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ABSTRACT. The primary objective of this work is to study higher order compact finite difference
schemes for finding the numerical solution of convection-diffusion equations which are widely
used in engineering applications. The first part of this work is concerned with a higher order
exponential scheme for solving unsteady one dimensional linear convection-diffusion equation.
The scheme is set up with a fourth order compact exponential discretization for space and cubic
C1-spline collocation method for time. The scheme achieves fourth order accuracy in both tem-
poral and spatial variables and is proved to be unconditionally stable. The second part explores
the utility of a sixth order compact finite difference scheme in space and Huta’s improved sixth
order Runge-Kutta scheme in time combined to find the numerical solution of one dimensional
nonlinear convection-diffusion equations. Numerical experiments are carried out with Burgers’
equation to demonstrate the accuracy of the new scheme which is sixth order in both space and
time. Also a sixth order in space predictor-corrector method is proposed. A comparative study is
performed of the proposed schemes with existing predictor-corrector method. The investigation
of computational order of convergence is presented.
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1. INTRODUCTION

The major trials and tribulations in cracking numerical solutions for simulation models of real
life problems in science is the lack of literature to felicitate analytical solutions of the governing
partial differential equations. Hence, designing and analysis of innovative numerical techniques
is one crucial far-reaching area of research. The convection-diffusion equation always attracts
research interest for its academic significance and relevance to a broad range of practical appli-
cations that are more closely related to human activities. The behaviour of many parameters in
fluid flow phenomena [1], the dispersion of dissolved material in estuaries and coastal seas [2],
heat transfer in a draining film [3], thermal pollution in river system [4], dispersion of tracers
in porous media [5], water transfer in soils [6], the spread of contaminants in rivers and streams
[7] are some of the critical convection-diffusion models in science and engineering.

For the numerical solution of convection-diffusion equations, one of the familiar compu-
tational scheme is Crank-Nicolson scheme [8]. This scheme is unconditionally stable with
second order accuracy in both space and time. In general, it has been observed that the numer-
ical solution of initial-boundary value problems obtained with lower order schemes in space
and time needs sufficiently refined meshes to attain higher accuracy. But higher order spatial
discretizations are generally associated with large stencils [9] that increases the complexity of
computations. The conventional higher accurate finite difference techniques use large stencil
sizes that also make boundary treatment difficult to achieve the desired order of accuracy. In
the context of higher order finite differences, compact finite difference methods are capable of
producing higher order accuracy without any increase in the stencil size.

Based on the fourth order Padé-type schemes of first and second order spatial derivatives,
Hirsh [10] developed a three-point fourth order compact finite difference method for the one
dimensional convection-diffusion equations. Rigal [11] developed a scheme for unsteady
convection-diffusion equations which is second order in time and fourth order in space. Also, it
includes several schemes proposed by different authors. Ding and Zhang [12] used a semi-
discrete and a Padé approximation method to present a new difference scheme for solving
convection-diffusion problems. The scheme is fourth order in space and fifth order in time.
Around the same time, Mohebbi and Dehghan [13] introduced a method by taking a compact
finite difference approximation of fourth order for discretizing spatial derivatives and the cubic
C1-spline collocation method for the time discretization. Recently, development of numerical
methods like polynomial higher order compact schemes and exponential higher order compact
schemes [14, 15, 16, 17] have generated significant interest because of the computational ef-
ficiency and higher accuracy. Tian and Yu [18] proposed a higher order exponential scheme
for the unsteady convection-diffusion equations which is fourth order accurate in space and
time. This scheme is proposed for the convection-diffusion equations with constant Dirichlet
boundary conditions. Later, Fu, Tian and Liu [19] extended this scheme to Neumann boundary
conditions and showed that order and stability do not change under the extended scheme.

Higher order accurate and efficient finite difference schemes are scarce in literature for solv-
ing nonlinear convection-diffusion equations. Burgers’ equation is a quasilinear convection-
diffusion equation that arises in many physical phenomena such as one dimensional turbulence
[20, 21], waves in fluid filled viscous elastic tubes [22], chemical reaction-diffusion model
of Brusselator [23] etc. Due to the nonlinearity, the schemes mentioned above cannot be di-
rectly applied to the Burgers’ equation. Most of the existing schemes in literature for Burgers’
equation are based on reducing Burgers’ equation to a linear heat equation and deriving finite
difference approximations on the transformed heat equation. Such finite differences or compact
finite differences can be found in [24, 25, 26]. There are finite difference schemes that can be
directly implemented to the Burgers’ equation. An implicit scheme introduced by Liao [27]
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and a predictor-corrector scheme by Zhand and Wang [28] are some of them. Also there are
some special approaches for solving the Burgers equation like multiquadric quasi-interpolation
by Hon and Mao [29], automatic differentiation by Asaithambi [30] etc.

In this work, we first propose a compact higher order scheme for solving transient linear
one dimensional convection-diffusion equations. The unconditionally stable numerical scheme
for 1D linear convection-diffusion equations is developed with fourth order exponential dif-
ference formula for the space discretization and a fourth order cubic C1-spline collocation
method for time discretization. Next, we develop a scheme for one dimensional nonlinear
convection-diffusion equations by replacing first and second order spatial derivatives with sixth
order compact finite difference approximations and Huta’s improved sixth order Runge-Kutta
method for time discretization. The proposed sixth order scheme in space and time is applied
to the Burgers’ equation. We also performed numerical computations on Burgers’ equation us-
ing predictor-corrector algorithm called MacCormack method. A comparative study of these
methods is performed and finally the computational order of convergence is investigated. The
structure of the paper is as follows: Section 1 gives the introduction. In Section 2, a fourth
order scheme for the linear convection-diffusion equation is presented and it is proved that the
method is unconditionally stable. Numerical results with the proposed scheme are presented. In
Section 3, a sixth order scheme in space and time for the nonlinear convection-diffusion equa-
tion is summarized and applied to the Burgers’ equation. In the same section, numerical results
are presented and a comparative study is performed using CD4 predictor-corrector [28], CD6
predictor-corrector and CD6 Huta’s improved RK6. Some concluding remarks are drawn in the
last section.

2. LINEAR CONVECTION-DIFFUSION EQUATIONS

This section introduces a new higher order compact finite difference scheme for the linear 1D
convection-diffusion equation with Dirichlet boundary conditions. Here we bring out the com-
pact finite difference approximation to the governing equation by solving the steady linear 1D
convection-diffusion equation using Green’s function and the resulting solution is discretized
by standard central difference operators. By this treatment, the unsteady linear 1D convection-
diffusion equation is transformed into system of ordinary differential equations which are solved
by C1-spline collocation method.

2.1. Governing Equation.

(2.1) yt + αyx = νyxx, 0 < x < L, 0 < t ≤ T.

The initial condition is
y(x, 0) = ψ(x), 0 ≤ x ≤ L,

and the Dirichlet boundary conditions are

y(0, t) = g1(t), y(L, t) = g2(t), 0 ≤ t ≤ T,

where y(x, t) represent a scalar variable with constant velocity α (̸= 0) and constant diffusivity
ν > 0.

2.2. Numerical scheme. Divide the spatial domain [0, L] into N + 1 grid points:
0 = x0, x1, x2, . . . , xi−1, xi, xi+1, . . . , xN = L, with mesh size h = xi − xi−1. Let ∆t denote
the time step size. Consider the steady 1D convection-diffusion equation

(2.2) −νyxx + αyx = f, 0 < x < L,
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where f is a sufficiently smooth function of x. First consider the following initial-boundary
value problem in the sub domain [xi−1, xi+1] (i = 1, 2, . . . , N − 1):

(2.3)
−νyxx + αyx = f, xi−1 < x < xi+1,

y(xi−1) = yi−1, y(xi+1) = yi+1.

Let ψ1(x) and ψ2(x) be the respective solutions of the following boundary value problems

(2.4)
−νψxx + αψx = 0, xi−1 < x < xi+1,

ψ(xi−1) = 1, ψ(xi+1) = 0,

and

(2.5)
−νψxx + αψx = 0, xi−1 < x < xi+1

ψ(xi−1) = 0, ψ(xi+1) = 1.

Then the solution of the problem (2.3) is

(2.6) y(x) = ψ1(x)yi−1 + ψ2(x)yi+1 +

∫ xi+1

xi−1

G(x, ζ)f(ζ)dζ,

where G(x, ζ) is the Green’s function of the following problem

(2.7)
{

−νyxx + αyx = 0, xi−1 < x < xi+1

y (xi−1) = 0, y (xi+1) = 0.

By solving equations (2.4) and (2.5) we obtain,

(2.8) ψ1(x) =
1− e

α
ν
(x−xi+1)

1− e−
2α
ν
h

and ψ2(x) =
e

α
ν
(x−xi−1) − 1

e
2α
ν
h − 1

.

Also,

(2.9) G(x, ζ) =
1

W (ζ)

{
ψ1(x)ψ2(ζ), xi−1 ≤ ζ < x
ψ1(ζ)ψ2(x). x ≤ ζ ≤ xi+1.

By using Abel’s formula we can find the Wronskian W (ζ) as,

(2.10) W [ψ1, ψ2](ζ) = W [ψ1, ψ2](xi−1)e
−

∫ ζ
xi−1

−α
ν
ds

=
α

ν

e
α
ν
(ζ−xi)

e
α
ν
h − e−

α
ν
h
.

Substituting (2.8), (2.9) and (2.10) in (2.6), we can obtain the solution of (2.2) as

(2.11)

y (xi) = ψ1(xi)yi−1 + ψ2(xi)yi+1 +
ν

α
ψ1(xi)

∫ xi

xi−1

(
1− e−

α
ν
(ζ−xi−1)

)
f(ζ)dζ

+
ν

α
ψ2(xi)

∫ xi+1

xi

(
e−

α
ν
(ζ−xi+1) − 1

)
f(ζ)dζ.

Let the source term f(x) be expressed as

(2.12) f(x) = fi + (x− xi)δxfi +
(x− xi)

2

2!
δ2xfi +

(x− xi)
3

3!
fxxx(ηi), ηi ∈ (xi−1, xi+1),

where δx and δ2x are the standard second order central difference operators for x ∈ (xi−1, xi+1),
i = 1, 2, ..., N − 1. Substituting (2.12) in (2.11) we obtain

(2.13) −aδ2xyi + αδxyi = fi + bδxfi + cδ2xfi +O
(
h4
)
,

where

a =
αh

2
coth

(
αh

2ν

)
, b =

ν − a

α
, c =

ν(ν − a)

α2
+
h2

6
.
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Omitting the truncation error in (2.13), a three-point fourth order compact finite difference
scheme for (2.2) is obtained. Using this, a semi-discrete fourth order exponential approximation
for the unsteady 1D convection-diffusion problem (2.1) is developed as follows,

(2.14)

(
c

h2
− b

2h

)(
∂y

∂t

)n

i−1

+

(
1− 2c

h2

)(
∂y

∂t

)n

i

+

(
c

h2
+

b

2h

)(
∂y

∂t

)n

i+1

=
( a

h2
+

α

2h

)
yni−1 −

2a

h2
yni +

( a
h2

− α

2h

)
yni+1.

This leads to a system of first order ordinary differential equations given by

(2.15)
A
dY (t)

dt
= BY (t) +G,

Y (0) = Ψ0,

in which
Y (t) = [y1(t), y2(t), . . . , yN−1(t)]

T , Ψ0 = [ψ1, ψ2, . . . , ψN−1]
T ,

G =
[(

a
h2 +

α
2h

)
g1(t)−

(
c
h2 − b

2h

)
g′1(t), 0, ..., 0,

(
a
h2 − α

2h

)
g2(t)−

(
c
h2 +

b
2h

)
g′2(t)

]T
,

A = tri
[(

c
h2 − b

2h

)
,
(
1− 2c

h2

)
,
(

c
h2 +

b
2h

)]
N−1

and B = tri
[(

a
h2 +

α
2h

)
,− 2a

h2 ,
(

a
h2 − α

2h

)]
N−1

.
Since the matrix A is tri-diagonal and strictly diagonally dominant, it is nonsingular. Therefore
the system (2.15) can be written as

(2.16)
dY (t)

dt
= A−1BY (t) + A−1G,

Y (0) = Ψ0.

This semi-discretized system of ordinary differential equations is solved by fourth order cubic
C1-spline collocation method [31] given by

Y n =Y n−1 +
∆t

6

(
(Y ′)

n−1
+ 4(Y ′)

n− 1
2 + (Y ′)

n
)
,(2.17)

Y n− 1
2 =Y n−1 +

∆t

24

(
5(Y ′)

n−1
+ 8(Y ′)

n− 1
2 − (Y ′)

n
)
.(2.18)

Let M = A−1B, using (2.16), (2.17) and (2.18) we have

Y n = Y n−1 +
∆t

6

(
MY n−1 + A−1Gn−1 + 4MY n− 1

2 + 4A−1Gn− 1
2 +MY n + A−1Gn

)
,

(2.19)

Y n− 1
2 = Y n−1 +

∆t

24

(
5MY n−1 + 5A−1Gn−1 + 8MY n− 1

2 + 8A−1Gn− 1
2 −MY n − A−1Gn

)
.

(2.20)

On rearranging, (2.19) and (2.20) can be written as

(
I − ∆t

6
M

)
Y n =

(
I +

∆t

6
M

)
Y n−1 +

2∆t

3
MY n− 1

2 +
∆t

6
A−1

(
Gn−1 + 4Gn− 1

2 +Gn
)
,

(2.21)

(
I − ∆t

3
M

)
Y n− 1

2 =

(
I +

5∆t

24
M

)
Y n−1 − ∆t

24
MY n +

∆t

24
A−1

(
5Gn−1 + 8Gn− 1

2 −Gn
)
,

(2.22)
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where I is the (N − 1) × (N − 1) identity matrix. Removing the term Y n− 1
2 from (2.21) and

(2.22) we obtain the following proposed scheme,
(2.23)(
I − ∆t

2
M +

∆t2

12
M2

)
Y n =

(
I +

∆t

2
M +

∆t2

12
M2

)
Y n−1 +

(
∆t

6
A−1 +

1

12
∆t2A−1M

)
Gn−1

+
2∆t

3
A−1Gn− 1

2 +

(
∆t

6
A−1 − 1

12
∆t2A−1M

)
Gn.

Theorem 2.1. The numerical scheme(2.23) is unconditionally stable.

Proof. For a stable difference scheme, small errors in the initial condition only cause small
errors in the solution. Let a small perturbation be introduced at t = 0 such that the initial vector
Y0 becomes Y ∗

0 . Denote e0 = Y0 − Y ∗
0 . Let

Q =

(
I − ∆t

2
M +

∆t2

12
M2

)−1(
I +

∆t

2
M +

∆t2

12
M2

)
.

We define error vector en = Y n − Y ∗n, n = 1, 2, . . . , T
∆t

. Thus,

en = Y n − Y ∗n = Q(Y n−1 − Y ∗n−1) = Qen−1.(2.24)

Therefore from (2.24) we can say that en = Qen−1 = Q2en−2 = Q3en−3 = . . . = Qne0.
Then we have ∥en∥2 ≤ ∥Qn∥2 ∥e0∥2. Let λi be the eigenvalues of the matrix M , then the
eigenvalues of matrix Q are

1 + 1
2
∆tλi +

1
12
(∆tλi)

2

1− 1
2
∆tλi +

1
12
(∆tλi)

2 for i = 1, 2, . . . , N − 1.(2.25)

It is not difficult to show that the real part of the eigenvalues λi is nonpositive for every
i = 1, 2, . . . , N − 1. A straightforward calculation gives

max
i

[
1 + 1

2
∆tλi +

1
12
(∆tλi)

2

1− 1
2
∆tλi +

1
12
(∆tλi)

2

]
≤ 1 for every i = 1, 2, . . . , N − 1.(2.26)

Hence ∥Qn∥2 −→ 0 as n −→ ∞. Since e0 is the initial error, ∥e0∥2 is finite.
Therefore ∥en∥2 −→ 0 as n −→ ∞. This completes the proof of the theorem (2.1).

2.3. Numerical observations. In this section, we present the numerical results of the proposed
method on three test problems. The computational order of accuracy denoted by C-order is

calculated with the formula log2

(
e1
e2

)
in which e1 and e2 are the errors corresponding to

space steps h and
h

2
. The Péclet number is defined as Pe =

∣∣∣α
ν

∣∣∣ which determines whether the
given equation is convection dominated or diffusion dominated.

2.3.1. Problem 1. Consider the convection-diffusion equation (2.1), with the initial condition

y(x, 0) = sin(x), 0 < x < 2,(2.27)

and the boundary conditions

y(0, t) = −e−νt sin(αt), y(2, t) = e−νt sin(2− αt).(2.28)

The exact solution is given by y(x, t) = e−νt sin(x− αt). We take α = 1 for the numerical
computations using the proposed scheme given in Section 2.2. In Table 2.1, we show the ab-
solute errors obtained for Problem 1 with various Péclet numbers Pe at final time T = 2 with
h = 0.01. Fig. 1(a) shows the numerical solution of Problem 1 for several values of T with
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h = 0.01, ∆t = 0.01 and Pe=100. Fig. 1(b) shows the space-time graph of numerical solution
with h = 0.02, ∆t = 0.05 and Pe=100.

x Pe =50 Pe =100 Pe =1000
Absolute error Absolute error Absolute error

0.25 4.8446×10−8 1.8349×10−7 3.1187×10−6

0.5 1.4795×10−8 6.4951×10−8 1.3160×10−6

0.75 7.7077×10−8 3.0928×10−7 5.6685×10−6

1 1.3437×10−7 5.3406×10−7 9.6672×10−6

1.25 1.8234×10−7 7.2503×10−7 1.3062×10−5

1.5 2.1187×10−7 8.6508×10−7 1.5642×10−5

1.75 1.9999×10−7 8.6441×10−7 1.7245×10−5

Table 2.1: Absolute error for Problem 1 with h = 0.01,∆t = 0.005 and T = 2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y
(x

,t
)

T=0.2

T=0.4

T=0.6

T=0.8

T=1

Figure 1: (a) Numerical solution of Problem 1 for several values of T with h = 0.01, ∆t = 0.01 and Pe = 100
(left). (b) Space-time graph of Problem 1 with h = 0.02, ∆t = 0.05, Pe = 100 and T = 1 (right).

2.3.2. Problem 2. Consider the convection-diffusion equation (2.1), with α = 1, ν = 0.1 and
the initial condition

y(x, 0) = e5x
[
cos

(π
2
x
)
+ 0.25 sin

(π
2
x
)]
, 0 ≤ x ≤ 1.(2.29)

The exact solution is given by

y(x, t) = e5(x−
t
2
)e−

π2

40
t
[
cos

(π
2
x
)
+ 0.25 sin

(π
2
x
)]
.(2.30)

The boundary conditions are obtained from the exact solution. In Table 2.2, we show the abso-
lute errors obtained for Problem 2 at final time T = 2 with several values of h. Fig. 2(a) presents
the numerical solution of Problem 2 for various values of T with h = 0.02 and ∆t = 2h. In
Fig. 2(b) we show the space-time graph of Problem 2 with h = 0.02 and ∆t = 2h.
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x h=0.1 h=0.05 h=0.01
Absolute error Absolute error Absolute error

0.1 2.4415×10−6 9.1067×10−8 1.9957×10−9

0.2 1.5594×10−5 7.4122×10−7 1.4759×10−9

0.3 3.4709×10−5 1.9498×10−6 1.4046×10−10

0.4 6.5946×10−5 3.9224×10−6 3.7904×10−9

0.5 1.1024×10−4 6.8973×10−6 1.1037×10−8

0.6 1.6797×10−4 1.1053×10−5 2.4446×10−8

0.7 2.3460×10−4 1.6354×10−5 4.8187×10−8

0.8 2.8296×10−4 2.2225×10−5 8.9010×10−8

0.9 3.3511×10−4 2.5916×10−5 1.5787×10−8

Table 2.2: Absolute error for Problem 2 with ∆t = 2h and T = 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

10

20

30

40

50

60

70

80

90

y
(x

,t
)

T=0.2

T=0.4

T=0.6

T=0.8

T=1

Figure 2: (a) Numerical solution of Problem 2 for various values of T with h = 0.02 and ∆t = 2h (left).
(b) Space-time graph of Problem 2 with h = 0.02, ∆t = 2h and T = 1 (right).

2.3.3. Problem 3. Consider the convection-diffusion equation (2.1), with the initial condition

y(x, 0) = e−
(x−α)2

4ν , 0 < x < 2,(2.31)

and the boundary conditions are

y(0, t) =
1√
1 + t

e−
(1+t)2α2

4ν(1+t) , y(2, t) =
1√
1 + t

e−
(2−(1+t)α)2

4ν(1+t) .(2.32)

The exact solution is given by

(2.33) y(x, t) =
1√
1 + t

e−
(x−(1+t)α)2

4ν(1+t) .

For this problem we take α = 0.25 for the numerical computation. In Table 2.3, the numerical
results obtained with different values of h and Pe at final time T = 2 are shown. Table 2.3
shows that the proposed scheme has achieved good accuracy and rate of convergence. In Fig.
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3(a), numerical solution of Problem 3 for several values of T with h = 0.01, ∆t = 0.01 and
Pe = 25 is presented. Fig. 3(b) shows the space-time graph of Problem 3 with h = 0.01,
∆t = 0.01, Pe = 25 and T = 1.

h Pe =2 C-order Pe =20 C-order Pe =40 C-order
Maximum error Maximum error Maximum error

0.04 1.6900×10−7 7.1007×10−5 5.1492×10−4

0.02 1.0544×10−8 4.0025 4.5219×10−6 3.9730 3.3947×10−5 3.9230
0.01 6.5253×10−10 4.0142 2.8275×10−7 3.9993 2.1416×10−6 3.9865
0.005 1.9452×10−11 5.0681 1.7526×10−8 4.0120 1.3403×10−7 3.9981

Table 2.3: Maximum error and convergence rate for Problem 3 with ∆t = 0.005 and T = 2.
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Figure 3: (a) Numerical solution of Problem 3 for several values of T with h = 0.01, ∆t = 0.01 and Pe = 25
(left). (b) Space-time graph of Problem 3 with h = 0.01, ∆t = 0.01, Pe = 25 and T = 1 (right).

It is clearly evident from the tables that the proposed scheme achieved high accuracy. Also the
figures reveal the convective and diffusive nature of the given equations. Table (2.3) shows that
the computational order of the proposed method is four, which agrees with the theoretical order.
The numerical results obtained indicate that the combination of the exponential method for the
space discretization and C1-spline collocation method for the time discretization is an effective
tool for solving unsteady linear 1D convection-diffusion equations. However, the proposed un-
conditionally stable scheme described in this section is restricted to solving only linear unsteady
1D convection-diffusion problems.

3. NONLINEAR CONVECTION-DIFFUSION EQUATIONS

One of the basic approaches of higher order compact finite difference methods is to obtain all
the numerical derivatives along a grid line using smaller stencils and solving the resulting linear
system of ordinary differential equations. The present work also uses this approach in order
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to obtain the solution of nonlinear convection-diffusion equations with sixth order accuracy in
both space and time. For the time discretization we presented Huta’s improved RK6 method.
Numerical experiments are conducted with Burgers’ equation using CD6 Huta’s improved RK6
method and also CD6 predictor-corrector method.

3.1. Numerical scheme-CD6. Consider the nonlinear convection-diffusion equation

(3.1) yt + f1(x, t, y)yx = f2(x, t, y)yxx, c < x < d, t > 0,

with initial and boundary conditions. Divide the spatial domain [c, d] into N grid points:
c = x1, x2, . . . , xi−1, xi, xi+1, . . . , xN = d with mesh size h = xi − xi−1. Using the sixth order
accurate compact difference scheme (CD6), see [32, 33], the spatial derivatives are calculated
at each grid point. Let ∆t denote the time step size. The first derivatives at interior nodes
3 ≤ i ≤ N − 2 can be obtained as follows

(3.2)
1

3
y

′

i−1 + y
′

i +
1

3
y

′

i+1 =
1

9

(yi+2 − yi−2)

4h
+

14

9

(yi+1 − yi−1)

2h
.

For the nodes at the left boundary, i.e., at i = 1, 2, respectively, we have

(3.3) y
′

i + 5y
′

i+1 =
1

h

(
−197

60
yi −

5

122
yi+1 + 5yi+2 −

5

3
yi+3 +

5

12
yi+4 −

1

20
yi+5

)
,

(3.4)
2

11
y

′

i−1 + y
′

i +
2

11
y

′

i+1 =
1

h

(
−20

33
yi−1 −

35

132
yi +

34

33
yi+1 −

7

33
yi+2 +

2

33
yi+3 −

1

132
yi+4

)
.

For the nodes at the right boundary, i.e., at i = N − 1, N , respectively, we have
(3.5)

2

11
y

′

i−1 + y
′

i +
2

11
y

′

i+1 =
1

h

(
20

33
yi+1 +

35

132
yi −

34

33
yi−1 +

7

33
yi−2 −

2

33
yi−3 +

1

132
yi−4

)
,

(3.6) 5y
′

i−1 + y
′

i =
1

h

(
197

60
yi +

5

122
yi−1 − 5yi−2 +

5

3
yi−3 −

5

12
yi−4 +

1

20
yi−5

)
.

The above equations (3.2-3.6) can be represented in the matrix form

BY
′
= AY where Y = (y1, y2, ..., yN),(3.7)

where the matrix B is

B =



1 5 0 0 . . . 0 0 0 0

2
11

1 2
11

0 . . . 0 0 0 0

0 1
3

1 1
3

. . . 0 0 0 0
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 1
3

1 1
3

0

0 0 0 0 . . . 0 2
11

1 2
11

0 0 0 0 . . . 0 0 5 1


N×N
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and the matrix A is

A= 1
h



−197
60

− 5
122

5 −5
3

5
12

− 1
20

. . . 0 0 0 0 0 0

−20
33

− 35
132

34
33

− 7
33

2
33

− 1
132

. . . 0 0 0 0 0 0

− 1
36

−7
9

0 7
9

1
36

0 . . . 0 0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 0 . . . 0 − 1
36

−7
9

0 7
9

1
36

0 0 0 0 0 0 . . . 1
132

− 2
33

7
33

−34
33

35
132

20
33

0 0 0 0 0 0 . . . 1
20

− 5
12

5
3

−5 5
122

197
60


N×N.

Applying the first order operator twice, we can obtain the second derivative terms i.e.,

BY ′′ = AY ′.(3.8)

Approximating the spatial derivatives in (3.1) at each grid point using (3.7) and (3.8) lead to a
system of ordinary differential equations

(3.9)
dY

dt
= LY,

where Lyi denotes the residual at point i.

3.2. Time discretization. The semi-discrete equation (3.9) is solved using Huta’s improved
RK6 method [34] as follows,

Y (1) =Y n +
∆t

9
L(Y n),

Y (2) =Y n +
∆t

24

(
L(Y n) + 3L(Y (1))

)
,

Y (3) =Y n +
∆t

6

(
L(Y n)− 3L(Y (1)) + 4L(Y (2))

)
,

Y (4) =Y n +
∆t

8

(
−5L(Y n) + 27L(Y (1))− 24L(Y (2)) + 6L(Y (3))

)
,

Y (5) =Y n +
∆t

9

(
221L(Y n)− 981L(Y (1)) + 867L(Y (2))− 102L(Y (3)) + L(Y (4))

)
,

Y (6) =Y n +
∆t

48

(
−183L(Y n) + 678L(Y (1))− 472L(Y (2))− 66L(Y (3)) + 80L(Y (4)) + 3L(Y (5))

)
,

Y (7) =Y n +
∆t

82

(
716L(Y n)− 2079L(Y (1)) + 1002L(Y (2)) + 834L(Y (3))− 454L(Y (4))− 9L(Y (5)) + 72L(Y (6))

)
.

(3.10)

Y n+1 = Y n +
∆t

840

[
41

(
L(Y n) + L(Y (7))

)
+ 216

(
L(Y (2)) + L(Y (6))

)
+ 27

(
L(Y (3)) + L(Y (5))

)
+ 272L(Y (4))

]
.

3.3. Predictor-corrector method for Burgers’ equation. Consider the Burgers’ equation
∂y

∂t
+ y

∂y

∂x
= ν

∂2y

∂x2
, c < x < d, t > 0,(3.11)
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with respect to initial and boundary conditions. Here ν > 0 is a small parameter known as the
kinematics viscosity. We rewrite (3.11) as follows

∂y

∂t
= −∂f(y)

∂x
+ ν

∂2y

∂x2
,(3.12)

where f(y) =
y2

2
. The MacCormack method for solving equation (3.12) is given by

ȳn+1
j = ynj −∆t(fn

j )
′ + ν∆t(ynj )

′′,(3.13)

yn+1
j =

1

2
(ynj + ȳn+1

j −∆t(f̄n
j )

′ + ν∆t(ȳnj )
′′).(3.14)

The derivatives in the MacCormack method are replaced by compact approximations (3.7) and
(3.8).

3.4. Numerical observations.

3.4.1. Problem 4. Consider the equation (3.11) with the initial condition y(x, 0) = sin(πx),
0 < x < 1, and the boundary conditions y(0, t) = y(1, t) = 0.

The exact solution is y(x, t) = 2πν

∑∞
n=1 ane

−n2π2νtn sin(nπx)

a0 +
∑∞

n=1 ane
−n2π2νt cos(nπx)

with the Fourier coeffi-

cients

a0 =

∫ 1

0

e
cos(πx)−1

2πν dx and an = 2

∫ 1

0

e
cos(πx)−1

2πν cos(nπx)dx, n = 1, 2, 3, . . .

In Tables (3.1) and (3.2), we show the l2 errors and average errors obtained for Problem 4 with
various values of h at final time T = 0.2. Fig. (4)(a) shows the numerical solution with several
values of T with h = 1

30
, ∆t = 0.00001 and ν = 0.1. In Fig. (4)(b) we plot the numerical

solution with several values of T with h = 1
30

, ∆t = 0.00001 and ν = 1.

h CD4 Predictor-Corrector CD6 Predictor-Corrector CD6-RK6 Huta
l2 error Average error l2 error Average error l2 error Average error

1
15

5.1211×10−04 4.4152×10−05 1.4546×10−04 2.0211×10−05 1.4518×10−04 2.0181×10−05

1
30

1.9812×10−05 1.1010×10−06 3.9653×10−06 2.6521×10−07 3.9437×10−06 2.6381×10−07

1
60

6.3522×10−07 4.0822×10−08 2.2119×10−08 1.5450×10−09 2.1321×10−08 1.5108×10−09

1
120

7.0524×10−08 3.1637×10−09 6.2751×10−10 4.7686×10−11 2.1016×10−10 1.1783×10−11

Table 3.1: l2-error and average error for Problem 4 with ν = 0.1,∆t = 0.00001 and T = 0.2.

h CD4 Predictor-Corrector CD6 Predictor-Corrector CD6-RK6 Huta
l2 error Average error l2 error Average error l2 error Average error

1
15

1.7374×10−06 3.7098×10−07 5.8862×10−07 1.3084×10−07 5.7635×10−07 1.2810×10−07

1
30

4.9613×10−07 7.7575×10−08 1.4039×10−09 2.1757×10−10 1.8894×10−09 2.7520×10−10

1
60

5.1135×10−08 5.7826×10−09 2.4253×10−09 2.7664×10−10 2.4495×10−11 2.7740×10−12

1
120

7.8064×10−09 6.3341×10−10 3.4598×10−09 2.8184×10−10 2.7290×10−13 2.1513×10−14

Table 3.2: l2-error and average error for Problem 4 with ν = 1,∆t = 0.00001 and T = 0.2.

AJMAA, Vol. 20 (2023), No. 1, Art. 21, 17 pp. AJMAA

https://ajmaa.org


HIGHER ORDER ACCURATE COMPACT SCHEMES FOR TIME DEPENDENT LINEAR AND NONLINEAR CONVECTION-DIFFUSION EQUATIONS 13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y
(x

,t
)

T=0.1

T=0.2

T=0.3

T=0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

y
(x

,t
)

T=0.1

T=0.2

T=0.3

T=0.4

Figure 4: Numerical solution of Problem 4 at different times for (a) h = 1
30 , ∆t = 0.00001 and ν = 0.1 (left).

(b) h = 1
30 , ∆t = 0.00001 and ν = 1 (right).

3.4.2. Problem 5. Consider the equation (3.11) in 0.5 < x < 1.5 with boundary conditions

y(0.5, t) =
ν

1 + νt

(
0.5 + tan

(
1

4(1 + νt)

))
, y(1.5, t) =

ν

1 + νt

(
1.5 + tan

(
3

4(1 + νt)

))
,

0 < t < T . The exact solution is given by y(x, t) =
ν

1 + νt

(
x+ tan

(
x

2 + 2νt

))
.

The initial condition is obtained from the exact solution when t = 0. The problem is solved nu-
merically at time T = 0.1 by predictor-corrector fourth order compact finite difference scheme,
predictor-corrector sixth order compact finite difference scheme and Huta’s improved Runge-
Kutta sixth order compact finite difference scheme for ν = .001 and ν = .00001. The solution
is obtained for different values of h, the l2 errors and average errors of the solution by the three
schemes are compared in Tables (3.3) and (3.4). Fig. (5)(a) and Fig. (5)(b) shows the numerical
solution for ν = .0001, ν = .00001 at times T = 0.1 and T = 100 respectively.

h CD4 Predictor-Corrector CD6 Predictor-Corrector CD6-RK6 Huta
l2 error Average error l2 error Average error l2 error Average error

1
15

4.6732×10−05 3.9835×10−06 3.9655×10−09 3.0836×10−10 3.9693×10−09 3.0834×10−10

1
30

1.7905×10−04 7.5210×10−06 3.9724×10−09 1.6654×10−10 3.9850×10−09 1.6652×10−10

1
60

6.1265×10−04 1.3878×10−05 4.0646×10−09 9.9487×10−11 4.0821×10−09 9.9486×10−11

1
120

1.5336×10−03 2.3242×10−05 4.6275×10−09 7.5342×10−11 4.6199×10−09 7.5358×10−11

Table 3.3: l2-error and average error for Problem 5 with ν = 0.001,∆t = 0.001 and T = 0.1.

h CD4 Predictor-Corrector CD6 Predictor-Corrector CD6-RK6 Huta
l2 error Average error l2 error Average error l2 error Average error

1
15

4.7477×10−09 4.1096×10−10 3.9663×10−13 3.0346×10−14 3.9663×10−13 3.0346×10−14

1
30

1.8988×10−08 8.4786×10−10 3.9663×10−13 1.5669×10−14 3.9665×10−13 1.5669×10−14

1
60

7.5821×10−08 1.7172×10−09 3.9663×10−13 7.9796×10−15 3.9670×10−13 7.9795×10−15

1
120

3.0118×10−07 3.4114×10−09 3.9665×10−13 4.0558×10−15 3.9692×10−13 4.0556×10−15

Table 3.4: l2-error and average error for Problem 5 with ν = 0.00001,∆t = 0.001 and T = 0.1.

AJMAA, Vol. 20 (2023), No. 1, Art. 21, 17 pp. AJMAA

https://ajmaa.org


14 S.THOMAS AND GOPIKA P.B. AND S. K. NADUPURI

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

x

0

0.5

1

1.5

2

2.5

y(
x,

t)

10
-3

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

x

0

0.5

1

1.5

2

2.5

y(
x,

t)

10
-3

Figure 5: Numerical solution of Problem 5 for (a) h = 1
30 , ∆t = 0.001 and T = 0.1 (left). (b) h = 1

30 , ∆t = 0.001
and T = 100 (right).

3.4.3. Problem 6. Consider the equation (3.11) in 0 < x < 1 with the boundary conditions

y(0, t) = y(1, t) = 0, 0 < t < T, and with the initial condition y(x, 0) =
2νπ sin (πx)

a+ cos (πx)
, where

a > 1 is a parameter. The exact solution is given by y(x, t) =
2νπe−π2νt sin (πx)

a+ e−π2νt cos (πx)
.

We take a = 2. In Table (3.5), we summarized the numerical results at T = 1 when ν = 10−4.
The l2 errors and average errors of the solution obtained by the three schemes with different
space steps are presented in the Table (3.5). In Table (3.6), the numerical results obtained at
T = 0.1 when ν = 0.01 with different values of h are presented. Fig. (6)(a) shows the numerical
solution with several values of ν with h = 0.05, ∆t = 0.0001 and T = 0.1. In Fig. (6)(b) we
plot the numerical solution with several values of ν with h = 0.05, ∆t = 0.001 and T = 1.

h CD4 Predictor-Corrector CD6 Predictor-Corrector CD6-RK6 Huta
l2 error Average error l2 error Average error l2 error Average error

1
15

8.3553×10−09 6.3854×10−10 3.4878×10−09 3.0920×10−10 3.4874×10−09 3.0917×10−10

1
30

7.3481×10−10 3.1517×10−11 6.2117×10−11 2.8977×10−12 6.2094×10−11 2.8969×10−12

1
60

2.6786×10−11 9.1923×10−13 4.0143×10−12 9.7291×10−14 4.0043×10−12 9.7108×10−14

1
120

8.7270×10−13 3.6763×10−14 4.8640×10−14 8.8030×10−16 4.7893×10−14 8.7054×10−16

Table 3.5: l2-error and average error for Problem 6 with ν = 0.0001,∆t = 0.001 and T = 1.

h CD4 Predictor-Corrector CD6 Predictor-Corrector CD6-RK6 Huta
Average error C-order Average error C-order Average error C-order

1
15

5.0592×10−07 2.5452×10−07 2.5427×10−07

1
30

2.1670×10−08 4.5451 2.6227×10−09 6.6006 2.6097×10−09 6.6063
1
60

5.3203×10−10 5.3480 2.8101×10−11 6.5443 2.7273×10−11 6.5803
1

120
2.8098×10−11 4.2430 1.7235×10−13 7.3491 1.7193×10−13 7.3095

Table 3.6: Average error and convergence rate for Problem 6 with ν = 0.01,∆t = 0.0001 and T = 0.1.

All the computations are performed in MATLAB version 9.9.0.1570001 (R2020b) update 4
on an AMD Ryzen 7 3700U 2.30 GHz CPU machine with 8 GB of memory. The results il-
lustrated in the tables ensure that the computed solution is in good agreement with the exact
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Figure 6: Numerical solution of Problem 6 for several values of ν with (a) h = 0.05, ∆t = 0.0001 and T = 0.1
(left). (b) h = 0.05, ∆t = 0.001 and T = 1 (right).

solution. Both the newly proposed schemes are better than the existing CD4 predictor-corrector
scheme [28]. The proposed scheme CD6 predictor-corrector is only designed for Burgers’ type
of equations whereas CD6-RK6 Huta can be applied for nonlinear unsteady 1D convection dif-
fusion equations. However, CD6 predictor-corrector needs less functional evaluations than the
CD6-RK6 Huta. From the tables, it is clear that in most of the cases CD6-RK6 Huta gives better
accuracy than the other two schemes. The newly proposed schemes achieved good computa-
tional order of accuracy which is compatible with the theoretical order.

4. CONCLUSIONS

We proposed new higher order accurate compact difference numerical schemes for solving
unsteady linear and nonlinear 1D convection-diffusion equations. The work is divided into two
parts. In the first part, a combined exponential fourth order compact finite difference scheme
in space and fourth order C1-spline collocation method in time is introduced to solve the lin-
ear unsteady 1D convection-diffusion equations. This scheme is proved to be uncondition-
ally stable and the numerical results obtained are in good agreement with the exact solution.
In the second part, we introduced two numerical schemes for solving unsteady nonlinear 1D
convection-diffusion equations. First scheme is a combined sixth order compact finite differ-
ence scheme for space and sixth order Huta’s improved RK6 method for time and the second one
is combined sixth order compact finite difference scheme in space and MacCormack predictor-
corrector method for time. Numerical experiments are conducted on Burgers’ equation. Both
the proposed schemes achieved better accuracy than the existing CD4 predictor-corrector. The
CD6 predictor-corrector scheme needs less evaluations than CD6-RK6 Huta, but it is restricted
to Burgers’ type equations. In most of the cases, the scheme CD6-RK6 Huta has better accu-
racy than CD6 predictor-corrector and is applicable to a large class of nonlinear unsteady 1D
convection-diffusion problems. The computational order of accuracy agrees with the theoretical
order.
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