The Australian Journal of Mathematical
Analysis and Applications

http://ajmaa.org

Volume 9, Issue 2, Article 2, pp. 1-8, 2012

FURTHER BOUNDS FOR TWO MAPPINGS RELATED TO THE
HERMITE-HADAMARD INEQUALITY

S.S. DRAGOMIR'2AND I. GOMM!

Received 6 June, 2012; accepted 21 September, 2012; published 17 October, 2012.

IMATHEMATICS, SCHOOL OF ENGINEERING & SCIENCE, VICTORIA UNIVERSITY, PO BOx 14428,
MELBOURNE CITY, MC 8001, AUSTRALIA.
sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

2SCHOOL OF COMPUTATIONAL & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND,
PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA.

ABSTRACT. Some new results concerning two mappings associated to the celebrated Hermite-
Hadamard integral inequality for twice differentiable functions with applications for special
means are given.

Key words and phrases: Convex functions, Hermite-Hadamard inequality, Special means.

1991 Mathematics Subject Classification, 26D15; 25D10.

ISSN (electronic): 1449-5910
(© 2012 Austral Internet Publishing. All rights reserved.


http://ajmaa.org/
mailto:<sever.dragomir@vu.edu.au>
http://rgmia.org/dragomir
http://www.ams.org/msc/

2 DRAGOMIR & GOMM

1. INTRODUCTION

The Hermite-Hadamard integral inequality for convex functions f : [a,b] — R

(HH) f(“+b)Sbia/abf(x)dng(aﬂf(b)

2 2

is well known in the literature and has many applications for special means.
In order to provide various refinements of this result, the first author introduced in 1991, see
[2], the following associated mapping H : [0, 1] — R defined by

H (t) ::bia/abf(ter(l—t)aTM)dx,

for a given convex function f : [a,b] — R.

Some of the main properties of H are explored in [2], [3], [4] and [9].

The corresponding double integral mapping in connection with the Hermite-Hadamard in-
equalities was considered first in [3]] and is defined as

1

F:0,1] =R F(t):= b—a)?

/ab/abf(tx+(1—t)y)dxdy.

Some of the main results concerning this mapping can be seen in [3] (see also [4]).

For other related results, see for instance the research papers [[1], [11], [12], [13], [15], [14],
[16], [17], [18], the monograph online [10] and the references therein.

In the recent paper [[7]] we proved the following result where upper and lower bounds for the
associated functions

t

b—a/abf(f)der(l—t)f(a"‘b

)
and
1 b
m/a f(z)de —F(t)
with ¢ € [0, 1], have been given.

Theorem 1.1. Let f : [a,b] — R be a convex function on the interval [a,b]. Then we have

(1.1) 0 < 2min{t,1—t}
a+3b

ol [vmees (5] 525 [ 0]

< bfa/abf<x)dx+(1—t)f(“;b) — H (1) |

< 2max{t,1—t}

a+3b
4

" E {b—%/:f(x)d“f<a;b>] _bia/?’ﬂ:b
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and

(1.2) 0<2m1n{t1—t}[ /f )dz — F < )]
Sb—a/a f (@) do — F (1
<2max{t1—t}[ /f )di — F ()]

Employing a different technique, in [8] we obtained the following result as well:

foranyt € [0,1].

Theorem 1.2. Let f : [a,b] — R be a convex function on the interval [a,b]. Then we have

(1.3) b_a/f d:c+(1—t)f(a+b)—ﬂ(t)
Sm_t)[m;f b—a/f }

and

(1.4) x)dr — F (1)
gztu—t)[f();f b_a/f dx}

foranyt € [0,1].

Motivated by the above results we establish in this paper some new bounds involving these
two mappings. Applications for special means are also provided.

2. THE RESULTS

Theorem 2.1. Let f : [a,b] — R be a twice differentiable function on the interval (a,b) and
assume that there exists the constants k < K such that

(2.1 k< f"(s) < K forany s € (a,b).
Then we have

1 2
2.2) SF=0tb—a)

gﬁ/abf(x)der(l—t)f(a;rb) — H (1)

< K (1= 1)t (b—ay

and

12
foranyt € [0,1].

@3) k(- t)tb—a) <—/f Yo~ F (1) < K (1= 1)t (b~ o)’
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Proof. Consider the auxiliary function g : [a,b] — R, gx (s) := f(s) — sks?. This function
is twice differentiable and g (s) = f” (s) — k > 0 by (2.1), which shows that g, is convex on
[a,b].

By the definition of convexity we have

0<tgp(x)+ 1 —=1)g(y) — gtz +(1—1t)y)
=tf(x)+ (1=t f(y)—fltz+(1-1)y)
—%k: [t + (1= t)y* — (tr + (1 — 1) y)°]
=tf(@)+A-0)f(y) —fltz+(1-1)y)
k=1t -y

for any z,y € [a,b] and for any ¢ € [0, 1].
Therefore we have

Q4 R0ty St @)+ 0= ()~ f (tr+ (1= 1))

for any z,y € [a,b] and for any ¢ € [0, 1].
1

By utilising the auxiliary function gx : [a,b] = R, gk (s) := £ Ks* — f (s) we also get

KA—-tt(x—y)

DN | —

(2.5) tf (@) + (1 =) f(y) = [tz + (1 —t)y) <

for any x,y € [a, b] and for any ¢ € [0, 1].
Now, from (2.4) we get

2
(2.6) %k(l—t)t(x—a;b)

Stf(w)ﬂl—t)f(a;b) —f(tx+(1—t)a;b)

for any = € [a, b] and for any ¢ € [0, 1].
Integrating the inequality (2.4)) over x € [a, b] we have

b 2
2.7 %k(l—t)t/a <x—a;b) dz

gt/abf(w)daﬂr(l—t)f(a;rb) —/abf<tm+(1—t)a;rb) dz

b b\ 1
/ (x—cH_ > de = — (b—a)®
i 2 12

then we get from (2.7) the first inequality in (2.2).
The second inequality in (2.2)) follows from (2.5)) by a similar argument.

and since
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Integrating the inequality (2.4) over = and y on [a, b] we have

2.8) %k(l—t)t/ab/ab(:r—yfda:dy
<to-a) [ 1@+ a-06-a [ swa
—/ab/abf(m+(1—t)y)dxdy
:(b—a)/abf(a:)d:c—/ab/abf(ter(l—t)y)dxdy.
Since

/ab/ab(w—y)zdxdyzé(b—af‘

then from (2.8) we get the first inequality in (2.3).
The second inequality in (2.3) follows from (2.5]) by a similar argument. &

The following result also holds:

Theorem 2.2. With the assumptions of Theorem [2.1|we have

(2.9) %(t—%)Qk(b—a)QgF(t)—FG) gl—lz(t—%>2[((b—a)2

foranyt € [0,1].

Proof. By taking ¢ = 1 , 2 = uw and y = v in the inequalities (2.4) and (2.5) we get

(2.10) %k(u—v)QSM—f(u+v) SéK(u—v)z

for any w.v € [a, b] .
Now, if we write the inequality (2.10) for u =tz + (1 —t)y and v = ty + (1 — t) = the we
get

(2.11) %k (t—%) (z —y)?
[z + (1 -0y + [ty + (1 —1)x) x+y
< : (55

for any z,y € [a,b] and for any ¢ € [0, 1].
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Integrating the inequality (2.11) over z and y on [a, b] we have

1 1\? b )
(2.12) 514; (t—§> /a/a(x—y) dxdy

P fle+ A=ty + fly+(1—t)a)
g/a/a 5 dzxdy

[ (55 e
S%K (t—%)Z/ab/ab(x—y)dedy

/b/bf(ta:+(1—t)y)+f(ty+<1_t)x)dxdy
2

R
://f(t:ch(l—t)y)d:vdy:F(t)

we deduce from (2.12)) the desired inequality (2.9). 1

and since

3. APPLICATIONS FOR L,-MEANS
Let us consider the convex mapping f : (0,00) — R, f(x) = 2P, p € (—00,0) U
[1,00)\ {—1} and 0 < a < b. Define the mapping

b (1) = bia/b(t:r;—l—(1—t)A(a,b))pda;, te0,1].

It is obvious that H, (0) = A? (a,b), H, (1) = LE (a,b) where, we recall that A (a,b) = %22,

2
1 e+l _ ot
p+1 b_a ,pE<—O0,0)U[1,00)\{—].}

L? (a,b) :=

and for ¢t € (0, 1) we have
1 th+(1—t) A(a,b)
(3.1) H,(t) = / Pd
PO B =0 A@H —la+ =D A@D] Juignen
=Lb(ta+(1—t)A(a,b),tb+ (1 —1t)A(a,b)).

Now, consider the function

t:zc+ (1 —1t)y)" dedy.

We observe that F), (1) = F, (0) L? (a, b) and for ¢t € (0,1) we have

b 1 b
(3.2) F,( b—a/ (b a/ tx+(1—t)y)de>dy

b 1 tb+(17t)y
sPds | dy
—a / [tb+ (1 —1t)y] — [ta+ (1 —t)y] /ta+(1_t)y

b
/ (ta+ (1 —t)y,tb+ (1 —t)y) dy.

b—a
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We can calculate the double integral

() - i f (25 o

B2 () ] g2

(b—a)* (p+1)(p+2) [

8 A(a,b) —
o o (5) p=2
for p # —1, where G (a, b) denotes the geometric mean of a, b (see [7]).
Let us consider the convex mapping f, : (0,00) — R, f,(z) = 2P, p € (—00,0) U
[1,00) \ {—1} and 0 < a < b. Define the quantities

b2, ifp>2

Kp:=pp—1)x
a’~%  ifp e (—o00,0)U1,2)\{-1}

and
ab=2, ifp>2

kp:=p(p—1) x
w2 ifpe (—oo0,0)U[1,2)\{-1}.

We observe that with these notations we have that
ky < f;/; (z) < Ky

forany p € (—00,0) U [l,00)\{—1}and 0 <a < x <.
We can state the following result:

Proposition 3.1. We have the following inequalities:

(3.3) ikp (1—t)t(b—a)® <tLP(a,b)+ (1 —t) AP (a,b) — H, (t)

1 2
< —K (1 — —
—24 p( t>t<b CL) )

(3.4) %ka (1)t (b—a)* < I2(a,b) — Fy (1) < — K, (1 — 1)t (b—a)’

1 1 2 2 1 1 1 2 2
foranyt € [0,1].

The proof follows by Theorem [2.1]and [2.2] and the details are omitted.

and
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