W) ,))?] "
X [D2 (f(A);y)+ (f (s) lyll* = (f (A)y,y>)2}

foranyz,y € H ands € [m, M], where, as abov® (f (A); z) is the variance of the selfad-
joint operator f (A) in x.

IN

1/4

PrROOF From the theory of Riemann-Stieltjes integral is well known that:ifla, b] — C
is of bounded variation and: [a, b] — IR Is continuous and monotonic nondecreasing, then the

Riemann-Stieltjes integralﬁ;’p( andf Ip (t)| dv (t) exist and

/p<t>dv 1) g/ ip (1)) do (1)

On utilizing this property and the representatipn|(5.3) we have successively

(6.2) £ () () — (f (A) 2, p)|
< /8_0<Etx,y>df(t)‘+ / (B = 1u) 2, 9) df (2)

§/80|<Etx,y>]df(t)+/ (B — 1g) z,y)| df (t)

S

< (B, z)'? (B, )2 df (¢)

m]\/[O
" / (L — By e a) (L — By )2 df (1
=Y,

foranyz,y € H ands € [m, M].
We use now the following version of the Cauchy-Buniakovski-Schwarz inequality for the
Riemann-Stieltjes integral with monotonic nondecreasing integrators

(/abp(t)Q(t)dv(t)) S/apr(t)dv(t)/abq2(t)dv(t)

| (B (B dr 0

<([ o) ([ ewpso)
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and

/ (L — B, 2)Y2 (Lg — B2y, ) df (8)

<(/ (- By df <t>)m (/ (- By dr )

foranyz,y € H ands € [m, M].
Therefore

ve ([ e <t>)1/2 ( [ Ewwaw)”

1/2

1/2

s

X

< ,
g(/mo (B, x)df (t) + /SM<(1H—Et):c,x>df(t))
(.

M 1/2
(Evy,y) df (t) + / (g — Ey)y,y) df (t))

foranyz,y € H ands € [m, M], where, to get the last inequality we have used the elementary
inequality [5.7).

Now, sincef is monotonic nondecreasing, on applying the representatign (5.3) for the func-
tion |f (-) — f (s)| with s fixed in [m, M| we deduce the following identity that is of interest in
itself as well:

-0

(6.3) (If (A4) = f(s)zy)
/ (B 0+ / (L — By y) df (1)

foranyz,y € H.

The second part of (§.1) follows then by writing (6.3) ferthen byy and utilizing the
relevant inequalities from above.

The last part is similar to the corresponding one from the proof of Thepregm 5.2 and the
details are omittecy

The following corollary is of interest:

COROLLARY 6.2 (Dragomir, 2010/16]). With the assumption of Theor¢m|6.1 we have the
inequalities

6.4 L TO )~ (7 (2
f (m) + f (M) v
§<‘f(A)— 5 1p x,x>
m 1/2
{fron - L0004
< 5 (F (M) = £ () el o,

foranyz,y € H.
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PROOF Since f is monotonic nondecreasing, thg¢riu) € [f (m), f (M)] for anyu €
[m, M] . By the continuity off it follows that there exists at list oreec [m, M| such that
f(m) + [ (M)

f(s)= 5 :

Now, on utilizing the inequality[ (6]1) for this we deduce the first inequality in (¢.4). The
second part follows as above and the details are omigted.

6.1. Power Inequalities. We consider the power functiofi(¢) := t* wherep € R\ {0}
andt > 0. The following mid-point inequalities hold:

PROPOSITIONG.3. Let A be a selfadjoint operator in the Hilbert spaéewith the spectrum
Sp(A) C [m, M| for some real numbers with< m < M.
If p > 0,thenforanyz,y € H

m+ M\?
(6.5) '( 5 ) (z,y) — <Ap:v,y>’
1/2 1/2
SBp<'A— m+M'1H l‘,$> <'A— m—;M'lH Z/;y>
1
< 5By (M —m) ||z [ly]]
where
Mr—t ifp>1
B, =p x
mP~L if0<p<1,m>0.
and
m+ M\P B
65) '( ) ) - (a)
M 1/2 M 1/2
§0p<‘A_m; 1y $,$> <‘A—m—g g y,y>
1
< 3Gy (M —m) el ]
where

Cp, = pm Pt andm > 0.

The proof follows from|[(5.15).
We can also state the following trapezoidal type inequalities:

PROPOSITIONG.4. With the assumption of Propositipn 5.3 angift> 0 we have the in-
equalities

mp_|_Mp
(6.7) ‘T (x,y) — (APx, y)’
P )P 1/2 P AP 1/2
< AP—L-le,x AP_L.lHy,y
2 2
1
< o (M =mP) iz Iyl
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and, form > 0,

mp+Mp _
W@,w — (A p$7y>‘

mP + MP 1/2 mP + MP
- _ T - VT
= <‘A 2mp MP 1 :v,x> A 2mp MP !

< 1 (MP—mP
<> (S ) el

foranyz,y € H.

(6.8)

1/2
H|Y, y>

The proof follows from Corollary 6]2.

6.2. Logarithmic Inequalities. Consider the functioryf (¢) = Int,t > 0. Denote by
A(a,b) = < the arithmetic mean of,b > 0 and G (a,b) := Vab the geometric mean
of these numbers. We have the following result:

PROPOSITIONG.5. Let A be a selfadjoint operator in the Hilbert spaééwith the spectrum
Sp (A) C [m, M] for some real numbers with< m < M. For anyz,y € H we have

(6.9) InA(m, M) (z,y) — (In Az, y)|
1 M 1/2 M 1/2
§—<‘A—m+ 1n mx> <‘A—m+ 1n y,y>
m 2 2
1 /M
<> (==-1
<3 (3= 1) el ol
and
(6.10) |lnG(m M) -{(z,y) — (In Az, y)]

]lnA InG (m, M) 1y4|z, 1]>/2<|1HA lnG(m,M)-1H|y,y>1/2

< ln\/ |yl -

The proof follows by[(5;1]5) and (§.4).

7. OSTROWSKI'S TYPE VECTOR INEQUALITIES

7.1. Some Vector Inequalities.The following result holds:

THEOREM7.1 (Dragomir, 2010/J6]). Let A be a selfadjoint operator in the Hilbert space
H with the spectruntp (A) C [m, M] for some real numbers: < M and let{£,}, be its
spectral family. Iff : [m, M] — C is a continuous function of bounded variation fon, M,
then we have the inequality

M
7.1 (o) g [ PG = 47 (A) )
= M 1_ m \n{ Y ten[[}%% [(M — 1) (B, $>1/2 (B, )"

+(t—m){((lg — E,) x,x)l/z (1g — Ey) y7y>l/2}

<l vl \/ ()
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foranyz,y € H.

PROOF Assume thaf : [m, M| — Cis a continuous function ojm, M| . Then under the
assumptions of the theorem fdrand{ £, }, , we have the following representation

(72) @) g [ £ ds = (F(A)2)

— o [ AOT =0 B =) (B L) df 1)

M—-—m /. o

foranyz,y € H.
Indeed, integrating by parts in the Riemann-Stieltjes integral and using the spectral repre-
sentation theorem we have

M 1_ m ) ([((M —t) By + (t — m) (B, — 15)] z,y) df (1)
:/ - (<Et:c y) — ]\2__”;1 <x,y>> df ()
:<Eﬂy—__£l@y0f® .

- /mMOf ( (Bur,y) — ]\Z__n; <x,y>>

m—0

for anyz,y € H and the equality (7]2) is proved.

It is well known that ifp : [a,b] — C is a continuous function and : [a,b] — C is of
bounded variation, then the Riemann-Stieltjes integ"fqi (t) dv (t) exists and the following
inequality holds

b

[ p@a] < masipolV o

tela,b]

Where\/ (v) denotes the total variation ofon [a, ] .

Utiliasing this property we have fronfi (7.2) that

(7.3)

@w—ummw\

SA4_m£%%HWM>¢HZ+@—ﬂwG%—hmxwﬂwﬁﬁ

m

foranyz,y € H.
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Now observe that
(7.4) [(((M —t) By + (t —m) (Ey — 1g)] 2, y)]
= (M =) (Eyz,y) + (t —m) (B — 1g) 2, y)]
< (M —t) (B, y)| + (t —m) [((E — 1n) @, y)|

foranyz,y € H andt € [m, M].
If P is a nonnegative operator di, i.e., (Px,z) > 0 for anyx € H, then the following
inequality is a generalization of the Schwarz inequalitydin

(7.5) [(Pz,y)|* < (Pz,z) (Py,y)

foranyz,y € H.
On applying the inequality (7.5) we have

(7.6) (M —1t) [(Ewz,y)| + (t —m) [((Er — 1n) %, y)]|
< (M —t) (B, 2)'? (B, y)?
+(t—m) ((1g = E) w,)"* (1 — E) y,y)
<max{M —t,t —m}
(B ) (B, ) + (L — B, )" (1 — By, )”]
<max{M —t,t —m}
x [(Eyx,z) + (1g — E) x,2)) " (B, y) + (1n — B y,y)]"
=max{M —t,t —m} 2| [ly],
where for the last inequality we used the elementary fact
(7.7) aiby +azby < (aF +a3)"? (03 + 1)

that holds fora,, by, as, by positive real numbers.
Utilising the inequalitieq (7]3)] (7].4) and (}.6) we deduce the desired result §7.1).

The case of Lipschitzian functions is embodied in the following result:

THEOREM7.2 (Dragomir, 2010/4€]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrun®p (A) C [m, M| for some real numbers: < M and let{E\}, be its
spectral family. Iff : [m, M] — C is a Lipschitzian function with the constaht > 0 on
[m, M], then we have the inequality

(7.8)

S ds— {f <A>m,y>\

< / ) By, )2 (B, y) "

—m

(= m) (1 = B) o, 2} (g = By )] b

w

< LM =m)|jz] |yl

foranyz,y € H.

PROOF It is well known that ifp : [a,b] — C is a Riemann integrable function and:
la,b] — Cis Lipschitzian with the constarit > 0, i.e.,

If(s)— f(t)| < L|s—t| foranyt,s € [a,b],
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then the Riemann-Stieltjes integrﬁp (t) dv (t) exists and the following inequality holds

L%@MMﬂSL[ﬁmmw.

Now, on applying this property of the Riemann-Stieltjes integral, we have from the repre-
sentation[(7]2) that

7.9 SM&%NM%w‘

_M - M—t)E,+ (t—m)(E;— 1y)]z,y)| dt.
Since, from the proof of Theor.l, we have
(7.10) ({[(M =) B, + (t =m) (E; = 1u)] 2, )]

< (M - t) <Et$, $>1/2 <Ety7 Z/>1/2

(= m) (L — B)w,2)"* (Ln — B y,y)"?
<max{M —t,t —m} |z ||y

=[50 —m+ =22 o

foranyz,y € H andt € [m, M], then integrating[(7.10) and taking into account that

M
M 1
/ ‘t_mz dt:Z(M—m)Q

m

we deduce the desired res(ilt (7.8).

Finally for the section, we provide here the case of monotonic nondecreasing functions as
well:

THEOREM 7.3 (Dragomir, 2010/36]). Let A be a selfadjoint operator in the Hilbert space
H with the spectruntp (A) C [m, M] for some real numbers: < M and let{E,}, be its
spectral family. Iff : [m, M] — R is a continuous monotonic nondecreasing function on
[m, M], then we have the inequality

(7.11)

SM&%HML@‘

t) (B, ) By, y)'?

M —m

+@—mﬂuﬂ—@me%uH—aMwWﬂ#u>
< [ron = - [ o (-5 s i ol o

M—-m/, 2
< [ (M) = fFm)] |l=[ ][]

foranyz,y € H.

PROOF From the theory of Riemann-Stieltjes integral is well known that:ifla, b] — C
is of bounded variation and: [a, b] — R is continuous and monotonic nondecreasing, then the
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Riemann-Stieltjes integra[/é;’p( andf Ip (t)| dv (t) exist and

/ap@)dv(t)\ g/a p (1) dv (1)

Now, on applying this property of the Riemann-Stieltjes integral, we have from the representa-

tion (7.2) that

<:cy>M1 /Mf()ds—<f(z4)x,y>‘

(7.12)

_M - M —t) By + (t —m) (B — 1g)|z,y)| df (t).

Further on, by utilizing the mequahtﬂ?_?]lO) we also have that
M
(7.13) / [([(M =) By + (t —m) (Ey — 1u)] z, y)| df (t)
m—0

< [ [0~ (B2 )

m

(= m) (1 = B) e, a) (g = By )| df (0)

< |50 -mron - po)+ [

m

M m+M

t—

a0 el Il

Now, integrating by parts in the Riemann-Stieltjes integral we have

M
M
/ ‘t—m; d

M+m

[ (m;M—t)df(t)vL/L(t—m;M)df(t)
( ) ) M;m+/M;mf(t)dt
+ (=) r

1 m+ M

2

Y Y
- / f(t)dt
’ M
(M—m)[f(M)—f(m)]—/ son (1= "5 ) 1 @),
which together with[(7.13) produces the second inequality in(7.11).

Since the functionsgn (- — ™) and f (-) have the same monotonicity, then by the-
bysSev inequality we have

/Msgn(t—m—;M)f(t)dt
> Ml_m/Msgn(t—m—gM>dt/Mf(t)dt:0

and the last part of (7.11) is provesl.
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7.2. Applications for Particular Functions. It is obvious that the above results can be
applied for various particular functions. However, we will restrict here only to the power and
logarithmic functions.

1. Consider now the power functioft : (0,00) — R, f (t) = t* with p > 0. This func-
tion is monotonic increasing oft), oo) and applying Theorein 7.3 we can state the following
proposition:

PROPOSITION7.4. Let A be a selfadjoint operator in the Hilbert spaééwith the spectrum
Sp(A) C [m, M] for some real number8 < m < M and let{E,}, be its spectral family.
Then for anyr, y € H we have the inequalities

MP+L _ gpptl
%JNM e

(7.14) ‘<AP£L‘ y) —

) (Ei, ) (g, )"

_Mm
+@—m«m—Emmw”wﬂ—EMwWﬂﬂwt

MPTL 4 mptl _op (M + m)pﬂ
Izl

S M:D_mp_

(p+1) (M —m)

On applying now Theorein 7.2 to the same power function, then we can state the following
result as well:

PROPOSITION7.5. With the same assumptions from Proposifion} 7.4 we have

Mp-‘rl mp+1
p+1)(M—m

]\/[
< m/ 0 (Evw,2)"? (B, )"

+(t— >uH—ameNuH—@wwWﬂﬁ

(7.15) ‘(A T,y) — ) (w,y>‘

< 7By (M —m) [z ||yl

A~ w

foranyx,y € H, where

Mp—t ifp>1
B, =px
mP~t if0<p<1,m>0.

The case of negative powers excgpt —1 goes likewise and we omit the details.

Now, if we apply Theorerh 7|3 arjd 7.2 for the increasing funcfign) = —1 with ¢ > 0,
then we can state the following proposition:

PROPOSITION7.6. Let A be a selfadjoint operator in the Hilbert spaéewith the spectrum
Sp(A) C [m, M] for some real number8 < m < M and let{E,}, be its spectral family.
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Then for anyr, y € H we have the inequalities

InM —Inm
~1 _nM —Inm
(7.16) ‘<A T, y> M — (x, y)‘

t) (B, ) (B, y)'?

_Mm
- >uH—ﬂmWf“wﬂ—E>yw”V”t

2
farmon w5 ] = e 1
- mM M—m iy
and
InM —1nm
7.17 A _Am T Am
(7.17) '( TY) o <$,y>‘

1 M 1/2 1/2
< m/m [(M — ) (B, 2)"* (Byy, y)

+(t—m) (ly — By, 2) " (ly — Ey)y,y)'"? | dt
3M—m
<=
4
2. Now, if we apply Theorem@.s a@.z to the functipn (0,00) — R, f (t) = Int,
then we can state

PROPOSITION7.7. Let A be a selfadjoint operator in the Hilbert spaéewith the spectrum
Sp(A) C [m, M] for some real number8 < m < M and let{E,}, be its spectral family.
Then for anyr, y € H we have the inequalities

(7.18) |(In Az, y) — (x,y) In T (m, M)|

M
| [ =) (B 2)' (B,

1
+(t—m){((lyg — Ey) x,x>1/2 (1g — Ey) vy, y}l/ﬂ tdt
M I (=M M)
- [1“ () ‘1“( W)
and

(7.19) |(In Az, y) — (z,y) In I (m, M)|
1

< (M —m) /m [(M — 1) (B, 2)""* (B, y)
(b= m) (1n = B)w,a) " (L = By, y) 2 db

3 (M
<2 (=1
<7 (m ) [l I
wherel (m, M) is the identric mean aof: and M and is defined by

1/ MM Y M=m)
rman =1 (52)

<

] Iyl

e\ mm
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8. BOUNDS FOR THE DIFFERENCE BETWEEN FUNCTIONS AND INTEGRAL MEANS
8.1. Vector Inequalities Via Ostrowski's Type Bounds. The following result holds:

THEOREMS8.1 (Dragomir, 2010/32]). Let A be a selfadjoint operator in the Hilbert space
H with the spectruntp (A) C [m, M] for some real numbers: < M and let{E,}, be its
spectral family. Iff : [m, M] — R is a continuous function ofm, M], then we have the
inequality

8.1 A
8.1) ) - ~— / (s
M
<
s | . \m/
< s)d
max |f [ (5| o

foranyz,y € H.

PrRoOOF Utilising the spectral representation theorem we have the following equality of
interest

(8.2) (f(A)z,y) -

e [m) - M_m/m f(s)ds} (B, 1))

m—

s)ds

foranyz,y € H.
It is well known that ifp : [a,b] — C is a continuous function and : [a,b] — C is of

bounded variation, then the Riemann-Stieltjes integfql (t) dv (t) exists and the following
inequality holds

(8.3)

/abp<t>dv<t>\<max| PV 0,

t€(a,b]

Where\/ (v) denotes the total variation ofon [a, 0] .

Utiliasing these two facts we get the first part pf (8.1).
The last part follows by the Total Variation Schwarz’s inequality and we omit the degails.

For particular classes of continuous functiohs [m, M] — C we are able to provide
simpler bounds as incorporated in the following corollary:

COROLLARY 8.2 (Dragomir, 2010,32]). Let A be a selfadjoint operator in the Hilbert
spaceH with the spectrunbp (4) C [m, M| for some real numbers: < M, {E,}, be its
spectral family andf : [m, M| — C a continuous function ofin, M] .

1. If f is of bounded variation ofm, M|, then

M

(FA)ag) = @) g [ F)ds

m

@ \/ xy>)<\|xr|uyn\/

(8.4)
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foranyz,y € H.
2.1f f: [m, M] — Cis ofr — H—Holder type, i.e., for a given € (0,1} and H > 0 we
have

(8.5) If(s)— f ()| < H|s—t|" foranys,t € [m, M],

then we have the inequality:

8. ‘UMMW>< wMim/ f(s)ds

M
H(M—-m)"\/ (( ) < —H(M m)" ||z [y
m—0

T+

foranyz,y € H.
In particular, if f : [m, M] — C is Lipschitzian with the constart > 0, then

©.7) kﬂm%w—mwMim/'ﬂﬁw
< SLOM —m) \/ ((Bor.w)) < 5L —m) o] o]

foranyz,y € H.
3. If f: [m, M] — C is absolutely continuous, then

1 M
2) e IO
M
<V (Boz.y))
m—0
(5 (M =m)|If'll if f' € Lo [m, M]
_ q gt if fl € Lp , M
% (q+1)1/q (M —m)" 1771, p> 1,1/p+[ql/q=] 1;
C LNl
< [|z[[ {[y]]
(5 (M =m)lf']l if f' € Loo [m, M]
q|| ¢ if f'e Lp , M
% (q+1)1/q (M — m)l/ 1 f H p>1,1/p _'_[Tln/q:] 1:
L

foranyz,y € H, where| f'||  are the Lebesgue norms, i.e., we recall that

€88 SUDgepm g |f (8)] if p = o0;

1, == .
/

(L1 erds) ™ itp=1,
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PROOF We use the Ostrowski type inequalities in order to provide upper bounds for the

guantity
M
max 'f (t) ! / f(s)ds

te[m,M] B M—m m

wheref : [m, M] — C is a continuous function.
The following result may be stated (s&3)]) for functions of bounded variation:

M
LEMMA 8.3. Assume thaf : [m, M] — C is of bounded variation and denote W (f)

m

its total variation. Then

M
8.9) Oy RICLE
_mxM || M
: [%+ ﬁ]\n{m

forall ¢ € [m, M]. The constant is the best possible.

Now, taking the maximum over € [m, M] in (8.9) we deduce (8/4).
If fis Holder continuous, then one may state the result:

LEMMA 8.4. Let f : [m, M] — C be ofr — H—H®dlder type, where € (0,1} andH > 0
are fixed, then, for alk € [m, M], we have the inequality:

(8.10) e L
<y ) () o

The constant= is also sharp in the above sense.

Note that ifr = 1, i.e., f is Lipschitz continuous, then we get the following version of
Ostrowski’s inequality for Lipschitzian functions (with instead ofHf) (see for instancél[7])

(8.11) 'f(t)—Ml_m/me(s)ds

1 t — mEM 2
<lit\ e ) [ M omE

foranyz € [m, M]. Here the constarit is also best.

Taking the maximum over € [m, M] in (8.10Q) we deduc¢ (8.6) and the second part of the
corollary is proved.

The following Ostrowski type result for absolutely continuous functions holds.
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LEMMA 8.5. Let f : [a,b] — R be absolutely continuous da, b]. Then, for allt € [a, b],
we have:

(8.12) ]f(t)— : /Mf<s>ds

M—-m/,
(. M 2 .
[Z + ( Y ) ] (M —m) || f']l if f'€ Lo |[m, M];
<Y A LGE)T  GEDT T ar g, i g Ly, ),
iyl p>1;
1 f—mtM , P q
SR =

1
1
(p+1)P

The constanté, and% respectively are sharp in the sense presented above.

The above inequalities can also be obtained from the Fink resi88jroh choosing: = 1
and performing some appropriate computations.
Taking the maximum in these inequalities we ded{ice (&.8).

For other scalar Ostrowski’'s type inequalities, sHeapd [18].

8.2. Other Vector Inequalities. In [37], the authors have considered the following func-
tional

b b
@13) D)= [ f&duls) - w®) - u@] - [ T

provided that the Stieltjes integrgﬁaf’ f (s) du (s) exists.
This functional plays an important role in approximating the Stieltjes intg@rﬁl(s) du (s)

in terms of the Riemann integrjcf f (t) dt and the divided difference of the integrator
In [37], the following result in estimating the above functiodal f; «) has been obtained:

(8.14) D (f:0)] < 5L (M —m) (b~ a),

providedw is L—Lipschitzianand f is Riemann integrableand with the property that there
exists the constants, M € R such that

(8.15) m< f(t)<M forany tea,b].
The constan% is best possible i4) in the sense that it cannot be replaced by a smaller
quantity.

If one assumes thatis of bounded variatiorand f is K —Lipschitzian thenD (f, u) satis-
fies the inequality38]

(8.16) D ()] < 5K (b—a)\/ (u).

Here the constargt is also best possible.
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Now, for the functionu : [a, b] — C, consider the following auxiliary mappings, I' andA
[19]:

(t—a)u(b)+ (b—1t)u(a)

D (t) = — —ul(t), t € la,b],
F):=0t-a)uld)—u®)] =O-0)[ul)-ula)], telab],
A (t) := [u; b, t] — [u;t, al, te(a,b),

where[u; a, 3] is thedivided differencef u in «, 3, i.e.,
u (o) —u(F)

a—p08

The following representation d? ( f, «) may be stated, se&9] and 20]. Due to its impor-
tance in proving our new results we present here a short proof as well.

[u; v, B] =

LEMMA 8.6. Let f,u : [a,b] — C be such that the Stieltjes integrﬁj’f (t) du (t) and the
Riemann integrayab f (t) dt exist. Then
b 1 b
6.17) D(fu)= [ e0d® = [ TOFW

B 1
b—a

b
/ (t—a)(b—t)A(t)df ().

PROOF. Sincefab [ (t) du (t) exists, hencgﬁf ® (t) df (t) also exists, and the integration by
parts formula for Riemann-Stieltjes integrals gives that

/abcp(zs)df(t):/ab [(t_a)u(bzfib_t)uw) _“(t)} ¥ )

b

_ [“—a)“(”;j(b—”“(“) —u(t)]f(t)
_/bf(t)d[(t—a)u(bgﬂ:((lb—t)u(a) _uzﬂ}
= [ M=) < D s,

proving the required identitya

For recent inequalities related 1o ( f; «) for various pairs of functionsf, u) , see 21].
The following representation for a continuous function of selfadjoint operator may be stated:

LEMMA 8.7 (Dragomir, 2010,22]). Let A be a selfadjoint operator in the Hilbert space
H with the spectruntp (A) C [m, M] for some real numbers. < M, {E,}, be its spectral
family andf : [m, M| — C a continuous function ofin, M| . If x,y € H, then we have the
representation

©18)  (F()a) = Gog) g [ s

- / ((t—m) (L — Ey) — (M — ) B a3 df (£).

M_m m_o
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ProoFr Utilising Lemmd 8.6 we have

(8.19) / F(t) du (t) = [u (M) — u(m)] - —— / f (s)ds

+47W7W“§§%nmm)wﬂ#@,

for any continuous functiorf : [m,M] — C and any function of bounded variatian :
[m, M] — C.
Now, if we write the equality{ (8.19) fou (1) = (E,x, y) with 2,y € H, then we get

©20) [ JOdEay) = ) 5 [ TG)ds

+Aiﬁi%%%ﬁ—uMyﬁ#@,

which, by the spectral representation theorem, produces the desired[resiilt8.18).
The following result may be stated:

THEOREMS8.8 (Dragomir, 2010,22]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrunbp (A) C [m, M] for some real numbers, < M {E,}, be its spectral
family andf : [m, M] — C a continuous function ofm, M] .

1. If f is of bounded variation, then

(8.21) kﬂMaw—@w> L[ i

M—-—m/,
M
<yl \/ ()
2 2 1/2
M
< |l Iyl \/ ()

foranyzx,y € H.
2. If f is Lipschitzian with the constarit > 0, then

©22) |t )~ o) g [ )

L M 1/2
< L [ e = Bl + 0 = 07 Bl
1 2
< L+ L (va1) | 0 —m) Ll el

foranyz,y € H.
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3. If f : [m, M] — R is monotonic nondecreasing, then

(8.23) kﬂ@aw—@whwim/ (s)ds

1/2

< [yl /_0 [(t _ m)2 (1 — Et)IHQ + (M — t)Q ||Et«TH2} df (t)

~M-m
1/2

sMMM|:1(Ljﬁ)3+ij;f] (1

<\l 1zl [f (M) = f (m)]?

xp@ﬂ—ﬂm—mé%[fc—m;M)ﬂWﬂm

< [ly[H« ] 1f (M) = f (m)]

foranyz,y € H.

PrROOF. If we assume thaf is of bounded variation, then on applying the propdrty|(8.3) to
the representation (8./18) we get

®28) | (A)ag) (o) g [ S (s)ds

M

< max |<[<t_m)(1H_Et)_(M_t)Et]J;?yH\/(f)‘

- M — m tejm,M)

m

Now, on utilizing the Schwarz inequality and the fact tlatis a projector for any €
[m, M|, then we have

(8.25) ([t =m) (1 — E) — (M —t) E]z,9)|
<[t = m) (L — Ey) — (M — t) B «|| ||yl
— [(t=m)* |(1u = E) al* + (M — ) | E]] " 1y

< [(t=m)*+ (M = 1)) |lall Iyl

foranyz,y € H and for anyt € [m, M].
Taking the maximum ir] (8.25) we deduce the desired inequality|(8.21).
It is well known that ifp : [a,b] — C is a Riemann integrable function and [a, b] — C is
Lipschitzian with the constart > 0, i.e.,
If (s)— f ()| < L|s—t| foranyt,s € [a,b],

then the Riemann-Stieltjes integrﬁjp (t) dv (t) exists and the following inequality holds

A%@MN%SLlﬁMMﬁ-
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Now, on applying this property of the Riemann-Stieltjes integral to the represenfation (8.18),
we get

(8.26) kﬂme—mm L[ s

M—-mJ,
L M
SM m S ) (g — Ey) = (M —t) By] z,y)| di
I 1/2
<t ||y| / [(t—m)? ||(Li — ) z|® + (M — )2 || Br|?] " dt

<tillel [ K 12

t—m 2+ M —t ”
M—m M—m ’
foranyz,y € H.

Now, if we change the variable in the integral by choosing -

M

Pl
— (M - m)/ol w2 + (1 — u)?]""* du

= (M —m)

1+?1n<\/§+1)

which together with[(8.26) produces the desired refult [8.22).
From the theory of Riemann-Stieltjes integral is well known that if [a,b] — C is of
bounded variation and : [a,b] — R IS continuous and monotonic nondecreasing, then the

Riemann-Stieltjes integra[/é;p( andf Ip (t)| dv (t) exist and

/abp(t)dv(t)‘ g/ab p () dv ()

Now, on applying this property of the Riemann-Stieltjes integral, we have from the representa-

tion (8.18)

(8.27) %ﬂ@%w—@whwim/ (s)ds

<o ! / ([t = m) (1 — By) — (M —t) By &, v)| df (£)

[(t = m)* (1 = B o> + (M — 1)” | Bl ] df (2)

gmmmmL K@rﬁ)2+cy;frm#ax

foranyz,y € H and the proof of the first and second inequality[in (8.23) is completed.
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For the last part we use the following Cauchy-Buniakowski-Schwarz integral inequality for

the Riemann-Stieltjes integral with monotonic nondecreasing integrator

[ rwaea| <[ [ worwo] " [uwrao] !

wherep, ¢ : [a, b] — C are continuous ofu, b| .
By applying this inequality we conclude that

1/2
M/ t—m M—t\?
(8.28) /m [(M_m> +(M_m)] df (1)
M 1/2 M B 2 M 2 1/2
<|[ aw) [lllcéjg)-+cw_;)lﬁai .
Further, integrating by parts in the Riemann-Stieltjes integral we also have that
(8.29) / [(AZ__”:H) n (Aj\f__;) ] df (t)
4 M m -+ M
=100 = f ) - g [ (1= ") sy
< f(M)—f(m)

where for the last part we used the fact that by(ﬁm)y§ev integral inequality for monotonic
functions with the same monotonicity we have that

/mM (t—m;M>f(t)dt

1 M m+ M M
ZM—m/m (t— : )dt/m F(#)dt = 0.

8.3. Some Applications for Particular Functions. 1.Consider the functiorf : (0, c0) —
R given by f (¢) = ¢" with » € (0, 1]. This function isr-Holder continuous with the constant
H > 0. Then, by applying Corollary 82 we can state the following result

2

PROPOSITION8.9. Let A be a selfadjoint operator in the Hilbert spaééwith the spectrum
Sp (A) C [m, M] for some real number§ < m < M and{E,}, be its spectral family. Then
for all » with r € (0, 1] we have the inequality

Mr+1 _ mr+1

(8.30) A y) =@ 9) oyt —m)
< — (= m)"\ ((Bgo)) < g (4 = m) ] o]

m

foranyz,y € H.

The case op > 1 is incorporated in the following proposition:
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PrRoOPOSITION8.10. With the same assumptions from Proposifion 8.9 apdif1, then we
have

p+1 _ ,p+1
M m

< oM (M —m) \/ ((Eiyr,)) < gpM* (M —m) ] o]

foranyz,y € H.

The case of negative powers excgpt —1 goes likewise and we omit the details.
Now, if we apply_QoroIIar for the functioffi (t) = —1 with ¢ > 0, then we can state
the following proposition:

PROPOSITION8.11. Let A be a selfadjoint operator in the Hilbert spaéé with the spec-
trumSp (A) C [m, M| for some real numbeis < m < M and let{ £, }, be its spectral family.
Then for anyr, y € H we have the inequalities

8.32) (A7)~ BT )
1M —m 1M —m
<5 Xo(<E”$’y>> < 5 lzlliyll-

2. Now, if we apply Corollary 8 to the functiofi: (0,00) — R, f () = Int, then we can
state

PROPOSITION8.12. Let A be a selfadjoint operator in the Hilbert spaéé with the spec-
trumSp (A) C [m, M| for some real numbers < m < M and let{ £, }, be its spectral family.
Then for anyr, y € H we have the inequalities

(8.33) |(In Az, y) — (z,y) In 1 (m, M)|
() V ((Bo) < 5 (5= 1) el ol

where! (m, M) is the identric mean af» and A/ and is defined by

L/ A Y m)
rman =1 (35)

e \mm

9. OSTROWSKI'S TYPE INEQUALITIES FOR n-TIME DIFFERENTIABLE FUNCTIONS
9.1. Some Identities.In [6], the authors have pointed out the following integral identity:

LEMMA 9.1 ( Cerone-Dragomir-Roumeliotis, 1998])[ Let f : [a,b] — R be a mapping
such that then — 1)-derivative f("~1) (wheren > 1) is absolutely continuous da, b]. Then
for all z € [a, b], we have the identity:

b n—1 _ )kt 1 (1 — q)F
©.1) /f(t)dtZZ[(b f (D) (e-a) ]f"“)(ﬂs)

(k+1)!

+(=1)" /b K, (z,t) f™ (t) dt
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where the kernek, : [a,b]* — R is given by

(9.2) K, (z,t) :=
(t=b)"

n!

a<zxz<t<b.

The identity [[9.2) can be written in the following equivalent form as:

b
©3  fe)=y, [ foa
1 n—1

- X_: (k _il_ 1)! [(b — z)'“rl + (—1)k (2 — a)kﬂ} f(k) (2)
(-

p e s wans [Ce-or 0w

forall z € [a, b].
Note that forn = 1, the sumzz;} is empty and we obtain the well knowlontgomery’s
identity (see for example3])

b
(9.9 f) = [ f0a
1 z

b_ﬂ[é(t—@fmuwﬁ+17v—wﬂ”wdt,

+

foranyz € [a,b].
In a slightly more general setting, by the use of the iderftity] (9.3), we can state the following
result as well:

LEMMA 9.2 (Dragomir, 2010,d]). Let f : [a,b] — R be a mapping such that the-
derivative f(™ (wheren > 1) is of bounded variation ofu, b]. Then for all\ € [a, b], we have
the identity:

b
©8  fW=; [ rwa
1 n

_b_aZ;“A:ﬂ[w_AfH+%_UWA—@M1jWMM

(="
(b—a)(n+ 1)

x[LAﬂ—aWHd(ﬂm@D%1A%t—@mddﬁmWﬂﬁ.

Now we can state the following representation result for functions of selfadjoint operators:

_|_

THEOREM 9.3 (Dragomir, 2010/g]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrundp (A) C [m, M] for some real numbers. < M, {E,}, be its spectral

family, I be a closed subinterval oR with [m, M] C I (the interior of I) and letn be an
integer withn > 1. If f : I — C is such that the:-th derivativef™ is of bounded variation on

AJMAA Vol. 17(2020), No. 1, Art. 1, 319 pp. AIMAA


https://ajmaa.org

INEQUALITIES FORFUNCTIONS OFSELFADJOINT OPERATORS 221

the interval[m, M|, then we have the representation

(96)  f(4)= (Mim[an<t)dt) 1H_Mim

n

<3 G O = 7 4 (1) (A= )] 70 ()
+ T, (A,m, M)

where the remainder is given by

(9.7) T (Aym, M) := (M—(ﬂ_’b)lzn—l—l)!

X UnMO( A(zs—m)’"‘“d(ﬂ”) (t))) dE)

+/mﬂi (/fz (t— M) d (f0 (t))) dEAl |

In particular, if the n-th derivative f) is absolutely continuous ojm, M|, then the re-
mainder can be represented as

(9.8) T, (A,m, M)

_ (=n"
(M —m)(n+1)!

X / (A =m)"™ (1g — B)) + (A = M)" T B\] £ (X) dA.

m—0

PROOF. By Lemm@ we have

(9.9) f A

forany\ € [m, M].
Integrating the identity (9]9) in the Riemann-Stieltjes sense with the integtatae get

M
(9.10) / £(\) dE)

M / it / By = M 1— m
Z / [(M A (=D = m) T f® () dE,

P
T(AmM)
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Since, by the spectral representation theorem we have

/ﬂfof()\)dEA:f(A),/M By = 15

m—0

and

/M [(Z\/[ B )\)k—i-l 4 (_1)k () — m)k+1] f(k) (\) dE)

= (M1 = AV 4 (<) (A= 1) ] 59 (4),

then by [9.1D) we deduce the representafion (9.6).
Now, if the n-th derivativef ™ is absolutely continuous dm, M|, then

[ =m0 @) = [ (- myt o o a

m m

and

[Ca-arrage o) = [Ca-anet e g a
A A

where the integrals in the right hand side are taken in the Lebesgue sense.

Utilising the integration by parts formula for the Riemann-Stieltjes integral and the differ-
entiation rule for the Stieltjes integral we have successively

[ ([ ammr e gyar) am

N M
( @—W”WW”@ﬁ)&

m—0

Mm
- / (A —m)" T FOFD (X)) EydA
M
— ( (t —m)" T FOFD (1) dt) 1y
v
— / (A —m)" ! FOFD () Eyd

= (A =m)" " F () (1 — By) dX

and

" < /A N (t — M)™ fn+ D (1) dt) dE)
— </AM (t — M) oD () dt) IoN )

M
- / (A = M)™ f+D (X)) Eyd

m—0

m—0

_ /M ()\ B M)n+1 f(n+1) ()\) E)\CD\

m—0

and the representatign (9.8) is thus obtained.
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REMARK 9.1. Let A be a positive selfadjoint operator in the Hilbert spd€ewith the
spectrumSp (A) C [m, M] for some positive real numbefs < m < M and{E,}, be its
spectral family. Then, for > 1, we have the equality

(9.112) InA=[Inl(m,M)] 1H+M£m
X kz:; m [(A —mly) T ()R (M1 — A)’““} Ak
1
TS ICESY

X UM (A =m)" (1 — Ey) + (A — M) By A‘”‘ld/\] ,

m—0

wherel (m, M) is the identric mean and is defined by

1/(M—m)
1 (MM> if M 4 m:

e \ mm

I(m,M) =
Mif M =m.
REMARK 9.2. If we introduce the exponential mean by

exp M —expm ; .
— M—m |f M # m;

E(m,M){ f
Mif M =m

and applying the identity (9].6) for the exponential function, we have

bt M i m ; (k i 1)! [(MlH - A)k+1 + (_1)k (A— mlH)kH}]

(9.12) xexpA—E(m,M)lyg

- (M _(77_1)12; 1) /0 [O‘ - m)n+1 (1g — E\) + (A — ]\4)”+1 E,\} ed\

where A is a selfadjoint operator in the Hilbert spaflewith the spectruntp (A) C [m, M|
for some real numbers < M and{E,}, is its spectral family.

9.2. Error Bounds for (™ of Bounded Variation. From the identity[(96), we define for
anyxr,y € H

(9.13) T, (A,m,M;z,y)

n

1 1
=W zy) + 57— (k+1)!

k=1

x |1 = 79 (A) ) + ()8 (A= ) P9 () 2,y )|

(5 [ F0at)

We have the following result concerning bounds for the absolute valiig(©f, m, M; x, y)
when then-th derivativef™ is of bounded variation:
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THEOREM 9.4 (Dragomir, 2010,9]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrunbp (A) C [m, M| for some real numbers: < M, {E,}, be its spectral
family, I be a closed subinterval dr with [m, M| C I and letn be an integer with > 1.

1. If f : I — Cis such that the:-th derivativef™ is of bounded variation on the interval
[m, M], then we have the inequalities

(9.14) T, (A,m, M;z,y)]
M
= (M — 1)! \/ SERD)
m—0
A M
"H‘l n+1
X s | \V (F) + @z =0\ (f
m A
—(M—m )" V v (M —m)" v (n)
S ] nyo(<E<.)x,y> \n{ S—n+1)' \n{(f ) ] 1y

foranyz,y € H.

2. If f : I — Cis such that thex-th derivativef(™ is Lipschitzian with the constadt, > 0
on the intervalm, M], then we have the inequalities

Ly (M —m)™™ "

(9.15) T, (A, m, M x,y)| < T2 v <<E(.)x, y>)
L, (M —m)"*
g Dl

foranyzx,y € H.

3. If f : I — R is such that the:-th derivative f is monotonic nondecreasing on the
interval [m, M|, then we have the inequalities

(9.16) T, (A, m, M 2,y)|

1 M
== m)( n+1'\/0 ({Ee )

% max [f(") (\) (O‘ _ m)n+1 - (M - )\)”ﬂ)

A€[m,M]
(n : e m)"
+1) L " (t) dt /m<t )" f (t)dt”
1 n+1 n n
: (M — m)(n+1)'xe[mM1 [(A=m)"™ [ (0) = £ (m)]

=N [ 00 = F ]V ((

n+1 n\/ ((Eoa,y)) [f™ (M) = £ (m)]
< % 7 (04) = 5 m)] ey

foranyz,y € H.
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PROOF. 1. By the identity[(9.]7) we have for anyy € H that

1 MO (/ Yty (f ) d(Ere.)

+ /m M ( A - ayta (s <t>)) d <Ewy>} -

It is well known that ifp : [a,b] — C is a continuous function; : [a, b] — C is of bounded

variation then the Riemann-Stieltjes integfélp (t) dv (t) exists and the following inequality
holds

(9.18)

/abp<t>dv<t>\<max\ ()'\i/(”)’

tela,b]

where\/ (v) denotes the total variation ofon [a, ] .

Takilng the modulus irf (9.17) and utilizing the prope[ty (9.18), we have successively that

(9.19) T, (A.m, M, y)|
1
T —m) (n+ 1)
)\

X

) { )™ (7 (1)

+/AM(t— M) d (f(”())} <Eﬂ”y>‘

M

1
S —m)m+ 1) \/0
/\ M
x /\g[lﬁ)]%/[ : n+1 f(n) (t)) +/)\ (t . M>n+1 d (f(n) (t))‘

foranyz,y € H.
By the same property (9.[L8) we have foE (m, M) that

/A(t—m)"ﬂd(f(") (t))’ < max (t—m ”H\:{

m te[m)\

A
and
M M
t— M) d (F™ @1)] < £y (m)
/A ( A M) < max (M \/ £

M
A

AJMAA Vol. 17(2020), No. 1, Art. 1, 319 pp. AIMAA


https://ajmaa.org

226 S. S. IRAGOMIR

which produce the inequality

/A<t— m)™d (£ (1) + /AMu— M) d (f(”())‘

m

(9.20)

M

n+1 \/ (M — )\)n+1 \/ (f(n)) )

A

Taking the maximum ovex € [m, M] in (9.20) and utilizing[(9.1]9) we deduce the first inequal-
ity in (9.14).

Now observe that

A
A—m)" N/ (F0) (=2 (1)

< max {(A — m)™ (M — )x)"“}

(f(n)) + \A? (f(n))]

< s <> > <X

= max {(\ — m)" (M - )‘)nH} (f(n)>

: <]

1 m + M n+l1 M .
giving that
A M
)\ n+1 M )\ n+1
B [ V(o Vs

< (M —m)"\/ (f™)

m

and the second inequality in (9]14) is proved.

The last part of[(9.14) follows by the Total Variation Schwarz’s inequality and we omit the
details.

2. Now, recall that ifp : [a,b] — C is a Riemann integrable function and [a,b] — C is
Lipschitzian with the constart > 0, i.e.,

[f (s) = f(#)] < L|s —t| foranyt, s € [a, 0],

then the Riemann-Stieltjes integrﬁjp (t) dv (t) exists and the following inequality holds

/abpos)dv(t)‘ <t [ bl

By the property[(9.21) we have fare (m, M) that

/A (t=m)"d (F (t))' <L, /A (t—m)"™ " d(t) = 22 (A —m)™*?

(9.21)

m m n -+ 2

and

/AM(t_ My d (f(n“)‘SLn/AM(M—t)ant: (M — )2,

n+2
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By the inequality[(9.19) we then have

(9.22) T, (A, m, M: 2, )]
< gV, (o)
e (g O ey
- Ll ;)’0 S} (i) < 22 ;;’?nﬂ Il Iyl

for anyz,y € H and the inequality{ (9.15) is proved.
3. Further, from the theory of Riemann-Stieltjes integral it is also well known that if
la,b] — C is continuous andz la, b] — R is monotonic nondecreasing, then the Riemann-

Stieltjes integralgffp(t t) and f lp (t)| dv (t) exist and

b b
(0.23) /pu)dv(t)'s/ Ip (O] do (t) < max [p (5] [0 (6) — v (a)] .

t€(a,b]

On making use of (9.23) we have

(9.24) / (t —m)™d ( ’ / m)™ L d (£ (1)
m)" [ (N) = £ (m)]

and

©25)  |[ w-aya( (t))‘g |-t )

< (M = A" (M) = f (V)]

forany\ € (m, M).
Integrating by parts in the Riemann-Stieltjes integral, we also have

A
/ (t = m)"d (™ (1))

— =) ) = () [ ) £ e

and
/A (M — 6 d (5 (1))
—(n+1) / O (@)t — (M = ) ()

forany\ € (m, M).

AJMAA Vol. 17(2020), No. 1, Art. 1, 319 pp. AIMAA


https://ajmaa.org

228 S. S. IRAGOMIR

Therefore, by adding (9.24) with (9]25) we get

/7:@— )™ d (f(”())‘ (t— My (f(”)())‘

< [F ) (A =m)™ — A"

+(n+1)MM(M—t /njt— o )dt}

< (A =m)" T (A) = O (m)] + (M = N[ (M) — £ (V)]

M

forany\ € (m, M).
Now, on making use of the inequalify (9]19) we dedlice (9.i6).

REMARK 9.3. If we use the inequality (9.]14) for the functibn then we get the inequality

(9.26) | Ln (A, m, M2, y)]

1 M
= (M —m)n(n+1) \/ (Eoz,y))

+(M =)

>\ _ TL+1
X max} {( m) pXge

Aem,M

m
(M —m)™ (M —mn)
= n(n+1) Mmm» \/ <E( v y>

)
QI —m)" (" = ")

m—0

[l i

foranyx,y € H, where
(9.27) Ly (A,;m, M;z,y)
= <11’1A.CC7y> - [ln[<m7M)] <3§',y>
J R 1
M —m £ k(k+1)

X [<(A — ) ARy y> L <(M1H — A A, y>} .

If we use the inequality (9.15) for the functidmwe get the following bound as well

(9.28) L (A,m, M; 2,y)]

1 M n+l M
S(n~|—1)(n+2) (E_l) \/ ((Boyz9))

m—0

1 M n+1
< rrorz (1) lellol

foranyz,y € H.
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REMARK 9.4. If we define

(9.29) E, (A,m, M;z,y)

1
= 1
<[ H+M—m

X kZ:; ﬁ [(MlH — A" 4 (—DF A - mlH)kH} exp A
— E(m, M) (z,y),

)

then by the inequality (9.14) we have

(9-30) | (A, m, Mz, y))|

1 M

= (M —m) (n+1)! \/ ((Eyz.y))

x max [(A— m)" (e —e™) + (M- A (e — )]

AE[m,M]
< Gmr V (Boma)) (- en)
_%%i%ﬁwM—wﬂwwm

foranyz,y € H.
If we use the inequality (9.15) for the functierp we get the following bound as well

€M (M - m>n+1 M

M . n+1
< o el ol

foranyz,y € H.

9.3. Error Bounds for f(™ Absolutely Continuous. We consider the Lebesgue norms
defined by

19lljq,01,00 := €55 sup |g ()| if g € Loo [a, 0]
tela,b]

and

b 1/p
rmmmfz(/ﬁg@Vﬁ> fgeL,ab.p>1.

THEOREM 9.5 (Dragomir, 2010,d]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrunbp (A) C [m, M| for some real numbers: < M, {E,}, be its spectral

family, I be a closed subinterval d with [m, M] c I and letn be an integer with > 1. If
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then-th derivativef(™ is absolutely continuous dm, M|, then

(9.32) |T,, (A, m, M;x,y)]
1
m) (n+1)!

<
<or-
X (A =m)" " (1g — B\ 2, y) + (A= M)" T (Exa, )| | £ (V)] A

m—0

1
<
(M —m)(n+1)!
( Bn,l (A7m7 M;Q?,y) Hf(n)H[m,M],oo if f(n)e Lo [maM] )

x { Buy (Am, My, y) [|fO] oy i F0€ Lyfm, M), p > 1.24+1=1,

Bn,oo (Aam> M;Jf,y) Hf(n

\ Mim a1

foranyx,y € H, where

Bn,p (Aa m, M; z, y)

o 1/p
= (/ » (A =m)" (1 = Ex)a,y) + (A= M)" (Bxa, )| d)‘> P21

and

Bn,oo <A7 m, Ma z, y)

= s[.up | (A =m)"" {1y — B\ z,y) + (A — M) (Bxa,y)| -
telm,M

PROOF Follows from the representation

T, (A, m,M;x,y)

_ (="
“ (M —m)(n+ 1)
<] (A =m)"™ ™ (1 = BEx) z,y) + (A= M) (Exa, )] £ () dA

foranyx,y € H, by taking the modulus and utilizing the Hélder integral inequality.
The details are omitteds

The bounds provided big,, , (A, m, M;z,y) are not useful for applications, therefore we
will establish in the following some simpler, however coarser bounds.

PROPOSITION9.6 (Dragomir, 2010,g]). With the above notations, we have
(9.33) By oo (A;m, M, y) < (M —m)™ ]| [lyll,

C)

. : < - 7
(9 34) Bn,l (Aa m, M7 x, y) = (n + 2) 2n+1

(M —m)"™™ ||| |yl
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and forp > 1
(9.35) By (A,m, M;x,y)
(2(n+1)p+1 o 1)1/17

< _mn+1+1/p|x y
B [(n+1)p+1]1/p( ) [z lyl

foranyz,y € H.
PrRoOOF Utilising the triangle inequality for the modulus we have
(936)  |(A—m)"" ((Ly — Ba)w,y) + (A= M)" By, )|
<A =m)"" (g = Bz y)| + (M =N [(Exe, y)]
< max {(A=m)"" (M =N} (e = Ex) 2,9)| + [(Baz, )]

foranyz,y € H.
Utilising the generalization of Schwarz’s inequality for nonnegative selfadjoint operators
we have

((Lr = Bx) 2, 9)| < (1 — Bx) 2, 2)"* (ly — Ex) g, )"
and
(Exz,y)| < (Bxz, ) (Byy,p)'*
foranyz,y € H and\ € [m, M].
Further, by making use of the elementary inequality
ac + bd < (a2 +b2)1/2 (02+d2)1/2,a,b,c,d >0
we have
(9.37) (e = Ex) z,y)| + [(Exz, )|
< ((ly = B\, 2) " ((Ly = B yoy)' ™ + (Bxa, )2 (Bag, ) 'V?
< (g = Bx) z,2) + (Bxe, 2))* ({(1u — Ex) y,9) + (Exy,y) '
= |zl |yl
foranyz,y € H and\ € [m, M].
Combining [9.3p) with[(9.37) we deduce that
(9.38) (A =m)"™ ™ (1 = B 2, y) + (A= M)"" (Exa, )|
< max {(A = m)"", (M = 2"} ] |1yl
foranyz,y € H and\ € [m, M].

Taking the supremum over € [m, M] in (9.38) we deduce the inequali 33).
Now, if we take the power > 1 in (9.38) and integrate, then we get

(9.39) / (A =m)" " {((1y = Ex) 2, y) + (A= M)" (Exa, )| dA

m—0
M ) )
< [l=||" ||y||’“/ max{(,\_m)(n+ (M — N )r}d)\

M+m M

T = )T g /

(2(n+1)r+1 o 1)
[+ 1) r 1] 20r

= ll=lI" [lylI

()\ . m)(n+1)T d)\]

n+1)r+1 T r
(M = m) " iz )"y
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foranyz,y € H.
Utilizing (9.39) forr = 1 we deduce the bounfl (9]34). Also, by making= p and then
taking the powei /p, we deduce the last inequali 3%).

The following result provides refinements of the inequalities in Propositign 9.6:
PROPOSITION9.7 (Dragomir, 2010,g]). With the above notations, we have
(9.40) Byoo (A,m, M; 2, y)
<yl

x max |\ —m)*™Y (1y — By z,2) + (M — N (B, x>]

AE[m,M]

1/2

< (M —m)" " lz| Iyl

(941) Bn,l (A7 m, Ma xZ, y)
< Il

X / [()\ — m)Z(n+1) <(1H _ EA) T, x) + (M _ )\)Q(n+1) <E>\SL’, $>] 1/2 "

m—0
< B = el )
and forp > 1
(9.42) B, ,(A,m,M;x,y)
< |yl

x (/M [(A — 2 (1, — Bz ) + (M — A2 (B, x>]p/2 dA) U

m—0

(2(n+l)p+1 . 1)1/p
<
Tt (n 4 1)p 4 1]V7

foranyz,y € H.

n+1+1
(M = m)"™ V2 ]| [y

PrRoOOF Utilising the Schwarz inequality i/, we have
(9.43) (A =m)"™ (1y — Ex)z + (A= M)""! Exa, )]
<yl |A =m)" (1 = Bx) & + (A = M)"" Exa|

foranyz,y € H.
SinceF), are projectors for eack € [m, M|, then we have

(9.44) [ = m)™ (g — Ex) &+ (A = M) Eye|”
= (A =m)*"V|(1y — By 2
+2A=m)" (A= M) Re (15 — E)) z, Exx)
+ (M = )"V || Exe|?
= (A=m)*™ V) (1y — By al* + (M = )™ | By
= A =m)*" V(1 — B\ z,z) + (M — )" (B2, 2)
<l max { (0 = )0 (b — 020 )
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foranyz,y € H and\ € [m, M].
On making use of (9.43) and (9144) we obtain the following refinement of|(9.38)

(9.45) (A =m)"™ (1g — BEx)x + (A — M) Eya,y)|

<l [ A= m) (1 — By a) + (M = 2D (B )]

< max {()\ — m)n+1 (M — )\)nH} [ vl

foranyz,y € H and\ € [m, M].
The proof now follows the lines of the proof from Proposition 9.6 and we omit the degails.

REMARK 9.5. One can apply Theorejn P.5 and Proposifion 9.6 for particular functions
including the exponential and logarithmic function. However the details are left to the interested
reader.
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CHAPTER 5

Inequalities of Trapezoidal Type

1. INTRODUCTION

From a complementary viewpoint to Ostrowski/mid-point inequalities, trapezoidal type in-
equality provide a priory error bounds in approximating the Riemann integral by a (generalized)
trapezoidal formula.

Just like in the case of Ostrowski’s inequality the development of these kind of results have
registered a sharp growth in the last decade with more than 50 papers published, as one can
easily asses this by performing a search with the key word "trapezoid” and "inequality” in the
title of the papers reviewed by MathSciNet data base of the American Mathematical Society.

Numerous extensions, generalisations in both the integral and discrete case have been dis-
covered. More general versions feitime differentiable functions, the corresponding versions
on time scales, for vector valued functions or multiple integrals have been established as well.
Numerous applications in Numerical Analysis, Probability Theory and other fields have been
also given.

In the present chapter we present some recent results obtained by the author in extending
trapezoidal type inequality in various directions for continuous functions of selfadjoint opera-
tors in complex Hilbert spaces. As far as we know, the obtained results are new with no previous
similar results ever obtained in the literature.

Applications for some elementary functions of operators such as the power function, the
logarithmic and exponential functions are provided as well.

2. SCALAR TRAPEZOIDAL TYPE INEQUALITIES

In Classical Analysis trapezoidal type inequalitis an inequality that provides upper and/or
lower bounds for the quantity

P IO - [ wyae

that is the error in approximating the integral by a trapezoidal rule, for various classes of inte-
grable functionsf defined on the compact intervial b] .

In order to introduce the reader to some of the well known results and prepare the back-
ground for considering a similar problem for functions of selfadjoint operators in Hilbert spaces,
we mention the following inequalities.

The case of functions of bounded variation was obtaine@]i(see alsol, p. 68]):

THEOREM2.1. Let f : [a,b] — C be a function of bounded variation. We have the inequal-

ity
/ f(t)dt—w(b—a)

where\/z (f) denotes the total variation of on the intervalla, b]. The constant is the best
possible one.

(2.1)

<S0-a)\ (),

236
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This result may be improved if one assumes the monotonicity a$ follows (seel, p.
76]):

THEOREM2.2. Let f : [a,b] — R be a monotonic nondecreasing function|anb]. Then
we have the inequalitieS'

)+f()

(2.2) t)dt — (b—a)

(b_a)[f(b)—f(a)]—/sgn(t— 5 >f(t)dt
<5 b=a)[f ()~ f(a)].

The above inequalities are sharp.

— N

If the mapping is Lipschitzian, then the following result holds as wWéjll(fee alsoll, p.
82]).

THEOREM2.3. Let f : [a,b] — C be anL—Lipschitzian function offu, b] , i.e., f satisfies
the condition:

(L) |f(s)— f(t)] < L|s—t| forany s,t e [a,b] (L > 0isgiven).
Then we have the inequality:

/f dt— (a) + f<>(b—a)§
The constant is best in[(2.B).

If we would assume absolute continuity for the functifrthen the following estimates in
terms of the Lebesgue norms of the derivativéold [1, p. 93].

(2.3) (b—a)’ L.

1
4

THEOREM2.4. Let f : [a,b] — C be an absolutely continuous function @nb]. Then we

have
(2.4) /bf(t)dt—w(b—a)
RGORTIN € Lot
<l L), i e L,
2(qg+ 1)
p>1, %%—%: 1;
1
| 50— lfl,.

where||-||, (p € [1, 00]) are the Lebesgue norms, i.e.,

1/l = €ess sup [ (s)]

s€(a,b]

b .
1] = (/ |f'<s>|ds) Cpsl

The case of convex functions is as followd$: [

and
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THEOREM2.5. Let f : [a,b] — R be a convex function dn, b] . Then we have the inequal-
ities

() ()

Sf()—;f o- [ s

<3 (b— a)* [f (b) = [ (a)] .
The constant is sharp in both sides of (3.5).

For other scalar trapezoidal type inequalities, d¢e [

3. TRAPEZOIDAL VECTOR INEQUALITIES

3.1. Some General ResultsWith the notations introduced above, we consider in this pa-
per the problem of bounding the error

f (M) + f(m)
2

’ <fL’,y> - <f (A) .I',y>

in approximating(f (A) z, y) by the trapezoidal type formulﬁw (z,y) , wherez, y are
vectors in the Hilbert spac#, f is a continuous functions of the selfadjoint operatowith
the spectrum in the compact interval of real numbers) | . Applications for some particular
elementary functions are also provided. The following result holds:

THEOREM 3.1 (Dragomir, 2010/4]). Let A be a selfadjoint operator in the Hilbert space
H with the spectruntp (A) C [m, M] for some real numbers: < M and let{E)}, be its
spectral family. Iff : [m, M] — C is a continuous function of bounded variation fon, M,
then we have the inequality

o) VM@;HM

wmw—ummwﬁ

1 1/2 1/2
< E E
< g Dax [( P K VN TR T)

(L = By, o) (g = Ba yo) |\ ()

§wwmv

—_

foranyz,y € H.

PROOF If f,u : [m, M] — C are such that the Riemann-Stieltjes integﬁlﬁlf (t)du(t)
exists, then a simple integration by parts reveals the identity

32) [ 1w =0 O )
—/[ww—“@gu@ i (1
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If we write the identity [(3.R) for (\) = (E\z, ) , then we get

[ ot =IO )
- [ (B - 5w ) ar o)
which gives the following identity of interest in itself
33) POETOD o) — (7 (A) )
1 M
5| (B + (B =1 el ).

foranyz,y € H.

It is well known that ifp : [a,b] — C is a continuous function and : [a,b] — C is of
bounded variation, then the Riemann-Stieltjes integ"fq} (t) dv (t) exists and the following
inequality holds

b

[ rran| < maxipe1V

T t€[a,b]

(3.4)

b
Where\/ (v) denotes the total variation ofon [a, b] .
Utiliging the property[(3J4), we have frorn (B.3) that

- Lm e 00

(e9) — (F (A) x,y>]

<2 max [(Baz,y) + (Br— 1) 2.0) |\ (F)

2 Ae[m, M) m

< L [ max [[(Ehz,y)| + [{(1g —Ex)x,yw \/(f)

2 | xe[m,M]

If P is a nonnegative operator di, i.e., (Px,z) > 0 for anyx € H, then the following
inequality is a generalization of the Schwarz inequality in the Hilbert sphce

(3.6) [(Px,y)|* < (Pz,x) (Py,y),

foranyz,y € H.
On applying the inequality (3.6) we have

(Exz,y)| < (Exz, z)"? (Exy, y)'/?

and
((tu = Ex) . y)] < ((ln = B2, 2)"* (L = BNy y)'"?,
which, together with the elementary inequality tob, ¢, d > 0

ab+cd < (a®+ ) (0 + d?)"?
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produce the inequalities

(Bxe,y)| + (L — Ex) 2, 9)]
< (Bxa,2)"? (Byy, )" + ((ly — Bx) 2, 2) (g — Ex) y )
< ({(Baz,z) + (1 — Bx) 2,2)) ((Bay,y) + {1y — Ex) 9, )

= |l Iyl

(3.7)

foranyz,y € H.
On utilizing (3.5) and taking the maximum in (B.7) we deduce the desired rgsult §3.1).

The case of Lipschitzian functions may be useful for applications:

THEOREM 3.2 (Dragomir, 2010,9]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrunfp (A) C [m, M] for some real numbers: < M and let{E,}, be its
spectral family. Iff : [m, M] — C is Lipschitzian with the constatt > 0 on[m, M], then we
have the inequality

(3.8)

’f(M)Jrf(m)

ey = 4 ()

M
<ot [ (B (B
0

m—

DN —

Ln = Bx)a.a)' (Ln = Ba)y.y) 72 d

_|_

(M —m) L[] ly

L\DI}—t

foranyz,y € H.

PROOF It is well known that ifp : [a,b] — C is a Riemann integrable function and:
la, b] — C is Lipschitzian with the constarit > 0, i.e.,

If(s)— f ()| < L|s—t| foranyt,s € [a,b],

then the Riemann-Stieltjes integrﬁjp (t) dv (t) exists and the following inequality holds

/a”p@dw)’ SL/ab!p(t)ldt-

Now, on applying this property of the Riemann-Stieltjes integral, we have from the repre-
sentation[(3J3) that

39 R L]
g%L/mO (Bxz,y) + (Bs — 1) 2, y)| A,
<5l B )+ (= B )

foranyz,y € H.
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Further, integrating (3]7) o, M| we have

(3.10) / (Exz, )| + (L — Ex) 2, y)]] dA

m—0

M
<[ [ B
0

m—

+((Ln = Bx) 2. 2)' (Ln = Bn) )2 da
< (M —m)[lz]| [yl
which together with[(3]9) produces the desired re§uli (28).

3.2. Other Trapezoidal Vector Inequalities. The following result provides a different per-
spective in bounding the error in the trapezoidal approximation:

THEOREM 3.3 (Dragomir, 2010/4]). Let A be a selfadjoint operator in the Hilbert space
H with the spectruntp (A) C [m, M] for some real numbers: < M and let{£,}, be its
spectral family. Assume thdt: [m, M] — C is a continuous function ofim, M]. Then we
have the inequalities

f (M) + f(m)
2

(3.11) evy) — (7 (A) x,y>\

(

maxefmar) [(Ext — 3z,y)| \/ (f) if f is of bounded variation

<9
L o [(Bxa — 2z, )| dA if fis L Lipschitzian
L, |<EA:1: sx)| df (V) if fis nondecreasing
(M
\ (f) if f is of bounded variation
1 m
5 =l Iyl o
=3 L(M —m) if fis L Lipschitzian
| (f (M) — f(m)) if fisnondecreasing

foranyz,y € H.

PrRoOF From [3.5) we have that

(3.12) ‘f TN ey~ (5 () :U,@/>‘

<1 max. ]<E>\w y) + <(E)\_1H)$ay>‘\/<f)

— 2 xelm
M
<E,\x — —3: y> \/

m

= max
AE[m,M]

foranyz,y € H.
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Utilising the Schwarz inequality ilf and the fact that,, are projectors we have succes-
sively

(3.13) ’<E)\£L‘— %:c y>’ ’
1/2

1
= (B Br) = (Brw) + 1 1olP| ol

1
Ext — gz |lyll

1
= 5 Izl ly]

for anyz,y € H, which proves the first branch ip (3]11).

The second inequality follows fror (3.9).

From the theory of Riemann-Stieltjes integral is well known that if [a,b] — C is of
bounded variation and : [a,b] — R IS continuous and monotonic nondecreasing, then the

Riemann-Stieltjes integra[/éabp( andf Ip (t)| dv (t) exist and

/apos)dv(t)'s/a p ()] dv (1)

From the representation (8.3) we then have

’f(m)+f(M)
2

(3.14)

(3.15) o) = {f <A>x7y>]

< % /m By + (By = ) )l df ()

:/mﬂi <EAa:—%x,y>‘df(>\)

foranyz,y € H, from which we obtain the last branch [n (3] 11).

We recall that a functiorf : [a,b] — C is calledr — H-Holder continuous with fixed
€ (0,1] andH > 0 if

£ (#) = f(s)] < H [t —s|" foranyt, s € [a,0].
We have the following result concerning this class of functions.

THEOREM 3.4 (Dragomir, 2010/4]). Let A be a selfadjoint operator in the Hilbert space
H with the spectruntp (A) C [m, M] for some real numbers: < M and let{E,}, be its
spectral family. Iff : [m, M| — Cisr — H-Holder continuous orm, M|, then we have the
inequality

.16) HETED o = (5 () )
< HO1 = V(B
< S H(M = m) o] ]

foranyz,y € H.
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PROOF We start with the equality

(317) FODZT o) — (7 (4)2.0)
- [ R ] ama)

foranyz,y € H, that follows from the spectral representation theorem.
Since the functior{ £z, y) is of bounded variation for any vectety € H, by applying
the inequality[(3.4) we conclude that

(3.18) ’f(m) J; S (M) @, y) = (f (A)x,y>‘
S e et AL AVACE=REn)

foranyz,y € H.
As f : [m, M] — Cisr — H-Holder continuous ofin, M], then we have

ao) (LR | < i an) - 701+ 17 ) - £ ()
< SHIOM =)+ (= m)

forany\ € [m, M].
Since, obviously, the functiog,. (\) := (M — )" + (A —m)" ,r € (0,1) has the property
that

m+ M
7')\ — Jr
Ag[ﬁ%g() g( 5

then by [3.1B) we deduce the first part[of (3.16).
The last part follows by the Total Variation Schwarz’s inequality and we omit the degails.

) =2 r -y,

3.3. Applications for Some Particular Functions. It is obvious that the results estab-
lished above can be applied for various particular functions of selfadjoint operators. We restrict
ourselves here to only two examples, namely the logarithm and the power functions.

1. If we consider the logarithmic functiofi : (0,00) — R, f (¢) = Int, then we can state
the following result:

PROPOSITION3.5. Let A be a selfadjoint operator in the Hilbert spaééwith the spectrum
Sp (A) C [m, M] for some real numbers with< m < M and let{ £ } , be its spectral family.
Then for anyr, y € H we have

(3.20) )(x,y) InvmM — (1nAx,y>‘

3 MAXxem, M) [<EA9€> o) (Exy, )"

< (M) b = B (= B

MAaX\¢[m, M] ‘<E>\x - %$7y>‘

1 M
< 5 lelllyim (31 )

AJMAA Vol. 17(2020), No. 1, Art. 1, 319 pp. AIMAA


https://ajmaa.org

244 S. S. IRAGOMIR

and
(3.21) )(x,y> InvmM — (lnAx,y>‘
I [(Bae ) By, )
<L) = By e ) (- B yy) ]
m
KE)\.% — 3, y>’ d\
M

<3 ||:1c|| Iyl { — -1

and

M
(3.22) ’(x,y) InvmM — (lnA:v,y)‘ < / <E)\£L' — %x,y>‘ A td
m—0

1 M
3 el ()
respectively.

The proof is obvious from Theorems B[ 1,]3.2 3.3 applied for the logarithmic function.
The details are omitted.

2. Consider now the power functigh: (0,00) — R, f (t) = t? withp € (—o00,0)U(0, o) .
In the case whep € (0, 1), the function isp — H-Hdlder continuous withH = 1 on any
subintervalm, M] of [0, co). By making use of Theorefn 3.4 we can state the following result:

IN

PROPOSITION3.6. Let A be a selfadjoint operator in the Hilbert spaéewith the spectrum
Sp (A) C [m, M] for some real numbers with< m < M and let{ £, } , be its spectral family.
Then forp € (0,1) we have

mP + MP

(3.23) 5

(o) — <Apx,y>]

M
mP \/ ((Eyz,v))
m—0

S (M —m)” ||z[ [yl

[\>|H w|,_

foranyz,y € H.
The case of powers > 1 is embodied in the following:

PROPOSITION3.7. Let A be a selfadjoint operator in the Hilbert spaéewith the spectrum
Sp (A) C [m, M] for some real numbers with< m < M and let{ E\ }, be its spectral family.
Then forp > 1 and for anyx, y € H we have

mP + MP
— - {z,y) — (APz,y)

(3.24) 5

3 MAXAem, M) [<E,\$, ) (Exy,p)'"?

< (MP—m?) x4 (= B)a,2)* (1y = Ex) y,p)"?

MaX\e[m, M] ’<E>\x - %x’y>|

_1
< gzl lyll (M7 = m?)
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and
mP + MP
@25 [T ) - ()
LI [(Bxe, ) (Bxy, )
< pMPt x {1y — By 2, 2)? (1 — Ex) g, y) ] dA
Jonio [(Bxe = 3z, )| dA
1 _
< Sollel ol 2!
and
P )P M 1
(3.26) % (x,y) — <Apx,y)‘ Sp/ <Ew — ix,y> Xl
m—0
1
=5 (| ly[| (MP — m?”)

respectively.

The proof is obvious from Theorerms B[1,]3.2 3.3 applied for the power fungtion
(0,00) — R, f(t) = t? with p > 1. The details are omitted.
The case of negative powers is similar. The details are left to the interested reader.

4. GENERALISED TRAPEZOIDAL INEQUALITIES

4.1. Some Vector Inequalities.In the present section we are interested in providing error
bounds for approximatingf (A) x, y) with the quantity

(4.1) M;_m f (m) (M (z,y) — (A, y)) + [ (M) ((Az, y) —m (z,y))]

wherez,y € H, which is a generalized trapezoid formula. Applications for some particular
functions are provided as well. The following representation is of interest in itself and will be
useful in deriving our inequalities later as well:

LEMMA 4.1 (Dragomir, 2010,[d]). Let A be a selfadjoint operator in the Hilbert space
H with the spectruntp (A) C [m, M] for some real numbers: < M and let{E,}, be its
spectral family. Iff : [m, M] — C is a continuous function ofm, M], then we have the
representation

<[f(m)(Mlﬂ—A)va(M)(A—mlH)
M—-—m

(4.2)

= [ g - LED=LE [ )
= [ B - g [ B as] ar @

foranyz,y € H.
PROOF Integrating by parts and utilizing the spectral representation theorem we have

/ (Bua,y) df (8) = £ (M) (0,9) — [ F(8)d (Bur,y)

m—0 m—0

= [ (M) (z,y) = (f (A)z,y)
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and

foranyz,y € H.

Therefore
| (Badr - (B
= J (M) ) (7 (A) 2,5} ]‘j}‘j; )<M<xy> (A1)
= e L7 ) (M () — (A ) + £ (M) (A, ) = m o, )
~(f (A zy)

for anyz,y € H, which proves the first equality in (4.2).
The second equality is obvious.

The following result provides error bounds in approximatjfigA) =, y) by the generalized
trapezoidal rule[(4]1):

THEOREM4.2 (Dragomir, 2010/d]). Let A be a selfadjoint operator in the Hilbert space
H with the spectruntp (A) C [m, M| for some real numbers: < M and let{E\}, be its
spectral family.

1. If f : [m, M] — Cis of bounded variation ofin, M|, then

(4.3) ‘<{f<m> (M1y — A) t{n(M> (A_mlH)} x’y> _ (f(A)x,y)‘
< o L2 (Emal) + 3=V (Eoma)| VO

M
<V (Boz) V() < =l vl ()

foranyz,y € H.
2. If f : [m, M| — C s Lipschitzian with the constadt > 0 on [m, M|, then

(4.4) ’< [f () (M1 = )+ () (4~ m1H>]

2) =4 (A) )

<" [ TV (B 4 =V (B

m m—0
M
m) \/ ((Ez,y)) < LM —m) |z |y
m—0

foranyz,y € H.
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3. If f : [m, M] — R is monotonic nondecreasing ¢m, M|, then

) (M1lg —A)+ [ (M) (A—mlg) B -
@5 M R DR
g/m [;4 ”;yo (B, y)) ]/\‘j_‘;\t/(@(.)x,w)] df (t)

< \/ ) [f (M) = f(m)] < |zl Iyl [f (M) = f (m)]

m—

foranyz,y € H.

PROOF It is well known that ifp : [a,b] — C is a bounded function; : [a,b] — C is of
bounded variation and the Riemann-Stieltjes integ”fqb (t)dv (t) exists, then the following
inequality holds
b

b
[ r@ra0w)] < s @1V o),

t€la,b]

(4.6)

Where\/ (v) denotes the total variation ofon [a, ] .

Appalying this property to the equality (4.2), we have
@.7) ’<[f(m)(M1H_A)+f(M)(A_m1H}x7y> '

M—-—m
M
V()

M
< sup ‘ Ex,y / (Esx,y)ds
te[m,M] < ! > M —m

foranyz,y € H.
Now, a simple integration by parts in the Riemann-Stieltjes integral reveals the following
equality of interest

(4.8) <Et9€ y

v m/ (Esz,y)yd
1 M
e L LR / (s M) d (E.r.y)
that holds for any € [m, M| and for anyz,y € H.

Since the function (s) := (FE,x,y) is of bounded variation ofm, M| for anyz,y € H,
then on applying the inequalitm 6) once more, we get

(4.9) ‘(Etxy o / (B, d
M {/mo Easy)'+/ (s—M)d(Esx,y>H
< V(B LY

that holds for any € [m, M| and for anyz,y € H.
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Now, taking the supremum if (4.9) and taking into account that

V (o) (Borh) </ (B

for anyt € [m, M] and for anyz, y € H, we deduce the first and the second inequality in| (4.3).
The last part of[(4]3) follows by the Total Variation Schwarz’s inequality and we omit the
details.
Now, recall that ifp : [a,b] — C is a Riemann integrable function and: [a,b] — C is
Lipschitzian with the constart > 0, i.e.,

[f (s) = f @) < Ls —t| foranyt,s € [a,b],
then the Riemann-Stieltjes integrﬁjp (t) dv (t) exists and the following inequality holds

/abp@)dv(t)] <t [l

Now, on applying this property of the Riemann-Stieltjes integral, we have from the repre-
sentation[(4.]2) that

oy |([Hm R = P EDEZ ] o))
<t g - g [ s a

foranyz,y € H.
Further on, by utilizing[(4]8) we can state that
M 1 M
/ <Et:v7 y) VS <ES'I’ y> ds|dt
m—0
<

M—-—m /.

L) e+

< [ [V @Eom) ¢ LV (|

m—0

/tM (3—M)d<Es:c,y)H dt

M

<M -m)\/ ((Eyz,y))

m—0
for anyz,y € H, which proves the desired result (4.4).
From the theory of Riemann-Stieltjes integral it is also well known that:ifa, b — C is
of bounded variation and : [a,b] — R is continuous and monotonic nondecreasing, then the

Riemann-Stieltjes integraﬁj’p (t)dv (t) andfab Ip (t)| dv (t) exist and

b b
[ o)< [ oo,
From the representation (4.2) we then have

I S K R RY)
<L

1 M
(Byx,y) — m/m_o (Esz,y) ds|df (1)
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foranyz,y € H.

df (t)

Further on, by utilizing[(4)8) we can state that
1 M
(Eyx,y) — FL—O (Esw,y) ds

[, t
= : m / {
/mMo

/tM<s—M>d<Ea:y>de<>

(5= m)d (B +

m

V (o) + =V (om0
\A? ((Eoz,y))

m—0

| A

foranyz,y € H, which proves the desired result (4.1).

A different approach for Lipschitzian functions is incorporated in:

THEOREM4.3 (Dragomir, 2010,d]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrunfp (A) C [m, M| for some real numbers: < M and let{E,}, be its
spectral family. Iff : [m, M] — C is Lipschitzian with the constarit > 0 on [m, M|, then

(4.12) ‘< {f (m) (M1 = A) + f (M) (A - m1H>]

M —m
M
<Lyl
m—0

foranyz,y € H.

0) =47 (A) )

M
E.xds

—m Jm—o0

1
dt < 5L (M —m)|lz] |ly|

ProoFR We will use the inequality] (4.10) for which a different upper bound will be pro-
vided.
By the Schwarz inequality if we have that

(4.13) /m MO

:/M

<t [
foranyz,y € H.
On utilizing the Cauchy-Buniakovski-Schwarz integral inequality we may state that

(4.14) /m A:

1 M
(Eiz,y) — FLO (Esz,y)ds| dt

(e sl

E xds

Ey

M—m

M

1
Eiaox— —— FE.xds

dt
M —m m—0

foranyz € H.
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Observe that the following equalities of interest hold and they can be easily proved by direct
calculations

M 2
(4.15) Etx—— Egxds|| dt
M m M-—m J,.
1 ) 1 M ?
E dt — E,xd
M_m/mOH o 'M_ m—0 e
and
1 M ) 1 M ?
4.16 E dt — E,xd
@is) g [ et | [ B

! N E ! ME ds, E L dt
= r——— sTAS, byt — =
M_m m—0 K M—m m—0 t 2
foranyx € H.
Et:v——

By (@.14), [4:15) and(4:16) we get
7 E,xds

(4.17) /m]: -

19 M 1 M 1 1/2
< (M —m) / (/ <Etx “ M —m / E.xds, Eyx — §x> dt)
m—0

M

dt

m—0
foranyz € H.
On making use of the Schwarz inequalityﬁzhwe also have

M 1

(4.18) / <Et M - E xds, Eyx — §x> dt
1 o 1
Eix — E.xds|| || Bwx — =x|| dt
m— — M Jm—o 2

—||x||/ Exds|| dt,
-0

where we used the fact that are projectors, and in this case we have
2

M
Etx——
m m

1
= || Ezl|® — (Eew, ) + 1 [Edls

7 el = 7 llall
foranyt € [m, M| foranyz € H.
From [4.17) and (4.18) we get
Eirx— —

M
4.19 E d
(4.19) Aw e vds
Eirx— ——

<(M 1/2( Iz H/ Y Exds

1/2
ﬁ)
—0
which is clearly equivalent with the following inequality of interest in itself

(4.20) /m A:
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M

dt

M

Eoxd
M—m) xds

1
at < 5 2]l (M = m)
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foranyz € H.
This proves the last part df (4]19.

4.2. Applications for Particular Functions. It is obvious that the above results can be
applied for various particular functions. However, we will restrict here only to the power and
logarithmic functions.

1. Consider now the power functiofi: (0,00) — R, f (t) = t? with p # 0. On applying
Theorenj 4.3 we can state the following proposition:

PROPOSITION4.4. Let A be a selfadjoint operator in the Hilbert spaéewith the spectrum
Sp(A) C [m, M] for some real number8 < m < M and let{E,}, be its spectral family.
Then for anyr, y € H we have the inequalities

P(Mly — A MP (A —ml
(4.21) Mm (M1 = 4) + M7 (A= m H>}x,y>—<Apx,y>‘
M—m
M 1 M
<Bp Hy” . Et.CE—M—_?n m_OESZEdS dt
1
< 5By (M —m) [|z[| |y
where
Mpr—1 ifp>1
B, =px
mPl if0<p<l,m>0
and

B, = (—p)m*~'ifp < 0,m > 0.
2. The case of logarithmic function is as follows:

PROPOSITION4.5. Let A be a selfadjoint operator in the Hilbert spaééwith the spectrum
Sp(A) C [m, M] for some real number8 < m < M and let{E,}, be its spectral family.
Then for anyr, y € H we have the inequalities

4.22) ‘< [(MlH — A)ln]\n;—t(T:;l—mlH)lnM} x,y> B <lnAyc,y>‘
1 M
<ol

1 M
I E.xd
# M—m/m_o ras
<MY el
ol x .
=5\ Yy

5. MORE GENERALISED TRAPEZOIDAL INEQUALITIES

dt

5.1. Other Vector Inequalities. The following result for general continuous functions
holds:

THEOREMS5.1 (Dragomir, 2010,4]). Let A be a selfadjoint operator in the Hilbert space
H with the spectruntp (A) C [m, M] for some real numbers: < M and let{E,}, be its
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spectral family. Iff : [m, M] — R is continuous orm, M|, then we have the inequalities:

oy |([Lmane=a a0 m] )

< [maX HOES mln f ]\AZ ((Eoz,y))

te[m,M]

< [m ()~ min f()

s £(0) = i 70 el

foranyz,y € H.

PROOF We observe that, by the spectral representation theorem, we have the equality

o ([LO DTN

:/ﬁ Oy (t)d ((Eyw,y))

m—0
foranyz,y € H, where®; : [m, M| — R is given by
1
O () = = [(M = 1) f (m) + (£ =m) f (M)] = £ (1)
It is well known that ifp : [a,b] — C is a continuous function and : [a,b] — C is of

bounded variation, then the Riemann-Stieltjes integ"fqi () dv (t) exists and the following
inequality holds

b

b
[ @] < s @V o),

t€la,b]

(5.3)

Where\/ ) denotes the total variation ofon [a, b] .

Now if we denote byy := minycy, ar f (t) @nd byl := max;cm g f () then we have
v (M )S( — 1) f(m) <T(M—1),
Y(E—m) < (E—m)f(M)<T(—-m)
and
—(M=m)l' <= (M—m)f(t) <—y(M—m)
for anyt € [m, M]. If we add these three inequalities, then we get
— (M =m) ([ —7) <(M—=m)®s(t) < (M —m)(T —7)
for anyt € [m, M|, which shows that

(5.4) | ()] < T — ~ foranyt € [m, M].
On applying the inequality (5.3) for the representatm(S 2) we have (5.4) that
M
/ Qs (t)d ((Erx,y)) \/ ((Enz,y))
m—0 m—0

foranyz,y € H, which proves the first part of (5.1).
The last part of[(5]1) follows by the Total Variation Schwarz’s inequality and we omit the
details.n
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When the generating function is of bounded variation, we have the following result.

THEOREM5.2 (Dragomir, 2010,4]). Let A be a selfadjoint operator in the Hilbert space
H with the spectruntp (A) C [m, M] for some real numbers: < M and let{E,}, be its
spectral family. Iff : [m, M] — C is continuous and of bounded variation pn, M|, then we
have the inequalities:

e |(|HmR L EDEI ) i )]
M—t t t—m M M
_tg?rr?,)ﬂsl} M — m\/ M m\t/ ]nyo <E $y>
<\ (Eoz ) V() <V W) )yl

foranyz,y € H.

PrRoOE First of all, observe that

(5.6) (M —m) @y (t) = (t = M) [f (t) = f (m)] + (& = m) [f (M) = f (t)]

=(t—M)/T:df(SH(t—m)/thf(S)

for anyt € [m, M].

Therefore
) 00 < 3| [+ | e
< __;\:{(f) L‘_Z\?(ﬁ
< max{ e ];‘_Tn} [\/ () + \]? (f)]

for anyt € [m, M|, which implies that

(5.8) omax |y (1)) < max M=t \ () + Lom \/(f)]

te[m,M] tefm,M] | M —m

< T D |
S 2T M —m
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On applying the inequality (5.3) for the representat|on|(5.2) we have (5.8) that

m—0
M—t\ t—m M M
< s, ALV 0447 0)] V€
M M
<\ NV (Eyz,y))
m m—0

for anyz,y € H, which produces the desired resiilt (5.p).
The case of Lipschitzian functions is as follows:

THEOREM 5.3 (Dragomir, 2010,7]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrun®p (A) C [m, M| for some real numbers: < M and let{E\}, be its
spectral family. Iff : [m, M] — C is Lipschitzian with the constatit > 0 on [m, M|, then we
have the inequalities:

s |([HERem BN )
<\ (Bozv))
M—t t—m
< |17 (0 = )]+ 57— |7 00 - 1 0]
< S —m) L\ ((Boew) < 3 (M —m) Lz o]

foranyz,y € H.
PROOFE We have from the first part of the equalify (5.6) that

(5.10) 95 (] < ST 7 (6) = F )]+ | (M)~ £ (1)
2L 1
SM_m(M—t)(t—m)Sa(M—m)L

for anyt € [m, M], which, by a similar argument to the one from the above Thegrein 5.2,
produces the desired result (5.9). The details are omited.

The following corollary holds:

COROLLARY 5.4 (Dragomir, 2010/1]). Let A be a selfadjoint operator in the Hilbert space
H with the spectruntp (A) C [m, M] for some real numbers: < M and let{E)}, be its
spectral family. Ifl, L € R are such thatl > [ and f : [m, M] — R s (I, L) —Lipschitzian on
[m, M] , then we have the inequalities:

(5.11) ‘qf(m) (MlH_f]at{n(M) (A_mlH)} x,y> —(f(4) x,y)‘
< GO =m) (L =0\ (Bor)) < 5 (= m) (2= D) o] Iy

foranyz,y € H.
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PROOF. Follows by applying the inequalit} (3.9) to the( L — [)-Lipschitzian functionf —
5 (I + L) e, wheree (t) = t, t € [m, M]. The details are omitteds

When the generating function is continuous convex, we can state the following result as
well:

THEOREM5.5 (Dragomir, 2010/4]). Let A be a selfadjoint operator in the Hilbert space
H with the spectruntp (A) C [m, M] for some real numbers: < M and let{E,}, be its
spectral family. Iff : [m, M] — Ris continuous convex dm, M| with finite lateral derivatives
fr (M) and f!, (m), then we have the inequalities:

([Hlmh ot = JOD A= ] iy 4y

(5.12)

M —m
< O =m) [ (1) = 11 m)] \/ (Biyw.)
< 5 O = m) [ () = 71 o] ]

foranyz,y € H.
PROOF. By the convexity off on[m, M] we have

f @)= f(M) = fL(M)(t— M)

for anyt € [m, M] . If we multiply this inequality witht — m > 0 we deduce

J.
(5.13) (t=m) f(t) = (t=m) f (M) = f.(M)({t—M)({&—m)

for anyt € [m, M].
Similarly, we get

(5.14) (M —=t) f(t) = (M =) f (m) = fy (m) (M — 1) (t —m)

for anyt € [m, M].
Summing the above inequalities and dividing kfy— m we deduce the inequality

(M_t)<t_m) / /
T (M) = )]

(M —m) [f2 (M) = f. (m)]

(5.15) (1) <

1
=1

foranyt € [m, M].
By the convexity off we also have that

L (1) £ m) + (- m) £ (M)

—m

()

= (1)

(5.16)

|\/§

giving that
(5.17) o, (t) > 0foranyt € [m, M].

Utilising (5.3) for the representation (5.2) we deduce frgm (5.15) and](5.17) the desired
result [5.1P).x
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5.2. Inequalities in the Operator Order. The following result providing some inequali-
ties in the operator order may be stated:

THEOREM 5.6 (Dragomir, 2010,4]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrundp (A) C [m, M| for some real numbers, < M.
1. If f:[m,M] — Ris continuous orm, M|, then

(5.18) ‘f(?’fl)(MlH—ﬁtj;(M)(A—mlH)_f(A)‘
< Ler%%f(t) — Juin (t)] ly.

2. If f:[m, M] — Cis continuous and of bounded variation pn, ], then

‘f(m)(MlH—A)+f(M)(A—m1H)

(5.19)

SR -7

A

Mly — A A—mly "
<M VO VO

1 |A-—mMy Il M
§+L%i?£QVum

m

A t
Where\/ (f) denotes the operator generated by the scalar fundtionV/] > ¢ — \/ (f) €

m
M

R. The same notation applies f?sv/ (f)-

A
3. If f: [m, M] — Cis Lipschitzian with the constatit > 0 on [m, M], then

(5.20) ‘f(m>(M1H_1]4\;i'{n(M)(A_mlH) —F(A)
< 57— A = fm) 1]+ ———=|f (M) 1 — f (4)]
g;M—mMm

4. If f : [m, M| — Ris continuous convex dm, M| with finite lateral derivativeg’ (M)
and f_ (m) , then we have the inequalities:

f(m) (Mly — A) + f (M) (A= mly)
(5.21) 0< YE——
< (MlH —A) (A—mlH)

1

< 2 (M = m) [ (M) = 11 (m)] 1a.

ProOF Follows by applying the property|(P) to the scalar inequalified (5.4)} ($.7),](5.10),
(5.18) and[(5.17). The details are omittad.

- f(4)

The following particular case is perhaps more useful for applications:
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COROLLARY 5.7 (Dragomir, 2010/1]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrundp (A) C [m, M| for some real numbers: < M. If [, L € Rwith L > [
andf : [m, M] — Ris (I, L) —Lipschitzian onim, M|, then we have the inequalities:

f(m)(M1y —A)+ f(M)(A—mly)
M—m

(5.22) — f(4)

(M —m)(L—1)1y

»Jkl*—‘

5.3. More Inequalities for Differentiable Functions. The following result holds:

THEOREMS5.8 (Dragomir, 2010/1]). Let A be a selfadjoint operator in the Hilbert spaéé
with the spectrund’p (4) C [m, M] for some real numbers. < M. Assume that the function
f: I — Cwith [m, M] c I (the interior of) is differentiable on/ .

1. If the derivativef’ is continuous and of bounded variation pn, M|, then we have the
inequality

sz |([1" MlH‘A}”(M“A‘ml’”]x,y>—<f<A>a:,y>'
1
i

—m
M

I\ () (Eor.w))

m—0

IN

M
m) \/ () Il Iyl

m

IN
Sl

foranyz,y € H.
2. If the derivativef’ is Lipschitzian with the constadt > 0 on [m, M|, then we have the
inequality

O (IR R U IEES) S|
<50~ QKSZ (Eoye.y) < 5 (OF = m) K 1] ]

foranyz,y € H.

PrROOF First of all we notice that iff : [m, M] — C is absolutely continuous g, M]
and such that the derivativg is Riemann integrable opn, M], then we have the following
representation in terms of the Riemann-Stieltjes integral:

(5.25) O, (1) =

M—m/m K (t,s)df' (s), te€[m,M],

where the kernek : [m, M]> — R is given by

5.26 Kooy M=D(s—m) if m<s<t
(5.26) (t,s) := R P

Indeed, sincg’ is Riemann integrable dm, M| , it follows that the Riemann-Stieltjes integrals
[F (s —m)df' (s) andftM (M — s)df' (s) exist for eacht € [m, M]. Now, integrating by parts

AJMAA Vol. 17(2020), No. 1, Art. 1, 319 pp. AIMAA


https://ajmaa.org

258 S. S. IRAGOMIR

in the Riemann-Stieltjes integral, we have:

[ K@ == [ smmdr @+ e=m) [ 0r-94

= (M —1t) [s—m 1 (s) |t —/tf’sdsl

+ (t —m) [(M ‘t / I s)ds]

= (M =t)[(t—m) f'(t) - f(m))]
+({t—m)[- (M- )f'(t)+f( )= f ()]

= (t=m)[f (M) = f(O)] = (M =) [f(t) = f (m)]
= (M —m) & (1)

for anyt¢ € [m, M], which provides the desired representation (5.25).
Now, utilizing the representatiop (5J25) and the propérty| (5.3), we have

(5.27) |2 (1)

for anyt € [m, M].
On making use of the representatipn [5.2) we deduce the desired esult (5.23).
Further, we utilize the fact that for ah—Lipschitzian function,p : [a, 3] — C and a

Riemann integrable function : [«, 5] — C, the Riemann-Stieltjes mtegrgﬂﬁ s)dv (s)

exists and
p 3
/P(S)dv(s) SL/ Ip ()] ds.
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Then, by utilizing [5.2]7) we have
(5.28) [, (1)

ng_m_M—t)/m(s—m)df'(s) +(t—m)/t (M—s)df’(s)}
K t M
gM_m:(M—t) m(s—m)ds—l—(t—m)/t (M—s)ds}
K (M—t)(t—m)2+(t—m)(M—t)2]
M m_ 2 2
= S (M = m) (6= m) (M~ ) K < (M —m)* K

for anyt € [m, M].
On making use of the representatipn [5.2) we deduce the desired fesult §.24).

The following inequalities in the operator order are of interest as well:

THEOREMS.9 (Dragomir, 2010[14]). Let A be a selfadjoint operator in the Hilbert spaéé
with the spectrund’p (4) C [m, M] for some real numbers. < M. Assume that the function
f: 1 — Cwith [m, M] C I (the interior ofI) is differentiable on/ .

1. If the derivativef’ is continuous and of bounded variation pn, M|, then we have the
inequality

< (A—mlﬁ)_(]\ilH—A)y(f) ;L(M m)Y(f’)lg.

2. If the derivativef’ is Lipschitzian with the consta# > 0 on[m, M|, then we have the
inequality

(5.30)

'f(m)(Mlﬂ—A)+f(M)(A—m1H)
M —m

- )

g%(M—m)(A—mlH)(MlH—A)Kg%(M—m)QKlH.

5.4. Applications for Particular Functions. It is obvious that the above results can be
applied for various particular functions. However, we will restrict here only to the power and
logarithmic functions.

1. Consider now the power functiofi: (0,00) — R, f (t) = t? with p # 0. On applying
Theorenj 5.5 we can state the following proposition:

PROPOSITIONS.10. Let A be a selfadjoint operator in the Hilbert spaéé with the spec-
trum Sp (A) C [m, M| for some real number$ < m < M . Then for anyz,y € H we have
the inequalities

(5.31) m (M1y — M+ZP(A_’”1H)}x,y>—<Apa:,y>‘
< 3 (M —m) A, ] o]
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where
MP~t —mP~t if p € (—00,0) U1, 00)
A, =pXx
{ mpP~t — MPE ifo<p<l.
In particular,
(5.32) ‘

(M —m)” (M—I—m)
RCYVE [l i

([l tmttermi] ) v
< L
-2

foranyz,y € H.
The following inequalities in the operator order also hold:

PROPOSITIONS.11. Let A be a selfadjoint operator in the Hilbert spaéé with the spec-
trum Sp (A) C [m, M] for some real numbei® < m < M .
If p € (—00,0) UL, 00), then

. < — AP
(5.33) 0< Y A
(M1y — A)(A—mly) _ _
=P M —m S
1 _ _
gzlp(M—m) (MP~H—mP~ 1) 1.

If p€ (0,1), then

mP (MlH —A) +MP(A—m1H)
M—-—m

M—-—m (mp

< }lp(M —m) (m?~" = MP1) 1.

(5.34) 0< AP —

<» o)

In particular, we have the inequalities

5.35 0< — A
(5-35) - mM (M —m)
- M—m m?2M?
1(M —m)* (M +m)
<= 1.
2 m?2M?

The proof follows from|[(5.2]1) and the details are omitted.
2. The case of logarithmic function is as follows:

PROPOSITIONS.12. Let A be a selfadjoint operator in the Hilbert spaéé with the spec-
trum Sp (A) C [m, M| for some real number8 < m < M. Then for anyz,y € H we have
the inequalities

(5.36)

m+( o) - e

]yl -

m)”

<{M1H— YInm + (A—mly)In M
1
4 mM
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We also have the following inequality in the operator order

(M1g —A)lnm+ (A—mly)In M
M —m

(5.37) 0<InA-—
<( < =
- Mm — 4 mM

REMARK 5.1. Similar results can be obtained if ones uses the inequalities from Theorem
5.8 and 5.B. However the details are left to the interested reader.

Mly —A)(A=mly) _1(M-—m)’

6. PRODUCT INEQUALITIES

6.1. Some Vector Inequalities.In this section we investigate the quantity

[(LF (M) 1 = f (A LS (A) = f(m) 1a]z, )]

wherez, y are vectors in the Hilbert spadé and A is a selfadjoint operator witlsp (4) C
[m, M|, and provide different bounds for some classes of continuous funcfioris:, M| —
C. Applications for some particular cases including the power and logarithmic functions are
provided as well.
The following representation in terms of the spectral family is of interest in itself:

LEMMA 6.1 (Dragomir, 2010,]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrunfp (A) C [m, M] for some real numbers: < M and let{E,}, be its
spectral family. Iff : [m, M] — C is a continuous function opm, M| with f (M) # f (m),
then we have the representation

1
g— f(A A)— f(m)ly
T = o ¥ 0 L= T (AL (4) = £ () 1]
1

= Fan— fm)
<SP s L P o) (5 i) o

PROOE We observe that,

62 /mMo (5 o7 /mMo 20)
« (Et - %1,{) df (8)

1 M
= 00— Fm) | mar

| Ry — / oyan

(6.1)

(M) = f(m) Jo (M) —f(m) S o
- / _OEtdf<t>+% / B )

= 05— /mM O /mM By <t>f

which is an equality of interest in itself.
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SinceE; are projections, we have? = E, for anyt € [m, M| and then we can write that

I T /mM B0~ | 7w /mM Eidf “)r
= 70T B O~ i o, B0

= o= /mMo Bl 0) |1~ 057 7 /mMo R @)

Integrating by parts in the Riemann-Stieltjes integral and utilizing the spectral representation
theorem we have

| Bar )= ron1a- £

and

N M A ) Ly
Y~ f ) /moEtdf U= 00— fm)

which together with[(6]3) andl (§.2) produce the desired result (§.1).
The following vector version may be stated as well:

COROLLARY 6.2 (Dragomir, 2010,d]). With the assumptions of Lemina]6.1 we have the
equality

(6.4) ([f (M) 1e = f(A][f(A) = f (m) Lu] . y)
=/ M) f(m)]

[ s [ B o) (5= ) r)ar o,

foranyx,y € [m, M].

The following result that provides some bounds for continuous functions of bounded varia-
tion may be stated as well:

THEOREM 6.3 (Dragomir, 2010/d]). Let A be a selfadjoint operator in the Hilbert space
H with the spectruntp (A) C [m, M] for some real numbers: < M and let{E,}, be its
spectral family. Iff : [m, M] — C is a continuous function of bounded variation jon, /]
with f (M) # f (m), then we have the inequality

(6.5) |<[f (M) 1 = f(A)][f (A) = f (m) L) 7, )]
il 17 (00) = £ m) \ ()

T — 7 (m) |

B — < 3 lell ] [\/( >] ,

m

X sup ‘
te(m,M]

foranyz,y € H.

PROOF It is well known that ifp : [a,b] — C is a bounded function; : [a,b] — C is of
bounded variation and the Riemann-Stieltjes integ"fqb () dv (t) exists, then the following
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inequality holds

b

[ p0ao] < s pe1V o),

t€la,b]

(6.6)

where\/ (v) denotes the total variation ofon [a, ] .

Utiliasing this property and the representation [6.4) we have by the Schwarz inequality in
Hilbert spacefd that

6.7)  {[f (M) 1y — f(A][f (A) = f (m) 1y] z,y)]
<|f(M m)|\/ (f)

e ’<(E - FET=T /mM £ 9)) (£~ 310 y>‘

<|f (M) = fm)\/ (f)

FEux — ! /M Exdf (s)

f(M>_f(m) m—0 2

1
geo| |

te[m,M]

foranyz,y € [m, M].
SinceF; are projections, and in this case we have

1 1
= (B{y.y) — (B, + 7 Il = 7 il

then from [6.7) we deduce the first part[of (6.5).
Now, by the same property (6.6) for vector valued functipmath values in Hilbert spaces,
we also have that

1 2

Ewy — -y

1
_ E 2 E - 2

M

62 v - s e [ B
|| Ba-Baw o] <V ) s |[E — B

for anyt € [m, M]andx € H.

Since0 < E; < 1g in the operator order, therly < E;, — E, < 1 which gives that
—|lz|* < (B, — Ey)x,z) < ||z|°, i.e., |(E; — E))z,z)| < ||z|* for anyz € H, which
implies that|| £, — E|| < 1for anyt, s € [m, M]. Thereforesup,c, 1y || Erz — Esz|| < ||z|]
which together with[(6]8) prove the last part[of (6.5).

The case of Lipschitzian functions is as follows:

THEOREM 6.4 (Dragomir, 2010,d]). Let A be a selfadjoint operator in the Hilbert space
H with the spectruntp (A) C [m, M] for some real numbers: < M and let{E)}, be its
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spectral family. Iff : [m, M] — C is a Lipschitzian function with the constaiit> 0 on |[m, M]
and withf (M) # f (m), then we have the inequality

6.9 |(1f (M) Ly — f (A)][F (A) ~ f () 1] )]
< L1yl 1 () — £ (m)]

xlﬁ)@x—fwﬂifmﬂzfﬁgmﬂg dt

1 M M
< Lrzy| / / \Eye — B dsdi
2 m—0 Jm—0

<\/_ L ||yl (M — m) (Az — ma, Ma — Az)'/* <

V2
YLyl el (M = m)?

foranyzx,y € H.

PROOF Recall that ifp : [a,b] — C is a Riemann integrable function and [a,b] — C is
Lipschitzian with the constart > 0, i.e.,

f (s) = f ()] < L|s — 1| foranyt,s & [a, ],
then the Riemann-Stieltjes integrﬁjp (t) dv (t) exists and the following inequality holds

/abpos)dv(t)‘ <t [ bl

Now, on applying this property of the Riemann-Stieltjes integral, then we have from the
representatior (6.4) that

6.11)  [[f (M) 1y = f(A][f (A) = f (m) Lu] 2, y)|
< [f (M) = f (m)]

<L ramrm [ B o) = (5 ) o

< LIf (M) = f(m)]

(6.10)

M 1 M 1
X Ex — / Egxdf (s)|| || E ——Hdt
LB = rrm e [, Bt @] | B - 3
1
= 5Lyl f (M) = f (m)]
M 1 M
X Bz — / Exdf (s)|| dt
[ B = e [, Bt ©
for anyz,y € H and the firstinequality ir (6]9) is proved.
Further, observe that
(6.12) |f (M |/ Ex — / Exdf (s

£ (M) = £ (m)] B - / B (5)|

/

m—0
/
m—0

/0 (Eyx — Egx)df (s)|| dt

foranyz € H.
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If we use the vector valued version of the propefrty (6.10), then we have

M M M
(6.13) / dt < L/ / | By — Eyx|| dsdt
m—0 m—0 Jm—0

for anyz € H and the second part df (6.9) is proved.
Further on, by applying the double integral version of the Cauchy-Buniakowski-Schwarz
inequality we have

[ B pmar )

m—0

M M
(6.14) / / |Eve — Eox| dsdt
m—0 Jm—0

M M
< (M —m) (/ / HEtx—Est2dsdt>
m—0 Jm—0
foranyz € H.

Now, by utilizing the fact that’; are projections for eache [m, M|, then we have

1/2

M M
(6.15) / / | By — Eqx||* dsdt
m—0 Jm—0

I M M 2
=2 (M—m)/ HEtxHth—‘/ Eyadt
m—0

- 2
foranyz € H.

If we integrate by parts and use the spectral representation theorem, then we get

M
=2 (M—m)/ (Eyx,x) dt —

m—0

M M
/ (EByr,z)dt = (Mxz — Az, x) and/ Exxdt = Mz — Ax

m—0

and by (6.1p) we then obtain the following equality of interest
M M
(6.16) / / | By — Eyx||* dsdt = 2 (Ax — ma, Mz — Ax)
m—0

foranyz € H.
On making use of (6.16) and (6]14) we then deduce the third pdrt ¢f (6.9).
Finally, by utilizing the elementary inequality in inner product spaces

1
(6.17) Re(a,b) < 7 lla+b]*, a,b € H,
we also have that
1
(Az — max, Mz — Azx) < ) (M —m)* ||z
for anyz € H, which proves the last inequality in (6.9.

The case of nondecreasing monotonic functions is as follows:

THEOREM 6.5 (Dragomir, 2010,d]). Let A be a selfadjoint operator in the Hilbert space
H with the spectruntp (A) C [m, M] for some real numbers: < M and let{E)}, be its
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spectral family. Iff : [m, M| — R is a monotonic nondecreasing function [em, /], then we
have the inequality

(6.18) I M) L = £ (A1 (4) —  (m) 1], )
< 5 Il F (1) — £ (m)]

" /mMo B = i om /mMo Eewdf (s)

<yl £ (M) — £ (m)]
(If (M) 1 = f (A)][f (A) = f (m) 1) 2, 2) "2
< S Wyl ll=l 1F () = (m)]?

df (t)

X
— [\

foranyz,y € H.

PROOF From the theory of Riemann-Stieltjes integral it is also well known that if
la,b] — C is of bounded variation and : [a,b] — R is continuous and monotonic nonde-

creasing, then the Riemann-Stieltjes integﬁlﬁ (t)d andf Ip (t)| dv (t) exist and

/abp(t)dv(t)‘ g/ab p () dv ()

Now, on applying this property of the Riemann-Stieltjes integral, we have from the repre-
sentation[(6.4) that

6.19)  [[f (M) 1y — f(A)][f (A) = f (m) Lu] 2,y)]|

<17 () — £ (m)
<L ramrm [ B o) = (5 ) o
<[ () £ (m)

" /mM B = O o) /mM Buwdf (5)

= S IlIL7 (M) = f (m)
M 1 M
<[ B = s | Bt o) a0

foranyz,y € H, which proves the first inequality i (6.]18).
On utilizing the Cauchy-Buniakowski-Schwarz type inequality for the Riemann-Stieltjes
integral of monotonic nondecreasing integrators, we have

B 5| @ @)

(6.20) /m A: By — f(M)l_ o /m A:Esxdf )| ar )
< {/M df(t)}l/z
-
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foranyz,y € H.
1 M

Observe that
M
620 [ e s [ B )

e
| a7 [ mar ] R
=70 = 1o [ [ NEl a0

and, integrating by parts in the Riemann-Stieltjes integral, we have

df ()

Esxdf (s)

_Hf(M)l—f(m) /mMo

M M
©22) [ Balare)= [ (B Ba)ar )

= [ (M) ||z]* - _Of (t) d (B, x)

= [ (M) |l2]]* = (f (A) w,2) = ([f (M) 1y — | (A)] &, z)
and
(6.23) / | Eadf (5) = f M)z~ ] (A)z
foranyz € H.

On making use of the equalitids (6/22) ahd (6.23) we have

(6.24) | Ev||” df ()

f(M)l—f(m) /m]:

foranyz € H.
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Therefore, we obtain the following equality of interest in itself as well

1

(6.23) ) — 7 (m)

x/M B m/MExdf af (1)

:<f(M):r—f(> A

[f (M) — f(m))?
M) 1y — fA]Lf(A) — fm) La]z, x)
[f (M) — f (m)]?

foranyz € H

On making use of the inequality (6]20) we deduce the second inequality in (6.18).
The last part follows by] (6.17) and the details are omitged.

6.2. Applications. We consider the power functiofi(t) := t* wherep € R\ {0} and
t > 0. The following power inequalities hold:

PROPOSITIONG.6. Let A be a selfadjoint operator in the Hilbert spaééwith the spectrum
Sp (A) C [m, M| for some real numbers with< m < M.
If p > 0, thenforanyz,y € H

(6.26) [(MP1y — AP) (AP — mP1y) 2, y)]
V2
< 5By lyll (M = m) (A — ma, Mz - Az)'/?
V2
< =By llyll 2]l (M —m)?
4
where
Mr—t ifp>1
B, =px
mP~t if0<p<l,m>0
and
(6.27) (A" = M 1y) (m™P1y — AP) z,y)|
V2
< 705 lyll (M —m) (Az — ma, Mz — Az)"/?
V2
< —ZCo Iyl I (M —m)*,
4
where

C, =pm P andm > 0.
The proof follows from Theorein 6.4 applied for the power function.

PROPOSITIONG.7. Let A be a selfadjoint operator in the Hilbert spaééwith the spectrum
Sp (A) C [m, M| for some real numbers with< m < M.
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If p > 0, thenforanyz,y € H
(6.28) [(MP1y — A7) (A” —mPly) z,y)]

< 5 ol (MP — ) (ML — A7) (A2 — P L) ., )

< 5 Mol el (7 — ran)?
and
(6.29) (A7 = M7P1y) (m ™1y — A7) 2,y)]

< Syl (7 = M7#) (A7 = ML) ("L — A7) 2"

1
<yl el (m=® — M=#).

The proof follows from Theorein G.5.
Now, consider the logarithmic functiofi(t) = Int,¢ > 0. We have

PROPOSITIONG.8. Let A be a selfadjoint operator in the Hilbert spaééwith the spectrum
Sp (A) C [m, M| for some real numbers with< m < M. Then we have the inequalities

(6.30) ([ M) 1y —InAl[In A — (Inm) 1x] 2, )]
< % lyl| (M — m) (Az — ma, Mz — Az)'/?
V2 Mo\
< X olel (5 - 1)
and
(6.31) {([(InM)1yg —InA][ln A — (Inm) 1g]x,y)]

< % |yl {{(In M) 1y — In A] In A — (Inm) 14] x,x)l/z In (M)

?wwmﬂm<%>r. m

The proof follows from Theorein 6.4 and .5 applied for the logarithmic function.

IN
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CHAPTER 6

Inequalities of Taylor Type

1. INTRODUCTION

In approximating:-time differentiable functions around a point, perhaps the classical Tay-
lor's expansion is one of the simplest and most convenient and elegant methods that has been
employed in the development of Mathematics for the last three centuries. There is probably
no field of Science where Mathematical Modelling is used not to contain in a form or another
Taylor’'s expansion for functions that are differentiable in a certain sense.

In the present chapter, that is intended to be developed to a later stage, we present some error
bounds in approximating-time differentiable functions of selfadjoint operators by the use of
operator Taylor’s type expansions around a point or two points from its spectrum for which the
remainder is known in an integral form.

Some applications for elementary functions including the exponential and logarithmic func-
tions are provided as well.

2. TAYLOR'’S TYPE INEQUALITIES

2.1. Some Identities.In this section, by utilizing the spectral representation theorem of
selfadjoint operators in Hilbert spaces, some error bounds in approximatinge differen-
tiable functions of selfadjoint operators in Hilbert Spaces via a Taylor’s type expansion are
given. Applications for some elementary functions of interest including the exponential and
logarithmic functions are also provided.

The following result provides a Taylor’'s type representation for a function of selfadjoint
operators in Hilbert spaces with integral remainder.

THEOREM 2.1 (Dragomir, 2010,9]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrun®p (A) C [m, M] for some real numbers: < M, {E,}, be its spectral
family, I be a closed subinterval oR with [m, M] c I (the interior of I) and letn be an
integer withn > 1. If f : I — C is such that the:-th derivativef ™ is of bounded variation on
the interval[m, M|, then for anye € [m, M] we have the equalities

2.1) FA) =3280 (€) (A= cl)* + Ra (Fe,m, M)
k=0

where

2.2) Rn(f,c,m,M)—a/m_O (/ A—t)"d(f (t)))d N

PROOF. We utilize the Taylor formula for a functiofi : I — C whosen-th derivativef™
is locally of bounded variation on the intervato write the equality

23) PO =Y M@0 -0+ [ =0 (1 @)

forany A\, c € [m, M|, where the integral is taken in the Riemann-Stieltjes sense.
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If we integrate the equality ojn, M] in the Riemann-Stieltjes sense with the integraigr
we get

M

/ FONVAEy =) %f(’“) (c)/ (A — )" dE,

m—0 m—0

([ a-orage) s,

which, by the spectral representation theorem, produces the eqpaljty (2.1) with the representa-
tion of the remainder from (2.2

+

The following particular instances are of interest for applications:

COROLLARY 2.2 (Dragomir, 2010/4]). With the assumptions of the above Theorem 2.1,
we have the equalities

(2.9 F(A) =377 (m) (A= 1) + L (fem, M)
k=0
where
1 M A . .
Lt = [ ([Ca-oragow)) e,
and
n k
en Sk (2 (o)
k=0
+ M, (f,e,m, M)
where
M, M—lM " A=0"d(f™ @) | dE
deman = [ ([ 0-0ma G 0)) i
and
n k
(2.6) £ =3 S 0 a0 a1y - 4 4 U, (F.com. b)
k=0 ’
where
. n+1 M M
(2.7) Un(f,c,m,M):( 2! /mo (/A (t—)\)"d(f(”)(t)))dEA,

respectively.

REMARK 2.1. We remark that, if the-th derivative of the functiorf considered above is
absolutely continuous on the intervab, M/], then we have the representatipn [2.1) with the
remainder

(2.8) R, (f,c,m, M) = = /MO (/A (A —t)" f ) (1) dt) dE}.

n! J,._

Here the integray"cA (A — )" f»*D (¢) dt is considered in the Lebesgue sense. Similar repre-
sentations hold true whens taken the particular values, M or #
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Now, if we consider the exponential function, then for any selfadjoint operator the
Hilbert spacef with the spectrumtp (A) C [m, M] and with the spectral family £, }, we
have the representation

n

A—cl 1 k 1 M A n _t—c
(2.9) et =y g A—dn)+— (A —t)"et=dt | dE},
. . O c

k=0 m=

wherec is any real number.
Further, if we consider the logarithmic function, then for any positive definite operator
with Sp (A) C [m, M] C (0, c0) and with the spectral familyE), } , we have

(A—clp)®
kck

+(=1)" /mj: (/A ()\t;?ndt> dE)

~ (=)t
(2.10) mA=(nc)ly+ Y
k=1

foranyc > 0.

2.2. Some Error Bounds. We start with the following result that provides an approxima-
tion for ann-time differentiable function of selfadjoint operators in Hilbert spaces:

THEOREM 2.3 (Dragomir, 2010/4]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrundp (A) C [m, M] for some real numbers. < M, {E,}, be its spectral
family, I be a closed subinterval oR with [m, M] C I (the interior of ) and letn be an
integer withn, > 1. If f : I — C is such that the:-th derivativef ™ is of bounded variation on
the interval[m, M], then for any € [m, M| we have the inequality

(2.11) (B (f; c;m, M)z, y)

n

(F () a9) =3 27 (0 (A el a,y)

Far- oV )V ()
< L far o V() o=V () LV ()
< & (3or=m]e-52]) V() V (@)

foranyz,y € H.
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PrROOF From the identitied (2]1) anf (2.2) we have

(2.12) (R (f,c;m, M)z, y)
=(f(A)x,y) — Z %f(k) () <(A — clH)k:r,y>
— % mMO (/A (A —t)"d (f™ (t))) d(Exz,y)
-1 mc_o (/A A=ty d (0 (t))) d(Ext,y)
w2 ([ amrage ) atgey)

foranyz,y € H.
It is well known that ifp : [a,b] — C is a continuous function; : [a, b] — C is of bounded

variation then the Riemann-Stieltjes integﬁlp (t) dv (t) exists and the following inequality
holds

b

[ ran| < max b1V o).

T t€[a,b]

(2.13)

b
where\/ (v) denotes the total variation ofon [a, b] .

Tak?ng the modulus irf (2.12) and utilizing the inequaljty (2.13) we have

(2.14) (R (f,c;m, M) z,y)]|
i c A an (n)
<3 ([ a-iraum)ame.)
M A
e[ ([ oo o)) awen
< %;g{g{c} /c (A—t)"d (f(n) (1)) \/ ((Euz,y))
+ %Arerfgﬁ] /c (A=t)"d (f(n) (1)) \/ (Eoz,y))

c

foranyz,y € H.
By the same property (2.[13) we have

)\ C
(2.15) max. / (A—8)"d (f™ (1)) ‘ < (c=m)"\/ (f™)
and

A M
(2.16) /\g}g})\;} / A—t)"d (f(") (t)) ‘ < (M —¢)" \/ (f(n))
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Now, on making use of (2.14)-(2.16) we deduce

(R (f,cm, M) 2,5
< % [(c— m)”\;/ (r™) \n{ (B, y))

=0V DY ()|

. %max{@_ m>n\:{ (F) (o1 >\A? (f(”))}

<V @Em) + \A? <<E<.>x,y>>]

g%max{(c— }\/ (o SZ (B, y))
:%(%W—mn me ){7:/ ) SZ) (Eo,v))

foranyz,y € H and the proof is completa.

The following particular cases are of interest for applications

COROLLARY 2.4 (Dragomir, 2010/9]). With the assumption of Theor¢m]2.3 we have the
inequalities

3

(2.17) (f (A)z,y) - %f“‘” (m) <(A —min)'z, y>
k=0
< % (M —m)"\/ () ) ((Boye.y))
< (= m)"\/ (F) ] o]

n k
218) () -3 S0 (an) (1 - 4 a,)
g%(M mn\/ \/ <E():cy>
< = (0 = m)"\/ (£) ]y
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and
n k
@19)  [(f(A)ay) -3 Y (m;M) <(A— m;MlH) a:,y>
k=0
] M Al M
< g (M =m)"max ¢\ (F)\/ (1) \/ ((Eoe,9))

M
1 n n
< S (M —m) max{ \/ (£ \/ } [l
° m+M m
2

respectively, for any,y € H.
PROOF. The first part in the inequalities follow frorh (2]11) by choosing m,c = M and

c = ™M respectively.
The last part follows by the Total Variation Schwarz’s inequality and we omit the degails.

The following result also holds:

THEOREM 2.5 (Dragomir, 2010/4]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrunbp (A) C [m, M| for some real numbers: < M, {E,}, be its spectral
family, I be a closed subinterval oR with [m, M] C I (the interior of /) and letn be an
integer withn > 1. If f : I — C is such that the:-th derivative f" is Lipschitzian with the
constantZ,, > 0 on the intervalm, M], then for any € [m, M| we have the inequality

(2.20) (B (f; c;m, M) z,y)

S [“ ="V (Bowa)) + (=0 (Eoe.)

C

1 1 m+ M\
< il (5 (M =) |- 2 D \/ ((Eoz.s))
m—0
1 1 m+ M\
< eyt (50 = m) o= 52N el

foranyz,y € H.

PROOF First of all, recall that ifp : [a,b] — C is a Riemann integrable function and
v : [a,b] — Cis Lipschitzian with the constarit > 0, i.e.,

If (s) = f(t)| < L|s—t| foranyt,s e [a,b],

then the Riemann-Stieltjes integrﬁ;ﬁp (t) dv (t) exists and the following inequality holds

/:pos)dv(t)] <t [ bl

Now, on applying this property of the Riemann-Stieltjes integral we have

(2.21) max / t—N"d(f™ ()] < max [Ln/ (t—\)" dt}
A€[m,c] | J ) A€[m,c] A
o Ln n+1
=1 (c—m)
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and
A ) A
2.22 A=t)"d(f"™ ()| < L A—t)"dt
(2.22) Agﬁ;}/c( )" d(f ())’_Agfgﬁ}[n/c( ) }
LN Y
n+1
Now, on utilizing the inequality] (2.14), then we have frgm (2.21) and (2.22) that
(2.23) (B (f; ¢;m, M)z, )]
]- n+1 ‘
< - -
ST \W{<E”>
1 M
+m n \/ (Eoz,v))
1 M
< m[; maX{ C — m)n+1 s (M — C)n+1} n}/{) (<E().’E, y>)
1 1 m—l—M n+1 M

and the proof is completaq.

The following particular cases are of interest for applications:

COROLLARY 2.6 (Dragomir, 2010/4]). With the assumption of Theor¢m|2.5 we have the
inequalities

3

(2.24 (F(A) ) = 30 2 ) (A = i) 2,)
k=0
< (ni o (M —m)"*" L, T}_/O ((Eyz.y))
1 n+1
< oy O =)™ Lo el )
and
(2.29 (A S0 S5 ) (01— ), )
1 n+1 v
e T Lnnyo (B, y))
1 .
< gy O =)™ Lo el )
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and
"1 m+ M m+ M F
@29 e~ > g (M )<(A— ) x,y>
1 n+1 v
< 5;:75t;Tﬁ<A4—-ww Ly \i(<Ecﬂ%yﬂ

1
< - -
2t (n+1)!
respectively, for any,y € H.

(M —m)"" Ly ||l |y

The following corollary that provides a perturbed version of Taylor's expansion holds:

COROLLARY 2.7 (Dragomir, 2010/9]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrunbp (A) C [m, M| for some real numbers: < M, {E,}, be its spectral
family, I be a closed subinterval dR with [m, M] C I (the interior ofI) and letn be an integer
withn > 1. If g : I — R is such that thex-th derivativeg™ is (I,,, L,,) —Lipschitzian with the
constant’,, > [, > 0 on the intervalm, M|, then for anye € [m, M| we have the inequality

"1
@27 |lg(A)z.) = g(e) (@) =D 9 () (A= clw) o)
k=1
Lo + Ly, 1 - s
e k+1
k
_Zk' (n—Fk+1)! <(A_01H) x,y>”
1
< - - _
~2(n+1)! (Ln = In)
c M
Xkﬂﬂmwud«@ww»+UW—@M”J«ﬂwy)]
1 1 m—+ M\
< - — — — _
1 1 m+ M|\
< - - — Z — _
< oy o= ) (500 - m) 4= 2 D ol s
foranyz,y € H.
PROOF Consider the functiorf : I — R defined by
o 1 Lyt
Observe that
1 L,+1

R R ey T

foranyk =0,....,n
Sinceg™ is (1,, L,) —Lipschitzian it follows that
L,+1

£ (E) = g (1) — 2
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is 5 (L, — L,)-Lipschitzian and applying Theorgm .5 for the functignve deduce after re-
quired calculations the desired res{lt (2.14).

REMARK 2.2. In particular, we can state from (2/27) the following inequalities

@28) o)) = g(m) frs) = 3 o™ (m) (A= 1) )
bt Lo [ 1 mH
- [ e - G )
mn— k+1 A
_Zk' (n—k+1 <<A_m1H) $y>”
< gy e ) (= V. (B
< sy (= ) (1 =)™ e o)
and
n k
(950 ~g () r0) = 32 g () (1~ 4)" )
ln+ Ly 1 i M"+1
T2 {(n—l—l)!<A+ S ey A
- poo MR k
_;H) k!(n—k+1)!<(M1H_A) W>”
1 n+1 v
Sm(lm_l \/ ((Eoz,y))
@29) < g (L= 1) (O =)™ ] o]
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and
N T e = Y
L (mZM><(A—m£M1H)”>y>
e ) - o ( L
_,; e (m;M)n k+1<<A 1H)k”>”
gﬁgéiﬂﬂu—%mM—mwji«&ww»
!

<—  (Ly,—1) (M —m)""
< gy (e = ) O =)™ i Iy

respectively, for any, y € H.

2.3. Applications. By utilizing Theorenj 2.3 and 2.5 for the exponential function, we can
state the following result:

PROPOSITION2.8. Let A be a selfadjoint operator in the Hilbert spaéewith the spectrum
Sp (A) C [m, M] for some real numbers. < M and{E\}, be its spectral family, then for any
¢ € [m, M] we have the inequality

n

(2.31) (e, y) —eCZ kl' ((A=clp)ay)
< % [(C —m)" (" —e™) \n{ ((Eoz.y))
=0 - ) (B
< ;! max { (M —¢)" (e =€), (c—m)" (¢ —e™)} TSZ ((Eoz,9))
3 o e =
< 2 (Gor—m+ fo- I (@ — e ol
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and

n

e:)sy>—eczkll< —clp)F y>
M

(e m I\ (B o) + (M — o\ (Eiy. )

c

m+M n+l M
)V (B

m—0

m+ M\
M

(2.32)

IN
—_
‘CB
S
| —|

foranyz,y € H.

REMARK 2.3. We observe that the best inequalities we can get from|(2.31) and (2.32) are

m4+M n 1 m+ M K
(2.33) <6Ax,y> — e kz: o <(A - 1H) x,y>‘
0
1 M
< g (M =m)" (M — ™)\ (B,
’ m—0
1 n m
< s (M = m)" (&M = ) o)l
and
M e 1 + M F
(2.34) <6Ax,y> s T <(A _n 5 1H) :p,y>‘
k=0
1 M
S gy MoV (B
m—0

1

M n+1
< gy O = m) el

foranyz,y € H.
The same Theorems 2.3 gnd|2.5 applied for the logarithmic function produce:

PROPOSITION2.9. Let A be a positive definite operator in the Hilbert spalewith the
spectrumSp (A) C [m, M] C (0,00) and{E\}, be its spectral family, then for aryec [m, M]
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we have the inequalities

(2.35) (In Az, y) — (z,y) Inc— Xn: o <(ic_k L)
< (C_m)cnffbn "IN (Foyeow))
MR ()|
s%(%(M—mH c—sz)n e 54/0 (B y))
< 2 (3= my e MY Ay
and
(236)  |(nAw.y)— (r.y)ne—Y (_1)k1<(i;61H)kx’y>
=
< i (30t o= ) (@B
<o (304 o= "2

foranyz,y € H.

REMARK 2.4. The best inequalities we can get fram (2.35) and {2.36) are

(In Az, y) — (z,y)In (m;M) _ i = <(A — 5 y) -757?J>

i k()"
B P RV I )
_%( —m) M n>/0<< 0Ty
MTL n
G
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and
ma by s (D (A= ) )
= ey (#5) =3 k(2
1 M n+l M
< g ) V, (For.v)
n+1
@3 <o (2-1) el

foranyz,y € H.

3. PERTURBED VERSION

3.1. Some ldentities.The following result provides a perturbed Taylor’s type representa-
tion for a function of selfadjoint operators in Hilbert spaces.

THEOREM 3.1 (Dragomir, 2010/4]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrunbp (A) C [m, M| for some real numbers: < M, {E,}, be its spectral

family, I be a closed subinterval oR with [m, M] c I (the interior of /) and letn be an
integer withn, > 1. If f : I — C is such that the:-th derivativef™ is of bounded variation on
the interval[m, M], then for anye € [m, M] we have the equalities

n

3.1) FA) =3 5 () (A= cln)!

k=0
=30 () (M - c>’“] L
k=0

_'_Vn(f?C?m?M)

where
(3.2) Vo (f,c,m, M)

[ (o) e

PROOF. We utilize the Taylor’s formula for functiong : I — C whosen-th derivativef ™
is locally of bounded variation on the intervato write the equality

n

1 e, L n
33) FO =Y M@0 -0+ [ =0 a(r @)

forany \, c € [m, M|, where the integral is taken in the Riemann-Stieltjes sense.
If we integrate the equality ojm, M| in the Riemann-Stieltjes sense with the integraigQr
we get

/ FNVAEN =) %f(’“) () / . (A — )" dE,

m—0
1 M

s [ ([ a-oragw)

n!
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which, by the spectral representation theorem, produces the equality

(3.) FA) =30 70 (@) (A 1)
- M A
w2 [ ([ a-ragm o)) as

that is of interest in itself as well.
Now, integrating by parts in the Riemann-Stieltjes integral and using the Leibnitz formula
for integrals with parameters, we have

(3.5) / Mo ( / o () <t>)) 1)
B - ora (s ) f

[ ma( [ o-oragow)
([ o= a(r @)

[ ([ oortage w) s

and, since by the Taylor’s formulg (8.3) we have

@8 [ (-0a( @) =500 =Y 5 @00 - o

then, by [(3.4) and (3]6), we deduce the equality|(3.1) with the integral representation for the
remainder provided by (3.2)

The following particular instances are of interest for applications:

COROLLARY 3.2 (Dragomir, 2010/4]). With the assumptions of the above Theorem 3.1,
we have the equalities

@7 FA) =30 (m) (4 i)
k=0

g+ T, (f,c,m, M)

where

(3.8) T, (f,m, M)

= _1 ol /mﬂi (/7: A—t)"td (™ (t))) ExdA
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and
n k
00 rE e (M) (-5
k=0
n _ k

+ f(M)—kZ%%f('f) (m;M) (M2 m) ] 1y

+ W, (f,e,m, M)
where
(3.10) W, (f,m, M)

_1\" M A

(7(1 —1)1)' /m—O (AJQM (- )\)"_1 ‘ (f(n) (t))> o

and
n k
(311) £y =32 E 50 (0 (M1 — A 4 Y, (e, )
k=0 )
where
(3.12) Y, (f,m, M)
. n+1 M M
G L[ e s

respectively.

REMARK 3.1. In order to give some examples we use the simplest representation, namely
(3.117) for the exponential and the logarithmic functions.

Let A be a selfadjoint operator in the Hilbert spaidewith the spectrunbp (A) C [m, M]
for some real numbers < M and let{ £, }, be itsspectral family Then we have the repre-
sentation

TR e G 0 k
(3.13) e =e ZT(MlH—A)
k=0 )

4 E;l_)n:; /m A: ( /A N (t—A)"" etdt) Exd\.

In the case whed is positive definite, i.es;n > 0, then we have the representation

n k
(3.14) mA=(InM)lz—) (MI;T;A)

k=1

M M n—1
(=X

3.2. Error Bounds for f(™ of Bounded Variation. We start with the following result
that provides an approximation for artime differentiable function of selfadjoint operators in
Hilbert spaces:

THEOREM 3.3 (Dragomir, 2010,4]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrunbp (A) C [m, M| for some real numbers: < M, {E,}, be its spectral

family, I be a closed subinterval oR with [m, M] c I (the interior of /) and letn be an
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integer withn > 1. If f : I — C is such that the:-th derivativef (™ is of bounded variation on
the intervalim, M|, then for anyc € [m, M| we have the inequalities

(3.15)

(Vo (f, ¢;m, M)z, y)

1 ‘ - ‘
Sam TV U B

vt [ (A—c)”l\c/(f( ) Exe, )] dx
<o y U) [ =2 B
" ﬁ\ﬂ? 1) [ o
< (n_ll)!max{\/ )V (7 }/M A= " (B, )] dA

1 c M
gamax{\/ ,\/ } CmeUy)

foranyz,y € H, where

(3.16) By (c,m, M, z,y)
([(M —=)" + (e =m)"] |z lyll;

Cule,m, M, z,y);

n 3 (M —m) fe— =gt
x [(M1y — A)z,z) (M1y — A)y,y)]Y
and
(3.17) Cu(c,m, M, z,y)

=[[(M —¢)"1g —sgn (A —cly)|A — cly|"] w,x)]l/Q
< [([(M = )" 1y — sgn (A = cly) |A = cly "y, )%

Here the operator functiorgn (A — cly) |A — cly|" is generated by the continuous function
sgn (- — ¢) |- — ¢|" defined on the intervain, M] .
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PrROOF From the identitied (3]1) anf (3.2) we have

(3.18) |(Va (f,¢,m, M) 2, y)]
< ﬁ /mcO (/A (t=N""d (f™ (t))> (Exz,y) dA‘
+ ﬁ / : ( / S ata (s (t))) (Ext, y) dA‘

1 M
(n— 1>!/c
foranyz,y € H.

It is well known that ifp : [a, b] — C is a continuous function; : [a, b] — C is of bounded

variation, then the Riemann-Stieltjes integfélp (t) dv (t) exists and the following inequality
holds

[ =t a e @) (Eelan

_|_

[ =g o) ' By, y) | )

b b
(3.19) [ rora <t>\ < swp )\ ().

tela,b]

a

b
Where\/ (v) denotes the total variation ofon [a, b] .

By the same property (3.]19) we have

(3.20)

[ = @) < -0 ()
for A\ € [m, c] and

(3.21)

[ e=vrtage <t>)\ <=9V ()

for A € [c, M].
Now, on making use of (3.18) and (3]20)-(3.21) we deduce

(Vo (f, ¢;m, M) 2, y)|

1 ‘ ‘
<—— [ =N\ () [(Bar,y)|dn
(n—l)!/ \{( ) [(Bxe.y

m—0

A

ﬁ / A=)\ (F™) [{Exz, y)| dA

C

+

for anyz,y € H which proves the first part of (3.]L5).
The second and the third inequalities follow by the properties of the integral.
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For the last part we observe that

M M
/ A — c]"il [(Exz,y)|d\ < max |[(Eyz,y)] / A — c|"71 d\
-0 )\E[?TL,M}

m m

< = ol Il (M = )" + (e = m)")

for anyx,y € H,and the proof for the first branch &f(c, m, M, z, y) is complete.

Now, to prove the inequality for the second branctBot, m, M, x, y) we use the fact that if
P is anonnegative operator ¢ i.e.,(Px,z) > 0foranyx € H, then the following inequality
that provides a generalization of the Schwarz inequalitéf ioan be stated

(3.22) [(Pz,y)|* < (Pz,z) (Py,y)

foranyz,y € H.

If we use [[3.2R) and the Cauchy-Buniakowski-Schwarz weighted integral inequality we can
write that

M
@23 [ - By
m—0
M
< [ e B ) (B i
m—0
M 1/2 M 1/2
<([ p-artwena) ([ p-d o)
m—0 m—0

foranyz,y € H.
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Integrating by parts in the Riemann-Stieltjes integral, we have

(3.24) /mMOM " M (Eyx, x) dX

- m O(C— A" (BEye, ) d\ + /CM (A — )" " (BEyr, ) dA
%[ /m (Bxra)d(e— )" +/CM<EAx,:p>d()\—c)"}

_ % {_(C—A) (Exe, S, 0+/mc_0 @-A)”d(EAx,m)]

+ % [@x, z) (A=) - /CM (A=) d(Exx, x>}

_ %/mo (c = N d (Ex, 2)

+ 2 @yazuz (M =) - /CM (A= )" d(Exz x>}

= = ol (M = )"

+% U;O(C—A)"dww,@ —/CM(/\—C)nd<EA$ax>]

-1 {HxHQ (M =)' — /ﬂfo sgn(A— )\ —c"d (EAx,:U)}

_ % (M — &) 1 — sgn (A — cly) |A — cly|"] 2, 2)]

foranyx € H, and a similar relation fog, namely

M
(3.25) [ = By

m—0

_ % ([(M —¢)" 1y — sgn (A —cly) |A—cly|"y, y)]

foranyy € H.
The inequality [(3.23) and the equalitigs (3.24) and (3.25) produce the second bound in
@.18).
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Finally, observe also that

M
(3.26) / A — " Bz, x) d)

m

— /CO (c = N""" Bz, z) d\ + / (A — )" Bz, x) d
< (c—m)"! /C_O (Exx,z)d\+ (M — c)”l/ (B x,x) dA

< max {(c — m)"' (M — c)n_l} / (E\x,x) d\

m—0
:| n—1

y [(E,\x,x>/\|%_0— / N Ad<EAx,x>}

1

:[_<M_m)+ m+ M

2

C_
2

m—0
1 M n—1
_ [5 (M —m)+|c— m; } (M1 — A)z, )
foranyx € H and similarly,
M

(3.27) / A — [ (Eya, x) dX

m—0

m+ M

C —

< E (M —m)+ ] (M1 — A)y.y)

foranyy € H.
On making use of (3.23), (3.6) arjd (3.27) we deduce the last bound provided in @.16).

The following particular cases are of interest for applications

COROLLARY 3.4 (Dragomir, 2010/4]). With the assumption of Theor¢m|3.3 we have the
inequalities

(3.28) (T, (f,m, M) 2, )
< ﬁ / Q=T () ()] 4y
<= VU™ [ G B ax

n!

1 M
S \/(f(n)) Bn(m7M7x7y>7
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foranyz,y € H, where
(3.29) Bn(m, M, x,y)

(M —m)" [lz[| lyll
= Cn<m7M7x>y);

n (M —m)" " [(M1y — A)z,z) (M1 — A)y,y)]"?
and
(3.30) Cr(m, M, z,y)
= [([(M = m)" 1z — (A= mly)"] 2, 2)]"?
< [([(M = m)" 1 — (A= mlp)"]y,y)]"*.

The proof follows from Theorem 3.3 by choosiag- m and performing the corresponding
calculations.

COROLLARY 3.5 (Dragomir, 2010/4]). With the assumption of Theor¢m|3.3 we have the
inequalities

(3.31) (Yo (f,m, M)z, )]
<t [ ar-a \M/ (£ [Exa. )] dA
<= \f{ ) [ )
< L\ (1) B, M),

foranyx,y € H, where

(M —m)" [l Iyl ;

= On(m7M7x7y)7

n (M —m)" " (Mg — A)z,2) (M1 — A)y,y)]"
and

(3.33) Co(m, M, z,y)
= (M1 = A)" &, 2)] (M1 — A"y, y)]?.

The proof follows from Theorein 3.3 by choosing= M and performing the corresponding
calculations.

The best bound we can get is incorporated in
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COROLLARY 3.6 (Dragomir, 2010/4]). With the assumption of Theor¢m|3.3 we have the
inequalities

(3.34) [(Wa (f,m, M) 2, y)]

m-+M

m+M

<ot [ ()T \/ (F) |(Exe, )] A

0

A

ot [ (=YY g e

1 m;M m-gM m_'_M n—1
<o V) ( 5 —A) Bz, y)| dX
M M n—1
1 n m -+ M
fotm V) [ (-5 el

foranyz,y € H, where

v

(3.35) B, (m, M, z,y)

M—m)"
O Nl Nyl

%

= C(m7 M7 x7y)

s (M —m)" (Mg — A)z,z) (Mg — A)y,y)]'?

Tl
Jo]"

3.3. Error Bounds for ™ Lipschitzian. The case when the-th derivative is Lipschitzian
is incorporated in the following result:

and
(3.36) C,(m, M,z y)

2" 2

X [<{W1H—59n (A—m—;MlH> 'A—m—ngH

THEOREM 3.7 (Dragomir, 2010,4]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrunbp (A) C [m, M| for some real numbers: < M, {E,}, be its spectral

family, I be a closed subinterval oR with [m, M] c I (the interior of /) and letn be an

AJMAA Vol. 17(2020), No. 1, Art. 1, 319 pp. AIMAA


https://ajmaa.org

INEQUALITIES FORFUNCTIONS OFSELFADJOINT OPERATORS 293

integer withn > 1. If f : I — C is such that the:-th derivative f" is Lipschitzian with the
constantZ,, > 0 on the intervalm, M|, then for anye € [m, M| we have the inequalities

(3.37) |(Va (f ;m, M), )

1 M
< —L, IA—c|" [{Exz,y)| d\
n! 0

m—

1
(n+1)!
([ [(M =)+ (e =m)" ] el Iyl

<

n

IO =0 1 = sgn (4 = ctin) |4 = et ] )]
X4 ) [([(M = )" 1y = sgn (A = elg) |[A = el y,y)] 7

(n+1) [2(M —m) + |c — L]
[ X [(M1y — A)z,2) (Ml — A)y,y)]"?;

foranyz,y € H.

PROOF From the inequality[ (3.18) in the proof of Theorgm|3.3 we have
(3.38) [(Va (fy ¢;m, M) 2, )|

<ot [ | e vagm o) s

foranyz,y € H.
Further, we utilize the fact that for ah—Lipschitzian function,p : [a, 3] — C and a
Riemann integrable function : [«, 5] — C, the Riemann-Stieltjes integrg(lfp(s) dv (s)

exists and
p 3
/ p(s)dv(s) SL/ Ip ()] ds.

On making use of this property we have foE [m, ] that

[e=taow) st [ @-arta= Tnae-ay

n

A
S It) \ (Br, )| dX

and for\ € [c, M] that

/ - a (o )| < 1 / o=t oy

n

which, by [3.38) produces the inequality
(3.39) [(Va (f, e, M) 2, )|
1 ¢ n 1 M n
<ol [ =B+ Ly [ O o (B )] dh

m—0

1 M
-1 / A = " [(Exz, )] d,
n! 0

m—

foranyz,y € H, and the first part of (3.37) is proved.
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Finally, we observe that the bounds for the integfrﬁlo A =" |(E\z,y)| d\ can be ob-

tained in a similar manner to the ones from the proof of Thegrein 3.3 and the details are omit-
ted. g

The following result contains error bounds for the particular expansions considered in Corol-

lary[3.2:

COROLLARY 3.8 (Dragomir, 2010/4]). With the assumptions in Theorém|3.7 we have the
inequalities

(3.40) (T (f,m, M) 2, )

1 M
Sl [ (A= m) [{Exe,y)| A
n! m—0

1

(n+1)!
(M —m)" 2] llyl;

IN

IN

n

(01 =ty = 4=t
< [([(M —m)" 1 — (A= mln)" ]y, y)]

[ (n+ 1) (M —m)" [(M1y = A)z,2) (Mg — A)y,y)]""*;

and
(3.41) (Y, (f,m, M)z, y)|
1 M .
<o [ I A (Bl
<L
“(n+1)"
( (M —m)" 2| Iy ;
< § (M1 — A" 2, a)) (ML — A" y,y)]
| (1) (M —m)]" (M1 — A)z,2) (M1y — A)y, )]
and

(3.42)  [(Wy(f,m,M)z,y)|

M
gim/
n' m—O

'(Mm)

A —

2
SENE

([ = sgm (4 = 25200) |4 = 25200 )]

X [< [(M_+)n+llH — sgn (A — %11{) ‘A . %11{‘%1} y,y>r/2;

[ 52 (M —m)" (M1 — A)z,z) (Mg — A)y.y)]'"*;
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foranyx,y € H, respectively.

3.4. Applications. In order to obtain various vectorial operator inequalities one can use the
above results for particular elementary functions. We restrict ourself to only two examples of
functions, namely the exponential and the logarithmic functions.

If we apply Corollary 3.5 for the exponential function, we can state the following result:

PROPOSITION3.9. Let A be a selfadjoint operator in the Hilbert spaéewith the spectrum
Sp(A) C [m, M] for some real numbers: < M and{E,}, be its spectral family. Then we
have

(3.43)

(ez,y) — e zi: (_kll)k <(M1H — Az, y>

S T ) (Bl

<! (M —em) / (M = N [(Baz, y)] dA

(M —m)" || lly] ;
X LMLy = A) 2, 0)] P (M1 = A)"y, )]
TL(M - m)nfl [<(M1H — A) $,ZE> <<M1H _ A) y,y>]1/2
foranyz,y € H.

If we use Corollary 3]8 then we can provide other bounds as follows:

PrRoOPOSITION3.10. With the assumptions of Propositijpn 3.9 we have

(3.44) e T,y) — eM E k' < (M1g — A x,y>
1 M
< meM/ (M — \)" |[{Exz, y)| dX
: m—0
1
< M
~ (n+ 1)!6

( n
(M —m)" ]yl ;

x ([ = A2, a)) " [([(M 1 - 4"y, w)]) "

| (n+ DM =m)]" [(M1y — A),) (Mg = A)y,y)]"*;

Finally, the Corollarie§ 3|5 arjd 3.8 produce the following results for the logarithmic func-
tion:
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PROPOSITION3.11. Let A be a positive definite operator in the Hilbert spallewith the
spectrumSp (A) C [m, M] C (0,00) and{E,}, be its spectral family, then

(3.45)

and

(3.46)

- (- Ay
(In Az, y) — (2,y)In +; Y

M M™ — \"
< M—-\" | dA
< [ 0T S )

M —mn (M

M
M"™ —mn
- nMm™mn
(M —m)" [lz]| [ly]

(M =N [{Bxz, )| dA

m—0

X (L =AY )P (M= 4)" )]

n (M —m)" " [(Mly — A)z,z) (M1y — A)y,y)]"?

(In Az, y) — (x,y) 1nM+Z < ?J>

kM*
k=1
1 M
M- N"|(E X
< [ =N B
1
- <n+1)mn+1

( n
(M —m)" ]yl ;

1/2

x & (M1 — A" 2, 2\ (M1 — Ay )]

| (n+ DM =m)]" [(M1y — A),) (Mg = A)y,y)]"*;

4. TwoO POINTS TAYLOR'S TYPE INEQUALITIES

4.1. Representation ResultsWe start with the following identity that has been obtained
in [2]. For the sake of completeness we give here a short proof as well.

LEMMA 4.1 (Dragomir, 2010,d]). Let I be a closed subinterval oR, leta,b € I with
a < band letn be a nonnegative integer. ff: I — R is such that the:-th derivativef™ is of
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bounded variation on the intervid, 0], then, for anyz € [a, b] we have the representation

(4.1) flx) = [(b—=) f(a) + (z —a) f ()]

where the kerne$,, : [a,b]* — R is given by

(x —1)" (b—1x) ifa<t<u;

4.2) Sy (z,t) = — X {

(—)""M (t—2)"(x—a) fFoz<t<b
and the integral in the remainder is taken in the Riemann-Stieltjes sense.

PROOF We utilize the following Taylor’'s representation formula for functighs I — R
such that thex-th derivativesf™ are of locally bounded variation on the interval

43) F@) =3 @0 9@+ [ w01 ).

k=0

wherez andc are in/ and the integral in the remainder is taken in the Riemann-Stieltjes sense.
Choosingc = a and ther: = b in (4.3) we can write that

I o AR K RI O}
and
(45) Fo =3 S g

foranyz € [a,b].
Now, by multiplying [4.4) with(b — =) and [4.5) with(z — a) we get

(46) b))
— -0 @+ b-0) )Y - ) O (0
k=1 "
b= [0 (1 @)
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and

@.7) (x—a)f (x)
— @) SO+ -0} T -0 )
B0 [Ce—ara(r o)

respectively.
Finally, by adding the equalities (4.6) arld (4.7) and dividing the sum ith ), we
obtain the desired representatipn [4 #).

REMARK 4.1. The case = 0 provides the representation
1
(4.8) [ (@)= 7= [(b-2)f (@) +( —a) ] (b)

b
5o [ S@nai)

foranyz € [a,b], where

S (.1) b—x ifa<t<u,
:1:7 = .
a—zx ifx<t<b,

and f is of bounded variation ofw, b] . This result was obtained by a different approachin [
The caser = 1 provides the representation

(4.9) fo) = 1[@—@f@%ﬂx—@f®ﬂ

/caxt (1),

(a—t)(b—2x) ifa<t<uz,
Q (v,t) = .
(t—=0)(x—a) ifx<t<b.
Notice that the representatign (4.9) was obtained by a different approatjh in [

where

THEOREM4.2 (Dragomir, 2010,3]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrun®p (A) C [m, M] for some real numbers: < M, {E,}, be its spectral
family, I be a closed subinterval dR with [m, M| C I and letn be an integer with, > 1. If
f : I — Cis such that thex-th derivativef™ is of bounded variation on the intervah, M],
then we have the representation

(400)  f(4) = o [f (1) (M1 = A) + f (M) (4 = L)
L (Mg —]\;[4) (f:ln— mly)
g {0 =m0 0 i
'I'L(f’m7M>7
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where the remainder,, (f, m, M) is given by

1 M
m/ OKn(m7M7f;>\)dE)\

and the kerneK,, (m, M, f;-) has the representation

(4.11) T, (f,m, M) =

A
(4.12) K, (m, M, f:\) :== (M — \) (/ A—=t)"d(f™ (t)))

+w—m“4@—nw(l a—xvduwwwo
for A € [m, M].

ProoFr Utilising Lemmd 4.1l we have the representation

(@13)  J () = 5 [(M = X) £ (m) + (A= m) f (M)
) 3 L= m) A m) 4 (1) (= 2O ()

k

Il
fa

b [0 [ -0 (7 )
(M —m)n! m

+enw4u—nwl a—xvduwa»]
forany\ € [m, M].

If we integrate|(4.13) in the Riemann-Stieltjes sense on the interyal/| with the integra-
tor F,, then we get

M
(4.14) / . F(\) dE,

T =) F ) (= m) £ ()] 0B

+/ (M—]W)\)_(i\n—m)z:%{(/\_m)k1f(k)(m)

DO = O+

X UZO(M—A) (/ﬁj(A—t)”d(f(") (t))) dE,

%w—nw4/M(A—nw(KM@—AWdU“NdeEﬁ-

m—0

Now, on making use of the spectral representation theorem we deducg from (4.14) the equality
(4.7) with the remainder representatipn (4 #).

REMARK 4.2. Let A be a selfadjoint operator in the Hilbert spallewith the spectrum
Sp (A) C [m, M] for some real numbers < M, {E\}, be itsspectral family.In the case when
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the functionf is continuous and of bounded variationfen, M|, then we get the representation

(4.15) F(A) = ot [ (m) (M1 — A)+ 1 (M) (A~ mLy)]

1 M
F s | =N - f oy

m—0
M
- [ = mylron - soaE]
m—0
Also, if the derivativef’ is of bounded variation, then we have the representation

(@16)  f(A) = s [ (m) (M1 — A)+ f (M) (A~ mLy)]

T [[nM()(M—A) (/T:(A—t)d(f’(t)o IE,

+/ﬂfo(x—m) (/AM(t—A)dU/(t))) dEA}'

EXAMPLE 4.1. a. Let A be a selfadjoint operator in the Hilbert spaééwith the spectrum
Sp(A) C [m, M] for some real numbers: < A and {E,}, be its spectral family. If we
consider the exponential function, then we get from (4.10) [and]|(4.11) that

(4.17) et = i i — [e" (M1y — A) + e (A —mly)]
M —m

X Z - { (A—mlg) 4 (1) eM (M1y — A)’H}

+mx UZO(M—)\) (/T:(/\—t)”etdt> dE),

+(—=1)"*! /XO (A —m) (/AM (t—\)" etdt) dEA] :

b. If A is a positive definite selfadjoint operator with the spectrm(A) C [m, M| C
(0,00) and{E\}, is its spectral family, then we have the representation

(4.18) A= —1 [(Mly— A)lnm+ (A —mly)ln M]

St et _unar)
o [ ([ e
_/m]:()\—m) (/AM (tt:+)1\>ndt) dEA].

The case of functions for which theth derivativef ™ is absolutely continuous is of interest
for applications. In this case the remainder can be represented as follows:
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THEOREM4.3 (Dragomir, 2010,3]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrunbp (A) C [m, M| for some real numbers: < M, {E,}, be its spectral
family, I be a closed subinterval d with [m, M] c I and letn be an integer with > 1. If
f : I — Cis such that thex-th derivativef(™ is absolutely continuous on the interjat, /],
then we have the representati¢n (4.10) where the remaingef, m, M) is given by

(4.19) T, (f,m, M)

1 M
*Jm—0

and the kernelV,, (m, M, f;-) has the representation
(4.20) W (m, M, f; A)

= (—1)" /A A=) [nM 4t — (n+ 1)\ £V () dt

m

_ /M (t=N)""[t4+nm— (n+ 1)\ fOD () dt

for A € [m, M].

PROOF. Observe that, by Leibnitz’s rule for differentiation under the integral sign, we have

(4.21) % {(M - ) ( / ' (A=) f D (1) dt)}

m

A

:—/A()\—t)”f("“)(t)dt+(M—)\)% /

m m

(A= )" D (1 dt)

A A
= —/ AN =t)" fOD () dt +n (M — A)/ A=) O (1) at

m

-/ SO Mt () A F (0

m

forany\ € [m, M].
Integrating by parts in the Riemann-Stieltjes integral we have

(4.22) / N (M —\) ( / ' (A —t)" fOFD (1) dt) dE

m—0 m

M

- ([ o-0ragow) g

m

m—0

_ /mMO (/ﬂj A=t)""" M +t— (n+ 1)\ fO (1) dt) Ed\

== ( A A=) [nM +t — (n+ 1) A D (1) dt) E\dA.
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By Leibnitz’s rule we also have

( (t—\)" f D (1) dt)]

-
/AM N FOED () dt + (A —m) dd)\ (/M (t— \)" f (1) dt)

/M FOEY (@) dt —n (A —m) /M (t—N)"" O (1) at

d

(4.23) y

>

/ (t—=N"""[t+nm— (n+ 1) N D () dt

forany\ € [m, M].
Utilising the integration by parts and (4]24) we get

(4.24) /m MO (A —m) ( /A N (t —N)" f D (1) dt) dE,
=(A-m) </AM (t=N)" fOD (2) dt) E, :

_/MO (/AM(t—/\)"_l[tJrnm—(n+1)/\]f”+1 ()dt) E\d\

m—

m—0

- /Mo (AM (t—=N)"""[t4+nm— (n+ 1)\ D (1) dt) Exd.

m—

Finally, on utilizing the representation (4]11) for the remairifieff, m, M) and the equalities
(4.22) and|[(4.24) we dedude (4119). The details are omiited.

REMARK 4.3. The case = 1 provides the following equality

(4.25) F(A) = <t [F (m) (M1 — A) + 1 (M) (A~ mLy)]
1 M
+ m /m_o W1 (m, M, f; )\) E,\d/\,
where

A M
;:/ (2)\—M—t)f”(t)dt+/ 2\ —t —m) f" () dt

m

for A € [m, M].

4.2. Error Bounds for (™ of Bonded Variation. The following result that provides bounds
for the absolute value of the kerngl, (m, M, f;-) holds:

LEMMA 4.4 (Dragomir, 2010/3]). Let I be a closed subinterval dR with [m, M| C I,

let » be an integer witlh > 1 and assume thaf : I — C is such that the:-th derivative ™
exists on the intervdin, M].
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1. If f™ is of bounded variation ofm, M], then

(4.27) | Ky, (my, M, f; )]
A M
<M =N =m)"\/ (f™) + = m) (M ="\ (F™)
m A
<Lor—m [_ PN () + (= 2 ()
< 3 (M = m)? J (m, M52
where
(4.28) Iy (my M3 N)
[2(M —m)+ [\— =t ]”*1\/ (f™);
[()\ m)p(n—l) + (M - )\)p(n—l)] Lp
A q M q11/4q
() <o)
ifp>T,%+%—1; ’
M A M
VOV ) -V 60|
m m A
L [ =m)" ™ (M = )]
and\ € [m, M].

2. 1f ) € (m, M) and f™is L, ; y-Lipschitzian orjm, \] and L, 5 ,-Lipschitzian or{\, M]
then

(4.29) | K (m, M, f3 0)]
< n—ll— T [ Znan (M = 2) (A = m)" 4 Lyaa (A= m) (M = N)""]
= m (Lo (A =m)" + Lo (M = A)"]
1

[ = m)™ + (M — N7 (L4, + L8, )
ifp>1,%+a:17
[ —m) + A = 254 ]]" (Lyas + Loo)

4
[ [(A=m)" + (M = A max{Ln1x Lnaa}

and\ € [m, M].
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In particular, if ™ is L,-Lipschitzian or{m, M|, then
(4.30) | K (M, M, f5 0]

anl (M = 2) (A =m)"™" 4 (A= m) (M = 2)""]

L, (M —m)*

Ty ()" (=]

and\ € [m, M].
3. If the functionf™ is monotonic nondecreasing &m, M|, then

(4.31) | K (m, M, f3 N))|

<=0 o [ 0= 0 e -y 10 )

m

+ (A —m) [(M =" f (M) = n / -2 ) dt}
< (M =X (A—m)
X [ =m)"HLFO () = f ()] (M= )" £ (M) = £ (V)]
< 3 (M —m)?
< [ =m)" L[ () = O (m)] + (M= 2" [ (M) = £ (V)]
< 3 (M = m)P T, (m, M)

where

(4.32) T, (m, M; \)

;

[L(M —m) + |A = M50 (M) — £ ()] ;

1/
[(A — )P (M — A)p(n—n] P

= [ () = £ )T+ (£ (0) = £ (m)) )
ifp>1,%—|—%:1;

3 [0 () — 1) ()] +
[ < [N =m)" T+ (M=)

() ") (m
FO () — %H

PrROOF 1. Itis well known that ifp : [a,b] — C is a continuous function; : [a,b] — Cis

of bounded variation then the Riemann-Stieltjes integﬁaf’aj (t) dv (t) exists and the following
inequality holds

(4.33)

[ v <t>\ < max p (0] \/ (0),

tela,b]

b
Where\/ (v) denotes the total variation ofon [a, ] .

AJMAA Vol. 17(2020), No. 1, Art. 1, 319 pp. AIMAA


https://ajmaa.org

INEQUALITIES FORFUNCTIONS OFSELFADJOINT OPERATORS 305

Utilising the representatiof (4./12) and the propdrty (4.33) we have successively

(4.34) | K, (m, M, f5 M)
A

< (M- <A—t>"d(f<"><t>>'+<x—m> / (t—A)"d(f(”)(t))‘

<

forany\ € [m, M].
By Holder’s inequality we also have

(4.35) I, (m, M;\)

[\

X
1
N

<>
bR —
-]

S
SN—"
~_

_Q
S+
|
>,<§
—~
s
=
N
~
%
s
=}

forany\ € [m, M].
On making use of (4.34) and (4]35) we dedyce (4.27).

2. We recall that ifp : [a,b] — C is a Riemann integrable function and [a,b] — C is
Lipschitzian with the constart > 0, i.e.,

|f(s)—f ()| < Ll|s—t| foranyt,s € [a, 1],

then the Riemann-Stieltjes integ[ﬁﬁp (t) dv (t) exists and the following inequality holds

/:p@)dv(t)] <t [ bl
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Now, on applying this property of the Riemann-Stieltjes integral we have

(4.36) |K (m, M, f; M)
A

< (M=) <A—wwuﬂw@»%wA—m>A (t—N)"d (f (1)
<- i L (M = X) (=)™ o Ly (A= m) (M = )]
_ (M- n”ﬁ =) (s = )"+ Lo (M — Y]
(M —m)? n n
< m [Ln717,\ ()\ — m) + ng’)\ (M — )\) ]
(M —m)?
~ 4(n+1)

(A =m)" + (M — N)"Jmax{Ln1, Lnar}

< 4O = m)P 4 (M = NP (e 4L, )
ifp>1,.+1=1

(30 =) LA = =547 (L + Luo)

which prove the desired resylt (4]30).

3. From the theory of Riemann-Stieltjes integral is well known that if [a,b] — C is

continuous and : [a, b] — R is monotonic nondecreasing, then the Riemann-Stieltjes integrals
[Pp(t)dv (t)and [ |p(t)] dv (t) exist and

(4.37)

b b
/Tp@)mﬂﬂ'éb/Ipﬁﬂdv@)<imaxm(ﬂHv@)—v(wk

T t€[a,b]

By utilizing this property, we have

(4.38) |K, (m, M, f;\))|
A

< (M=)

<A—w%uﬂM@»bwA—m>

m

K (t— X" (f (1)

<= [a=ra( @)+ =m) [ a-xra(r m)
= H, (m, M;\)
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By the second part of (4.87) we also have that
(4.39) H, (m, M;\)

< (M =X (A—m)" [f(” (A) F (m)]

x [ —m)"! W (A) = £®) (m)] + (M = N)" [0 (M) = 1™ (V)]
< 3 (M —m)?
< [ =m)" LSO ) = f (m)] (M= 2" [ (M) = f* (V)]
= L (M —m)* L (m, M)

with

(4.40) L, (m, M;\)

(50 —m) + [r = 252" [0 (M) = ) ()]

(= m) ™ 4 (b = APt }/p
X [(F (M) = £ ()" + (£ () = £ ()"

H 1 1 _ 1.
ﬁp>L;+E—L

IA

[% [F®) (M) — £ (m)] + ’f(n) (\) — wu
L X [A=m)" T+ (M=)
Integrating by parts we have
(4.41) H,, (m, M;\)

== [ a=ra @)+ =m) [ @-xa (@)

== | 0= 07 1 0 [ SOy q

FO=m) [ =2 O = [ - @
A

—0r=0 o [0 @ = 0= ) ()

M
O m) [0 = 1 ) = [ = @]
A
On making use of (4.38)-(4.#1) we deduce the desired r¢suli (431).

On making use of the bounds for the ker#é&] (m, M, f;-) provided above, we can estab-
lish the following error estimates for the remaindér( f, m, M) in the representation formula

@.19).

THEOREMA4.5 (Dragomir, 2010,3]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrunbp (A) C [m, M] for some real numbers: < M, {E,}, be its spectral
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family, I be a closed subinterval dR with [m, M] c I and letn be an integer with > 1. If
f : I — Cis such that thex-th derivativef™ is of bounded variation on the intervah, M],
then we have the representation

(4.42) (f (A)lx, v)
L) (M1 = A) ) + £ OD) (A = 1) 2,3)]
+Ml—m
:1 70 (m) (M1 = A) (A= m) 2,y
+Z L0 79 (a1 (4 = m) (11 — Ao y>}

where the remainder,, (f, m, M;z,y) is given by

M
(4.43) T (f,m, Miz,y) = m/mo K (m, M, f; A) d(Exz,y)
and the kerneK,, (m, M, f;-) has the representatiop (4]12).

Moreover, we have the error estimate

(4.44) T (f,m, Mz, y)|
"
§4—n,M mnyo (E0,9))
A M
g [TV U G0 0)
1 v
34—m<M—m"Y (£™) y (Eoz,v))
1 "
< gy O =m0\ () e

foranyz,y € H.

PrROOF. The identity [(4.4R) with the remainder representatjon (4.43) follows ffom](4.10)
and [4.11).

Now, on utilizing the property[ (4.33) for the Riemann-Stieltjes integral we deduce from

(4.43) that

(4.45) 1T, (7,m, M; 2, 3)
1 M
< Ty 255 1 (ML SNV (Bl )

foranyz,y € H.
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Further, by[(4.2]7) and (4.28) we have the bounds

(4.46) | K, (m, M, f3 M)
- A M
< i(M—m)Q ()\_m)n—l\/ (f(n)) + (M - /\)n—l\/ (f(n))]
L m )\
) _ m -+ M n—1 M .
< (M —m) _%(M—mH‘A— . } V(F):

forany\ € [m, M].
Taking the maximum ovex € [m, M| in (4.46) we deduce the first and the second inequal-
ities in (4.44).

The last part follows by the Total Variation Schwarz’s inequality and we omit the degails.

COROLLARY 4.6 (Dragomir, 2010/3]). With the assumptions from Theo 4.5 antl'it
is L,,-Lipschitzian onm, M], then

(4.47) T, (f.m. Ms )
(n+ 1) my S/O (B 9))
X e (M= ><A m)" ! 4 (A —m) (M = A)"]
< m (M —m)"*" L, 520 ((Eoz.y))
< Ty 1 =)™ L el

foranyz,y € H.

4.3. Error Bounds for £ Absolutely Continuous. The following result that provides
bounds for the absolute value of the kerié] (m, M, f;-) holds:

LEMMA 4.7 (Dragomir, 2010[d]). LetI be a closed subinterval dR with [m, M] C 1, let
n be an integer witm > 1 and assume thaf : 7 — C is such that the:-th derivativef™ is
absolutely continuous on the intervak, M/]. Then we have the bound

4
(4.48) (W, (m, M, f; )| ZB@ (m, M, f; \)
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where
(4.49)

(4.50)

(4.51)

and
(4.52)

S. S. IRAGOMIR

BY (m, M, f; \)
A
=n(M - A)/ A=t)" O @)] dt < n (M —N)

m

(7 A=) [0 0 TS € Lo [, Al

1 ( _ m)n71+1/p1 Hf(n_H)H

[(n=1)p+1]7771
if f) € Ly, [m, N ,pr > 1, -+ - =1,

[m)‘]:ql

\ (/\ . m)n—l Hf(n-‘rl) H[m)\}’l ,

B® (m, M, f; \)

A
/ f(n—i—l) )} dt

IA

(/\ m n+1 Hf<n+1 H[m,)\},oo If f(n+1) € Loo [m7 /\] ;

n+1 n . n
("102+11)1/p2 ( ) v Hf( +1)H[m,>\],qz i f( Ve Ly, [m, )‘] )

\ (A - m)n Hf(nH) H[m,)\],l

B (m, M, f;\)
M

/ (4= A" 17 0] e
A

IN

9

(M )\ n+1 Hf (n+1) H[)\’M]’OO if f(n-i—l) c Loo [)\,M],

\ (M —A)" Hf(nH)H[,\,M],l

By (m., M, f; )
=n A—m)/M(t—)\)”l | FD ()| dt < (A —m)
A

( %(M _ /\)n Hf(nﬂ)”[)\,M],oo if f(n+1) € Loo [\, M];

~—~

1 n—1+1/ n+1)
X [(n—1)pa+1]*/P4 (M=) " Hf " H (A M],qa
if )€ Ly [\ M],pa>1, 5+ - =1

L M= )" D
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n+1 n . n
(nP3+11)1/p3 ( ) e ||f (D ||[>\,MLQ3 i f( e LQ3 [)‘7 M]7
Ps3 > 17 ]%3 + — 1
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forany A € [m, M], where the Lebesgue norrfig|, , , are defined by

b 1/]3 )
(Sl @rdae) " itge Lyfab),p>1
1911031, =
es55uDyciosy |9 (D] 1f 9 € Loc [0,1].

PrRoOOF From [4.20) we have
(4.53) (Wa (m, M, f; )|

<

/A A=8)""" M+t — (n+ 1)\ f (1) dt‘

m

+ /M (t—=N)"""[t+nm — (n+ 1)\ D (1) dt'

A
< [ A=t)"" M+t —(n+ 1) N[ (@1)] at

M
+/ (t—N""t+nm— (n+ )N |fO (¢)| dt
A

>

< [ =0 (= X) + = 0] [£0 ()] de

t=N"" =N (A —m)] | fY (2)] dt

+
»J>>\
g

= BY (m, M, f; )
=1
for any A € [m, M], which proves|(4.48).
The other bounds follows by Hdlder’s integral inequality and the details are omgtted.

REMARK 4.4. It is obvious that the inequalities (4]48)-(4.52) can produce 12 different
bounds fol W, (m, M, f; \)| . However, we mention here only the case wién") € L., [\, M],
namely

(4.54) (W, (m, M, f; M)
1

<M =N =m)" [[F" e+ g

A =m)"™ S

o g =" o+ O = m) QL= N
<[(M=XA=—m)"+N=m) (M —N)"

1 n+1 1 n+1 (n+1)
+n+1()\—m) +n+1(M_)\) Hf ’ H[m,M],oo

forany\ € [m, M].
Finally, we can state the following result as well:

THEOREM4.8 (Dragomir, 2010,3]). Let A be a selfadjoint operator in the Hilbert space
H with the spectrunbp (A) C [m, M| for some real numbers: < M, {E,}, be its spectral

family, I be a closed subinterval dR with [m, M] c I and letn be an integer with > 1. If
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f : I — Cis such that thex-th derivativef (™ is absolutely continuous on the interJat, M],
then we have the representati¢n (4.42) where the remaifgef, m, M; z, y) is given by
(4.55) T, (f,m, M;z,y)
1 M
- L (m, M, £ 0) (Exz, y) dA
T W M) (B

and the kernelV,, (m, M, f;-) has the representatiof (4.20).
We also have the error bounds

(4.56) T (f,m, M 2, y))|

1 M
< - W, (m. M, f: )| [(Exz, )| dX
< G [ W (m M F ) ()

1 M
= m/ ‘Wn (m7 M,f;)\)l <E)\:C,;c>1/2 <Exy,y>1/2 d\
' Jm—o

1 M
S el L AN UA TSRS
foranyz,y € H.

m

REMARK 4.5. On making use of Lemnja 4.7 one can produce further bounds. However, the
details are left to the interested reader.
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