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1. I NTRODUCTION

Fractional derivation is one of the most widely used mathematical tools in modeling today.
But due to its non-local structure and memory effect, it is a high information storage. As
a result, its use in the construction of mathematical models for a given phenomenon comes
with a high cost in terms of numerical resolution. When using a discretization algorithm for
non-integer derivatives, this structure must be taken into account, resulting in high algorithm
complexity. Most existing classical numerical methods also come up against difficulties linked
to its non-linearity. There is therefore a strong interest in developing new methods for solving
nonlinear functional equations of fractional order. In this work, we propose an iterative method,
the SOME BLAISE ABBO (SBA) method, capable of taking into account the complex structure
of fractional derivation and easily handling nonlinearity.

Our major contribution to this work is twofold. On the one hand, we simplify the method’s
approach, when the approximate solution at the first iteration is a root of nonlinearity (Nu1 =
0). While giving a sufficient condition for the convergence of the approximate solution at the
first iteration, we propose a new analysis of the method’s convergence. On the other hand, we
demonstrate the strength of the SBA method in a very important aspect. In the SBA approach,
when the solution approximated at the first iteration doesn’t cancel out the nonlinearity (i.e.
Nu1 6= 0), we replace the initial problem by an equivalent transformation, withN the new
nonlinear term, so that by repeating the algorithm we can obtainNu1 = 0. Here, this work
shows that whenNu1 6= 0, we can by successive iterations determine the convergent series of
general termuk and deduce the solution to the problem.

After recalling some basic notions of fractional calculus in Section 2 and describing the SBA
method in Section 3, we devote Section 4 to illustrating the method’s effectiveness on a few
examples of fractional Fredholm integro-differential equations in the Caputo sense. Section 5
is the conclusion.

2. PRELIMINAIRES

Most of the definitions and properties we present for our work can be found in [9, 15, 17, 22].
We invite the reader to refer to them for further details.

2.1. Fractional integral in the Riemann-Liouville sense.

Definition 2.1. : Riemann-Liouville fractional integral
Let f ∈ C([0; +∞[). The fractional Riemann-Liouville integral (on the left) of orderα ≥ 0 of
the functionf denotedIαf is defined by:

(2.1)

I
αf(t) =

1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ , t > 0.

I0f(t) = f(t)

whereΓ(α) is the Gamma function.

2.2. Fractional derivation in the Caputo sense.

Definition 2.2. : Fractional derivative in the sense of Caputo
Let f ∈ Cm([0; +∞[), α > 0 andn = [α] + 1. The fractional derivative in Caputo’s sense (on
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the left) of orderα of the functionf denotedcDαf is defined by:
(2.2)

cDαf(t) = In−α ◦ dn

dtn
f(t) =

1

Γ(n− α)

∫ t

0

(t− τ)n−α−1f (n)(τ)dτ , if n− 1 < α < n

cDαf(t) =
dn

dtn
f(t), if α = n

where[α] denotes the integer part ofα.

Proposition 2.1. Letα > 0, n = [n] + 1 and f ∈ ACn([a, b])

(2.3) cDα Iαf(t) = f(t);

(2.4) Iα cDαf(t) = f(t)−
n−1∑
k=0

(t− a)k

k!
f (k)(a).

3. SBA METHOD

3.1. Description of the SBA method applied to nonlinear fractional Fredholm integro-
differential equations. Consider the following nonlinear fractional Fredholm-type integro-
differential equation:

(3.1)


cDαu(x) = g(x) +

∫ 1

0

K(x, t)F (u(t))dt

u(i)(0) = bi, (i = 0, 1, 2, ..., h− 1)

in a suitable functional spaceV , wherecDα is the fractional derivative of Caputo of order
α > 0 , F andK are continuous functions defined inV , F is a non-linear operator andu is the
unknown function defined inV ; h = [α] + 1 where[α] is the integer part ofα
By posing

(3.2) F = L+N

whereL is a linear operator andN is a non-linear operator, equation (3.1) becomes:

(3.3)


cDαu(x) = g(x) +

∫ 1

0

K(x, t)L(u(t))dt+

∫ 1

0

K(x, t)N(u(t))dt

u(i)(0) = bi, (i = 0, 1, 2, ..., h− 1).

By composing the two members of the first line of (3.3) byIα(.), we obtain thanks to the
proposition (2.1) and the following relation:

(3.4) u(x) = θ + Iα(g(x)) + Iα

(∫ 1

0

K(x, t)L(u(t))dt

)
+ Iα

(∫ 1

0

K(x, t)N(u(t))dt

)
where

(3.5) θ =
h−1∑
i=0

xi

i!
fi.

Using the successive approximation method, the first line of (3.1) becomes:

uk(x) = θk+Iα(g(x))+Iα

(∫ 1

0

K(x, t)L(uk(t))dt

)
+Iα

(∫ 1

0

K(x, t)N(uk−1(t))dt

)
, k ≥ 1.
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Assuminguk =
+∞∑
n=0

uk
n , we derive the following SBA algorithm:

(3.6)


uk

0 = θk + Iα(g(x)) + Iα

(∫ 1

0

K(x, t)N(uk−1(t))dt

)
uk

n+1 = Iα

(∫ 1

0

K(x, t)L(uk(t))dt

) , k ≥ 1, n ≥ 0.

Explicitly, the development of the 3.6 algorithm consists in first calculating the terms of the

sequence(uk
n)n for k ≥ 1 fixed, and deducinguk if the series

+∞∑
n=0

uk
n converges.

So for the first iteration,k = 1, we chooseu0 such thatNu0 = 0, calculate the terms
u1

0, u
1
1, u

1
2, u

1
3...u

1
n of the sequence(u1

n)n and deduce

(3.7) u1 =
+∞∑
n=0

u1
n;

Then we evaluateNu1. If Nu1 = 0 thenu1 is the general solution of the problem. Otherwise,
we can:

. calculateu2, u3, u4, ..., uk and deduce lim
k−→+∞

uk;

. if possible, replace the initial problem by an equivalent transformation, withN the new
nonlinear term, so that by repeating the algorithm we can obtainNu1 = 0.

3.2. Convergence of the SBA method.By posing

(3.8)


L =c Dα(.);L−1(.) = Iα(.); pk = θk + Iα(g(x));

Ruk
n =

∫ 1

0

K(x, t)L(uk
n(t))dt

Nuk−1 =

∫ 1

0

K(x, t)N(uk−1(t))dt

the algorithmSBA defined by (3.6) is written:

(3.9)

{
uk

0 = pk + L−1Nuk−1

uk
n+1 = L−1Ruk

n

, k ≥ 1, n ≥ 0;

with the assumption that the operatorL−1R is contracting.
For convergence, we need to show that:

(1) if L−1R is contracting then the series
+∞∑
n=0

u1
n converges;

(2) if Nu1 = 0 then the solution of the problem isu1.

Let’s show that ifL−1R is contracting, then the series
+∞∑
n=0

u1
n converges.

For k = 1 and for a good choice ofu0 such thatNu0 = 0 and assumingΨ = −L−1R, the
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algorithm (3.9) is written:

(3.10)

{
u1

0 = p1

u1
n+1 = Ψ(u1

n)
or


u1

0 = p1

u1
1 = Ψ(u1

0)
...

u1
n+1 = Ψ(u1

n)

We can see that (3.10) can be reduced to the search for a sequence(Sn) defined by

(3.11)

{
S0 = u1

0

Sn = u1
0 + u1

1 + u1
2 + u1

3 + ...+ u1
n

and verifying the recurrence relation:

(3.12)

{
S0 = u1

0

Sn+1 = Ψ(Sn), n ≥ 0.

Theorem 3.1. If the operatorΨ is contracting (i.e. its norm verifies||Ψ|| < λ < 1) then the
sequence(Sn)n∈N satisfying the recurrence relation{

S0 = u1
0

Sn+1 = Ψ(Sn), n ≥ 0

converges toS whereS is the solution of the equationS = Ψ(S) and the series
+∞∑
n=0

u1
n is

convergent.

Proof: The proof of this theorem as well as the demonstration of the second part of convergence
can be found in our previous article [11].

4. APPLICATIONS

Example 4.1.

(4.1)


cDαu(x) = g(x) +

∫ 1

0
xtNu(t)dt

u(0) = 0,

wherex ≥ 0; 0 < α ≤ 1; u ∈ C1([0;T ]); cDα(.) the derivative in Caputo’s sense;Iα(.) the

integral in Riemann-Liouville’s sense,g(x) =
6x3−α

Γ(4− α)
− 1

8
x;Nu(x) = u2(x).

From the above description, we derive the following SBA algorithm:

(4.2)

uk
0 = uk(0, x) + Iα(g(x)) + Iα

(∫ 1

0
xtNuk−1dt

)
uk

n+1 = 0
, k ≥ 1, n ≥ 0.

Calculation of uk

Fork = 1, (4.2) becomes:

(4.3)

u1
0 = Iα(g(x)) + Iα

(∫ 1

0
xtNu0dt

)
u1

n+1 = 0
, n ≥ 0.

AJMAA, Vol. 21 (2024), No. 1, Art. 17, 11 pp. AJMAA

https://ajmaa.org
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Let’s takeu0 such thatNu0 = 0 and expand (4.3). We obtain:

(4.4) u1 = x3 + ψ1x
α+1, with ψ1 = − 1

8Γ(α+ 2)
.

Fork = 2, we have

u2 = x3 + ψ1(1− 8δ1)x
α+1

= x3 + ψ2x
α+1,

with δ1 =
1

8
+

2ψ1

α+ 6
+

ψ2
1

2α+ 4
andψ2 = ψ1(1− 8δ1).

Fork = 3, we have

u3 = x3 + ψ1(1− 8δ2)x
α+1

= x3 + ψ3x
α+1

with δ2 =
1

8
+

2ψ2

α+ 6
+

ψ2
2

2α+ 4
andψ3 = ψ1(1− 8δ2).

Recursively, we find

(4.5) uk = x3 + ψkx
α+1,

where

(4.6)


ψk = ψ1(1− 8ρk−1)

δk−1 =
1

8
+

2ψk−1

α+ 6
+

ψ2
k−1

2α+ 4
δ0 = 0.

By doing a formal calculation on matlab we find thatψk tends to 0 whenk tends to+∞.

α 0.75 0.5 0.25
ψ1 -0.0777 -0.0940 -0.1103
ψ2 -0.0136 -0.0204 -0.0288
ψ3 -0.0025 -0.0047 -0.0080
ψ4 -0.0004 -0.0011 -0.0022
ψ5 -0.0000 -0.0002 -0.0006
ψ6 -0.0000 -0.0000 -0.0001
...

...
...

...
ψ10 0 0 0

Therefore, the exact solution of the problem is :

(4.7) u = x3.

Example 4.2.

(4.8)


cDαu(x) = g(x)−

∫ 1

0

xtu(t)dt+

∫ 1

0

xtNu(t)dt

u(0) = 0,

wherex ≥ 0; 0 < α ≤ 1; u ∈ C1([0;T ]); cDα(.) the derivative in Caputo’s sense;Iα(.) the

integral in Riemann-Liouville’s sense,g(x) =
2x2−α

Γ(3− α)
+

1

12
x;Nu(x) = u2(x).
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From the approach described above, we derive the following SBA algorithm:

(4.9)


uk

0 = uk(0) + Iα(g(x)) + Iα

(∫ 1

0

xtNuk−1(t)dt

)
uk

n+1 = −Iα

(∫ 1

0

xtuk(t)dt

) , k ≥ 1, n ≥ 0.

Calculation of uk

Fork = 1, (4.9) becomes:

(4.10)


u1

0 = u1(0, x) + Iα(g(x)) + Iα

(∫ 1

0

xtNu0(t)dt

)
u1

n+1 = −Iα

(∫ 1

0

xtu1(t)dt

) , n ≥ 0

Let’s takeu0 such thatNu0 = 0 and expand (4.10). We obtain:

(4.11)



u1
0 = x2 +Kxα+1

u1
1 = −12K

(
1

4
+

K

α+ 3

)
xα+1

u1
2 =

(
1

4
+

K

α+ 3

)
(12K)2

α+ 3
xα+1

...

u1
n = −12K

(
1

4
+

K

α+ 3

) (
−12K

α+ 3

)n−1

xα+1, n ≥ 1;

with K =
1

12Γ(α+ 2)
.

Then posingM = −12K

(
1

4
+

K

α+ 3

)
andλ = − 12K

α+ 3
, we deduce

u1 =
+∞∑
n=0

u1
n

= x2 +Kxα+1 −Mxα+1 lim
n−→+∞

(
1− (λ)n

1− λ

)
= x2 +

(
K − M

1− λ

)
xα+1

= x2 + ϕ1x
α+1

with ϕ1 = K − M

1− λ
Fork = 2, we have:

u2
0 = Iα(g(x)) + Iα

(∫ 1

0

xtNu1(t)dt

)
= x2 +Kxα+1 + 12K

(
1

6
+

2ϕ1

α+ 5
+

ϕ2
1

2α+ 4

)
xα+1

= x2 +K(1 + 12E1)x
α+1
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by posingE1 =
1

6
+

2ϕ1

α+ 5
+

ϕ2
1

2α+ 4

(4.12)



u2
0 = x2 +K(1 + 12E1)x

α+1

u2
1 = −12K

(
1

4
+
K(1 + 12E1)

α+ 3

)
xα+1

u2
2 =

(
1

4
+
K(1 + 12E1)

α+ 3

)
(12K)2

α+ 3
xα+1

...

u2
n = −12K

(
1

4
+
K(1 + 12E1)

α+ 3

) (
−12K

α+ 3

)n−1

xα+1, n ≥ 1

u2 =
+∞∑
n=0

u2
n

= x2 +

(
K(1 + 12E1)−

(
1

4
+
K(1 + 12E1)

α+ 3

)
12K

1− λ

)
xα+1

= x2 + ϕ2x
α+1

by posingϕ2 = K(1 + 12E1)−
(

1

4
+
K(1 + 12E1)

α+ 3

)
12K

1− λ
.

Fork = 3, we have

(4.13)



u3
0 = x2 +K(1 + 12E2)x

α+1

u3
1 = −12K

(
1

4
+
K(1 + 12E2)

α+ 3

)
xα+1

u3
2 =

(
1

4
+
K(1 + 12E2)

α+ 3

)
(12K)2

α+ 3
xα+1

...

u3
n = −12K

(
1

4
+
K(1 + 12E2)

α+ 3

) (
−12K

α+ 3

)n−1

xα+1, n ≥ 1

by posingE2 =
1

6
+

2ϕ2

α+ 5
+

ϕ2
2

2α+ 4
The result is

u3 =
+∞∑
n=0

u3
n

= x2 +

(
K(1 + 12E2)−

(
1

4
+
K(1 + 12E2)

α+ 3

)
12K

1− λ

)
xα+1

= x2 + ϕ3x
α+1

by posingϕ3 = K(1 + 12E2)−
(

1

4
+
K(1 + 12E2)

α+ 3

)
12K

1− λ
.

Recursively, we find

(4.14) uk = x2 + ϕkx
α+1
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where

(4.15)


ϕk = K(1 + 12Ek−1)−

(
1

4
+
K(1 + 12Ek−1)

α+ 3

)
12K

1− λ
, k ≥ 1

Ek =
1

6
+

2ϕk

α+ 5
+

ϕ2
k

2α+ 4
E0 = 0.

with

(4.16)


K =

1

12Γ(α+ 2)

λ = − 12K

α+ 3

M = −12K

(
1

4
+

K

α+ 3

) ,

By doing a formal calculation on matlab one finds thatϕk tends to 0 whenk tends to+∞.
α 0.75 0.5 0.25
ϕ1 0.1925 0.2286 O.2628
ϕ2 0.0393 0.0579 0.0801
ϕ3 0.0074 0.0135 0.0222
ϕ4 0.0014 0.0031 0.0059
ϕ5 2.10−4 6.10−4 0.0016
...

...
...

...
ϕ10 5.10−8 3.10−8 2.10−6

Therefore, the exact solution of the problem is :

(4.17) u = x2.

5. CONCLUSION

In this paper, an improved version of the SOME BLAISE ABBO (SBA) method is presented
for finding exact solutions of fractional Fredholm integro-differential equations in the Caputo
sense. This technique is used to overcome the difficulties associated with computing Adomian
polynomials. Compared with existing classical numerical methods, it is easy to see that this
approach is simple, easy to understand and fast, requiring far fewer calculations to find the
exact solution to the problem, where it exists. Numerical results obtained with the technique
confirm its ease, accuracy and efficiency.
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