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1. I NTRODUCTION

For centuries mathematicians have sought closed-form expressions for the roots of polyno-
mial equations of arbitrary ordern. The Abel-Ruffini theorem states that only polynomials of
order four or less can be solved explicitly using rational operations and finite root extractions
[1].

Several authors have proposed series solutions of algebraic (and polynomial) equations ([1],
[2], [3], [2], [4], [5], [6]). These solutions, which rely on hypergeometric functions, are cumber-
some to implement and have not provided feasible alternatives to standard numerical methods.

We will consider here a polynomial equation in the form

(1.1) xn = (an−1x
n−1 + an−2x

n−2 + ... + a1x + a0)t
n.

where thea′ks are complex coefficients andt is a real parameter that may or may not be 1. In
the self-contained Theorem 5.1 we will show that whent is small enough or|a0| large enough,
there exists a sequence{βm}m=1,2,... such that then roots will be the values of the function

(1.2) x(t, u) =
∞∑

m=1

βme2uπm×i/n × tm

taken atu = 0, 1, 2, ..., n− 1.
The functionsx(t, u) are power series int and periodic of periodn in the variableu. These

functions can be thought of as "elementary" in the same way

(1.3) cos(teiθ) =
∞∑

m=0

(−1)mt2me2mθi/(2m)!

is an elementary function.
This will be only a first step as the class of polynomial equations solved explicitly with these

power series is limited (t must be small enough or|a0| large enough). The ultimate goal is to
generalize the approach proposed here to any polynomial equation.

2. PRELIMINARIES

We start off with a polynomial equation in the form

(2.1) xn = an−1x
n−1 + an−2x

n−2 + ... + a1x + a0

where theak’s are complex coefficients anda0
def.
= ρeiθ (ρ > 0,−π < θ ≤ π) is assumed

throughout to be non-zero. (Otherwise (2.1) can trivially be reduced to an equation of degree
n− 1).

Equation (2.1) is transformed by multiplying the right-hand side bytn wheret is a real vari-
able that we may initially think of as small but is destined to take on any real value including
1:

(2.2) xn = (an−1x
n−1 + an−2x

n−2 + ... + a1x + a0)t
n.

We begin by seeking the roots expressed as the infinite series

(2.3) x(t)
def.
= b1t + b2t

2 + b3t
3 + ...

wherea priori we will needn different sequences{bm}m=1,2,.... to generate then roots. We
will show that in fact there exists a single sequence{βm}m=1,2,.... such that then sequences
{bm}m=1,2,.... are obtained through

(2.4) bm = βme2kπm×i/n, m = 1, 2, ...
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for k = 0, 1, ..., n− 1. Then rootsx(t) given in Eq. (2.3) will then be of the form

(2.5) x(t, k)
def.
=

∞∑
m=1

βme2kπm×i/n×tm, k = 0, 1, ..., n− 1.

With x(t) of (2.3) the equation to solve is now

(2.6) x(t)n =
(
an−1x(t)n−1 + an−2x(t)n−2 + ... + a1x(t) + a0

)
tn.

Before proceeding we need some notations and preliminary results.
We define the powersBr

q of the partial sums ofx(t):

(2.7) Br
q

def.
= (b1t + b2t

2 + ... + bqt
q)r, q, r ∈ N,

where for ease of notation the functional dependence ofBr
q on t is omitted. We letK(d,Br

q )

denote the coefficient oftd in Br
q . Eachbm that we are seeking is equal toK(m,B1

m). We note
thatK(d,Br

q ) does not depend ont andK(d,Br
q ) = 0 if d < r or d > rq. With these notations

(2.8) Br
q = trK(r, Br

q ) + tr+1K(r + 1, Br
q ) + ... + trqK(rq, Br

q ).

Proposition 2.1. Whend ≥ r andq − d + r − 1 ≥ 0 the coefficientsK(d,Br
q ) satisfy

(2.9) K(d,Br
q ) = K(d,Br

q−h) , h = 0, 1, ..., q − d + r − 1.

For d ≥ r ≥ 2

(2.10) K(d,Br
q ) =

min(d−r+1,q)∑
m=1

bmK(d−m, Br−1
q ),

which forq, s ≥ 1 is equivalent to

(2.11) K(q + s, Bs+1
q+s) = b1K(q + s− 1, Bs

q+s−1) +

q−1∑
m=2

bmK(q + s−m,Bs
q+s−m) + bqb

s
1.

Proof. Equation (2.9) expresses the fact that whenq ≥ d−r+1 then only the firstd−r+1 bi’s
enter intoK(d,Br

q ). Equation (2.10) is the convolution rule used to express the coefficient oftd

in Br
q considered as the productBr−1

q × B1
q . Equation (2.11) is obtained by using Eq. (2.9) to

express a form of Eq. (2.10) in which all theK(a, Bv
u)’s have identical values fora andu.

With x(t) given in Eq. (2.3) both sides of Eq. (2.6) are polynomials int with powers≥ n.
The goal is to find recursively thebm’s so that for eachp ≥ n the coefficients oftp are equal on
both sides of (2.6). This will be done by considering the rootsx(t) in the form of the gradually
expanding partial sumsB1

q =
∑q

m=1 bmtm and applying Eq. (2.8) .
The coefficientb1 will be found by seeking a solution of the formB1

1 for which the coeffi-
cients oftn on both sides of (2.6) are equal. Withb1 thus determined,b2 is found by seeking a
solution of the formB1

2 for which the coefficients oftn+1 on both sides of (2.6) are equal, etc.
We begin with a candidate solutionB1

1 = b1t by setting equal the coefficients oftn on both
side of Eq. (2.6), i.e.

(2.12) B(n, Bn
1 ) = bn

1= a0.

Therefore then possible values ofb1 are

(2.13) b1 = ρ1/nei(θ+2kπ)/n, k = 0, 1, ..., n− 1

which is Eq. (2.4) withm = 1 and

(2.14) β1

def.
= ρ1/neiθ/n.
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4 M. A RTZROUNI

We note that then valuesx(t) = b1t with b1 of Eq. (2.13) are the exact trivial solutions of Eq.
(2.6) when all coefficients other thana0 are 0; otherwise they provide crude first-approximation
solutions whent is small.

In order to findb2 with a candidate solutionB1
2 = b1t + b2t

2, we note that the coefficient of
tn+1 on the left side of Eq. (2.6) isK(n + 1, Bn

2 ) and on the right isa1K(1, B1
2). Therefore we

want

(2.15) K (n + 1, Bn
2 ) = a1K

(
1, B1

2

)
.

Similarly, equating the coefficients oftn+2 with a solutionB1
3 yields

(2.16) K (n + 2, Bn
3 ) = a2K

(
2, B2

3

)
+ a1K

(
2, B1

3

)
.

When we equate the coefficients oftn+3, a similar expression arises with a third term involving
the coefficienta3. In general, Eq. (2.8) shows that to equate the coefficients oftn+q on both
sides of Eq. (2.6) (with a candidate solutionB1

q+1) one needs:

(2.17) K
(
n + q, Bn

q+1

)
=

min(n−1,q)∑
m=1

amK
(
q, Bm

q+1

)
, q = 1, 2, ...

Equation (2.9) shows that for anys ≥ 1

(2.18) K
(
n + q, Bn

q+1

)
= K

(
n + q, Bn

q+s

)
and

(2.19) K(q, Bm
q+1) = K(q, Bm

q+s).

These equations show that for anys ≥ 1 Eq. (2.17) is equivalent to

(2.20) K
(
n + q, Bn

q+s

)
=

min(n−1,q)∑
m=1

amK
(
q, Bm

q+s

)
.

Therefore if Eq. (2.17) is satisfied, the coefficients oftn+q on both sides of Eq. (2.6) are also
equal when any number of termsbkt

k are added to the partial sumB1
q+1.

We next write theK(a, Bv
u)’s appearing in Eq. (2.17) in such a way that the indicesa andu

are equal. Equation (2.9) shows that Eq. (2.17) (withq− 1 written instead ofq) is equivalent to

(2.21) K(n + q − 1, Bn
n+q−1) =

min(n−1,q−1)∑
m=1

amK(q − 1, Bm
q−1), q = 2, 3...

Given thatbm = K(q, B1
m), the task will be to findn sequences ofbm’s for which the infinite

systems of Eqs. (2.11) and (2.21) are satisfied for allq. Then we will give the convergence
conditions for the series

∑
|βmtm| =

∑
|bmtm| and show that thex(t, k)’s of Eq. (2.5) are

indeed then roots.

3. M ATRIX FORMULATION

We define the sequence of (n− 1)-dimensional vectors{W (q)}q=1,2,... whoser− th compo-
nent is

(3.1) W (q)r
def.
= a0b

1−q−r
1 K(q + r − 1, Br

q+r−1), r = 1, 2, ...n− 1.

We are particularly interested in the first component of eachW (q) because withr = 1 Eq. (3.1)
yields

(3.2) bm = W (m)1b
m
1 /a0.

We need the following definitions.
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Definition 3.1. We define below the vectorsAp, u, U and the matricesP andM :

(1) For p = 1, 2, ..., n − 1 the vectorAp is an (n − 1)-dimensional row vector with the
coefficientap in p-th position and zeros elsewhere.

(2) u is the(n−1)-dimensional row vector having 1 in the first position and zeros elsewhere.
(3) U is the(n− 1)-dimensional column vector1

n
(1 2 ... n− 1)′.

(4) Forn ≥ 3 the(n− 1)-dimensional square matrixP is defined as

(3.3) P
def.
=



−2 1 0 ... ... ... 0
−1 −1 1 0 ... ... 0
−1 0 −1 1 0 ... 0
... ... ... ... ... ... ...
... ... ... ... ... ... ...
−1 0 0 ... ... −1 1
−1 0 0 ... ... 0 −1


with its inverseM = P−1 equal to

(3.4) M
def.
=

1

n


−1 −1 ... ... ... −1

n− 2 −2 −2 ... ... −2
n− 3 n− 3 −3 ... ... −3

... ... ... ... ... ...
2 2 ... 2 2− n 2− n
1 1 1 ... 1 1− n

 .

Whenn = 2 the matricesP andM reduce toP = (−2) andM = (−1/2).

In the next theorem we will see that the sequence{W (q)}q=1,2,... depends only on theak’s,
and not on the particularb1. Then sequences{bq}q=1,2,... are then obtained through Eq. (3.2)
with then values ofb1 given in Eq. (2.13).

Theorem 3.1. We consider the sequence{W (q)}q=1,2,... defined in Eq.(3.1) together with the
constraints of Eqs.(2.11)and(2.21). TheW (q)’s are then

(3.5) W (1) = a0(1 1 ... 1)′

(3.6) W (2) =
a1

n
(1 2 ... n− 1)′

(3.7)

W (q) =
1

a0

 q−2∑
p=1

[u.W (p + 1)]MW (q − p) + U

min(n−1,q−1)∑
p=1

[Ap.W (q − p)]

 , q = 3, 4, ...

Bearing in mind thata0 = ρeiθ we define

(3.8) βm = ρm/n × ei(mθ)/n ×W (m)1/a0, m = 1, 2, ...

The n sequences{bm}m=1,2,... are then obtained through

(3.9) bm = βme2kπ×mi/n, m = 1, 2, ...

for k = 0, 1, ..., n− 1.
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Proof. Equation (3.5) results from the fact thatK(r, Br
r) = br

1. To prove Eq. (3.6) we recall
thatbn

1 = a0 and note that thes-th component ofW (2) is

(3.10) W (2)s = K(s + 1, Bs
s+1)b

n−1−s
1 = (s.b2b

s−1
1 )bn−1−s

1 = sb2a0b
−2
1 .

We will now expressb2. The definition ofK(n + 1, Bn
n+1) and Eq. (2.21) forq = 2 yield

(3.11) K(n + 1, Bn
n+1) = n.b2b

n−1
1 = a1b1,

from whichb2 = a1/(nbn−2
1 ). This expression used in Eq. (3.10) yields Eq. (3.6).

In order to prove Eq. (3.7) we multiply both sides of Eq. (2.11) bya0b
−q−s
1 and use Eqs. (3.1)

and (3.2) to see that Eq. (2.11) then becomes

K(q + s, Bs+1
q+s)a0b

−q−s
1 = K(q + s− 1, Bs

q+s−1)a0b
−q−s+1
1

+

q−1∑
m=2

bma0b
−q−s
1 K(q + s−m, Bs

q+s−m) + bqa0b
−q
1

(3.12) = W (q)s +
1

a0

q−1∑
m=2

W (m)1W (q −m + 1)s + W (q)1.

We note that fors = 1, 2, ..., n− 2, the left-hand side of Eq. (3.12) is

(3.13) K(q + s, Bs+1
q+s)a0b

−q−s
1 = W (q)s+1.

For s = 1, Eq. (3.12) is therefore

(3.14) W (q)2 − 2W (q)1 =
1

a0

q−1∑
m=2

W (m)1W (q −m + 1)1.

Similarly, for s = 2, 3, ..., n− 2, Eq. (3.12) is:

(3.15) W (q)s+1 −W (q)s −W (q)1 =
1

a0

q−1∑
m=2

W (m)1W (q −m + 1)s.

We next use Eq. (2.21) to expressK(q + s, Bs+1
q+s)a0b

−q−s
1 of Eq. (3.12) fors = n− 1, i.e.

K(n + q − 1, Bn
n+q−1)a0b

−q−n+1
1 =

min(n−1,q−1)∑
m=1

amK(q − 1, Bm
q−1)a0b

−q−n+1
1 =

(3.16)
1

a0

min(n−1,q−1)∑
m=1

amW (q−m)m = W (q)n−1 +
1

a0

q−1∑
m=2

W (m)1W (q−m+1)n−1 +W (q)1

and therefore

(3.17) −W (q)1−W (q)n−1 =
1

a0

q−1∑
m=2

W (m)1W (q−m+1)n−1−
1

a0

min(n−1,q−1)∑
m=1

amW (q−m)m.

We recall Definition3.1 and note thatW (m)1 is the scalar productuW (m) andamW (q −
m)m = AmW (q −m). We can now express Eq. (3.14), Eq. (3.15) (fors = 2, 3, ..., n− 2) and
Eq. (3.17) compactly in matrix form as
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(3.18) P ×W (q) =
1

a0

q−1∑
m=2

[uW (m)]W (q −m + 1)−


0
0
...
0

1
a0

min(n−1,q−1)∑
m=1

[AmW (q −m)]


After multiplying both sides of Eq. (3.18) by the inverseM of P we get
(3.19)

W (q) =
1

a0

 q−1∑
m=2

[uW (m)]MW (q −m + 1) + U

min(n−1,q−1)∑
m=1

[AmW (q −m)]

 , q = 3, 4, ...

which is Eq. (3.7).
For then possible values ofb1 given in (2.13), the termbm of Eq. (3.2) is now

(3.20) bm = W (m)1ρ
m/nei(θ+2kπ)m/n/a0, k = 0, 1, ..., n− 1

which is Eq. (3.9) withβm given in Eq. (3.8).

4. CONVERGENCE RESULTS

4.1. Preliminaries. In order to establish convergence conditions for the series
∑

bkt
k we need

to assess the growth of the first componentsW (m)1 of the vectorsW (m). We will use thè ∞
norm|V |∞ = max

i
|Vi| of a complex vectorV = (vi).

We also define the row-sum norm

(4.1) ‖X‖ = max
i

j=m∑
j=1

|xij|.

of anm-dimensional square matrixX = (xij). We recall than|XV |∞ ≤ ‖X‖ × |V |∞.
If we define the function of two variables

(4.2) z(u, n)
def.
= −2u2 + u(2n + 1)− n

then the norm of the(n− 1)-dimensional matrixM of Eq. (3.4) is

(4.3) ‖M‖ =
1

n
max (z[floor(n/2 + 1/4), n], z[ceil(n/2 + 1/4), n]) .

where thefloor(x) andceil(x) functions are the largest integer smaller thanx and the smallest
integer larger thanx.

We next define the sequence of modulii

(4.4) w(q)
def.
= |W (q)|∞, q = 1, 2, ...

which are upper bounds for the modulii of theW (q)1’s of interest. We also define the maximum
modulus of the coefficientsak other thana0:

(4.5) α
def.
= max

k=1,2,...,n−1
|ak|.

We assume thatα > 0. (The trivial caseα = 0 will be considered in the Conclusion). We next
define

(4.6) µ = ‖M‖/|a0|
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and the sequence of nonnegative functions

(4.7) σp(α) =

{
α/‖M‖ if p ≤ n;
0 if p > n.

, p = 2, 3, ...

We note thatw(1) = |a0| andw(2) ≤ α. From Eq. (3.7) we have

(4.8) w(q) ≤ 1

|a0|

 q−2∑
p=1

w(p + 1)‖M‖w(q − p) + α

min(n−1,q−1)∑
p=1

w(q − p)

 , q = 3, 4, ...

We now make a distinction between the casesq ≤ n and q > n. In the former case the
running indexp in the second sum on the right-hand side of (4.8) goes toq − 1 with a last term
w(1) = |a0|; (4.8) is then

(4.9) w(q) ≤ 1

|a0|

[
q−2∑
p=1

[w(p + 1)‖M‖+ α]w(q − p)

]
+ α

= µ

[
q−2∑
p=1

[w(p + 1) + σp+1(α)]w(q − p)

]
+ α, q = 3, 4, ...n.

In the caseq > n the indexp in the second sum on the right-hand side of (4.8) goes ton− 1
and (4.8) can now be written

w(q) ≤ µ

[
q−2∑
p=1

[w(p + 1) + σp+1(α)]w(q − p)

]

(4.10) ≤ µ

[
q−2∑
p=1

[w(p + 1) + σp+1(α)][w(q − p) + σq−p(α)]

]
, q = n + 1, n + 2, ...

where the purpose of this last trivial inequality is to bound the sequence{w(q) + σq(α)}q=2,3,...

by the sequence{Sq(α, |a0|)}q=2,3,... defined below:

(4.11) S2(α, |a0|)
def.
= α + σ2(α).

For q = 3, 4, ..., n:

(4.12) Sq(α, |a0|)
def.
=

1

|a0|

(
q−2∑
p=1

[‖M‖Sp+1(α, |a0|) + α]Sq−p(α, |a0|)

)
+ α + σq(α)

= µ

(
q−2∑
p=1

[Sp+1(α, |a0|) + σp+1(α)]Sq−p(α, |a0|)

)
+ α + σq(α).

For q ≥ n + 1:

(4.13) Sq(α, |a0|)
def.
= µ

(
q−2∑
p=1

Sp+1(α, |a0|)Sq−p(α, |a0|)

)
where the functional notationSq(α, |a0|) emphasizes for future reference the dependence of
each function onα and|a0| (even thoughSq(α, |a0|) does not depend on|a0|).

Proposition 4.1. With the notations given above,

(4.14) w(q) ≤ w(q) + σq(α) ≤ Sq(α, |a0|), q = 2, 3, ...
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Proof. The inequality of (4.14) is true forq = 2 becausew(2) ≤ α. In view of (4.9) and (4.12),
inequality (4.14) is also true forq = 3, 4, ..., n. Forq = n + 1, the inequality of (4.10) yields

w(n + 1) = w(n + 1) + σn+1(α)

≤ µ

(
n−1∑
p=1

[w(p + 1) + σp+1(α)][w(n + 1− p) + σn+1−p(α)]

)

(4.15) ≤ µ

(
n−1∑
p=1

[Sp+1(α, |a0|)× Sn+1−p(α, |a0|)]

)
= Sn+1(α, |a0|).

To prove the result by induction for anyq ≥ n + 1 we assume (4.14) is true up to ordern + r.
For q = n + r + 1, inequality (4.10) and Eq. (4.13) yield

w(n + r + 1) = w(n + r + 1) + σn+r+1(α)

≤ µ

(
n+r−1∑

p=1

[w(p + 1) + σp+1(α)][w(n + r + 1− p) + σn+r+1−p(α)]

)

(4.16) ≤ µ

(
n+r−1∑

p=1

[Sp+1(α, |a0|)× Sn+r+1−p(α, |a0|)]

)
= Sn+r+1(α, |a0|)

which completes the proof.

We now provide some definitions and results pertaining to convolution-type sequences such
as theSq’s of Eqs. (4.11)− (4.13).

4.2. µ-convolutions.

Definition 4.1. For any scalarµ, aµ-convolution of orderm is an infinite sequence{uk}k=1,2,...

consisting ofm initial scalarsu1, u2, ..., um with subsequent terms defined as

(4.17) uq
def.
= µ

(
q−1∑
p=1

upuq−p

)
, q = m + 1, m + 2, ...

An example ofµ-convolution is provided by the Catalan numbersCk ([7]) : C0 = 1 and

(4.18) Cs = C0Cs−1 + C1Cs−1 + ... + Cs−1C0, s = 1, 2, ...

The sequence{Ck} is the 1-convolution of order 1 with initial termC0 = 1. EachCq is equal
to

(4.19) Cq =
(2q)!

(q + 1)!q!
.

Proposition 4.2. For a µ-convolution{vk}k=1,2,... of order 1 and initial termv1 we have

(4.20) vq+1 = v1Cq(v1µ)q, q = 0, 1, ...

For a µ-convolution{uk}k=1,2,... of orderm with µ > 0 consisting ofm initial nonnegative
termsu1, u2, ..., um we can define

(4.21) v1
def.
= max

k=1,2,...,m

(
uk

Ck−1µk−1

)1/k

.
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The sequence{uk} is then bounded by theµ-convolution{vk} of order1 and initial termv1:

(4.22) uq+1 ≤ vq+1 = v1Cq(v1µ)q ∼ vq+1
1 µq 4q

√
πq3/2

for q →∞.

Proof. Equation (4.20) is easily proved by induction. The inequality in (4.22) is a direct conse-
quence of (4.21) which states thatuk ≤ vk for k = 1, 2, ...,m. The asymptotic result in (4.22)
results from the fact thatCq of (4.19) is∼ 4q/(

√
πq3/2) for q →∞ ([7]).

We will now use these results to assess the radius of convergence of the power series
∑

βmtm

with eachβm given in (3.8).

4.3. Radius of convergence of
∑

bmtm.

Theorem 4.3. With the notations used above, a lower bound for the radius of convergence of∑
βmtm is

(4.23) LBRC(α, |a0|)
def.
=

1

4|a0|1/n
min

k=1,2,...,n−1

(
Ck−1|a0|

Sk+1(α, |a0|)‖M‖

)1/k

.

Proof. The sequence{Sk(α, |a0|)}k=2,3,... of Eqs. (4.11)-(4.13) is aµ-convolution of ordern−1.
The firstn− 1 terms are fork = 2, 3, ..., n andµ is given in Eq. (4.6). We can therefore apply

the results of Proposition 4.2 withuq
def.
= Sq+1(α, |a0|) for q = 1, 2, .... The termv1 of Eq.

(4.21) is

(4.24) v1(α, |a0|) = max
k=1,2,...,n−1

(
Sk+1(α, |a0|)
Ck−1µk−1

)1/k

.

The results of Eqs. (4.14) and (4.22) then yield for everym

(4.25) w(m) ≤ Sm(α, |a0|) ≤ v1(α, |a0|)m−1 × µm−2 × Cm−2

(4.26) ∼ v1(α, |a0|)m−1 × µm−2 × 4m−2

√
π(m− 2)3/2

for m →∞.

We now letRC(A) denote the radius of convergence of the power series
∑

βmtm. The func-
tional notation is to emphasize the dependence on the vectorA = (ak). Given Eqs. (3.8), (4.24),
(4.25) and the fact thatρ = |a0|, we have

(4.27) RC(A)
def.
= lim inf

m→∞
|βm|−1/m = lim inf

m→∞
ρ−1/n+1/m|W (m)1|−1/m ≥

(4.28) lim inf
m→∞

ρ−1/nw(m)−1/m ≥ lim inf
m→∞

ρ−1/n
(
v1(α, |a0|)m−1 × µm−2 × Cm−2

)−1/m

(4.29) ∼ ρ−1/n

4v1(α, |a0|)× µ
=

1

4|a0|1/n
min

k=1,2,...,n−1

(
Ck−1|a0|

Sk+1(α, |a0|)‖M‖

)1/k

for m →∞

which yields the lower bound of (4.23).

We now know that
∑

βmtm has a strictly positive radius of convergence. We do not have an
analytical expression forRC(A) but we do have the lower boundLBRC(α, |a0|).

For |t| < RC(A) we may then define

(4.30) c
def.
=

t/RC(A) + 1

2
< 1.

AJMAA, Vol. 3, No. 2, Art. 4, pp. 1-16, 2006 AJMAA

http://ajmaa.org


ROOTS OF POLYNOMIAL EQUATIONS 11

There exists thenD > 0 such that

(4.31) |bmtm| = |K(m,B1
m)tm| = |βm||t|m ≤ Dcm, m = 1, 2, ...

which shows that the seriesx(t, k) =
∑

βme2kπm×i/ntm converges geometrically fast for|t| <
RC(A).

We next need a result on the growth of theK(d,Bp
q )’s.

Proposition 4.4. If |t| < RC(A) then there existD > 0 andc (0 < c < 1) such that for any
p ≥ 1,

(4.32) |K(d,Bp
q )| ≤ Dp(d− 1)p−1(c/|t|)d,∀d ≥ 1,∀q ≥ 1.

Proof. We prove the result by induction onp. With p = 1 Eqs. (2.9) and (4.31) show that if
d ≤ q then

(4.33) |K(d,B1
q )| = |K(d,B1

d)| = |βd| ≤ D(c/|t|)d.

If d > q thenK(d,B1
q ) = 0 and (4.32) is trivially true. Therefore (4.32) is true forp = 1.

In order to prove the result by induction we assume that (4.32) is true up to orderp and
calculate|K(d,Bp+1

q )|. If d < p + 1 thenK(d,Bp+1
q ) = 0 and Eq. (4.32) is trivially true. If

d ≥ p + 1 then Eq. (2.10) yields

(4.34) |K(d,Bp+1
q )| =

∣∣∣∣∣∣
min(d−p,q)∑

m=1

bmK(d−m, Bp
q )

∣∣∣∣∣∣ ≤
d−1∑
m=1

|bm||K(d−m,Bp
q )|

(4.35) ≤
d−1∑
m=1

D(c/|t|)mDp(d− 1)p−1(c/|t|)d−m = Dp+1(d− 1)p(c/|t|)d

which is the desired result of (4.32) at the orderp + 1.

We now bring together all previous results and prove that when the seriesx(t, k) =∑
βme2kπm×i/ntm converge (i.e. for|t| < RC(A)) they provide fork = 0, 1, ..., n − 1 the

n roots of Eq. (2.2).

5. M AIN RESULT

Theorem 5.1. We consider the following polynomial equation of degreen ≥ 2, parameterized

by t > 0 and witha0
def.
= ρeiθ 6= 0:

(5.1) xn =
(
an−1x

n−1 + an−2x
n−2 + ... + a1x + a0

)
tn.

We defineα
def.
= max

k=1,2,...,n−1
|ak| and recall the definition of the matrixM in (3.4). We then define

n− 1 numbers{Sq(α, |a0|)}q=2,3,...,n recursively as follows:

(5.2) S2(α, |a0|)
def.
= α + α/‖M‖

and forq = 3, 4, ..., n:

(5.3) Sq(α, |a0|)
def.
=

1

|a0|

(
q−2∑
p=1

[‖M‖Sp+1(α, |a0|) + α]Sq−p(α, |a0|)

)
+ α + α/‖M‖.

We also define recursively the infinite sequence of(n − 1)-dimensional vectorsW (q) starting
with

(5.4) W (1) = a0(1 1 ... 1)′, W (2) =
a1

n
(1 2 ... n− 1)′.
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Bearing in mindu, U, andAp of Definition3.1, we define the subsequent terms as
(5.5)

W (q) =
1

a0

 q−2∑
p=1

[u.W (p + 1)]MW (q − p) + U

min(n−1,q−1)∑
p=1

[Ap.W (q − p)]

 , q = 3, 4, ...

We next define the infinite sequence

(5.6) βm = ρm/n × ei(mθ)/n ×W (m)1/a0, m = 1, 2, ...

The radius of convergenceRC(A) of
∑
|βmtm| is

(5.7) RC(A) = lim inf
m→∞

Q(m)

where

(5.8) Q(m) =
1

|a0|1/n|W (m)1|1/m
.

Furthermore,RC(A) has the lower bound

(5.9) LBRC(α, |a0|)
def.
=

1

4|a0|1/n
min

k=1,2,...,n−1

(
Ck−1|a0|

Sk+1(α, |a0|)‖M‖

)1/k

,

which is larger than 1 forα small enough or for|a0| large enough.
For |t| < RC(A) the partial sums

(5.10) x(t, k)q
def.
=

q∑
m=1

βme2kπm×i/n×tm

converge to the roots of Eq.(5.1) in the sense that fork = 0, 1, ..., n− 1 then differences

(5.11)

∆(q, k)
def.
= [x(t, k)q]

n −
(
an−1 [x(t, k)q]

n−1 + an−2 [x(t, k)q]
n−2 + ... + a1x(t, k)q + a0

)
tn

approach 0 whenq →∞.
Whenα is small enough or|a0| large enough the radius of convergenceRC(A) is larger than

1 (sinceLBRC(α, |a0|) ≥ 1) and the functionsx(t, k) =
∞∑

m=1

βme2kπm×i/n×tm taken att = 1

andk = 0, 1, ..., n− 1 will then provide then roots of Eq.(5.1)whent = 1.

Proof. The expression of (5.7) forRC(A) is a direct consequence of the definition of theβm’s
in (5.6)

EachSq(α, |a0|) of Eqs. (5.2)− (5.3) is a polynomial inα with nonnegative coefficients
and no constant term. This insures thatLBRC(α, |a0|) of Eq. (5.9) tends to infinity (and is
therefore≥ 1) for α → 0. For q ≥ 3 eachSq(α, |a0|) of Eq. (5.3) is a decreasing function of
|a0| that approachesα + α/‖M‖ for |a0| → ∞. The lower boundLBRC(α, |a0|) of Eq. (5.9)
then tends to infinity (and is therefore≥ 1) for |a0| → ∞.

The only other result that has not already been proven is the convergence of∆(q, k) to 0 for
q →∞. Equation (2.8) shows that

(5.12) [x(t, k)q]
n = bn

1 t
n +

n(q−1)∑
j=1

tn+jK(n + j, Bn
q ).
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We use Eq. (2.8) and the facts thatbn
1 = a0 andK(n + j, Bn

q ) = K(n + j, Bn
j+1) for j ≤ q − 1

(see Eq. (2.18)) to write

(5.13) [x(t, k)q]
n = a0t

n +

q−1∑
j=1

tn+jK(n + j, Bn
j+1) +

n(q−1)∑
j=q

tn+jK(n + j, Bn
q ).

We next turn our attention to the sum involving theak’s on the right-hand side of Eq. (5.11).
We call this sumY (q, k):

(5.14) Y (q, k)
def.
= a0t

n +
n−1∑
r=1

rq∑
j=r

art
j+nK(j, Br

q ) = a0t
n +

n−1∑
r=1

n(q−1)∑
j=1

art
n+jK(j, Br

q ).

Equation (2.9) shows thatK(j, Br
q ) = K(j, Br

j+1) for j ≤ q − 1. Therefore

(5.15) Y (q, k) = a0t
n +

q−1∑
j=1

tn+j

min(n−1,j)∑
r=1

arK(j, Br
j+1) +

n−1∑
r=1

n(q−1)∑
j=q

art
n+jK(j, Br

q ).

We next use Eq. (2.17) to write

(5.16) Y (q, k) = a0t
n +

q−1∑
j=1

tn+jK(n + j, Bn
j+1) +

n−1∑
r=1

n(q−1)∑
j=q

art
n+jK(j, Br

q ).

Equations (5.13) and (5.16) show that the difference∆(q, k) of (5.11) reduces to

(5.17) ∆(q, k) =

n(q−1)∑
j=q

tn+jK(n + j, Bn
q )−

n−1∑
r=1

ar

n(q−1)∑
j=q

tn+jK(j, Br
q ).

We make use of Eq. (4.32) to see that

(5.18)

∣∣∣∣∣∣
n(q−1)∑

j=q

tn+jK(n + j, Bn
q )

∣∣∣∣∣∣ ≤
∞∑

j=q

|t|n+j|K(n + j, Bn
q )| ≤ Dncn

∞∑
j=q

(n + j − 1)n−1cj.

The last sum on the right-hand side of (5.18) is the remainder of orderq of an absolutely con-
vergent series and therefore tends to 0 whenq → ∞. The first sum in (5.17) therefore tends to
0 for q →∞. Then−1 remainders in the double sum on the right-hand side of (5.17) similarly
tend to 0, which shows that∆(q, k) → 0 whenq →∞.

Remark 5.1. We make the following observations:
(1) The radius of convergenceRC(A) can be assessed numerically through the expression

of (5.7). If Q(m) asymptotically remains above 1 thenRC(A) ≥ 1 and thex(t, k)’s
provide then roots witht = 1.

(2) Regardless of the values of theak’s, the functionsx(t, k) can be viewed as Taylor ex-
pansions in the variablet of the roots of Eq. (5.1). Indeed, whent is small the first
few terms of the series provide approximate values for the roots (a numerical example
is given below).

6. NUMERICAL ILLUSTRATIONS

As a numerical illustration we consider the polynomial equation of degree 6:

(6.1) x6 = (−x5 + x4 − 2x3 − 3x2 + 2x + 8)t6

with a particular interest in the caset = 1. The lower boundLBRC(α, |a0|)=LBRC(3, 8)
for the radius of convergence is 0.094. Therefore we do not know whetherx(t, u) converges
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Figure 1: a) Sequence Q(m) of Eq.(5.8); b) Real/imaginary parts of function x(1,k) together with numerically
calculated roots

with t = 1. HoweverLBRC(α, |a0|) is an extremely conservative bound calculated only
with α, |a0|, and ‖M‖. (The main usefulness of the sufficient convergence conditiont <
LBRC(α, |a0|) lies in the qualitative fact that witht = 1 the functionx(t, u) does provide
the roots whenα is small enough or|a0| large enough).

The valuesQ(m) are plotted in Figure 1a. These values appear to remain above approxi-
mately 1.05 form → ∞. This suggests thatRC(A) ≥ 1 and that witht = 1 thex(1, k)’s will
indeed converge and provide the roots of Eq. (6.1).

To verify this we plotted in Figure 1b the real and imaginary parts of eachx(1, k) over two
periods (i.e.k from 0 to2n = 12). (The first 200 terms are used in the series expansion). On
the same figure we also plotted the values found using Matlab’s built-in polynomial equation
routine (stars and circles). These values coincide with the valuesRe(x(1, k))+ i× Im(x(1, k))
for k = 0, 1, ..., n− 1 = 5.

With real coefficients for the polynomial equation the complex roots come in conjugate pairs.
There are two such pairs. One fork = 1, k = 5 and the other fork = 2, k = 4. In addition
there are two real roots atk = 0 and atk = 3. In this and other cases these real roots appear
to be at local minima or maxima of theRe(x(t, k)) function. These special behaviors of and
relationships between the real and imaginary parts no doubt arise from particular patterns in
the sequence{W (q)1}q=1,2,... which have yet to be explored. These structures disappear with
complex coefficients since in this case there are no more complex conjugate roots.
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The first five terms of the seriesx(t, u) are

(6.2) x(t, u) ≈
√

2e2uπ×i/6t + 0.08333e4uπ×i/6t2 − 0.18414e6uπ×i/6t3−
0.14506e8uπ×i/6t4 + 0.11441e10uπ×i/6t5

There are not enough terms to calculate the roots whent = 1. With t = 0.4 however, the
values provided by (6.2) are very close to those calculated with Matlab (Table 1).

k=0 k=1 k=2 k=3 k=4 k=5
x(0.4,k) 0.565 0.290+0.504i -0.300+0.474i -0.545 -0.300-0.474i 0.290-0.504i
Matlab 0.564 0.290+0.504i -0.301+0.474i -0.546 -0.301-0.474i 0.290-0.504i

Table 1: Six valuesx(0.4,k)and numerically calculated roots of Eq. (6.1) witht=0.4

It was found numerically that when the constant terma0 = 8 in Eq. (6.1) falls below approx-
imately 4, the radius of convergence of the seriesx(t, u) drops below 1. The method can no
longer be used to solve Eq. (6.1) witht = 1.

Several approaches have been tried in order to extend the method to the situation in which
|a0| is small, meaning that at least one root is close to 0. One possibility would be to transform
the unknown in such a way that small roots are moved away from 0. For example one could
write the polynomial equation in terms of a changed unknowny = 1/x: if a root x is small
then the correspondingy is large. However this approach did not change the problem. Another
possibility would be to inject the parametert differently into the equation. For example one
could use a similar approach after multiplying the left rather than the right side of Eq. (2.1) by
tn. Or one could multiply each term of the equation by a well-chosen (and different) powertp.
To date such attempts have proved largely inconclusive.

7. CONCLUSION

We end with a note on terminology inspired by the trivial polynomial equation (5.1) in which
each coefficientak is 0 for k ≥ 1 (i.e. α of Eq. (4.5) is 0). The equation is then

(7.1) xn = a0t
n = ρeiθtn.

As one might expect the solution seriesx(t, k) reduces to the single exponential term

(7.2) x(t, k) = ρ1/ne(2kπ+θ)i/nt, k = 0, 1, ..., n− 1.

This special case suggests the following definition.

Definition 7.1. Let {βm}m=1,2,... be an infinite sequence of complex numbers such that the
powers series

∑
βmtm has a radius of convergenceRC > 0. (Theβm’s may or may not be

generated through the process of Theorem 5.1). For any integern the complex functions

(7.3) x(t, u) =
∞∑

m=1

βme2uπm×i/n × tm

of the two real variablesu andt are of periodn in the variableu and have a radius of convergence
RC in the variablet. Such functions may be calledgeneralized exponential functions.

Ours is only a first step, which shows that the roots of a particular class of polynomial equa-
tions can be expressed explicitly with an infinite number of rational operations and root extrac-
tions. It is to be hoped that some variant or adaptation of the family of generalized exponential
functionsx(t, u) will eventually emerge to provide closed-form expressions for the roots of
arbitrary polynomial equations.
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