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ABSTRACT. The sufficient conditions fog; () < yo(x) were given in[[1] such thaj,, (z) =

fm (@) + [ K (2, t)ym(t)dt, (m = 1,2) andz € [a,b]. Some properties such as positivity,
boundedness and monotonicity of the solution of the linear Volterra integral equation of the form
fit)y=1- fot K({t—7)f(r)dr=1— K x f,(0 <t < oo) were obtained, without solving this
equation, in[[3,4,5,16]. Also, the boundaries for functighsf”, ..., £, (n € N) defined on

the infinite intervall0, co) were found in[[78].

In this work, for the given equatiofi(t) = 1 — K = f andn > 2, it is derived that there
exist the functiond o, L3, . .., L, which can be obtained by meansifand some inequalities
among the functiong, ho, hs,..., h; for i = 2,3,...,n are satisfied on the infinite interval
[0, 00), whereh; is the solution of the equatidi (t) = 1 — L, * h; andn is a natural number.
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1. INTRODUCTION

An integral equation of the form

(1.2) £(t) = () - / K(t—7) f(r)dr = $(t) — K # f

is known as the second type linear Volterra integral equation with convolution kernel. ¢lere,
is the source term anll is kernel which are the known functiong,is an unknown function,
[9, p.23].

The way of obtaining a new equation which is equivalen(ltd)) is given by Theorern A, as
follows:

Theorem A. [3, Theorem 1.1.1If
(1) K € C*0, 00),
(2) ¢ is locally integrable,
then([L.1) is equivalent to

where

t

L(t) = ¢/(t) + ag(t) + / ot — 1) K'(r) dr,

0
wherea = K (0), g is any function such that € C'[0, c0) andg(0) = 1.
The sufficient conditions for obtaining the solution (@f1]) in terms of the solution of the
equation

t
(1.2) g(t)zl—/ Kit—7)g(r)dr=1—K=xg
0
were given by the following Convolution Theorem:

Theorem B. [2, pp. 229-230] et the conditions

T
(1) &'(t) exists for0 < t < T, / ¢(8)] dt < o0, (T > 0).
0

T
2) / K ()| dt < oo
0
hold, then the solution is given by

t

(1.3) f(t) = g(t) 6(0) + / gt — 1) (r)dr = g(t) $(0) + g x &', (0<t < T),

0

whereg(t) is the solution of|1.2)).

Therefore, ifg is known, so isf. In the other words, if the properties @aire known, we may

obtain certain properties gfby (1.3)).
We assume throughout thia€ [0, 00) andn € No = {2,3,...}.
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2. THE MAIN RESULTS

Theorem C. [3, Theorem 1.2.1L et us consider the equation given of the form

(2.1) f(t)—l—/o K({t—71)f(r)dr=1—Kx f.

If the conditions

(1) K(0)=a<0,
(2) K'(0) =0,

(3) K € C?0,00), K"(t) < 0 for all ¢,
(4) 4b < a?

hold, then the solution dP.1) satisfies the inequalitieg™ (t) > 0 for n = 0,1,2, 3 and allt.

Theorem 1. Let us consider the equation

t
(2.2) A =1 [ Kt =) f(r)ir = 1= Kr fu
0
If
(1) K, € C?0,00), K} (t) < 0forall ¢,
(2) Ki(O) =a < 0,
(3) Kl(O) = aio, Ki,(O) = a12 andbl(alo — b1)2 — 4&12 > 0,

1 /
Wherebl = g (am + 2 a%o — 3@11) ,

then the solution satisfies the inequalities
fi(t) + b1 f1(8) > 0,
(2.3) 1) + bufl(t) > 0,
1'(8) +0uf1() > 0

for all .
Proof. By takingg(t) = e~* in Theorenj A, we get the equivalent equatiorf2@)) of the form
t

(2.4) filt)=e" = / Li(t —7) filr)dr = e — Ly = fi,

0
where
(2.5) Li(t) = (a0 — y)e ™ + Kj x e,
Thus,

L) = (v —ay+an)e "+ K x e

and

L/1/<t) = (—")/3 + Cll(]"}/2 —any + &12)67% + K{H * ei’yt.
If we choosey = b, = (am +2¢/a}, — 3a11) /3, the equality
(2.6) (a9 — 7)2 = 4(72 — a19Y + a11)
which is equivalent to
[L1(0)]* = 4L}(0)
is satisfied and sd,, verifies condition(4) of Theorenj C.
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Also, sincea;; < 0, the inequalityL;(0) = ajo — v < 0 holds fory = b;. Namely, L,
satisfies conditior1) of Theorenj C.

On the other hand, b2.€)), it is obtained that the equality

2
Qi —
-7+ a107? — a1y + a1 = —7(7* — a0y + an) + arp = —V(IOTV) + a2

holds fory = b,. Thus,L; € C?[0,00) and L{(t) < 0 for all ¢ by conditions(1) and(3) of
Theorent L.

Therefore L, satisfies all of the conditions of Theorém C. Thus, by Thegrém C, the solution
of the equation

(27) h,l(t)zl—/Ot[q(t—T)hl(T)dT:l—Ll*hl

satisfies the inequalitigs™ (t) > 0, (n = 1,2, 3). By using TheorerﬂB, the solutiofy of
can be written by means éf of the form

(2.8) fi(t) = hy(t) — yhy x e,

Thus, we have byP.§) that

(2.9) hy(t) = fi(t) + b1 f1(t)

which yields

(2.10) hy(t) = fi'(8) + bufi(t), RY'(t) = fi"(t) + b f (1)

Hence,(2.3) holds for allt. This completes the proog

Example 1. The functionk; of the form
(211) Kl(t) = C()t3 + <%> t2 + (11125 + aio, (Co S 0)

corresponding to any constantg, a1, a2 satisfying the inequalities in conditioig) and(3)
of Theorenj [L also satisfies conditigh) of Theorent 1.
For example, it1;o anda,; are taken as;, = 1 anda,; = —1, thenb, is found as

1 5
by = =(1+2V4) = 2.
=304V =4

Thus,a, satisfying the inequality

bl(aw - 51)2 _ 3
4 27

can be chosen as, = 1/9. In this casek; is obtained as

ap <

1
K\ (t) = cot® + 1—8t2 —t+1,(co <0).

Theorem 2. Let us consider the equation given as

(2.12) fa(t) =1 _/0 Kyt —7) fa(r)dT =1 — Ky x fo.
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(1) Ky e C'0,00), K$P(t) < 0forall t and K37(0) = ay;, (0 < i < 3),
(2) ago > 4asgy,

a2 2 4
(3) 4@20@21 — 8agy + 2b2 <7 — bg) — Qgyy > 0,

2
whereb, = % + 3\/a§0 — 3as1,

(4) —ago + 4@30@1 — 8Bagpagy + 16az3 < 0,

then there exists the functidn satisfying all of the conditions of Theoréin 1 and can be written
by means ok, such that the inequalities

hy(t) + baha(t) > 0, by (t) + bahy(t) > 0, hy' (t) + bohy(t) > 0
and
fo(t) + v fa(t) + baha(t) > 0,
(2.13) 5 () + (b2 +72) f2(t) 4+ b2va f2(t) > 0,
5 (£) + (b2 +72) 5 (8) + b2ya f5(t) > 0
hold, whereh, is the solution of the equatidm,(t) = 1 — Lo % hy and~y, = a/2.

Proof. By takingg(t) = e~7* andv € R in the Equivalence Theorem, we obtain the equivalent

equation of{2.12)) as

t
(2.14) folt) ="~ / Ly(t —7) fo(r)dr = e — Ly % fo,
0
where
(215) Lg(t) = (&20 — ’7)6_’% + Ké * e‘”t.
Thus, from({2.15)
Ly(t) = (v —axwy+an)e " + Ky xe
L) = (=7’ + a7’ —any +an)e " + K xe
and

Lg/(t) = (’)/4 - a2073 + CL21’}/2 — Q227 + a23)€_ﬂ/t + K§4) * 6_%.
Now, we show thaf., satisfies all of the conditions of Theoréim 1.
The discriminant ofy? — a0y + a2 = 0 is positive by condition(2). So, ify is chosen as
Y = vy = as/2, thenL(0) = 73 — agy, + az < 0, that is, L, satisfies conditior{2) of
Theorenj IL. Also, ifL,(0) and L} (0) are taken, respectively instead of the constanpts&inday;
in b, of Theorenj 1L, then

1

% [LQ(O) + 2\/[L2(0)]2 - 3L’2(0)] = 3 {GQO -7+ 2\/(azo — )" =3(7% — a7 + azl)}

20 2/
== ?‘i‘g a%0_3a21:b2

is found fory = v,. Hence, we have the equality
4L5(0) = b2 [Ls(0) = 52]2 = 4= 4 a207* — any + ass) — by (a0 — 7 — 52)2

1 2
= —5 {4&20&21 — 8(122 + 2b2 (% — b2> — a%0‘|
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for v = v,. So, from conditior(3) of Theoren 2, the inequality
ALY(0) — by [Lo(0) — by]® < 0
holds. This means thdt, satisfies conditiori3) of Theorent [L.
Since

1
74 - a2073 + Cl21’72 — Q27Y + Q23 = o1 (—aéo + 4a§0a21 — 8agpag + 16@23)

for v = v,, we getL, € C3[0,00) andL}’'(t) < 0 for all ¢ by conditions(1) and(4) of Theorem
[2. Namely,L, also satisfies conditiofi) of Theoren{ 1.
By using Theorem]1, one can see that the solution of the equation

ho(t) =1 — Lo % hy
satisfies the inequalities
R4 (t) + baho(t) > 0,
(2.16) hy(t) 4+ bahb(t) > 0,
RS (t) + bahi(t) > 0.
From Theorer B, the solutiofy of equation(2.14) can be written by means &f, as the form

(2.17) fa(t) = ho(t) — yohy x 772",

Thus, we have by2.17) that

(2.18) ha(t) = f3(t) + 72 2(t)

which yields

(2.19) hy(t) = f3(t) +72f5(8), hy'(t) = £3"(t) + 72 f5 (1)

So, we obtain byj2.16)), (2.18)) and(2.19)) that(2.13) is satisfied for alk. u

Example 2. The functionK, given of the form
(220) Kg(t) = Cot4 + (%) t3 + (%) t2 + aglt + aso, (CO S 0)

corresponding to any constants), asi, ass andasz satisfying the inequalities of conditions
(2) — (4) of Theoren]  also satisfies conditigh) of Theoreni 2.

Now, let us try to show that there exist the constanfsas;, as2 andass satisfying conditions
(2) — (4) of Theorenj P. First, let us choose the constantsainda,,; verifying the inequality

Thus, it is seen by the proof of Theoré¢fn 2 that the constagntsi;1, by anda,, obtained by
means ofiy, as; and defined by

a 1
a0 = A0 — Vg, A11 = Y3 — G20y + a1, (72 = %) , by = 3 (alo + 24/ a3, — 3a11>

bl(alo - b1)2
4
satisfy conditiong2) and(3) of Theorenj [L.
Since the inequality in conditio(8) of Theorenj R is equivalent to new inequality obtained
by taking

and a;2 <

2 3 2
20 — Yo, V5 — Q2079 T A21, =75 + Q2075 — G219 + Q22 ANADy,
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respectively instead of the constants, a1, a12 andb; in condition(3) of Theoren[]l, ifais is
chosen as

a1z = —75 + G073 — Q2175 + Q22 = —7, (73 — Q072 + 621) + a2 = —79011 + a22,

thenass is found as
Q22 = Q12 + Y2011-
In that case, the constantg, a;; anday, hold condition(3) of Theorenﬂz.
Because conditiofyt) of Theorenj R is equivalent to

73 — 02073 + ami — a2 + az3 < 0,
as3 can be chosen as
—72 (—73 + a3 — a1, + CL22) + a3 = —7Y5a12 + azz < 0.

Thatis,as; < 7,a12. SO, the constantsy, a1, a» andas; satisfy condition(4) of Theorenj P.
Additionally, every functionk’, given by ([2.20) also satisfies conditiofi) of Theorenj P.
For example, itiog anda,; are taken ag,, = —3 anday; = 1, thena,, a1, andb, are found

as

2
10 = G20 = V2 = 75, 11 = 72 T 42072 +az = 1
and

3
Thus, from Examplg]ly,, satisfying the inequality

bl(am - 51)2
4

b _aw+2yai —3an 1 (2\/— 3)
b 3 B S 2)

a9 <

can be taken ag;, = 0.

Hence,
15
Q22 = Q12 + Y9011 = 3
andays satisfying the inequality
a3 < Y9012 =0
can be chosen as; = —1.
Therefore,
1. 15
Ky(t) = et — =7 + —t* +t — 3,(cp < 0).
6 16
Theorem 3. Let us consider the equation
t
(2.21) ft) = 1— / Kyt — 1) fs(r)dr = 1 — Ky % fs.
0
If

(1) Ky e C%0,00), K (t) < 0forall t and K§7(0) = ag;, (0 < i < 4),
(2) a%o > 3@31,
(3) 144&30@31 — 216@32 + 6b3 (ago - 3b3)2 - 40@%0 > 0,

1 /
Wherebg = § ((130 + 2 10(1:230 — 27&31) ,

(4) —112a3, + 432a3,a31 — 864aspasy + 1296a33 < 0,
(5) 2a3, — 9as,as1 + 27az,a3 — Slaspass + 243az, < 0,
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then there exist the functiords and L; satisfying all of the conditions of Theoréin 1 and Theo-
rem[2, respectively and can be written by mean& p&uch that the following inequalities hold
for all ¢:

hy(t) + bzha(t) > 0, hy(t) + bshy(t) > 0, hy'(t) + bshy(t) > 0,
hy(t) 4+ v3hs(t) + bsha(t) > 0, hi(t) 4+ (bs + v5)h5(t) + bsyshs(t) > 0,
hy' () + (bs + v3)h3(t) + bsvshs(t) > 0
and
J5(@) + 75 [f3(t) 4 hs(t)] + bsha(t) > 0,
(2.22) 5 (1) + (bs + 2v3) f5(t) + (bs + 73) v3f3(t) + bsvshs(t) > 0
5" (1) + (b3 + 273) f3(t) + (2b3 + 73) v35(t) + b33 fa(t) > 0
whereh; for i = 2, 3 is the solution of the equatiai(¢) = 1 — L; x h; and~y; = ago/3.

Proof. By taking g(t) = e (y € R) in Theoren A, the equivalent equation is
derived as

(2.23) fs(t) =e" — / Ls(t —7) fa(m)dr = 7" — L3 * fs,
0

where

(2.24) L3(t) = (azo — y)e "' + Kj x e "

Thus, from(2.24)

Ly(t) = (72 — azyy + az1)e " + K} e

Lit) = (=7’ + a0y’ —as1y +ag)e " + K x e,
Lg(t) = (7" = asoy’ + as1y® — asay + asgs)e V' + K§4) x et

and
L:(;l) (t) = (=" + aso7* — az1y’ + agey® — assy + ag)e " + K§5) xe

Now, we show thal.; satisfies all of the conditions of Theoréin 2.
The inequality corresponding to conditi¢®) of Theorenj P is

[Ls(0)]” > 4L5(0)
which is equivalent to

(225) (a30 — ’7)2 >4 (”72 — Q307 + CL31) .
(2.25) is equivalent to
(2.26) 372 — 2as0y + 4az — a3y < 0.

The discriminant o392 — 2asy + 4as; — a3, = 0 is 16(a3, — 3a3;) which is positive by
condition(2) of Theorenj B. So, ify is chosen as = v; = a3/3, then(2.26)) holds. ThusL;
satisfies conditiori2) of Theoreni P.

Also, if L3(0) and L5(0) are taken, respectively instead of the constaggsandas, in b, of
Theoren[lz then

L( 2 asg — 2
ol \/L3 —3[/ 0) = 2 \/aso— —3(7? — asoy + as)

2
= % + § 10@30 — 27@31 = bg

is found fory = 5.
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Furthermore, the inequality

Ls(0) ’ 3
32—t~ [2a(0)

= 4(az0 —7)(v* — asoy + az1) — 8(=7° + asoy’ — az;y + as)

2
a —
+2b3 ( 302 T 53) — (azo —7)*

1
= ﬁ [—40&%0 + 144aspa3; — 216as39 + 6b3 (agg — 3[)3)2} >0

holds fory = ~, by condition(3) of Theoren B. Thusl.; satisfies conditiori3) of Theoren{ R.
The inequality corresponding to conditi¢f) of Theorenj 2 forL; is

— [L3(0)]* + 4 [L3(0)]* L5(0) — 8L3(0) L5(0) + 16L4'(0) < 0

which is equivalent to

A4L5(0)Ly(0) — 8LE(0) + 2bs {

— (ago — 7)4 + 4 (as — 7)? (v* — azoy + az1)
—8 (aso — ) (—’73 + azoy? — az;y + asz)

(2.27) +16(v* — az07® + azy® — azyy + azz) < 0.
(2.27) for v = 74 is equivalent to

1
(2.28) 1 (—112a3, + 432a3yas1 — 864azoass + 1296as3) < 0.

It is obvious thai2.28)) holds by condition(4) of Theorenj B. Hencd,; satisfies conditiorf4)
of Theoreni .

Finally, sinceK3 € C5[0,00), Ly € C*[0,0). Additionally, L{"(¢) < 0 holds, since the
inequality

—° + azoy! — aziy? + azey’ — azzy + as

1
= ? (2&30 - 9a§0a31 + 27a§0a32 - 810,300,33 + 243@34) S 0
holds by condition(5) for v = 5. So, L5 also satisfies conditiofi) of Theorenj P.
Therefore,L; satisfies all of the conditions of Theoréin 2.
If L3(0), L3 and L3(0)/2 are taken, respectively instead @), K, and~y, in (2.15)), L, is
found by means of.; as

L
Lo(t) = [st) - —32(0)] e Lo
= (ago -y - a302— 7) e Lxe T
(2.29) e N A

3

for v = ~4 and it is understood by the proof of Theorgn 2 thasatisfies all of the conditions
of Theoren{ L. Thus, becausgand~, are replaced, respectively by and~,, it is seen by
(2.16) and([2.13)) that the solutions of the equatiohgt) = 1 — L, * h; for i = 2, 3 satisfy the
inequalities

(2.30) hy(t) + bsha(t) > 0, hy(t) + bshi(t) > 0, hy'(t) + bghi(t) > 0
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and
hi(t) + v3hs(t) + bsha(t) > 0,
(2.31) hs(t) + (bs + v3)h5(t) + bsyshs(t) > 0,
hg'(t) + (bs + v3)h3(t) + byyshs(t) > 0
for all t.

On the other hand, by using the Convolution Theorem, the solytjoof the equivalent
equation(2.23)) can be written by means &f as

(2.32) fa(t) = ha(t) — vhs * e 7",

By (2.32), we have

(2.33) hs(t) = f5() + 7sf3(0)

which yields

(2.34) h(8) = f5() + 13 f5(8), hg'(8) = f5"(8) + 75 f5(2).

So, we derive the inequalities
f3(t) + 3 [fs(t) + ha(t)] + bsha(t) > 0,

5 (1) + (b3 + 273) f3(t) + (b3 +73) V3 fa(t) + bayzhs(t) > 0
and
5/ () + (b3 +273) f5(t) + (203 +73) V3 f3(t) + bs73fa(t) > 0
for all ¢ from ([2.31)), (2.33) and([2.34)). u

Example 3. The functionK; defined by
(2.35)  Ks(t) = cot + (%) oy (%) £ (%) 12 4 ant + aso, (co < 0)
corresponding to any constanig, (0 < i < 4) satisfying conditiong2) — (5) of Theorenj B
also satisfies conditiofi) of Theorenj B.
Now, let us try to show that there exist the constants (0 < i < 4) satisfying the conditions
of Theorenj B. First, let us choose the constagtsandas; verifying the inequality
2

In this case, it can be followed from the proof of Theolgm 3 that the consianis,; derived
by means oti3y, a3; and defined by

_ .2 Q3o
Q20 = A30 — V3, Q21 = Y3 — G30Y3 +a31, | V3 =

3

satisfy condition2) of Theorenj P.

The constantsiyy and as; together withass, ass which can also be found by the way in
Examplg ? satisfy condition®) and(4) of Theoreni 2.

Since the inequality in conditiof8) of Theorenf B is equivalent to the new inequality obtained
by taking

az0 — V3, V3 — A3073 + az1, —V3 + asoV3 — as1ys + ase andb,
respectively instead of the constants, as;, az; andb, in condition(3) of Theorenﬂz, ifags IS
chosen as
sy = =73 + 3073 — az1Ys + Az = —73 (73 — azo73 + a31) + a32 = —73021 + as2,
thenas, is found as
a3z = Q22 + 7Y3a21.
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In that case, the constants), a3; andas, derived, above, satisfy conditidfi) of Theorenﬂa.
Similarly, because conditiofit) of Theoreni B is equivalent to the new inequality obtained
by taking
azo — Vs, V3 — 3073 + az1, —Vs + A3073 — A3173 + a3
and
4 3 2
Y3 — @303 + as1y3 — a32Y3 + ass,

respectively instead of the constants, as;, az2 andasys in condition(4) of Theorenﬂz, ifaqs
is taken as

4 3 2 3 2
Q93 = Y3 — 3073+ a3175 —a32Y5+a33 = —Y3(—75+a3075— 3175+ as2) +ass = —y3a92+ass,
thenass is found as
a33 = Q23 + Y3Q22.

So, the constants;, as;, as» andag; obtained, above, satisfy conditi¢m) of Theorenj B.
Furthermore, since conditiais) of Theorenj B is equivalent to

_73 (7§ - ax30f}/§ + a317§ - a32’y3 + a,33) + azq4 = —73a23 + asa S O’
the constantas, as;, as; andass together with the constang, which is chosen as
asy < Y3Q23

also satisfy conditiori5) of Theorenj B.
Thus, every functiori; of the form([2.35)) corresponding to constanig;, (0 < i < 4) and
obtained by our method also satisfies condifiphof Theorenj B.

For example, ifi3) andas; are taken agzy = 1 andas; = —1, thenay, as; are found as
2 ) 11
Qo = A30 — V3 = §7a21 =3 —agzpY3 + az1 = B
From Exampl¢ 2,
1 2
:—7a = — :—7a —= — Q +a = ——.
Yo 3 10 20 — V2 3 11 = 72 2072 21 3

Thus, from Examplg]lg;, can be taken ag, = 0 because of

1 5 ) 1 b
b, = 3 (am +24/a3, — 3a11> ) (1 + 2@) anda;; < Zl(alo - 51)2~

Hence, from Examplel| 2,
4
Q22 = Q12 + Y9011 = 9
andays satisfying the inequality
a3 < Vo012 =0
can be chosen as; = —1. So,

23 31

azp = Az + Y3021 = oy 083 = 23 + Y3022 = 5

andas, satisfying the inequality
1
agy < Y393 = 3

can be taken as;4s = —1. Therefore,
1 31 23
Ki(t) =cot® — —t* — —3 — =42 —t 4+ 1 <0).
st) =at” — o1t =15t ~ +1, (00 <0)
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Theorem 4. Let us consider the equation

(2.36) jﬂﬂzl—[jm@—ﬂﬁ@Mrzl—mmh.

If
(1) Ky € C%0,00), K{9(t) <0forall t and K7 (0) = ay;, (0 < i < 5),
) > Son,

3@40

2
(3) 648@40@41 — 864@42 + 24[)4 <T — 3b4> — 1890/?10 > 07

1
whereb, = T2 <a40 +24/19a3, — 48a41> ,

(4) —2025a}, + 777603004 — 15552a40a42 + 20736043 < 0,
(5) 1701al, — T776a3 a4 + 23328a3,a42 — 62208as0a43 + 124416a44 < 0,
(6) —3a$, + 16ajyaq — 64aiasm + 256a3,a43 — 1024a49a44 + 4096ay5 < 0,

then there exist the functiors, Ls; and L, satisfying all of the conditions of Theoréfn 1, The-
orem[2 and Theorefr] 3, respectively and can be written by the medtis @fdditionally, the
inequalities

Ry (8) 4 baha(t) > 0, h(t) + byhly() > 0, b2 () + bahl2(t) > 0,
h3(t) + v4ha(t) + baha(t) > 0, h5(F) + (ba + 74)hs(t) + bavahs(t) > 0,
Ry () + (by + v4) s (t) + bay () > 0,

Ry (€) + 74 [ha(t) + ha(t)] + bsha(t) > 0,

Ry () + (ba + 27,) hy(t) + (ba + 74) Yaha(t) + bavaha(t) > 0,

R (8) + (ba + 27,4) W (t) + (2ba + 74) 7ahy (1) + bayiha(t) > 0

and
(f4(t) + 7y [fa(t) + ha(t) + ha(t)] + baha(t) > 0,
1 (1) + (ba + 374) fa(t) + (ba + 274) V4 fa(t)
(2.37) + (b + 74) v4ha(t) + bayshs(t) > 0,
i/,(ﬂ + (b4 + 37,) zlxl(t) + (354 + 374) 74]%(15)
\ + (2ba + v4) Vifa(t) + bayiha(t) > 0

are satisfied for alk, whereh; is the solution of the equatialy(t) = 1 — L; * h;, (i = 2,3,4)
and~y, = as/4.

Proof. By taking g(¢t) = e with v € R in the Equivalence Theorem, we get the equivalent

equation ta(2.36) as

(2.38) filt) = = [ Lt =) flrydr = = Lox
0

where

(239) L4(t) = (&40 — ’}/)6_’% + KIL * G_Wt.
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Thus, from({2.39)

Li(t) = (¥ —awy+an)e " + K xe",
Li(t) = (=7 +awy’ —any +ap)e "+ K x e,
Ly(t) (7' = a1y’ + any® — ay + asg)e " + Kf) *e
LPM) = (=% +awr' — anr® + apr? — agy + an)e "+ K x e

and
LY (1) = (4% — a7 + any* — asny® + assy® — ausy + ags)e " + K e

Now, we show thatf, satisfies all of the conditions of Theorém 3.
The inequality corresponding to condition (2) of Theofgm 3 is

[L4(0))” > 3L4(0)
which is equivalent to

(2.40) (as0 =7)* > 3 (4" — auoy + an) .
(2.40)) is equivalent to
(2.41) 272 — Qg0 + 3ay — a?m < 0.

The discriminant o2y? — a0y + 3a4 — a3, = 0 is 3(3a%, — 8a41) Which is positive by
condition (2) of Theoren| #. So, ify is chosen as = v, = a4/4, then(2.41) is satisfied.
Thus, L, holds condition2) of Theorenj B.

Also, if L,(0) and L} (0) are taken, respectively instead of the constagtsandas; in bs of
Theorenj B, then

{L4(0) + 2\/ [10L4(0)]* — 27Lg(0)]

Ol — O+

|:CL40 - + 2\/10 (a40 — 7)2 — 27 (’}/2 — Q407 + a41):|

1
= (a4o +24/19a3, — 48a41) = by
for v =,.

Furthermore, the inequality
144L4(0) L', (0) — 216 L1(0) + 6by [L4(0) — 3by)* — 40 [L4(0)]?
= 144(ag — 7)(v* = a0y + aar) — 216(=7° + asoy’ — any + ag)
+6b4 (CL40 -7 — 3b4)2 — 40(@40 — ”7)3
1 3a 2
= Z [—189@20 + 648&40&41 — 864a4o + 24b4 (% — 3b4) ] >0

holds fory = ~, by condition(3) of Theorenj #. Thusl., satisfies conditiori3) of Theoren B.
The inequality corresponding to conditi¢f) of Theorenj B forL, is

—112[L4(0)]* + 432 [L4(0)]* L}, (0) — 864L4(0) LY (0) + 1296 L (0) < 0
which is equivalent to
—112 (aso — )" + 432 (a10 — 7)* (> — aaoy + ax1)
—864 (aso — ) (=7 + asoy” — any + as)
(2.42) +1296(7* — as07® + any? — asey + ays) < 0.
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(2.42) is equivalent to

(2.43) 2025a, + 77760204 — 15552as0a4s + 20736a43) < 0

6

for v = ~,. Itis obvious that2.43)) holds by condition4) of Theorenj #. Hence,, satisfies
condition(4) of Theorenj B.
On the other hand, the inequality corresponding to conditiorof Theorenj B forL, is

2 [L4(0)]° = 9 [La(0)]> L,(0) + 27 [La(0)]* L(0) — 81L4(0) LY (0) + 243L$Y (0) < 0
which is equivalent to

2 (aso —7)° = 9(aso —7)° (v* — asoy + an)
+27 (ag0 — )% (—7* + ay® — any + as)
—81(as0 — 7) (7" — as07’ + any? — asoy + aas)
(2.44) +243(—7° + asoy! — any’ + asy’ — aszy + awu) < 0.

(2.44) for v = ~, is equivalent to
1
(2.45) =5 (1701aj, — 7776a3yas + 23328a5ase — 62208ag0a4s + 124416a4,) < 0.

It is obvious thai2.45)) holds by condition(5) of Theorenj 4. Hencd,, satisfies conditior5)
of TheoreniB.
Finally, sincek, € C%[0, 00), Ly € C?[0, 00). Additionally, L{” (¢) < 0 holds, since

V% — g0y’ + any*t — asy® + asy? — auy + ags

1
G (=3a$y + 16a59as1 — 64asyas + 256a5as3 — 1024as0as + 4096a45) < 0
holds fory = ~, by condition(6). So, L, also satisfies conditiofi) of Theorenj B.

As a result,L, satisfies all of the conditions of Theoréin 3.

If L4(0),Ls and L4(0)/3 are taken, respectively instead @f), K3 and~y, in (2.24), Ls is
found by means of., as

L4(0
Lslt) = pdm—éiqeff“+y —

3
= CL;O ’mt+L’*e it

for v = v, and it is understood by the proof of Theorgn 3 thasatisfies all of the conditions
of Theoreni 2.
Similarly, if L,(0) is taken instead afs, in (2.29)), L, is found as

L4(0
Ly(t) = —435 e I
_ azo _a40t+L/ e %t

for v = v, and also it is understood by the proof of Theorgm 3 thatatisfies all of the
conditions of Theorerl 1.
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Thus, becausk, and~, are replaced, respectively by and~, it is seen by(2.22)), (2.30))
and (2.31)) that the solutions of the equationg(t) = 1 — L; * h;, (i = 2,3,4) satisfy the
inequalities

hy(t) 4 baha(t) > 0, hy (t) 4+ bahb(t) > 0, hy' () 4+ bahb () > 0, h5(t) 4+ v4hs(t) + bsha(t) > 0,
hi(t) + (bs + v4)h5(t) 4 bayshs(t) > 0, h5 (1) + (ba + v4)h5(t) + bayshs(t) > 0
and
Ry (t) + vy [ha(t) + hs(t)] + baha(t) > 0,
(2.46) S HU(E) + (b + 29,) Hy(t) + (b + ) Yaha(t) + baysha(t) > 0,
Ry (t) + (by + 2,) () + (2bs + 7v4) V4P (t) + bayiha(t) > 0
for all ¢.

On the other hand, by using the Convolution Theorem, the solution(2.38) can be written
by means of, as the form

(247) f4(t> = h4(t> — ’}/4h4 * 6774t.

By (2.47), we have

(2.48) hy(t) = fi(t) +7afa(t)

which yields

(2.49) hi(t) = fi () +vafa(t), Y (6) = fi'(t) + 7 f5 (1)

So, we derive]2.37) for all ¢ by (2.46]), (2.48) and(2.49). Thus, the proof is completed.

Example 4. The functionk, of the form

. a a a P a
(2.50) Ki(t) = cot® + (ﬁ;) £ 4 <§) # (%) £ 4 (%) 12+ ant + as,

(co < 0)

corresponding to any constantsg, (0 < i < 5) satisfying conditiong2) — (6) of Theorenj #
also satisfies conditiofi) of Theorenj 4.

To see the validity of this claim, first, choose the constapianda,; verifying the inequality

5 8
Ayo > §a41.
In this case, it can be easily seen by the proof of Thegrem 4 that the consfants defined
by
azo = p1(74), az = p2(74),

where

pi(v) = (1) 4+ (1) awy "+ (=) Pany TP 4 - — aso2)y + aa-1),
(1<i<6)
andy, = a4 /4 satisfy condition2) of Theorenj B.
On the other hand, the constamtg, as; together withas,, azs andaz, which can also be
found as those were found by the method in Exarnple 3 satisfy conditions(5) of Theorem
3.
Since the inequality in conditiof8) of Theorenﬂ!l is equivalent to new inequality obtained

by takingp: (v,), p2(4), ps(v4) andby, respectively instead of the constangs, as;, azx andbs;
in condition(3) of Theorenj B, ifu3, is chosen as

asy = p3(Vy) = —VaP2(V4) + a2 = —V4a31 + a2,
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thenay, is found as
g2 = Az + Y4P2(74) = As2 + Y4031
In that case, the constanigy, a4; anday, Which are derived, above, satisfy conditi(3) of
Theoreni 4.
Because conditiofd) of Theoren] 4 is equivalent to the new inequality obtained by taking
p1(74), P2(74), p3(74) @andpy(y,), respectively instead of the constants, as;, aze andags in
condition(4) of Theoren] B, ifas; is taken as

azz = pa(vy) = —74P3(74) + aus,
thenays is found as
ay3 = asz + V403(74) = asz + V4032,
So, the constants,y, a4, a42 anda,s obtained, above, satisfy conditid#) of Theorenﬂl.
Because conditiofi5) of Theoren] 4 is equivalent to the new inequality obtained by taking

P1(74), P2(74), P3(74), Pa(7y4) @andps(vy,), respectively instead of the constants, as;, ass, ass
andas4 in condition(5) of Theorenj B, ifus, is taken as

azs = p5(V4) = —VaPa(V4) + Qua,
thenay, is found as
a4 = Q34 + V404(74) = a34 + V4033
Hence, the constantsy, a4, a42, as3 anday, Obtained, above, satisfy conditioh) of Theo-

rem(4.
Furthermore, since conditiai) of Theorenj 4 is equivalent to

P6(74) = —7aps(74) + ass <0,
the constants,g, a4, as2, as3 andayy together with the constant; chosen as

(g5 < Y4034

also satisfy conditiori6) of Theorenj 4.
Thus, the functionk; of the form corresponding to constants;, (0 < ¢ < 5) and
obtained by our method also satisfies condifiphof Theorenj 4.
For example, if one choosg, = 3 anday; = 3, thenv,, aso, as; are found as
3 9 21
V4 = Z,azo =pi1(ve) = Za@iﬂ =p2(74) = 16

From Examplé 3,

_azp 3 _ _ _ 2 _
V3= T30 T @20 = @30 — Y3 = 55021 = V3~ 43073 +as = 16
From Examplé 2,
a 3 3
V2 = % = Zaa10:a20_72: Z,CLH = Y3 — G907y + a1 = 3

Thus, from Exampl@lqlg can be taken ag;; = 1/64 because of

1 5 ) 1 b 3v3—4
b = g (alO + 2 a%o — 3&11) = Z_l (1 -+ 2\/§> anda12 < Zl(alo — b1)2 = (3—2)

Hence, from Example| 2,

17
Q22 = Q12 + Y9011 = —

64
andaos satisfying the inequality
3

a3 < Yol = 256

AIJMAA Vol. 9, No. 2, Art. 6, pp. 1-23, 2012 AJMAA


http://ajmaa.org

ON SOME RELATIONS AMONG THE SOLUTIONS OF THELINEAR VOLTERRA INTEGRAL EQUATIONS 17

can be chosen as; = 1/256.
So, from Examplé]3,

25
32 = Qg2 + Y3A21 = 3 (33 = Qg3 + Y3Q22 = 1%
andas, satisfying the inequality
3
< = ——
a34 > 7Y3G23 1024
can be taken ag;, = 1/512.
Thus,
n 5 n 37 n 37
ago = a as) = —, 43 = a A3g = ———, Qqq = Q Aaqa — — ——
42 32 T 774031 64’ 43 33 T V4032 198’ 44 34 T 774033 256
andays satisfying the inequality
3
< = —
Q45 > Y4034 5048
can be taken ag;; = 1/1024.
Therefore,
1 37, ﬁ 3

55
5 — 2

< .

1228800 61ad’ 768’ T1as T3 (@s0)

By continuing this process for € N,, we get Theorerp|n which can be given as follows:

K4(t) = Cot5 +

Theorem n. Let us consider the equation given of the form

t
(2.51) fult) =1 [ Kalt=D)fur)dr =1~ Ko fy
0
under the following assumptions:

(1) K, € C"*?[0,00), K" (t) < 0forall t and KV(0) = @y, (0<i<n+1),
2n
(2) aZ, > ( )am-

n—1

Furthermore, conditiong3) — (n + 1) of Theorenj h are the inequalities obtained by taking
P1(7), P2(Vn)s - - - Pnt1(7,,) @Ndb,, respectively instead of the constants_1o, a(n—1)1,
-5 (1), andb,_; in conditions(3) — (n + 1) of Theorem(n — 1), where

pi(y) = <_1)i71+(_1)i71an07i71+(_1)i72an17i72+' C— A (i—2)Y F+angi-1), (1 <0 <n+2),

2 —1
Qno + 2\/[%} at, — 3n2an1] :

Besides, let condition+2) of Theorem h also bg,2(7,,) < 0. Then, there exist the functions
Ls, Ls, ..., L, which satisfy all of the conditions of Theorgfn 1, Thedrem 2,...., Therem),
respectively and can be obtained by mean&pfas

" 1
Vo = fno andb, = —
n 3n

- ]- A An
(2.52) L,(t) = (n ) apoe” n 4 K ke nt
n
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forn > 2 and
((Lpoa(t) = (=2)ane L ke %Ot,
L7 2 () e
Ln— t = n—4 an, ef%t{—L/ *ef%a
(2.53) ! s(1) _ (%) ano -2
La(t) = (R awe” 204 Liwe™ 2t
L LQ(t) = (%) ano G_G%Ot + ng * B_G%Ot

for n > 3. Additionally, the inequalities

Ro(t) + byho(t) >
(2.54) hy(t) 4+ b,hb(t) >

R (t) + b,hy(t) > O

forn > 2,
(RL(t) + 7, [hi(t) + hi1 () + - - + hs(t)] + z1,ha(t) > 0,
hi(t) + L(i— l)nh () + 7y [ T 2)nhi(t) + x(i—3)nhi71<t>
(2.55) + - a1,hs(t)] >0,
hi'(t) + x(i—l)nhi'(t) + Y-1nhi(t) + 7, [Ya-2nhi(t)
\ +y(i—3)nhi—1<t) + -+ ylnhg(i)} >0

fori=3,4,...,nandn > 3,
fa(t) + 7o fo(t) + 212ho(t) > 0,
(2.56) 5 (1) + Taa f5(t) + 21272 f2(t) > 0
5 (t) + @2 f3 (t) + 21272 f5() > 0
forn =2 and
([ () + 7 [fu(t) + hn(t) + s (8) + -+ Ra(B)] + 210ha(t) >0
f'r/z,(t) + xnnfr/L(t) +Vn [x(n—l)nfn (t) + x(n—2)nhn(t) + x(n—B)nhn—l(t)

(257) +- xlnhg(t)] > 0,
\ +Ym—gmhn_1(t) + - + yihs(t)] >0
for n > 3 hold. Here,z;,, y;, for 1 <i < n are defined by the equalities
, — 1) (2 — 2
h; for 2 <i < nisthe solution of the equation(t) = 1 — fo (1)drand0 <t < co.

Proof. We can prove Theorefr] n by the mathematical induction. It is observed by Thgprem 2
that there exists the functia, providing all of the conditions of Theorein 1 and given by

L) = (%) e Ky we

such thai(2.54)) and (2.50) are satisfied for. = 2. Namely, Theorerfi|n is true for = 2.

Let us suppose that Theorgm n is valid for= m (m > 2). In this case, we will try to
show that Theorern|n is also valid far = m + 1. If Theoremm is true, then there exist
the functionsL,, Ls, . . ., L,, which satisfy all of the conditions of Theorér 1, Theofegm 2,.. .,
Theorem(m — 1), respectively and can be obtained by mean& gfas form(2.52)) and(2.53]).
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Also, (2.54) form > 2, (2.558) fori = 3,4,...,m andm > 3, (2.56) for m = 2 and ({2.57) for
m > 3 are satisfied.
By takingg(t) = e~ 7" with v € R in the Equivalence Theorem, we get
t
(2.59)  fa(t) =e " = / L1 (t = 7) frnga (T)dT = € = L1 * froa

0

which is equivalent to

t
fm+1(t) =1- / Km+1(t - 7-) fm+1(7-)d7— =1- Kerl * fm+1a
0
where
(2.60) L1 () = (agniryo — v)e " + K e .

Let us try to see that,,, ., satisfies conditionél) — (m + 2) of Theoremm, by considering the
conditions of Theorenim + 1).
Differentiation of([2.60)) leads to

L) = (0% = gm0y + amen)e " + Ky xe™ ™,

Ly () = (=7 4 ame10Y’ = @meny + amanz)e "+ Koy e
m-+2 m m m m m m
L£n++1 )(t) = [(_1) +37 34 (—1) +2a(m+1)07 24 (—1) +1@(m+1)17 i

o = Ay )Y F Ay €7 Y e

The inequality corresponding to conditi¢®) of Theoremm is

m— 1

Lo OF > (5275) £10s0)

which is equivalent to

2
(2.61) (a(m+1)o - 7)2 > (m—Z) (72 — Q(m+1)07 + a(m+1)1) .

(2.61)) is equivalent to
(2.62) (m + 1)7° = 2a(mi107Y + 2Mmami1y — (M — 1)a?m+1)0 < 0.

The discriminant ofm+1)y —2an+1)07 +2magmi1) — (m— 1)a%m+1)0 =0is 4m[ma?m+1)0—
2(m + 1)a(m+1)1] Which is positive by conditiori2) of Theorem(m + 1). So, ify is chosen
asy = Y1 = A1)/ (m + 1), then(2.62)) holds. Thus,L,,,, satisfies conditior{2) of

Theoremm.
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Besides, ifL,,+1(0) = a(mi1)0 — Yimg1 @NALL, 1 (0) = 72,11 — Gmt1)0Vma1 + Amt1) ArE
taken, respectively instead of the constants anda,,; in the constant,, of Theoremm, then

L [LmH(O) + z\/ 2= (n o) - Bm%;m(m]

1
= 3_m |:a(m+1)0 — Vm+1

2+3m(m—1) )
+2\/{ 5 } (G(m+1)0 - ’Ym+1) — 3m? (73n+1 — Um+1)0Vmy1 T a(m—i—l)l)]

1 imagniao
3Im m—+1

m? 3m? — 3m + 2
+2\/(m +1)2 [( 2 T 3m> Alm+1)0 —3(m + 1)2a(m+1)1H

1 3m? + 3m + 2
3m1) [Ymte T 2\/(#) Uliryo — 3(m + 1)2@(m+1)1]

= bm+1'

L.+, satisfies condition$3) — (m + 2) of Theoremm if and only if the new inequalities
obtained by taking

Lm+1(0> =D (’ym+1)7 leJrl (O) = pQ(’ym—&—l)? s 7L£:Ln++11) (O) = Pm+2 (7m+1) andberh

respectively instead of the constants), a1, . - . , apmm+1) andb,, in conditions(3) — (m + 2)
of Theoremm hold. The new inequalities are also conditigds— (m+2) of Theorem(m+1).
Namely,L,,, satisfies condition§3) — (m + 2) of Theoremm.

Finally, let us try to see that,,.; satisfies conditior{1) of Theoremm. SinceK,,.; €
Cm3[0, 00), K™ ¥ (1) < 0 for all t andpp,43(7,,.,) < 0 by conditions(1) and (m + 3) of
Theorem(m + 1), respectively, we have,,,; € C™"2[0, 0o), Lfﬁf) (t) <0. Thus,L,,, also
satisfies conditioril) of Theoremm.

ConsequentlyL,, . satisfies all of the conditions of Theorem That is,L,,; satisfies all
of the conditions which are satisfied By, in Theoremm.

In this case, by using the fact that Theorenis true, if L, 1(0) andL,, ., are taken, respec-
tively instead ofa,,,0 and K, in the equalitieg?2.52)) and(2.53)),

n — m 1< [ m 1()
( (t) ('m;;l) [m+1(0)€ #0) , " e +T0t’
- - Lm 1< m 1()
:7’L—1(t) (m7;2) Lm+1 (0) e + Emt1©)y + l / -'—Tot7
m—2(t) = (m__3) Lni1(0)e %1( + I % 6_%%1(0)75
(2.63) L - (%) L - |
L ——. 2 Lm+1(0) mt1(0)
(%) (%) Lint1(0) e B L) * %Ot,
L = (= Lm+1(0) mt1(0)
( 2(t) (T{L) Lyni1(0)e” Imt10), [+ %Ot
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is found form > 2. So, form > 2, we get

( %(m+1)0 %(m+1)0

Lo(t) = (357) amenoe” <m+1> + Ly * e? m)+1 ;
4(m+1)0 4(m+1)0
Lypa(t) = (%) A(mt1)0€ ™ Py L oxem Tmir
_ %(m+1)0 _ %m41)0
(2.64) Lina(t) = (533) agenoe "+ Ly, qwe it
_Lmi1)0 _2m+1)0
L) = (o) o S L e
_ Zmi1)0 _2m+t1)0
L Lz(t) = (m;-s-l) a(m+1)0 e m+1 t + Lg * e prow t

by (2.63). Hence, itis concluded thdk, Ls, . . ., L,, satisfy all of the conditions of Theorem 1,
Theorenj B,..., Theoretfin — 1), respectively. Therefore, it is obtained t{at52)) and (2.53)
holds forn = m + 1. Namely, Lo, Ls, ..., L,,4; satisfy all of the conditions of Theorem 1,
Theorem 2,..., Theorem, respectively.

Furthermore, since the constantin Theoremm is changed,,,; andv,, is changedy,, .,
because ol,,,1(0)/m = agni1yo/(m + 1) = v,,,,, the constants;,,, andy;,, for1 <i <m
are changed:;(,,+1) andy;(m+1), respectively by(2.58). Thus, by takingm 1,741, Zi(m+1)
andy;,41), respectively instead of,,,, v,,, zim andy;,, and using Theorem, the following
inequalities for alk are obtained fron(2.54)), (2.55), (2.56) and ([2.57)):

(2.65) Ry (t) + b1 ha(t) > 0, Ry (t) + byyrhy(t) > 0, hy'(t) + byahy(t) > 0
form > 2,

(1i(t) + Vingr [Ri() + hica () + -+ - 4 ha()] + T1mr1yha(t) > 0,
h;’(t) + m(i—l)(rrwrl)h;(t) T V41 [ﬂU(z‘—Q)(erl)hi(t) + x(i—3)(m+1)hi—1(t)
(2.66) + - Tigmany ha(t)] >0,

R () + @1y hi () + Y1) hiE) + Vg V-2 ha(t)

L +Y—symin him1(t) + - + Yimanhs(t)] >0

fori=3,4,...,mandm > 3,

(i1 (8) + Yot [P i1 () + B () + -+ + ha(8)] + Z1(ni1yha(t) > 0,
h;,nﬂ (t) + xm(m+1)h;n+l<t> + Ym+1 [x(m—l)(m+1)hm+1 (t)
2 (m-2)(me4 1) R (8) + T(an—3) (met 1) o1 (F)
(2.67) i $1(m+1)h3(t)] >0,
h;/r/ki*l(t) + xm(m+1)h/rz,1+1<t> + ym(m+1)h;n+1<t)
Vit Wm0 m s hmy1 () + Yn—2)(ms1) o (t)
\ FYm-3)mr1)m—1(t) + - + Yy ha(t)] > 0

for m > 2, whereh,; is the solution of the equatioh;(t) = 1 — f(f Li(t — T)h;(T)dr for
2 <i<m+ 1. So,(2.55) holds fori = 3,4, ..., m + 1 andm > 2 by (2.66) and({2.67).

On the other hand, by the Convolution Theorem, the solutipn of the equivalent equation
can be written by means &f,, ., as

(2.68) Jm1(t) = hmya(t) — Yimp1€ Lk By
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whereh,, . is the solution of the equatiai,, () = 1 — fot L1 (t — 7)hpyei(7)dT. Hence,
we derive

P ) = fra () + Vi1 frnra (t),
(2.69) hi%+1(t) = ;,,1-1-1 (t) + ’Vm+1f7ln+1(t)a
h%—&-l (t) = 7/7/1/-1-1(75) + 7m+1f1l7lz+1 (t)

for all t by (2.68). As a result, it is seen b§2.67)) and(2.69) that (2.57) holds forn = m + 1

andm > 2.
Consequently, it is conclude that if Theor@m n is truesioe= m, then it is also true for
n=m+ 1. So, Theorerh|n is valid for all € N, = {2,3,...}. i

A lot of kernels K, satisfying the conditions of Theorgm n for alle N, are obtained by
our method in Example| n, as follows:

Example n. The functionk, of the form

n An(n+1 n Qnn n
(270) Kn(t) = Cot +2 + {ﬁ} t +1 + <F> th 4+ CLnlt + Ano, (Co S 0)

corresponding to any constants;, (0 < i < n + 1) satisfying conditiong2) — (n + 2) of
Theorenj h also satisfies conditioh) of Theorenj p.
In order to see the validity of this assertion, choose the constgntnda,; such that the

inequality
2
Uy > (n f1> Qn1

holds. Inthis case, it can easily be seen by the proof of Thelgrem n that the congtanisa(,—1):
defined by

A(n-1)0 = P1 (’Yn), A(p-1)1 = PQ(%L),
where

pi(v) = (D)9 4+ (=) a0y + (-1 ey P+ — Qn(i—2)Y T Qn(i-1),
(1<i<n+2)

and~y, = a,o/n satisfy condition2) of Theorem(n — 1).

On the other hand, the constamts 1), ap,—1)1 together witha,_1y2, a—1)3; - - ., Gn—1)n
which can also be found as those were found by the method in Exdmplg satisfy conditions
(3) — (n+ 1) of Theorem(n — 1).

Since the inequalities in conditior{8) — (n + 1) of Theoren{ h are equivalent to new in-
equalities obtained by taking (v,,), p2(7,,), - - - » Pas1(7,,), respectively instead of the constants
A(n-1)0> Un—1)1, - - - » A(n—1)n IN CONditions(3) —(n+1) of Theoremn—1), if ag,—1)2, a(n-1)3, - - -,
am-1), are chosen as

an-12 = D3(Vn) = —VaP2(V) + ana,
An-1)3 = p4<7n) = _Vnp?)(’%n) + a3,

Ap-1)n — pn-ﬁ-l(’}/n) = _,anTL(/Yn) + Apn,
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thena,s, a,s, ..., a,, are found as
r2 = Q(n-1)2 T VpG(n-1)1,
an3 = Q(p-1)3 + Tnl(n-1)2;
Ann = Qn—1)n + VpG(n—1)(n—1)-

Finally, since(n + 2)th condition of Theorerp|n is equivalent to

pn+2(7n) = _’Vnpn+1<7n> T An(nt1) <0,
the constants,,, a,1, a2, - - . , an, together with the constant,,,;;) chosen as
An(n+1) < Vnl(n—1)n
also satisfy(n + 2)th condition of Theorerf|n.
Any constants:,,;, (0 < i < n + 1) obtained by presented method satisfy conditi()s—
(n + 2) of Theoren{ h.

Thus, the functionk,, corresponding to the constants; and given by(2.70) also satisfies
condition(1) of Theoren{ h.
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