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İSMET ÖZDEMİR AND Ö. FARUK TEMİZER
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ABSTRACT. The sufficient conditions fory1(x) ≤ y2(x) were given in [1] such thatym(x) =
fm(x) +

∫ x

a
Km(x, t)ym(t)dt, (m = 1, 2) andx ∈ [a, b]. Some properties such as positivity,

boundedness and monotonicity of the solution of the linear Volterra integral equation of the form
f(t) = 1−

∫ t

0
K(t− τ)f(τ)dτ = 1−K ∗ f, (0 ≤ t < ∞) were obtained, without solving this

equation, in [3, 4, 5, 6]. Also, the boundaries for functionsf ′, f ′′, . . . , f (n), (n ∈ N) defined on
the infinite interval[0,∞) were found in [7, 8].

In this work, for the given equationf(t) = 1 − K ∗ f andn ≥ 2, it is derived that there
exist the functionsL2, L3, . . . , Ln which can be obtained by means ofK and some inequalities
among the functionsf, h2, h3, . . . , hi for i = 2, 3, . . . , n are satisfied on the infinite interval
[0,∞), wherehi is the solution of the equationhi(t) = 1− Li ∗ hi andn is a natural number.

Key words and phrases:Linear Volterra integral equations with convolution kernel, Equivalence theorem, Convolution theo-
rem.
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1. INTRODUCTION

An integral equation of the form

f(t) = φ(t)−
∫ t

0

K(t− τ) f(τ) dτ = φ(t)−K ∗ f(1.1)

is known as the second type linear Volterra integral equation with convolution kernel. Here,φ
is the source term andK is kernel which are the known functions,f is an unknown function,
[9, p.23].

The way of obtaining a new equation which is equivalent to(1.1) is given by Theorem A, as
follows:

Theorem A. [3, Theorem 1.1.1]If
(1) K ∈ C1[0,∞),

(2) φ is locally integrable,
then(1.1) is equivalent to

f(t) = ψ(t)−
∫ t

0

L(t− τ) f(τ) dτ ,

where

ψ(t) = φ(t) +

∫ t

0

g′(t− τ)φ(τ) dτ ,

L(t) = g′(t) + ag(t) +

∫ t

0

g(t− τ)K ′(τ) dτ ,

wherea = K(0), g is any function such thatg ∈ C1[0,∞) andg(0) = 1.

The sufficient conditions for obtaining the solution of(1.1) in terms of the solution of the
equation

g(t) = 1−
∫ t

0

K(t− τ)g(τ)dτ = 1−K ∗ g(1.2)

were given by the following Convolution Theorem:

Theorem B. [2, pp. 229-230]Let the conditions

(1) φ′(t) exists for0 ≤ t ≤ T,

∫ T

0

|φ′(t)| dt <∞, (T > 0),

(2)

∫ T

0

|K(t)| dt <∞

hold, then the solution of(1.1) is given by

f(t) = g(t)φ(0) +

∫ t

0

g(t− τ)φ′(τ)dτ = g(t)φ(0) + g ∗ φ′, (0 ≤ t ≤ T ),(1.3)

whereg(t) is the solution of(1.2).

Therefore, ifg is known, so isf . In the other words, if the properties ofg are known, we may
obtain certain properties off by (1.3).

We assume throughout thatt ∈ [0,∞) andn ∈ N2 = {2, 3, . . .}.
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2. THE MAIN RESULTS

Theorem C. [3, Theorem 1.2.1]Let us consider the equation given of the form

f(t) = 1−
∫ t

0

K(t− τ) f(τ)dτ = 1−K ∗ f.(2.1)

If the conditions

(1) K(0) = a < 0,

(2) K ′(0) = b,

(3) K ∈ C2[0,∞), K ′′(t) < 0 for all t,

(4) 4b ≤ a2

hold, then the solution of(2.1) satisfies the inequalitiesf (n)(t) > 0 for n = 0, 1, 2, 3 and all t.

Theorem 1. Let us consider the equation

f1(t) = 1−
∫ t

0

K1(t− τ) f1(τ)dτ = 1−K1 ∗ f1.(2.2)

If

(1) K1 ∈ C3[0,∞), K ′′′
1 (t) ≤ 0 for all t,

(2) K ′
1(0) = a11 < 0,

(3) K1(0) = a10, K
′′
1 (0) = a12 andb1(a10 − b1)

2 − 4a12 > 0,

whereb1 =
1

3

(
a10 + 2

√
a2

10 − 3a11

)
,

then the solution of(2.2) satisfies the inequalities
f ′1(t) + b1f1(t) > 0,

f ′′1 (t) + b1f
′
1(t) > 0,

f ′′′1 (t) + b1f
′′
1 (t) > 0

(2.3)

for all t.

Proof. By takingg(t) = e−γt in Theorem A, we get the equivalent equation to(2.2) of the form

f1(t) = e−γt −
∫ t

0

L1(t− τ) f1(τ)dτ = e−γt − L1 ∗ f1,(2.4)

where

L1(t) = (a10 − γ)e−γt +K ′
1 ∗ e−γt.(2.5)

Thus,
L′1(t) = (γ2 − a10γ + a11)e

−γt +K ′′
1 ∗ e−γt

and
L′′1(t) = (−γ3 + a10γ

2 − a11γ + a12)e
−γt +K ′′′

1 ∗ e−γt.

If we chooseγ = b1 =
(
a10 + 2

√
a2

10 − 3a11

)
/3, the equality

(a10 − γ)2 = 4(γ2 − a10γ + a11)(2.6)

which is equivalent to

[L1(0)]
2 = 4L′1(0)

is satisfied and so,L1 verifies condition(4) of Theorem C.
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Also, sincea11 < 0, the inequalityL1(0) = a10 − γ < 0 holds forγ = b1. Namely,L1

satisfies condition(1) of Theorem C.
On the other hand, by(2.6), it is obtained that the equality

−γ3 + a10γ
2 − a11γ + a12 = −γ(γ2 − a10γ + a11) + a12 = −γ(a10 − γ)2

4
+ a12

holds forγ = b1. Thus,L1 ∈ C2[0,∞) andL′′1(t) < 0 for all t by conditions(1) and(3) of
Theorem 1.

Therefore,L1 satisfies all of the conditions of Theorem C. Thus, by Theorem C, the solution
of the equation

h1(t) = 1−
∫ t

0

L1(t− τ)h1(τ)dτ = 1− L1 ∗ h1(2.7)

satisfies the inequalitiesh(n)
1 (t) > 0, (n = 1, 2, 3). By using Theorem B, the solutionf1 of (2.4)

can be written by means ofh1 of the form

f1(t) = h1(t)− γh1 ∗ e−γt.(2.8)

Thus, we have by(2.8) that

h′1(t) = f ′1(t) + b1f1(t)(2.9)

which yields

h′′1(t) = f ′′1 (t) + b1f
′
1(t), h

′′′
1 (t) = f ′′′1 (t) + b1f

′′
1 (t).(2.10)

Hence,(2.3) holds for allt. This completes the proof.

Example 1. The functionK1 of the form

K1(t) = c0t
3 +

(a12

2

)
t2 + a11t+ a10, (c0 ≤ 0)(2.11)

corresponding to any constantsa10, a11, a12 satisfying the inequalities in conditions(2) and(3)
of Theorem 1 also satisfies condition(1) of Theorem 1.

For example, ifa10 anda11 are taken asa10 = 1 anda11 = −1, thenb1 is found as

b1 =
1

3
(1 + 2

√
4) =

5

3
.

Thus,a12 satisfying the inequality

a12 <
b1(a10 − b1)

2

4
=

5

27

can be chosen asa12 = 1/9. In this case,K1 is obtained as

K1(t) = c0t
3 +

1

18
t2 − t+ 1, (c0 ≤ 0).

Theorem 2. Let us consider the equation given as

f2(t) = 1−
∫ t

0

K2(t− τ) f2(τ)dτ = 1−K2 ∗ f2.(2.12)
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If

(1) K2 ∈ C4[0,∞), K
(4)
2 (t) ≤ 0 for all t andK(i)

2 (0) = a2i, (0 ≤ i ≤ 3),

(2) a2
20 > 4a21,

(3) 4a20a21 − 8a22 + 2b2

(a20

2
− b2

)2

− a3
20 > 0,

whereb2 =
a20

6
+

2

3

√
a2

20 − 3a21,

(4) −a4
20 + 4a2

20a21 − 8a20a22 + 16a23 ≤ 0,

then there exists the functionL2 satisfying all of the conditions of Theorem 1 and can be written
by means ofK2 such that the inequalities

h′2(t) + b2h2(t) > 0, h′′2(t) + b2h
′
2(t) > 0, h′′′2 (t) + b2h

′′
2(t) > 0

and 
f ′2(t) + γ2f2(t) + b2h2(t) > 0,

f ′′2 (t) + (b2 + γ2)f
′
2(t) + b2γ2f2(t) > 0,

f ′′′2 (t) + (b2 + γ2)f
′′
2 (t) + b2γ2f

′
2(t) > 0

(2.13)

hold, whereh2 is the solution of the equationh2(t) = 1− L2 ∗ h2 andγ2 = a20/2.

Proof. By takingg(t) = e−γt andγ ∈ R in the Equivalence Theorem, we obtain the equivalent
equation of(2.12) as

f2(t) = e−γt −
∫ t

0

L2(t− τ) f2(τ)dτ = e−γt − L2 ∗ f2,(2.14)

where

L2(t) = (a20 − γ)e−γt +K ′
2 ∗ e−γt.(2.15)

Thus, from(2.15)

L′2(t) = (γ2 − a20γ + a21)e
−γt +K ′′

2 ∗ e−γt,

L′′2(t) = (−γ3 + a20γ
2 − a21γ + a22)e

−γt +K ′′′
2 ∗ e−γt

and

L′′′2 (t) = (γ4 − a20γ
3 + a21γ

2 − a22γ + a23)e
−γt +K

(4)
2 ∗ e−γt.

Now, we show thatL2 satisfies all of the conditions of Theorem 1.
The discriminant ofγ2 − a20γ + a21 = 0 is positive by condition(2). So, if γ is chosen as

γ = γ2 = a20/2, thenL′2(0) = γ2
2 − a20γ2 + a21 < 0, that is,L2 satisfies condition(2) of

Theorem 1. Also, ifL2(0) andL′2(0) are taken, respectively instead of the constantsa10 anda11

in b1 of Theorem 1, then

1

3

[
L2(0) + 2

√
[L2(0)]2 − 3L′2(0)

]
=

1

3

[
a20 − γ + 2

√
(a20 − γ)2 − 3 (γ2 − a20γ + a21)

]
=

a20

6
+

2

3

√
a2

20 − 3a21 = b2

is found forγ = γ2. Hence, we have the equality

4L′′2(0)− b2 [L2(0)− b2]
2 = 4(−γ3 + a20γ

2 − a21γ + a22)− b2 (a20 − γ − b2)
2

= −1

2

[
4a20a21 − 8a22 + 2b2

(a20

2
− b2

)2

− a3
20

]
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for γ = γ2. So, from condition(3) of Theorem 2, the inequality

4L′′2(0)− b2 [L2(0)− b2]
2 < 0

holds. This means thatL2 satisfies condition(3) of Theorem 1.
Since

γ4 − a20γ
3 + a21γ

2 − a22γ + a23 =
1

24

(
−a4

20 + 4a2
20a21 − 8a20a22 + 16a23

)
for γ = γ2, we getL2 ∈ C3[0,∞) andL′′′2 (t) ≤ 0 for all t by conditions(1) and(4) of Theorem
2. Namely,L2 also satisfies condition(1) of Theorem 1.

By using Theorem 1, one can see that the solution of the equation

h2(t) = 1− L2 ∗ h2

satisfies the inequalities 
h′2(t) + b2h2(t) > 0,

h′′2(t) + b2h
′
2(t) > 0,

h′′′2 (t) + b2h
′′
2(t) > 0.

(2.16)

From Theorem B, the solutionf2 of equation(2.14) can be written by means ofh2 as the form

f2(t) = h2(t)− γ2h2 ∗ e−γ2t.(2.17)

Thus, we have by(2.17) that

h′2(t) = f ′2(t) + γ2f2(t)(2.18)

which yields

h′′2(t) = f ′′2 (t) + γ2f
′
2(t), h

′′′
2 (t) = f ′′′2 (t) + γ2f

′′
2 (t).(2.19)

So, we obtain by(2.16), (2.18) and(2.19) that(2.13) is satisfied for allt.

Example 2. The functionK2 given of the form

K2(t) = c0t
4 +

(a23

6

)
t3 +

(a22

2

)
t2 + a21t+ a20, (c0 ≤ 0)(2.20)

corresponding to any constantsa20, a21, a22 and a23 satisfying the inequalities of conditions
(2)− (4) of Theorem 2 also satisfies condition(1) of Theorem 2.

Now, let us try to show that there exist the constantsa20, a21, a22 anda23 satisfying conditions
(2)− (4) of Theorem 2. First, let us choose the constantsa20 anda21 verifying the inequality

a2
20 > 4a21.

Thus, it is seen by the proof of Theorem 2 that the constantsa10, a11, b1 anda12 obtained by
means ofa20, a21 and defined by

a10 = a20 − γ2, a11 = γ2
2 − a20γ2 + a21,

(
γ2 =

a20

2

)
, b1 =

1

3

(
a10 + 2

√
a2

10 − 3a11

)
and a12 <

b1(a10 − b1)
2

4

satisfy conditions(2) and(3) of Theorem 1.
Since the inequality in condition(3) of Theorem 2 is equivalent to new inequality obtained

by taking

a20 − γ2, γ
2
2 − a20γ2 + a21,−γ3

2 + a20γ
2
2 − a21γ2 + a22 andb2,
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respectively instead of the constantsa10, a11, a12 andb1 in condition(3) of Theorem 1, ifa12 is
chosen as

a12 = −γ3
2 + a20γ

2
2 − a21γ2 + a22 = −γ2

(
γ2

2 − a20γ2 + a21

)
+ a22 = −γ2a11 + a22,

thena22 is found as
a22 = a12 + γ2a11.

In that case, the constantsa20, a21 anda22 hold condition(3) of Theorem 2.
Because condition(4) of Theorem 2 is equivalent to

γ4
2 − a20γ

3
2 + a21γ

2
2 − a22γ2 + a23 ≤ 0,

a23 can be chosen as

−γ2

(
−γ3

2 + a20γ
2
2 − a21γ2 + a22

)
+ a23 = −γ2a12 + a23 ≤ 0.

That is,a23 ≤ γ2a12. So, the constantsa20, a21, a22 anda23 satisfy condition(4) of Theorem 2.
Additionally, every functionK2 given by(2.20) also satisfies condition(1) of Theorem 2.
For example, ifa20 anda21 are taken asa20 = −3 anda21 = 1, thena10, a11 andb1 are found

as

a10 = a20 − γ2 = −3

2
, a11 = γ2

2 − a20γ2 + a21 = −5

4
and

b1 =
a10 + 2

√
a2

10 − 3a11

3
=

1

3

(
2
√

6− 3

2

)
.

Thus, from Example 1,a12 satisfying the inequality

a12 <
b1(a10 − b1)

2

4
can be taken asa12 = 0.

Hence,

a22 = a12 + γ2a11 =
15

8
anda23 satisfying the inequality

a23 ≤ γ2a12 = 0

can be chosen asa23 = −1.
Therefore,

K2(t) = c0t
4 − 1

6
t3 +

15

16
t2 + t− 3, (c0 ≤ 0).

Theorem 3. Let us consider the equation

f3(t) = 1−
∫ t

0

K3(t− τ)f3(τ)dτ = 1−K3 ∗ f3.(2.21)

If

(1) K3 ∈ C5[0,∞), K
(5)
3 (t) ≤ 0 for all t andK(i)

3 (0) = a3i, (0 ≤ i ≤ 4),

(2) a2
30 > 3a31,

(3) 144a30a31 − 216a32 + 6b3 (a30 − 3b3)
2 − 40a3

30 > 0,

whereb3 =
1

9

(
a30 + 2

√
10a2

30 − 27a31

)
,

(4) −112a4
30 + 432a2

30a31 − 864a30a32 + 1296a33 ≤ 0,

(5) 2a5
30 − 9a3

30a31 + 27a2
30a32 − 81a30a33 + 243a34 ≤ 0,
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then there exist the functionsL2 andL3 satisfying all of the conditions of Theorem 1 and Theo-
rem 2, respectively and can be written by means ofK3 such that the following inequalities hold
for all t:

h′2(t) + b3h2(t) > 0, h′′2(t) + b3h
′
2(t) > 0, h′′′2 (t) + b3h

′′
2(t) > 0,

h′3(t) + γ3h3(t) + b3h2(t) > 0, h′′3(t) + (b3 + γ3)h
′
3(t) + b3γ3h3(t) > 0,

h′′′3 (t) + (b3 + γ3)h
′′
3(t) + b3γ3h

′
3(t) > 0

and 
f ′3(t) + γ3 [f3(t) + h3(t)] + b3h2(t) > 0,

f ′′3 (t) + (b3 + 2γ3) f
′
3(t) + (b3 + γ3) γ3f3(t) + b3γ3h3(t) > 0,

f ′′′3 (t) + (b3 + 2γ3) f
′′
3 (t) + (2b3 + γ3) γ3f

′
3(t) + b3γ

2
3f3(t) > 0,

(2.22)

wherehi for i = 2, 3 is the solution of the equationhi(t) = 1− Li ∗ hi andγ3 = a30/3.

Proof. By taking g(t) = e−γt (γ ∈ R) in Theorem A, the equivalent equation of(2.21) is
derived as

f3(t) = e−γt −
∫ t

0

L3(t− τ) f3(τ)dτ = e−γt − L3 ∗ f3,(2.23)

where

L3(t) = (a30 − γ)e−γt +K ′
3 ∗ e−γt.(2.24)

Thus, from(2.24)

L′3(t) = (γ2 − a30γ + a31)e
−γt +K ′′

3 ∗ e−γt,

L′′3(t) = (−γ3 + a30γ
2 − a31γ + a32)e

−γt +K ′′′
3 ∗ e−γt,

L′′′3 (t) = (γ4 − a30γ
3 + a31γ

2 − a32γ + a33)e
−γt +K

(4)
3 ∗ e−γt

and

L
(4)
3 (t) = (−γ5 + a30γ

4 − a31γ
3 + a32γ

2 − a33γ + a34)e
−γt +K

(5)
3 ∗ e−γt.

Now, we show thatL3 satisfies all of the conditions of Theorem 2.
The inequality corresponding to condition(2) of Theorem 2 is

[L3(0)]
2 > 4L′3(0)

which is equivalent to

(a30 − γ)2 > 4
(
γ2 − a30γ + a31

)
.(2.25)

(2.25) is equivalent to

3γ2 − 2a30γ + 4a31 − a2
30 < 0.(2.26)

The discriminant of3γ2 − 2a30γ + 4a31 − a2
30 = 0 is 16(a2

30 − 3a31) which is positive by
condition(2) of Theorem 3. So, ifγ is chosen asγ = γ3 = a30/3, then(2.26) holds. Thus,L3

satisfies condition(2) of Theorem 2.
Also, if L3(0) andL′3(0) are taken, respectively instead of the constantsa20 anda21 in b2 of

Theorem 2, then

L3(0)

6
+

2

3

√
[L3(0)]2 − 3L′3(0) =

a30 − γ

6
+

2

3

√
(a30 − γ)2 − 3 (γ2 − a30γ + a31)

=
a30

9
+

2

9

√
10a2

30 − 27a31 = b3

is found forγ = γ3.
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Furthermore, the inequality

4L3(0)L′3(0)− 8L′′3(0) + 2b3

[
L3(0)

2
− b3

]2

− [L3(0)]
3

= 4(a30 − γ)(γ2 − a30γ + a31)− 8(−γ3 + a30γ
2 − a31γ + a32)

+2b3

(
a30 − γ

2
− b3

)2

− (a30 − γ)3

=
1

27

[
−40a3

30 + 144a30a31 − 216a32 + 6b3 (a30 − 3b3)
2] > 0

holds forγ = γ3 by condition(3) of Theorem 3. Thus,L3 satisfies condition(3) of Theorem 2.
The inequality corresponding to condition(4) of Theorem 2 forL3 is

− [L3(0)]4 + 4 [L3(0)]2 L′3(0)− 8L3(0)L
′′
3(0) + 16L′′′3 (0) ≤ 0

which is equivalent to

− (a30 − γ)4 + 4 (a30 − γ)2 (γ2 − a30γ + a31)

−8 (a30 − γ) (−γ3 + a30γ
2 − a31γ + a32)

+16(γ4 − a30γ
3 + a31γ

2 − a32γ + a33) ≤ 0.(2.27)

(2.27) for γ = γ3 is equivalent to

1

81

(
−112a4

30 + 432a2
30a31 − 864a30a32 + 1296a33

)
≤ 0.(2.28)

It is obvious that(2.28) holds by condition(4) of Theorem 3. Hence,L3 satisfies condition(4)
of Theorem 2.

Finally, sinceK3 ∈ C5[0,∞), L3 ∈ C4[0,∞). Additionally, L(4)
3 (t) ≤ 0 holds, since the

inequality

−γ5 + a30γ
4 − a31γ

3 + a32γ
2 − a33γ + a34

=
1

35

(
2a5

30 − 9a3
30a31 + 27a2

30a32 − 81a30a33 + 243a34

)
≤ 0

holds by condition(5) for γ = γ3. So,L3 also satisfies condition(1) of Theorem 2.
Therefore,L3 satisfies all of the conditions of Theorem 2.
If L3(0), L3 andL3(0)/2 are taken, respectively instead ofa20, K2 andγ2 in (2.15), L2 is

found by means ofL3 as

L2(t) =

[
L3(0)− L3(0)

2

]
e−

L3(0)
2

t + L′3 ∗ e−
L3(0)

2
t

=

(
a30 − γ − a30 − γ

2

)
e−

a30−γ
2

t + L′3 ∗ e−
a30−γ

2
t

=
a30

3
e−

a30
3

t + L′3 ∗ e−
a30
3

t(2.29)

for γ = γ3 and it is understood by the proof of Theorem 2 thatL2 satisfies all of the conditions
of Theorem 1. Thus, becauseb3 andγ3 are replaced, respectively byb2 andγ2, it is seen by
(2.16) and(2.13) that the solutions of the equationshi(t) = 1− Li ∗ hi for i = 2, 3 satisfy the
inequalities

h′2(t) + b3h2(t) > 0, h′′2(t) + b3h
′
2(t) > 0, h′′′2 (t) + b3h

′′
2(t) > 0(2.30)
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and 
h′3(t) + γ3h3(t) + b3h2(t) > 0,

h′′3(t) + (b3 + γ3)h
′
3(t) + b3γ3h3(t) > 0,

h′′′3 (t) + (b3 + γ3)h
′′
3(t) + b3γ3h

′
3(t) > 0

(2.31)

for all t.
On the other hand, by using the Convolution Theorem, the solutionf3 of the equivalent

equation(2.23) can be written by means ofh3 as

f3(t) = h3(t)− γ3h3 ∗ e−γ3t.(2.32)

By (2.32), we have

h′3(t) = f ′3(t) + γ3f3(t)(2.33)

which yields

h′′3(t) = f ′′3 (t) + γ3f
′
3(t), h

′′′
3 (t) = f ′′′3 (t) + γ3f

′′
3 (t).(2.34)

So, we derive the inequalities

f ′3(t) + γ3 [f3(t) + h3(t)] + b3h2(t) > 0,

f ′′3 (t) + (b3 + 2γ3) f
′
3(t) + (b3 + γ3) γ3f3(t) + b3γ3h3(t) > 0

and
f ′′′3 (t) + (b3 + 2γ3) f

′′
3 (t) + (2b3 + γ3) γ3f

′
3(t) + b3γ

2
3f3(t) > 0

for all t from (2.31), (2.33) and(2.34).

Example 3. The functionK3 defined by

K3(t) = c0t
5 +

(a34

24

)
t4 +

(a33

6

)
t3 +

(a32

2

)
t2 + a31t+ a30, (c0 ≤ 0)(2.35)

corresponding to any constantsa3i, (0 ≤ i ≤ 4) satisfying conditions(2) − (5) of Theorem 3
also satisfies condition(1) of Theorem 3.

Now, let us try to show that there exist the constantsa3i, (0 ≤ i ≤ 4) satisfying the conditions
of Theorem 3. First, let us choose the constantsa30 anda31 verifying the inequality

a2
30 > 3a31.

In this case, it can be followed from the proof of Theorem 3 that the constantsa20, a21 derived
by means ofa30, a31 and defined by

a20 = a30 − γ3, a21 = γ2
3 − a30γ3 + a31,

(
γ3 =

a30

3

)
satisfy condition(2) of Theorem 2.

The constantsa20 and a21 together witha22, a23 which can also be found by the way in
Example 2 satisfy conditions(3) and(4) of Theorem 2.

Since the inequality in condition(3) of Theorem 3 is equivalent to the new inequality obtained
by taking

a30 − γ3, γ
2
3 − a30γ3 + a31, −γ3

3 + a30γ
2
3 − a31γ3 + a32 andb3,

respectively instead of the constantsa20, a21, a22 andb2 in condition(3) of Theorem 2, ifa22 is
chosen as

a22 = −γ3
3 + a30γ

2
3 − a31γ3 + a32 = −γ3

(
γ2

3 − a30γ3 + a31

)
+ a32 = −γ3a21 + a32,

thena32 is found as
a32 = a22 + γ3a21.
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In that case, the constantsa30, a31 anda32 derived, above, satisfy condition(3) of Theorem 3.
Similarly, because condition(4) of Theorem 3 is equivalent to the new inequality obtained

by taking

a30 − γ3, γ
2
3 − a30γ3 + a31, −γ3

3 + a30γ
2
3 − a31γ3 + a32

and

γ4
3 − a30γ

3
3 + a31γ

2
3 − a32γ3 + a33,

respectively instead of the constantsa20, a21, a22 anda23 in condition(4) of Theorem 2, ifa23

is taken as

a23 = γ4
3−a30γ

3
3+a31γ

2
3−a32γ3+a33 = −γ3(−γ3

3+a30γ
2
3−a31γ3+a32)+a33 = −γ3a22+a33,

thena33 is found as
a33 = a23 + γ3a22.

So, the constantsa30, a31, a32 anda33 obtained, above, satisfy condition(4) of Theorem 3.
Furthermore, since condition(5) of Theorem 3 is equivalent to

−γ3

(
γ4

3 − a30γ
3
3 + a31γ

2
3 − a32γ3 + a33

)
+ a34 = −γ3a23 + a34 ≤ 0,

the constantsa30, a31, a32 anda33 together with the constanta34 which is chosen as

a34 ≤ γ3a23

also satisfy condition(5) of Theorem 3.
Thus, every functionK3 of the form(2.35) corresponding to constantsa3i, (0 ≤ i ≤ 4) and

obtained by our method also satisfies condition(1) of Theorem 3.
For example, ifa30 anda31 are taken asa30 = 1 anda31 = −1, thena20, a21 are found as

a20 = a30 − γ3 =
2

3
, a21 = γ2

3 − a30γ3 + a31 = −11

9
.

From Example 2,

γ2 =
1

3
, a10 = a20 − γ2 =

1

3
, a11 = γ2

2 − a20γ2 + a21 = −4

3
.

Thus, from Example 1,a12 can be taken asa12 = 0 because of

b1 =
1

3

(
a10 + 2

√
a2

10 − 3a11

)
=

1

9

(
1 + 2

√
37

)
anda12 <

b1
4

(a10 − b1)
2.

Hence, from Example 2,

a22 = a12 + γ2a11 = −4

9
anda23 satisfying the inequality

a23 ≤ γ2a12 = 0

can be chosen asa23 = −1. So,

a32 = a22 + γ3a21 = −23

27
, a33 = a23 + γ3a22 = −31

27
anda34 satisfying the inequality

a34 ≤ γ3a23 = −1

3
can be taken asa34 = −1. Therefore,

K3(t) = c0t
5 − 1

24
t4 − 31

162
t3 − 23

54
t2 − t+ 1, (c0 ≤ 0).
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Theorem 4. Let us consider the equation

f4(t) = 1−
∫ t

0

K4(t− τ)f4(τ)dτ = 1−K4 ∗ f4.(2.36)

If

(1) K4 ∈ C6[0,∞), K
(6)
4 (t) ≤ 0 for all t andK(i)

4 (0) = a4i, (0 ≤ i ≤ 5),

(2) a2
40 >

8

3
a41,

(3) 648a40a41 − 864a42 + 24b4

(
3a40

4
− 3b4

)2

− 189a3
40 > 0,

whereb4 =
1

12

(
a40 + 2

√
19a2

40 − 48a41

)
,

(4) −2025a4
40 + 7776a2

40a41 − 15552a40a42 + 20736a43 ≤ 0,

(5) 1701a5
40 − 7776a3

40a41 + 23328a2
40a42 − 62208a40a43 + 124416a44 ≤ 0,

(6) −3a6
40 + 16a4

40a41 − 64a3
40a42 + 256a2

40a43 − 1024a40a44 + 4096a45 ≤ 0,

then there exist the functionsL2, L3 andL4 satisfying all of the conditions of Theorem 1, The-
orem 2 and Theorem 3, respectively and can be written by the means ofK4. Additionally, the
inequalities

h′2(t) + b4h2(t) > 0, h′′2(t) + b4h
′
2(t) > 0, h′′′2 (t) + b4h

′′
2(t) > 0,

h′3(t) + γ4h3(t) + b4h2(t) > 0, h′′3(t) + (b4 + γ4)h
′
3(t) + b4γ4h3(t) > 0,

h′′′3 (t) + (b4 + γ4)h
′′
3(t) + b4γ4h

′
3(t) > 0,

h′4(t) + γ4 [h4(t) + h3(t)] + b4h2(t) > 0,

h′′4(t) + (b4 + 2γ4)h
′
4(t) + (b4 + γ4) γ4h4(t) + b4γ4h3(t) > 0,

h′′′4 (t) + (b4 + 2γ4)h
′′
4(t) + (2b4 + γ4) γ4h

′
4(t) + b4γ

2
4h4(t) > 0

and 

f ′4(t) + γ4 [f4(t) + h4(t) + h3(t)] + b4h2(t) > 0,

f ′′4 (t) + (b4 + 3γ4) f
′
4(t) + (b4 + 2γ4) γ4f4(t)

+ (b4 + γ4) γ4h4(t) + b4γ4h3(t) > 0,

f ′′′4 (t) + (b4 + 3γ4) f
′′
4 (t) + (3b4 + 3γ4) γ4f

′
4(t)

+ (2b4 + γ4) γ
2
4f4(t) + b4γ

2
4h4(t) > 0

(2.37)

are satisfied for allt, wherehi is the solution of the equationhi(t) = 1 − Li ∗ hi, (i = 2, 3, 4)
andγ4 = a40/4.

Proof. By takingg(t) = e−γt with γ ∈ R in the Equivalence Theorem, we get the equivalent
equation to(2.36) as

f4(t) = e−γt −
∫ t

0

L4(t− τ) f4(τ)dτ = e−γt − L4 ∗ f4,(2.38)

where

L4(t) = (a40 − γ)e−γt +K ′
4 ∗ e−γt.(2.39)
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Thus, from(2.39)

L′4(t) = (γ2 − a40γ + a41)e
−γt +K ′′

4 ∗ e−γt,

L′′4(t) = (−γ3 + a40γ
2 − a41γ + a42)e

−γt +K ′′′
4 ∗ e−γt,

L′′′4 (t) = (γ4 − a40γ
3 + a41γ

2 − a42γ + a43)e
−γt +K

(4)
4 ∗ e−γt,

L
(4)
4 (t) = (−γ5 + a40γ

4 − a41γ
3 + a42γ

2 − a43γ + a44)e
−γt +K

(5)
4 ∗ e−γt

and

L
(5)
4 (t) = (γ6 − a40γ

5 + a41γ
4 − a42γ

3 + a43γ
2 − a44γ + a45)e

−γt +K
(6)
4 ∗ e−γt.

Now, we show thatL4 satisfies all of the conditions of Theorem 3.
The inequality corresponding to condition (2) of Theorem 3 is

[L4(0)]
2 > 3L′4(0)

which is equivalent to

(a40 − γ)2 > 3
(
γ2 − a40γ + a41

)
.(2.40)

(2.40) is equivalent to

2γ2 − a40γ + 3a41 − a2
40 < 0.(2.41)

The discriminant of2γ2 − a40γ + 3a41 − a2
40 = 0 is 3(3a2

40 − 8a41) which is positive by
condition(2) of Theorem 4. So, ifγ is chosen asγ = γ4 = a40/4, then(2.41) is satisfied.
Thus,L4 holds condition(2) of Theorem 3.

Also, if L4(0) andL′4(0) are taken, respectively instead of the constantsa30 anda31 in b3 of
Theorem 3, then

1

9

[
L4(0) + 2

√
[10L4(0)]

2 − 27L′4(0)

]
=

1

9

[
a40 − γ + 2

√
10 (a40 − γ)2 − 27 (γ2 − a40γ + a41)

]
=

1

12

(
a40 + 2

√
19a2

40 − 48a41

)
= b4

for γ = γ4.
Furthermore, the inequality

144L4(0)L′4(0)− 216L′′4(0) + 6b4 [L4(0)− 3b4]
2 − 40 [L4(0)]

3

= 144(a40 − γ)(γ2 − a40γ + a41)− 216(−γ3 + a40γ
2 − a41γ + a42)

+6b4 (a40 − γ − 3b4)
2 − 40(a40 − γ)3

=
1

4

[
−189a3

40 + 648a40a41 − 864a42 + 24b4

(
3a40

4
− 3b4

)2
]
> 0

holds forγ = γ4 by condition(3) of Theorem 4. Thus,L4 satisfies condition(3) of Theorem 3.
The inequality corresponding to condition(4) of Theorem 3 forL4 is

−112 [L4(0)]4 + 432 [L4(0)]2 L′4(0)− 864L4(0)L
′′
4(0) + 1296L′′′4 (0) ≤ 0

which is equivalent to

−112 (a40 − γ)4 + 432 (a40 − γ)2 (γ2 − a40γ + a41)

−864 (a40 − γ) (−γ3 + a40γ
2 − a41γ + a42)

+1296(γ4 − a40γ
3 + a41γ

2 − a42γ + a43) ≤ 0.(2.42)
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(2.42) is equivalent to

1

16

(
−2025a4

40 + 7776a2
40a41 − 15552a40a42 + 20736a43

)
≤ 0(2.43)

for γ = γ4. It is obvious that(2.43) holds by condition(4) of Theorem 4. Hence,L4 satisfies
condition(4) of Theorem 3.

On the other hand, the inequality corresponding to condition(5) of Theorem 3 forL4 is

2 [L4(0)]
5 − 9 [L4(0)]3 L′4(0) + 27 [L4(0)]

2 L′′4(0)− 81L4(0)L
′′′
4 (0) + 243L

(4)
4 (0) ≤ 0

which is equivalent to

2 (a40 − γ)5 − 9 (a40 − γ)3 (γ2 − a40γ + a41)

+27 (a40 − γ)2 (−γ3 + a40γ
2 − a41γ + a42)

−81(a40 − γ)(γ4 − a40γ
3 + a41γ

2 − a42γ + a43)

+243(−γ5 + a40γ
4 − a41γ

3 + a42γ
2 − a43γ + a44) ≤ 0.(2.44)

(2.44) for γ = γ4 is equivalent to

1

512

(
1701a5

40 − 7776a3
40a41 + 23328a2

40a42 − 62208a40a43 + 124416a44

)
≤ 0.(2.45)

It is obvious that(2.45) holds by condition(5) of Theorem 4. Hence,L4 satisfies condition(5)
of Theorem 3.

Finally, sinceK4 ∈ C6[0,∞), L4 ∈ C5[0,∞). Additionally,L(5)
4 (t) ≤ 0 holds, since

γ6 − a40γ
5 + a41γ

4 − a42γ
3 + a43γ

2 − a44γ + a45

=
1

46

(
−3a6

40 + 16a4
40a41 − 64a3

40a42 + 256a2
40a43 − 1024a40a44 + 4096a45

)
≤ 0

holds forγ = γ4 by condition(6). So,L4 also satisfies condition(1) of Theorem 3.
As a result,L4 satisfies all of the conditions of Theorem 3.
If L4(0), L4 andL4(0)/3 are taken, respectively instead ofa30, K3 andγ3 in (2.24), L3 is

found by means ofL4 as

L3(t) =

[
L4(0)− L4(0)

3

]
e−

L4(0)
3

t + L′4 ∗ e−
L4(0)

3
t

=

(
a40 − γ − a40 − γ

3

)
e−

a40−γ
3

t + L′4 ∗ e−
a40−γ

3
t

=
a40

2
e−

a40
4

t + L′4 ∗ e−
a40
4

t

for γ = γ4 and it is understood by the proof of Theorem 3 thatL3 satisfies all of the conditions
of Theorem 2.

Similarly, if L4(0) is taken instead ofa30 in (2.29), L2 is found as

L2(t) =
L4(0)

3
e−

L4(0)
3

t + L′3 ∗ e−
L4(0)

3
t

=
a40

4
e−

a40
4

t + L′3 ∗ e−
a40
4

t

for γ = γ4 and also it is understood by the proof of Theorem 3 thatL2 satisfies all of the
conditions of Theorem 1.
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Thus, becauseb4 andγ4 are replaced, respectively byb3 andγ3, it is seen by(2.22), (2.30)
and (2.31) that the solutions of the equationshi(t) = 1 − Li ∗ hi, (i = 2, 3, 4) satisfy the
inequalities

h′2(t) + b4h2(t) > 0, h′′2(t) + b4h
′
2(t) > 0, h′′′2 (t) + b4h

′′
2(t) > 0, h′3(t) + γ4h3(t) + b4h2(t) > 0,

h′′3(t) + (b4 + γ4)h
′
3(t) + b4γ4h3(t) > 0, h′′′3 (t) + (b4 + γ4)h

′′
3(t) + b4γ4h

′
3(t) > 0

and 
h′4(t) + γ4 [h4(t) + h3(t)] + b4h2(t) > 0,

h′′4(t) + (b4 + 2γ4)h
′
4(t) + (b4 + γ4) γ4h4(t) + b4γ4h3(t) > 0,

h′′′4 (t) + (b4 + 2γ4)h
′′
4(t) + (2b4 + γ4) γ4h

′
4(t) + b4γ

2
4h4(t) > 0

(2.46)

for all t.
On the other hand, by using the Convolution Theorem, the solutionf4 of (2.38) can be written

by means ofh4 as the form

f4(t) = h4(t)− γ4h4 ∗ e−γ4t.(2.47)

By (2.47), we have

h′4(t) = f ′4(t) + γ4f4(t)(2.48)

which yields

h′′4(t) = f ′′4 (t) + γ4f
′
4(t), h

′′′
4 (t) = f ′′′4 (t) + γ4f

′′
4 (t).(2.49)

So, we derive(2.37) for all t by (2.46), (2.48) and(2.49). Thus, the proof is completed.

Example 4. The functionK4 of the form

K4(t) = c0t
6 +

( a45

120

)
t5 +

(a44

24

)
t4 +

(a43

6

)
t3 +

(a42

2

)
t2 + a41t+ a40,(2.50)

(c0 ≤ 0)

corresponding to any constantsa4i, (0 ≤ i ≤ 5) satisfying conditions(2) − (6) of Theorem 4
also satisfies condition(1) of Theorem 4.

To see the validity of this claim, first, choose the constantsa40 anda41 verifying the inequality

a2
40 >

8

3
a41.

In this case, it can be easily seen by the proof of Theorem 4 that the constantsa30, a31 defined
by

a30 = p1(γ4), a31 = p2(γ4),

where

pi(γ) = (−1)iγi + (−1)i−1a40γ
i−1 + (−1)i−2a41γ

i−2 + · · · − a4(i−2)γ + a4(i−1),

(1 ≤ i ≤ 6)

andγ4 = a40/4 satisfy condition(2) of Theorem 3.
On the other hand, the constantsa30, a31 together witha32, a33 anda34 which can also be

found as those were found by the method in Example 3 satisfy conditions(3)− (5) of Theorem
3.

Since the inequality in condition(3) of Theorem 4 is equivalent to new inequality obtained
by takingp1(γ4), p2(γ4), p3(γ4) andb4, respectively instead of the constantsa30, a31, a32 andb3
in condition(3) of Theorem 3, ifa32 is chosen as

a32 = p3(γ4) = −γ4p2(γ4) + a42 = −γ4a31 + a42,
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thena42 is found as
a42 = a32 + γ4p2(γ4) = a32 + γ4a31.

In that case, the constantsa40, a41 anda42 which are derived, above, satisfy condition(3) of
Theorem 4.

Because condition(4) of Theorem 4 is equivalent to the new inequality obtained by taking
p1(γ4), p2(γ4), p3(γ4) andp4(γ4), respectively instead of the constantsa30, a31, a32 anda33 in
condition(4) of Theorem 3, ifa33 is taken as

a33 = p4(γ4) = −γ4p3(γ4) + a43,

thena43 is found as
a43 = a33 + γ4p3(γ4) = a33 + γ4a32.

So, the constantsa40, a41, a42 anda43 obtained, above, satisfy condition(4) of Theorem 4.
Because condition(5) of Theorem 4 is equivalent to the new inequality obtained by taking

p1(γ4), p2(γ4), p3(γ4), p4(γ4) andp5(γ4), respectively instead of the constantsa30, a31, a32, a33

anda34 in condition(5) of Theorem 3, ifa34 is taken as

a34 = p5(γ4) = −γ4p4(γ4) + a44,

thena44 is found as
a44 = a34 + γ4p4(γ4) = a34 + γ4a33.

Hence, the constantsa40, a41, a42, a43 anda44 obtained, above, satisfy condition(5) of Theo-
rem 4.

Furthermore, since condition(6) of Theorem 4 is equivalent to

p6(γ4) = −γ4p5(γ4) + a45 ≤ 0,

the constantsa40, a41, a42, a43 anda44 together with the constanta45 chosen as

a45 ≤ γ4a34

also satisfy condition(6) of Theorem 4.
Thus, the functionK4 of the form(2.50) corresponding to constantsa4i, (0 ≤ i ≤ 5) and

obtained by our method also satisfies condition(1) of Theorem 4.
For example, if one choosea40 = 3 anda41 = 3, thenγ4, a30, a31 are found as

γ4 =
3

4
, a30 = p1(γ4) =

9

4
, a31 = p2(γ4) =

21

16
.

From Example 3,

γ3 =
a30

3
=

3

4
, a20 = a30 − γ3 =

3

2
, a21 = γ2

3 − a30γ3 + a31 =
3

16
.

From Example 2,

γ2 =
a20

2
=

3

4
, a10 = a20 − γ2 =

3

4
, a11 = γ2

2 − a20γ2 + a21 = −3

8
.

Thus, from Example 1,a12 can be taken asa12 = 1/64 because of

b1 =
1

3

(
a10 + 2

√
a2

10 − 3a11

)
=

1

4

(
1 + 2

√
3
)

anda12 <
b1
4

(a10 − b1)
2 =

(3
√

3− 4)

32
.

Hence, from Example 2,

a22 = a12 + γ2a11 = −17

64
anda23 satisfying the inequality

a23 ≤ γ2a12 =
3

256
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can be chosen asa23 = 1/256.
So, from Example 3,

a32 = a22 + γ3a21 = −1

8
, a33 = a23 + γ3a22 = − 25

128

anda34 satisfying the inequality

a34 ≤ γ3a23 =
3

1024

can be taken asa34 = 1/512.
Thus,

a42 = a32 + γ4a31 =
55

64
, a43 = a33 + γ4a32 = − 37

128
, a44 = a34 + γ4a33 = − 37

256

anda45 satisfying the inequality

a45 ≤ γ4a34 =
3

2048

can be taken asa45 = 1/1024.
Therefore,

K4(t) = c0t
5 +

1

122880
t5 − 37

6144
t4 − 37

768
t3 +

55

128
t2 + 3t+ 3, (c0 ≤ 0).

By continuing this process forn ∈ N2, we get Theorem n which can be given as follows:

Theorem n. Let us consider the equation given of the form

fn(t) = 1−
∫ t

0

Kn(t− τ)fn(τ)dτ = 1−Kn ∗ fn(2.51)

under the following assumptions:

(1) Kn ∈ Cn+2[0,∞), K(n+2)
n (t) ≤ 0 for all t andK(i)

n (0) = ani, (0 ≤ i ≤ n+ 1),

(2) a2
n0 >

(
2n

n− 1

)
an1.

Furthermore, conditions(3) − (n + 1) of Theorem n are the inequalities obtained by taking
p1(γn), p2(γn), . . . , pn+1(γn) andbn respectively instead of the constantsa(n−1)0, a(n−1)1,
. . . , a(n−1)n andbn−1 in conditions(3)− (n+ 1) of Theorem(n− 1), where

pi(γ) = (−1)iγi+(−1)i−1an0γ
i−1+(−1)i−2an1γ

i−2+ · · ·−an(i−2)γ+an(i−1), (1 ≤ i ≤ n+2),

γn =
an0

n
andbn =

1

3n

[
an0 + 2

√[
2 + 3n(n− 1)

2

]
a2

n0 − 3n2an1

]
.

Besides, let condition(n+2) of Theorem n also bepn+2(γn) ≤ 0. Then, there exist the functions
L2, L3, . . . , Ln which satisfy all of the conditions of Theorem 1, Theorem 2,. . . , Theorem(n−1),
respectively and can be obtained by means ofKn as

Ln(t) =

(
n− 1

n

)
an0 e

−an0
n

t +K ′
n ∗ e−

an0
n

t(2.52)

AJMAA, Vol. 9, No. 2, Art. 6, pp. 1-23, 2012 AJMAA

http://ajmaa.org
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for n ≥ 2 and 

Ln−1(t) =
(

n−2
n

)
an0 e

−an0
n

t + L′n ∗ e−
an0

n
t,

Ln−2(t) =
(

n−3
n

)
an0 e

−an0
n

t + L′n−1 ∗ e−
an0

n
t,

Ln−3(t) =
(

n−4
n

)
an0 e

−an0
n

t + L′n−2 ∗ e−
an0

n
t,

...
L3(t) =

(
2
n

)
an0 e

−an0
n

t + L′4 ∗ e−
an0

n
t,

L2(t) =
(

1
n

)
an0 e

−an0
n

t + L′3 ∗ e−
an0

n
t

(2.53)

for n ≥ 3. Additionally, the inequalities
h′2(t) + bnh2(t) > 0,

h′′2(t) + bnh
′
2(t) > 0,

h′′′2 (t) + bnh
′′
2(t) > 0

(2.54)

for n ≥ 2, 

h′i(t) + γn [hi(t) + hi−1(t) + · · ·+ h3(t)] + x1nh2(t) > 0,

h′′i (t) + x(i−1)nh
′
i(t) + γn

[
x(i−2)nhi(t) + x(i−3)nhi−1(t)

+ · · ·+ x1nh3(t)] > 0,

h′′′i (t) + x(i−1)nh
′′
i (t) + y(i−1)nh

′
i(t) + γn

[
y(i−2)nhi(t)

+y(i−3)nhi−1(t) + · · ·+ y1nh3(t)
]
> 0

(2.55)

for i = 3, 4, . . . , n andn ≥ 3,
f ′2(t) + γ2f2(t) + x12h2(t) > 0,

f ′′2 (t) + x22f
′
2(t) + x12γ2f2(t) > 0,

f ′′′2 (t) + x22f
′′
2 (t) + x12γ2f

′
2(t) > 0

(2.56)

for n = 2 and

f ′n(t) + γn [fn(t) + hn(t) + hn−1(t) + · · ·+ h3(t)] + x1nh2(t) > 0,

f ′′n(t) + xnnf
′
n(t) + γn

[
x(n−1)nfn(t) + x(n−2)nhn(t) + x(n−3)nhn−1(t)

+ · · ·+ x1nh3(t)] > 0,

f ′′′n (t) + xnnf
′′
n(t) + ynnf

′
n(t) + γn

[
y(n−1)nfn(t) + y(n−2)nhn(t)

+y(n−3)nhn−1(t) + · · ·+ y1nh3(t)
]
> 0

(2.57)

for n ≥ 3 hold. Here,xin, yin for 1 ≤ i ≤ n are defined by the equalities

xin = bn + (i− 1)γn, yin =

[
(i− 1)bn +

(i− 1)(i− 2)

2
γn

]
γn,(2.58)

hi for 2 ≤ i ≤ n is the solution of the equationhi(t) = 1−
∫ t

0
Li(t−τ)hi(τ)dτ and0 ≤ t <∞.

Proof. We can prove Theorem n by the mathematical induction. It is observed by Theorem 2
that there exists the functionL2 providing all of the conditions of Theorem 1 and given by

L2(t) =
(a20

2

)
e−

a20
2

t +K ′
2 ∗ e−

a20
2

t

such that(2.54) and(2.56) are satisfied forn = 2. Namely, Theorem n is true forn = 2.
Let us suppose that Theorem n is valid forn = m (m ≥ 2). In this case, we will try to

show that Theorem n is also valid forn = m + 1. If Theoremm is true, then there exist
the functionsL2, L3, . . . , Lm which satisfy all of the conditions of Theorem 1, Theorem 2,. . . ,
Theorem(m− 1), respectively and can be obtained by means ofKm as form(2.52) and(2.53).
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Also, (2.54) form ≥ 2, (2.55) fori = 3, 4, . . . ,m andm ≥ 3, (2.56) for m = 2 and(2.57) for
m ≥ 3 are satisfied.

By takingg(t) = e−γt with γ ∈ R in the Equivalence Theorem, we get

fm+1(t) = e−γt −
∫ t

0

Lm+1(t− τ) fm+1(τ)dτ = e−γt − Lm+1 ∗ fm+1(2.59)

which is equivalent to

fm+1(t) = 1−
∫ t

0

Km+1(t− τ) fm+1(τ)dτ = 1−Km+1 ∗ fm+1,

where

Lm+1(t) = (a(m+1)0 − γ)e−γt +K ′
m+1 ∗ e−γt.(2.60)

Let us try to see thatLm+1 satisfies conditions(1)− (m+2) of Theoremm, by considering the
conditions of Theorem(m+ 1).

Differentiation of(2.60) leads to

L′m+1(t) = (γ2 − a(m+1)0γ + a(m+1)1)e
−γt +K ′′

m+1 ∗ e−γt,

L′′m+1(t) = (−γ3 + a(m+1)0γ
2 − a(m+1)1γ + a(m+1)2)e

−γt +K ′′′
m+1 ∗ e−γt,

...

L
(m+2)
m+1 (t) =

[
(−1)m+3γm+3 + (−1)m+2a(m+1)0γ

m+2 + (−1)m+1a(m+1)1γ
m+1

+ · · · − a(m+1)(m+1)γ + a(m+1)(m+2)

]
e−γt +K

(m+3)
m+1 ∗ e−γt.

The inequality corresponding to condition(2) of Theoremm is

[Lm+1(0)]2 >

(
2m

m− 1

)
L′m+1(0)

which is equivalent to

(
a(m+1)0 − γ

)2
>

(
2m

m− 1

) (
γ2 − a(m+1)0γ + a(m+1)1

)
.(2.61)

(2.61) is equivalent to

(m+ 1)γ2 − 2a(m+1)0γ + 2ma(m+1)1 − (m− 1)a2
(m+1)0 < 0.(2.62)

The discriminant of(m+1)γ2−2a(m+1)0γ+2ma(m+1)1−(m−1)a2
(m+1)0 = 0 is4m[ma2

(m+1)0−
2(m + 1)a(m+1)1] which is positive by condition(2) of Theorem(m + 1). So, if γ is chosen
asγ = γm+1 = a(m+1)0/(m + 1), then(2.62) holds. Thus,Lm+1 satisfies condition(2) of
Theoremm.
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Besides, ifLm+1(0) = a(m+1)0 − γm+1 andL′m+1(0) = γ2
m+1 − a(m+1)0γm+1 + a(m+1)1 are

taken, respectively instead of the constantsam0 andam1 in the constantbm of Theoremm, then

1

3m

[
Lm+1(0) + 2

√[
2 + 3m(m− 1)

2

]
[Lm+1(0)]

2 − 3m2L′m+1(0)

]

=
1

3m

[
a(m+1)0 − γm+1

+2

√[
2 + 3m(m− 1)

2

] (
a(m+1)0 − γm+1

)2 − 3m2
(
γ2

m+1 − a(m+1)0γm+1 + a(m+1)1

)]

=
1

3m

[
ma(m+1)0

m+ 1

+2

√
m2

(m+ 1)2

[(
3m2 − 3m+ 2

2
+ 3m

)
a2

(m+1)0 − 3(m+ 1)2a(m+1)1

]]

=
1

3(m+ 1)

[
a(m+1)0 + 2

√(
3m2 + 3m+ 2

2

)
a2

(m+1)0 − 3(m+ 1)2a(m+1)1

]
= bm+1.

Lm+1 satisfies conditions(3) − (m + 2) of Theoremm if and only if the new inequalities
obtained by taking

Lm+1(0) = p1(γm+1), L
′
m+1(0) = p2(γm+1), . . . , L

(m+1)
m+1 (0) = pm+2(γm+1) andbm+1,

respectively instead of the constantsam0, am1, . . . , am(m+1) andbm in conditions(3)− (m+ 2)
of Theoremm hold. The new inequalities are also conditions(3)−(m+2) of Theorem(m+1).
Namely,Lm+1 satisfies conditions(3)− (m+ 2) of Theoremm.

Finally, let us try to see thatLm+1 satisfies condition(1) of Theoremm. SinceKm+1 ∈
Cm+3[0,∞), K

(m+3)
m+1 (t) ≤ 0 for all t andpm+3(γm+1) ≤ 0 by conditions(1) and(m + 3) of

Theorem(m+ 1), respectively, we haveLm+1 ∈ Cm+2[0,∞), L
(m+2)
m+1 (t) ≤ 0. Thus,Lm+1 also

satisfies condition(1) of Theoremm.
Consequently,Lm+1 satisfies all of the conditions of Theoremm. That is,Lm+1 satisfies all

of the conditions which are satisfied byKm in Theoremm.
In this case, by using the fact that Theoremm is true, ifLm+1(0) andLm+1 are taken, respec-

tively instead ofam0 andKm in the equalities(2.52) and(2.53),



Lm(t) =
(

m−1
m

)
Lm+1(0) e

−Lm+1(0)

m
t + L′m+1 ∗ e−

Lm+1(0)

m
t,

Lm−1(t) =
(

m−2
m

)
Lm+1(0) e

−Lm+1(0)

m
t + L′m ∗ e−

Lm+1(0)

m
t,

Lm−2(t) =
(

m−3
m

)
Lm+1(0) e

−Lm+1(0)

m
t + L′m−1 ∗ e−

Lm+1(0)

m
t,

...

L3(t) =
(

2
m

)
Lm+1(0) e

−Lm+1(0)

m
t + L′4 ∗ e−

Lm+1(0)

m
t,

L2(t) =
(

1
m

)
Lm+1(0) e

−Lm+1(0)

m
t + L′3 ∗ e−

Lm+1(0)

m
t

(2.63)
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is found form ≥ 2. So, form ≥ 2, we get

Lm(t) =
(

m−1
m+1

)
a(m+1)0 e

−
a(m+1)0

m+1
t + L′m+1 ∗ e

−
a(m+1)0

m+1
t,

Lm−1(t) =
(

m−2
m+1

)
a(m+1)0 e

−
a(m+1)0

m+1
t + L′m ∗ e−

a(m+1)0
m+1

t,

Lm−2(t) =
(

m−3
m+1

)
a(m+1)0 e

−
a(m+1)0

m+1
t + L′m−1 ∗ e

−
a(m+1)0

m+1
t,

...

L3(t) =
(

2
m+1

)
a(m+1)0 e

−
a(m+1)0

m+1
t + L′4 ∗ e

−
a(m+1)0

m+1
t,

L2(t) =
(

1
m+1

)
a(m+1)0 e

−
a(m+1)0

m+1
t + L′3 ∗ e

−
a(m+1)0

m+1
t

(2.64)

by (2.63). Hence, it is concluded thatL2, L3, . . . , Lm satisfy all of the conditions of Theorem 1,
Theorem 2,. . . , Theorem(m− 1), respectively. Therefore, it is obtained that(2.52) and(2.53)
holds forn = m + 1. Namely,L2, L3, . . . , Lm+1 satisfy all of the conditions of Theorem 1,
Theorem 2,. . . , Theoremm, respectively.

Furthermore, since the constantbm in Theoremm is changedbm+1 andγm is changedγm+1

because ofLm+1(0)/m = a(m+1)0/(m + 1) = γm+1, the constantsxim andyim for 1 ≤ i ≤ m
are changedxi(m+1) andyi(m+1), respectively by(2.58). Thus, by takinghm+1, γm+1, xi(m+1)

andyi(m+1), respectively instead offm, γm, xim andyim and using Theoremm, the following
inequalities for allt are obtained from(2.54), (2.55), (2.56) and(2.57):

h′2(t) + bm+1h2(t) > 0, h′′2(t) + bm+1h
′
2(t) > 0, h′′′2 (t) + bm+1h

′′
2(t) > 0(2.65)

for m ≥ 2,

h′i(t) + γm+1 [hi(t) + hi−1(t) + · · ·+ h3(t)] + x1(m+1)h2(t) > 0,

h′′i (t) + x(i−1)(m+1)h
′
i(t) + γm+1

[
x(i−2)(m+1)hi(t) + x(i−3)(m+1)hi−1(t)

+ · · ·+ x1(m+1)h3(t)
]
> 0,

h′′′i (t) + x(i−1)(m+1)h
′′
i (t) + y(i−1)(m+1)h

′
i(t) + γm+1

[
y(i−2)(m+1)hi(t)

+y(i−3)(m+1)hi−1(t) + · · ·+ y1(m+1)h3(t)
]
> 0

(2.66)

for i = 3, 4, . . . ,m andm ≥ 3,

h′m+1(t) + γm+1 [hm+1(t) + hm(t) + · · ·+ h3(t)] + x1(m+1)h2(t) > 0,

h′′m+1(t) + xm(m+1)h
′
m+1(t) + γm+1

[
x(m−1)(m+1)hm+1(t)

+x(m−2)(m+1)hm(t) + x(m−3)(m+1)hm−1(t)

+ · · ·+ x1(m+1)h3(t)
]
> 0,

h′′′m+1(t) + xm(m+1)h
′′
m+1(t) + ym(m+1)h

′
m+1(t)

+γm+1

[
y(m−1)(m+1)hm+1(t) + y(m−2)(m+1)hm(t)

+y(m−3)(m+1)hm−1(t) + · · ·+ y1(m+1)h3(t)
]
> 0

(2.67)

for m ≥ 2, wherehi is the solution of the equationhi(t) = 1 −
∫ t

0
Li(t − τ)hi(τ)dτ for

2 ≤ i ≤ m+ 1. So,(2.55) holds fori = 3, 4, . . . ,m+ 1 andm ≥ 2 by (2.66) and(2.67).
On the other hand, by the Convolution Theorem, the solutionfm+1 of the equivalent equation

(2.59) can be written by means ofhm+1 as

fm+1(t) = hm+1(t)− γm+1e
−γm+1 ∗ hm+1,(2.68)
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wherehm+1 is the solution of the equationhm+1(t) = 1 −
∫ t

0
Lm+1(t − τ)hm+1(τ)dτ . Hence,

we derive 
h′m+1(t) = f ′m+1(t) + γm+1fm+1(t),

h′′m+1(t) = f ′′m+1(t) + γm+1f
′
m+1(t),

h′′′m+1(t) = f ′′′m+1(t) + γm+1f
′′
m+1(t)

(2.69)

for all t by (2.68). As a result, it is seen by(2.67) and(2.69) that(2.57) holds forn = m + 1
andm ≥ 2.

Consequently, it is conclude that if Theorem n is true forn = m, then it is also true for
n = m+ 1. So, Theorem n is valid for alln ∈ N2 = {2, 3, . . .}.

A lot of kernelsKn satisfying the conditions of Theorem n for alln ∈ N2 are obtained by
our method in Example n, as follows:

Example n. The functionKn of the form

Kn(t) = c0t
n+2 +

[
an(n+1)

(n+ 1)!

]
tn+1 +

(ann

n!

)
tn + · · ·+ an1t+ an0, (c0 ≤ 0)(2.70)

corresponding to any constantsani, (0 ≤ i ≤ n + 1) satisfying conditions(2) − (n + 2) of
Theorem n also satisfies condition(1) of Theorem n.

In order to see the validity of this assertion, choose the constantsan0 andan1 such that the
inequality

a2
n0 >

(
2n

n− 1

)
an1

holds. In this case, it can easily be seen by the proof of Theorem n that the constantsa(n−1)0, a(n−1)1

defined by

a(n−1)0 = p1(γn), a(n−1)1 = p2(γn),

where

pi(γ) = (−1)iγi + (−1)i−1an0γ
i−1 + (−1)i−2an1γ

i−2 + · · · − an(i−2)γ + an(i−1),

(1 ≤ i ≤ n+ 2)

andγn = an0/n satisfy condition(2) of Theorem(n− 1).
On the other hand, the constantsa(n−1)0, a(n−1)1 together witha(n−1)2, a(n−1)3, . . . , a(n−1)n

which can also be found as those were found by the method in Example(n−1) satisfy conditions
(3)− (n+ 1) of Theorem(n− 1).

Since the inequalities in conditions(3) − (n + 1) of Theorem n are equivalent to new in-
equalities obtained by takingp1(γn), p2(γn), . . . , pn+1(γn), respectively instead of the constants
a(n−1)0, a(n−1)1, . . . , a(n−1)n in conditions(3)−(n+1) of Theorem(n−1), if a(n−1)2, a(n−1)3, . . . ,
a(n−1)n are chosen as

a(n−1)2 = p3(γn) = −γnp2(γn) + an2,

a(n−1)3 = p4(γn) = −γnp3(γn) + an3,

...

a(n−1)n = pn+1(γn) = −γnpn(γn) + ann,
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thenan2, an3, . . . , ann are found as

an2 = a(n−1)2 + γna(n−1)1,

an3 = a(n−1)3 + γna(n−1)2,

...

ann = a(n−1)n + γna(n−1)(n−1).

Finally, since(n+ 2)th condition of Theorem n is equivalent to

pn+2(γn) = −γnpn+1(γn) + an(n+1) ≤ 0,

the constantsan0, an1, an2, . . . , ann together with the constantan(n+1) chosen as

an(n+1) ≤ γna(n−1)n

also satisfy(n+ 2)th condition of Theorem n.
Any constantsani, (0 ≤ i ≤ n + 1) obtained by presented method satisfy conditions(2) −

(n+ 2) of Theorem n.
Thus, the functionKn corresponding to the constantsani and given by(2.70) also satisfies

condition(1) of Theorem n.
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