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2 M. ARTZROUNI

1. INTRODUCTION

For centuries mathematicians have sought closed-form expressions for the roots of polyno-
mial equations of arbitrary order. The Abel-Ruffini theorem states that only polynomials of
order four or less can be solved explicitly using rational operations and finite root extractions
[1].

Several authors have proposed series solutions of algebraic (and polynomial) equations ([1],
[2], [3], [2], [4], [3], [6]). These solutions, which rely on hypergeometric functions, are cumber-
some to implement and have not provided feasible alternatives to standard numerical methods.

We will consider here a polynomial equation in the form

(1.2) " = (A 12"+ apox™ %+ o+ arw + ag)t".

where theu) s are complex coefficients artds a real parameter that may or may not be 1. In
the self-contained Theorem 5.1 we will show that whénismall enough ofa,| large enough,
there exists a sequen¢g,, }..—1.2,.. such that the: roots will be the values of the function

gooe

(1.2) (tyu) = 3 Bl
m=1

takenat, =0,1,2,...,n — 1.

The functionse (¢, u) are power series inand periodic of period: in the variablex. These
functions can be thought of as "elementary" in the same way
(1.3) cos(te?) = (—1)"t2me2m0% /(2m)!

m=0

is an elementary function.

This will be only a first step as the class of polynomial equations solved explicitly with these
power series is limitedt(must be small enough o#,| large enough). The ultimate goal is to
generalize the approach proposed here to any polynomial equation.

2. PRELIMINARIES

We start off with a polynomial equation in the form
(2.1) 2" = a, 12"+ a, 0" 2+ ...+ a1z + ag
where thea,’s are complex coefficients ang el pe? (p > 0,—7 < 6§ < 7) is assumed
throughout to be non-zero. (Otherwige {2.1) can trivially be reduced to an equation of degree
n —1).

Equation[(2.11) is transformed by multiplying the right-hand side"byheret is a real vari-
able that we may initially think of as small but is destined to take on any real value including
1
(22) " = (an,lxnfl + &n,2$n72 + ... t+axr+ ao)t”.

We begin by seeking the roots expressed as the infinite series

(2.3) 2(t) L byt + bot? + byt® + ..

wherea priori we will needn different sequencegh,, }m—12...
will show that in fact there exists a single sequefog, },,—1 2
{bm }m=12... are obtained through

(2.4) by = 3, €2k = 1,2, ..

to generate the roots. We
such that the: sequences

.....
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fork=0,1,....,n — 1. Then rootsz(t) given in EQ. [(2.B) will then be of the form

(2.5) ot k) 2378, g g =0,1, .0 - 1.
m=1

With z(¢) of (2.3) the equation to solve is now
(2.6) z(t)" = (an,lx(t)"_l + an,Qx(t)"_Q + . taz(t) + ao)t”.

Before proceeding we need some notations and preliminary results.
We define the powerB; of the partial sums af (¢):

2.7) By " (byt + bot® + .+ bt q.r €N,

where for ease of notation the functional dependencB;obn ¢ is omitted. We letK (d, By)
denote the coefficient af in B;. Eachb,, that we are seeking is equal i6(m, B,,). We note
that K (d, By) does not depend arand K (d, By) = 0 if d < r ord > rq. With these notations

(2.8) Bl =t"K(r,B)) + t""" K(r +1,B}) + ... + t"K (rq, B).
Proposition 2.1. Whend > r andq — d +r — 1 > 0 the coefficients( (d, By ) satisfy
(2.9) K(d,B))=K(d,B]_,) ,h=0,1,..,¢q—d+r—1.
Ford>r>2
min(d—r+1,q)
(2.10) K(d,B)= >  byK(d-mB™"),
m=1

which forg, s > 1 is equivalent to

q—1
(2.11) K(qg+s5, B =biK(q+s— 1B, )+ Y buK(qg+s—m Bl ) +bb.

m=2
Proof. Equation[(Z2.P) expresses the fact that when d — r + 1 then only the firstl —r + 1 b;’s
enter intoK (d, By). Equation[(2.10) is the convolution rule used to express the coefficight of
in B; considered as the produBf~"' x B,. Equation[(2.111) is obtained by using Ef. {2.9) to
express a form of Eq[ (2.1L0) in which all th&(a, B”)’s have identical values far andu. §

With z(¢) given in Eq. [2.B) both sides of Ed. (2.6) are polynomials with powers> n.
The goal is to find recursively thg,’s so that for eaclp > n the coefficients of? are equal on
both sides of[(2]6). This will be done by considering the ragts in the form of the gradually
expanding partial sumB; =39 _ b,t™ and applying Eq.[(2]8) .

The coefficient); will be found by seeking a solution of the forf{ for which the coeffi-
cients oft™ on both sides of (2]6) are equal. Withthus determined, is found by seeking a
solution of the formB; for which the coefficients of**! on both sides of (2]6) are equal, etc.

We begin with a candidate solutid®y = bt by setting equal the coefficients 6f on both

side of Eq.[(2.p), i.e.

(2.12) B(n, BY) = b= aq.
Therefore the: possible values adf; are

(2.13) by = pt/mel0F2km/n o — 01, .. n—1
which is Eq. [2.4) withn = 1 and

def. n _i0/n
(2.14) o <] A
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We note that the: valuesz(t) = byt with b, of Eq. (2.13) are the exact trivial solutions of Eq.
(2.8) when all coefficients other thag are O; otherwise they provide crude first-approximation
solutions whert is small.

In order to findb, with a candidate solutiof! = b,t + byt2, we note that the coefficient of
t"*1 on the left side of Eq[(2]6) i& (n + 1, By) and on the right is; K (1, BY). Therefore we
want

(2.15) K((n+1,By) = alK(l, le).
Similarly, equating the coefficients 6f*2 with a solutionB; yields
(2.16) K (n+2,B}) = a:K(2,B3) + a1 K (2, By).

When we equate the coefficientstdf?, a similar expression arises with a third term involving
the coefficientuz. In general, Eq.[(2]8) shows that to equate the coefficient&dfon both
sides of Eq.[(2]6) (with a candidate solutiB), ;) one needs:

min(n—1,q)

(2.17) K(n+q¢.B)y) = >  anK(q,BJ,),q=12,..
m=1

Equation|(Z.P) shows that for asy> 1

(2.18) K(n+q,Bg+1) = K(n+q,Bg+s)

and

These equations show that for any 1 Eq. (2.17) is equivalent to
min(n—1,q)
(2.20) K(n+q,By,)= > anK(q,B5,).
m=1
Therefore if Eq. [(2.1]7) is satisfied, the coefficients’0f? on both sides of Eq[ (2.6) are also
equal when any number of terrhgt* are added to the partial suBgH.
We next write the/{ (a, B!)’s appearing in Eq.[(2.17) in such a way that the indicesdu

are equal. Equation (2.9) shows that Eq. (2.17) (with1 written instead of) is equivalent to

min(n—1,9—1)
(2.21) Kin+q—1,BL, )= >  anK(g—1,B")),¢=23..

m=1

Given thath,, = K(q, B},), the task will be to find» sequences df,,’s for which the infinite
systems of Eqgs.[ (2.11) and (2]21) are satisfied for.allhen we will give the convergence
conditions for the serie¥’ |5,,t™| = >_ |b,t™| and show that the(¢, k)'s of Eq. (2.5) are
indeed the: roots.

3. MATRIX FORMULATION

We define the sequence of { 1)-dimensional vector§\V (¢)},~1.2... whoser — th compo-
nent is
(3.1) W), L apht ™" K(qg+r—1,B,,_1),r=1,2,..n— 1.
We are particularly interested in the first component of d&clp) because withhr = 1 Eq. (3.1)
yields
(3.2) b = W (m)1b" aq.

We need the following definitions.
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Definition 3.1. We define below the vector$,, v, U and the matrice$ and M :

(1) Forp = 1,2,....,n — 1 the vector4, is an(n — 1)-dimensional row vector with the
coefficienta,, in p-th position and zeros elsewhere.

(2) uisthe(n—1)-dimensional row vector having 1 in the first position and zeros elsewhere.

(3) Uis the(n — 1)-dimensional column vectaf(1 2 ... n—1).

(4) Forn > 3 the(n — 1)-dimensional square matrik is defined as

-2 1 0 .. .. .. 0
-1 -1 1 0 .. .. O
33 et -1 0 -1 1 0 0
-1 0 0 -1 1
-1 0 0 0 -1

with its inverseM = P~! equal to

-1 -1 -1

n—2 =2 =2 .. .. -2

(3.4) A 1ln-3n-3 -3 .. .. -3
2 2 e 2 2—mn 2-n

1 1 1 .. 1 1—n

Whenn = 2 the matrices” and M reduce toP = (—2) andM = (—1/2).

In the next theorem we will see that the seque{id&(q) },—1 ... depends only on the;’s,
and not on the particuldr. Then sequence$b,},—1 -, . are then obtained through Eq. (3.2)
with then values ofb; given in Eq. [(2.1B).

goan

Theorem 3.1. We consider the sequen€®/(q) },—1 »,.. defined in Eq.(3.1) together with the
constraints of Eqs(2.11)and (2.21) ThelW(q)'s are then

(3.5) W) =ap(l 1 ... 1)
(3.6) W(Q):%(l 2 .. n—1Y
(3.7)

min(n—1,g—1)

q—2
Zqu—I—l |MW(q—p)+U Z [A, W(qg—p)]|,q=3,4,..
p=1

p=1
Bearing in mind that, = pe® we define
(3.8) B, = p™m x MmO S W(m)y Jag, m=1,2,...

The n sequence$,, }.,—1.2. . are then obtained through

goee

(3.9) by = 3, €F7mim oy = 1.2, ..
fork =0,1,...n— 1.
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Proof. Equation [(3.p) results from the fact th&t(r, B]) = b]. To prove Eq. [(3)6) we recall
thatb} = ay and note that the-th component of1’ (2) is

(3.10) W(2)s = K(s+ 1, B )b} 77 = (s.bob5 075 = sbaagb
We will now express$,. The definition ofK'(n + 1, B, ;) and Eq. [(2.21) for = 2 yield
(311) K(n +1 BnJrl) n.bef = albl,

from whichb, = a, /(nb}~?). This expression used in Ed. (3]10) yields Eq.](3.6).
In order to prove Eq[ (3]7) we multiply both sides of Hq. (2.11)k * ° and use Eqgs[ (3.1)
and [3.2) to see that Eq. (2]11) then becomes

K(q+ s, BitDaoh "™ = K(q+s — 1, Bl Jagh; """

+> bmagh; K (q+ 5 —m, By, ) + byaob; ?

1 &
(3.12) =W(g)s+—Y W(m)W(g—m+1),+W(gh.
o m=2
We note that fos = 1,2, ...,n — 2, the left-hand side of Eq[ (3.12) is
(3.13) K(qg+s B;i;)@obfq_s = W(q)st1-
Fors = 1, Eq. [3.12) is therefore
q—1
1
(3.14) Wi(g)2 = 2W(gh = — > W(m:W(g—m+ 1.
0m—2

Similarly, fors = 2,3,...,n — 2, Eq. [3.12) is:
1 -1
(3.15) W (@)srr = Wia)s - a—z W(g—m+1),.

We next use Eq[(2.21) to expre&Sq + s, B;{,)aoh; * " of Eq. (3:12) fors = n — 1, i.e.

min(n—1,g—1)

K(n+q—1,B, Daghy" " = > anK(g—1,B] agh; """ =
m=1

1 min(n—1,g—1) 1 q—1

(3.16) - > W (g—m)m =W(@)n1+ a—OZW m)1W(g—m+1),_1+W(q)
m=1 m=2
and therefore
1 q—1 min(n—1,g—1)

(3.17) ~W (@)1~ W (@)ur = Q—O;W(mhmq—ml)n_l—a—o mz W (g =)y,

We recall Definitior3.1] and note that (m), is the scalar produeti¥ (m) anda,, W (¢ —
m)m = AW (q —m). We can now express Eq. (3]14), Eq. (3.15) et 2,3,...,n — 2) and
Eq. (3.1T7) compactly in matrix form as
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0
0

14

(3.18) P xW(q :a—ZQ W(g—m+1)— 0

min(n—1,g—1)

w2 [AW(g—m)]

m=1

After multiplying both sides of Eq[ (3.18) by the invers£ of P we get

(3.19)
q—1 min(n—1,g—1)
Z mMW(g-m+1)+U > [AWV(g—m)] |, q=34,..
m=2 m=1

which is Eq. [(3.7).
For then possible values df, given in (2.13), the term,, of Eq. (3.2) is now

(3.20) by = W (m), p™/met@+2kmm/n jg0 ke =0,1,...,n — 1
which is Eq. [(3.9) with3,, given in Eq. [(3.B) &

4. CONVERGENCE RESULTS

4.1. Preliminaries. In order to establish convergence conditions for the sériést* we need
to assess the growth of the first compondit&n), of the vectordV (m). We will use the/,
norm|V|. = max|V;| of a complex vectot” = (v;).

We also define the row-sum norm

j=m
(4.1) X1 = mg$2|xz’j\-
j=1

of anm-dimensional square matriX = (x;;). We recall thanX V| < ||X|| X |V|c-
If we define the function of two variables

(4.2) z(u,n) o2 u(2n+1) —

then the norm of thén — 1)-dimensional matrix\/ of Eq. (3.4) is

(4.3) M| = lmax( [floor(n/2 + 1/4),n], z[ceil(n/2 + 1/4),n]) .

where thefloor(z) andceil(x) functions are the largest integer smaller thaand the smallest
integer larger tham.
We next define the sequence of modulii

(4.4) w(@) 2 W (@), ¢=1,2,..

which are upper bounds for the modulii of tiHé(q) s of interest. We also define the maximum
modulus of the coefficients, other tham:

de_f.
(4.5) a = k:l@?ﬁ—lmm'

We assume that > 0. (The trivial casex = 0 will be considered in the Conclusion). We next
define

(4.6) = [ M]|/]acl
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and the sequence of nonnegative functions

_Ja/M| i p<mn;
4.7) ap(a)—{ 0 it »>n ,p=2,3, ..

We note thatv(1) = |ao| andw(2) < a. From Eq. [(3.JF) we have

[q? min(n—1,g—1)

(4.8) w(q)éL Y wp+D[Mwg=—p) +a > w(qp)], q=3,4,..

|ao|

We now make a distinction between the cages. n andg > n. In the former case the
running indexp in the second sum on the right-hand sid€] of|(4.8) gogs-td with a last term

w(l) = |agl; (4.8) is then

p=1 p=1

(4.9) w [ DM + aJw(g —p)| +

p=1

+a, ¢q=3,4,..n.

=1 [i[w(p +1) + opia()]w(qg — p)

p=1

In the case; > n the indexp in the second sum on the right-hand sid€ of|(4.8) goes-tol
and [4.8) can now be written

[Z (p+1) + opra(a)w (q—p)]

q—2

(4.10) <u [Z[w(p +1) + opa()][wlg —p) + Uq—p(a)}] g=n+ln+2 .

p=1
where the purpose of this last trivial inequality is to bound the sequentg + o, (o)} =23, .
by the sequencéS, («, |ap|) } 4—2.3.... defined below:

(4.11) Sola, |ao)) " o + aa(a).
Forq=3,4,...n

q—2

(4.12) Sy(a, |aol) < ’L (Z M| Spia |ao|)+04]5q—p(0<a|ao|)) +atog(a)

q—2

=p (Z[SPH(O‘: |aol) + opi1()]Sg—p(e, |a0|)> + o+ og(a).
p=1

Forqg > n + 1:

(4.13) Sy(a laol) ° (Zsp+l laol) S, (’\ao!)>

where the functional notatiof,(«, |ag|) emphasizes for future reference the dependence of
each function orv and|a,| (even thougtt, (¢, |ag|) does not depend dny|).

Proposition 4.1. With the notations given above,
(4.14) w(q) < w(q) +o4(a) < Sy(a, |aol), ¢ =2,3, ...
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Proof. The inequality of[(4.14) is true far = 2 becausev(2) < a. In view of (4.9) and[(4.1]2),
inequality (4.14) is also true for = 3,4, ...,n. Forq = n + 1, the inequality of[(4.7]0) yields

wn+1)=wn+1)+ opr1(a)

< pu ( : [wp+1) + opra(@)fw(n +1—p) + 0n+1—p(04>])

p=1

(4.15) <p (Z[Sp+1(av |ao) X Spr1-p(ev, |ao|)]) = Sni1(a |aol).

p=1
To prove the result by induction for agy> n + 1 we assumg¢ (4.14) is true up to ordes- r.
Forq = n +r + 1, inequality [4.1D) and Eq[ (4.113) yield

wn+r+1)=wn+r+1)+o,r1(@)

< p < 2 wp+1) 4+ opr(@)]wn+r+1—p)+ gn+r+1_p(&)]>

p=1

n+r—1
(4.16) < p ( Z [Sp+1(a, ao) X Snsrir1-p(a, |a0|)]> = Sntr+1(a; |aol)

p=1
which completes the proog

We now provide some definitions and results pertaining to convolution-type sequences such

as theS,’s of Egs. [(4.111)- (4.13).

4.2. p-convolutions.

Definition 4.1. For any scalay:, au-convolution of ordern is an infinite sequencfuy, }r—1 2
consisting ofm initial scalarsuy, us, ..., u,, with subsequent terms defined as

geos

(4.17) Ug de:f'u (Zupuq_p> , g=m+1m+2, ..

An example ofu-convolution is provided by the Catalan numbeéjs([7]) : C, = 1 and
(418) CS = 0003,1 + 010371 + ...+ Cs,lCO, S = 1, 2,

The sequencéCy } is the 1-convolution of order 1 with initial teri, = 1. EachC,, is equal
to

_ (29!
T (g+1)lg"
of order 1 and initial termv; we have

(4.19)

Proposition 4.2. For a pi-convolution{ vy, } x—1 2

(420) Vg1 = Ulcq(vlﬂ)q> q= 07 17

For a p-convolution{wy, } .1 .. of orderm with ¢ > 0 consisting ofn initial nonnegative

termsuy, us, ..., u,,, we can define

1/k
(4.21) vldg' max <L> .
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The sequencéu, } is then bounded by the-convolution{v, } of order1 and initial termuv;:

(4.22) Ugr1 < Vg1 = 010, (v p)? ~ 08T for ¢ — oc.

44
VTgd?
Proof. Equation [(4.20) is easily proved by induction. The inequality in (4.22) is a direct conse-
quence of[(4.21) which states that < v, for k = 1,2, ..., m. The asymptotic result i (4.22)
results from the fact that,, of (4.19) is~ 49/(y/m¢*?) for ¢ — oo ([7]).

|

We will now use these results to assess the radius of convergence of the powey 58fj&3
with eachg,, giveniin [3.8).

4.3. Radius of convergence ob b,,,t™.

Theorem 4.3. With the notations used above, a lower bound for the radius of convergence of

Yo Bt is

(4.23) LBRC(, laol) " e min ( el >l/k
" ’ 0 4|a0|1/nk=1,2 ..... n—1 Sk+1(0{, ‘CLODHMH .

Proof. The sequencéSy(a, |ap|) }x=23... of EQs. (4.11){(4.13) is a-convolution of orden—1.
The firstn — 1 terms are fok = 2, 3, ...,n andyu is given in Eq. [(4.5). We can therefore apply
the results of Propositio@.z witln, =4 Sq+1(a, |agl) for ¢ = 1,2,.... The termv, of Eq.
@.21)is

(4.24) v (a, |ag|) = k:l,ﬂ;g.:?nq (Slg:(lo;lla?‘))l/k :

The results of Eqs| (4.14) ar{d (4]22) then yield for every

(4.25) w(m) < Sp(a, |aol) < vila, |ag))™ ™ x u™ 2 x Cp_s
4m—2

(4.26) ~ v1(ay, Jag))™ ™ x ™2 x N CEDIEE for m — oo.

We now letRC(A) denote the radius of convergence of the power séxie$, ¢™. The func-
tional notation is to emphasize the dependence on the véctofa, ). Given Eqgs.[(3.8)[ (4.24),
(4.28) and the fact that = |a|, we have

(4.27) RC(A) Y lim inf |8,,|7Y™ = lim inf p~ /™™ W (m),|"Y/™ >
(4.28) lim inf p~Y™w(m) V™ > lim inf p~¥/" (v1(ev, |ag)™ " x ™% x Cm,g)_l/m
—1/n 1 C _ ‘ | )Uk
4 . k—1|Q0
4.29 ~ = min for m — oo
2~ o) < Ao aetBi s (Skma, aoD TM]

which yields the lower bound of (4.23).
|
We now know thad _ (,,t™ has a strictly positive radius of convergence. We do not have an
analytical expression faRC'(A) but we do have the lower bouddB RC'(«, |ay|).
For|t| < RC(A) we may then define
o el t/RC(A) +1

<1
2

(4.30)
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There exists the® > 0 such that
(4.31) bt™| = | K (m, BI)t™| = |B,,|[t|™ < D™, m =1,2, ...
which shows that the seriast, k) = 3_ 3,,e**™™*i/n¢™ converges geometrically fast fpt <
RC(A).
We next need a result on the growth of thed, BY)'s.

Proposition 4.4. If |t| < RC(A) then there exisD > 0 andc¢ (0 < ¢ < 1) such that for any
p=1,
(4.32) |K(d, BY)| < DP(d— 1) (c/|t])",¥d > 1,%g > 1.
Proof. We prove the result by induction gn With p = 1 Egs. [2.9) and (4.31) show that if
d < g then
(4.33) |[K(d, By)| = |K(d, By)| = |84] < D(c/|t])".
If d > qthenK(d, B)) = 0 and [4.3D) is trivially true. Thereforg (4]32) is true for= 1.
In order to prove the result by induction we assume that [4.32) is true up to praied

calculate| K (d, B¥*)|. If d < p+ 1 thenK(d, B¥*') = 0 and Eq. [(4.3R) is trivially true. If
d > p + 1then Eq.[(2.1I0) yields

min(d—p,q) d—1
(4.34) [K(d. B =| > buK(d—m,B)| <Y |bl|K(d—m, B
d—
(4.35) Z (c/Ith™DP(d — 1)~ (e/[th*™™ = D" (d — 1)P(¢/]t])*

m=1

which is the desired result df (4]32) at the orger 1. &

We now bring together all previous results and prove that when the sefiek) =
3 B,,e2kmmxingm converge (i.e. foft| < RC(A)) they provide fork = 0,1,...n — 1 the
n roots of Eq. [(2.R).

5. MAIN RESULT

Theorem 5.1. We consider the following polynomial equation of degiee 2, parameterized
byt > 0 and withag “Z pei® £ 0:

(5.1) " = (an_lx g, 0" P Lt ar+ CL[]) t".

We definer pTna \ak\ and recall the definition of the matrix/ in (3.4). We then define
n — 1 numbers{ S, ( \ 7\a0|)}q:2,3 77777 recurswely as follows:

(5.2) Sa(a,Jaol) < a+ /| M|

and forq = 3,4, ..

2

(5.3)  Sy(a, laol) < (Z 1M Sy (e \ao|>+a]sqp<a,rao|>>+a+a/uM||.

We also define recursively the infinite sequence:of 1)-dimensional vector$l’(q) starting
with

(5.4) W(l)=ap(l 1 .. 1Y, W(Z):%(l 2 .. n—1Y.
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Bearing in mindu, U, and A,, of Definition3.1], we define the subsequent terms as
(5.5)

1 q—2 min(n—1,g—1)
Wiy = = | 2 [wWr+DIMWg=p)+U 3 [AW(a=p))|.a=34..
p=1 p=1

We next define the infinite sequence

(5.6) B, = p™/m x MmO S W(m)y Jag, m=1,2, ...
The radius of convergendeC'(A) of > |3,,t™] is

(5.7) RC(A) =lim inf Q(m)

where

5.8) Qm) 1

~ lao[ W (m) [

Furthermore,RC(A) has the lower bound

(5.9) LBRC(a, |agl) def. L _ min ( Ch-1aol >1/k
’ Sk M)

4 aplt/" k=12,..n—1 (v, |ag))

which is larger than 1 forv small enough or fota,| large enough.
For |t| < RC(A) the partial sums

q
(510) [E(t, k)q dg‘. Zﬁmeﬂmmxi/nxtm

m=1

converge to the roots of E€5.1)in the sense that fat = 0, 1, ..., » — 1 then differences

(5.11)
Alg, k) Lt k)g]" = (o [2(t, k)" + anoa [0, k)" 2 + oo + ara(t, k)g + ao) £

approach 0 wher — oc.
Whena is small enough ofa,| large enough the radius of convergengé€’'( A) is larger than

1 (sinceLBRC(a, |ao|) > 1) and the functions:(t, k) = > 3,62 /" xt™ taken att = 1
m=1
andk =0, 1,...,n — 1 will then provide the: roots of Eq.(5.J)whent = 1.

Proof. The expression of (5.7) faRC'(A) is a direct consequence of the definition of the's
in (5.6)

EachS,(a, |ao|) of Egs. [5.2)— (5.3) is a polynomial imx with nonnegative coefficients
and no constant term. This insures tiia RC(«, |ag|) of EQ. {5.9) tends to infinity (and is
therefore> 1) for « — 0. Forg > 3 eachS,(a, |ao|) of Eq. (5.3) is a decreasing function of
lao| that approaches + /|| M || for |ag| — oco. The lower bound. BRC(«, |ao|) of Eq. (5.9)
then tends to infinity (and is therefore 1) for |ay| — oo.

The only other result that has not already been proven is the convergeice, @f) to 0 for
q — oo. Equation|(2.B) shows that

n(g—1)
(5.12) [w(t k)" = b5t + > " K (n+ j, BY).

=1
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We use Eq.[(2]8) and the facts thhgt= ap and K (n + j, By) = K(n + j, B},,) forj < g —1
(see Eq.[(2.18)) to write

q—1 n(g—1)
(5.13) [w(t k)" = aot” + Y t"TK(n+ 4, Bl + > t"IK(n+j BY).
j=1 j=q

We next turn our attention to the sum involving thgs on the right-hand side of Eq[ (5]11).
We call this sumy’(q, k):

n—1 7q n—1n(g—1)

(5.14)  Y(q k) < aot" +> Y a, " K(j,B)) =at" + > Y a,t"VEK(j, B}).

r=1 j=r r=1 j=1

Equation[(2.D) shows thdt (j, B]) = K(j, B},,) for j < ¢ — 1. Therefore

q—1 min(n—1,5) n—1n(g—1)
(6.15)  Y(g.k)=aot" + Y "7 Y aK(j,Bjy)+y D at"UK(j,By).
j=1 r=1 r=1j=q
We next use Eq[ (2.17) to write
q—1 n—1n(g—1)
(5.16) Y(q.k) = aot" + Y t"K(n+ 5. BY) + ) Y at™K () BY).
7j=1 r=1 j=q
Equations[(5.13) andl (5.[16) show that the differefge, k) of (5.17) reduces to
n(g—1) n(g—1)
(5.17) Alg k)= > t""K(n+j,B}) - Zar Z " K (j, BY).
Jj=q
We make use of Eq[ (4.B2) to see that
n(g—1) .
(5.18) Z " K(n+j,B)| < Z [t K (n+ j, By)| < D"C”Z n+j—1)""1d.
Jj=q Jj=q Jj=q

The last sum on the right-hand side of (3.18) is the remainder of qrdean absolutely con-
vergent series and therefore tends to 0 when oo. The first sum in[(5.117) therefore tends to

0 for ¢ — oo. Then — 1 remainders in the double sum on the right-hand sidg of (5.17) similarly
tend to 0, which shows thak(q, k) — 0 wheng — oc. i

Remark 5.1. We make the following observations:

(1) The radius of convergendeC'(A) can be assessed numerically through the expression
of (5.7). If Q(m) asymptotically remains above 1 thétC(A) > 1 and thex(t, k)’'s
provide then roots witht = 1.

(2) Regardless of the values of thg's, the functionse(¢, k) can be viewed as Taylor ex-
pansions in the variable of the roots of Eq. [(5]1). Indeed, wheris small the first
few terms of the series provide approximate values for the roots (a numerical example
is given below).

6. NUMERICAL ILLUSTRATIONS

As a numerical illustration we consider the polynomial equation of degree 6:
(6.1) 2% = (—2° + 2 — 22% — 327 + 22 + 8)1°

with a particular interest in the cage= 1. The lower bound.BRC(«, |ag|)=LBRC(3,8)
for the radius of convergence is 0.094. Therefore we do not know whether) converges
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a) Sequence Q{m)
2
T T T T T T T — Q(m)
1
151 B
E
g
05 1 1 1 1 1 I 1 1 1
0 20 40 60 80 100 120 140 160 180 200
m
b) Real and imaginary parts of function x(1,k) and of numerically calculated roots
2 T T T T T T T T T T T _ Re(x(1,k))
G P === Im{x(1,k))
* Re(root)
O Im(root)

Function x(1,k), roots

Figure 1: a) Sequence Q(m) of E€5.8);, b) Reallimaginary parts of function x(1,k) together with numerically
calculated roots

with ¢ = 1. However LBRC(«, |ag|) is an extremely conservative bound calculated only
with «, |ag|, and ||M]|. (The main usefulness of the sufficient convergence conditicn
LBRC(«, |ag]) lies in the qualitative fact that with = 1 the functionz (¢, «) does provide
the roots whemn is small enough ofa,| large enough).

The values(m) are plotted in Figure 1a. These values appear to remain above approxi-
mately 1.05 form — oco. This suggests tha®C'(A) > 1 and that witht = 1 thez(1, k)’s will
indeed converge and provide the roots of Eq.|(6.1).

To verify this we plotted in Figure 1b the real and imaginary parts of edthk) over two
periods (i.e.k from 0 to2n = 12). (The first 200 terms are used in the series expansion). On
the same figure we also plotted the values found using Matlab’s built-in polynomial equation
routine (stars and circles). These values coincide with the va&laes(1, k)) +i x Im(z(1,k))
fork=0,1,...n—1=05.

With real coefficients for the polynomial equation the complex roots come in conjugate pairs.
There are two such pairs. One for= 1,k = 5 and the other fok = 2,k = 4. In addition
there are two real roots &= 0 and atk = 3. In this and other cases these real roots appear
to be at local minima or maxima of thee(z(t, k)) function. These special behaviors of and
relationships between the real and imaginary parts no doubt arise from particular patterns in
the sequenc¢WW (¢);},-12,.. which have yet to be explored. These structures disappear with
complex coefficients since in this case there are no more complex conjugate roots.
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The first five terms of the seriest, u) are

(62) I’(tju) ~ \/§€2u7r><i/6t + 0.0833364u7r><i/6t2 _ 0.18414€6u7r><i/6t3—
0.14506¢54m¥/644 1 ().11441¢'0um*1/645

There are not enough terms to calculate the roots whenl. With ¢ = 0.4 however, the
values provided by (6]2) are very close to those calculated with Matlab (Table 1).

k=0 k=1 k=2 k=3 k=4 k=5
x(0.4,k)| 0.565| 0.290+0.504{ -0.300+0.474i -0.545| -0.300-0.474i 0.290-0.504i
Matlab | 0.564| 0.290+0.504j -0.301+0.4741 -0.546| -0.301-0.474j 0.290-0.504i

Table 1: Six valueg(0.4,k)and numerically calculated roots of E. (6.1) wit0.4

It was found numerically that when the constant tegn-= 8 in Eq. (6.1) falls below approx-
imately 4, the radius of convergence of the seriés«) drops below 1. The method can no
longer be used to solve Eq. (6.1) with- 1.

Several approaches have been tried in order to extend the method to the situation in which
lag| is small, meaning that at least one root is close to 0. One possibility would be to transform
the unknown in such a way that small roots are moved away from 0. For example one could
write the polynomial equation in terms of a changed unkngwa 1/z: if a root z is small
then the correspondingis large. However this approach did not change the problem. Another
possibility would be to inject the parametedifferently into the equation. For example one
could use a similar approach after multiplying the left rather than the right side of Efy. (2.1) by
t™. Or one could multiply each term of the equation by a well-chosen (and different) pbwer
To date such attempts have proved largely inconclusive.

7. CONCLUSION

We end with a note on terminology inspired by the trivial polynomial equaftion (5.1) in which
each coefficient;, is 0 for £ > 1 (i.e. « of Eq. (4.5) is 0). The equation is then

(7.1) " = agt™ = pet™.
As one might expect the solution serig$, k) reduces to the single exponential term
(7.2) z(t, k) = pt/me@rm0ing =01, n— 1.

This special case suggests the following definition.

Definition 7.1. Let {5, }m-12... be an infinite sequence of complex numbers such that the
powers serie$  3,,t™ has a radius of convergené&” > 0. (Thef,,’s may or may not be
generated through the process of Thedrem 5.1). For any intetiercomplex functions

(7.3) x(t,u) = Z (3, e2ummxi/n o pm

m=1
of the two real variableg andt are of period: in the variable; and have a radius of convergence
RC in the variable’. Such functions may be callegtneralized exponential functians

Ours is only a first step, which shows that the roots of a particular class of polynomial equa-
tions can be expressed explicitly with an infinite number of rational operations and root extrac-
tions. It is to be hoped that some variant or adaptation of the family of generalized exponential
functionsx (¢, u) will eventually emerge to provide closed-form expressions for the roots of
arbitrary polynomial equations.
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