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ABSTRACT. The work addressed in this article consists in constructing the exact solutions,

where they exist, of fractional Fredholm-type integro-differential equations in the sense of Ca-
puto. Our results are obtained using the SBA method. The simplification of the approach, the
analysis of its convergence, and the generalization of this method to these types of highly non-
linear equations constitute our scientific contribution.
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1. INTRODUCTION

Fractional derivation is one of the most widely used mathematical tools in modeling today.
But due to its non-local structure and memory effect, it is a high information storage. As
a result, its use in the construction of mathematical models for a given phenomenon comes
with a high cost in terms of numerical resolution. When using a discretization algorithm for
non-integer derivatives, this structure must be taken into account, resulting in high algorithm
complexity. Most existing classical numerical methods also come up against difficulties linked
to its non-linearity. There is therefore a strong interest in developing new methods for solving
nonlinear functional equations of fractional order. In this work, we propose an iterative method,
the SOME BLAISE ABBO (SBA) method, capable of taking into account the complex structure
of fractional derivation and easily handling nonlinearity.

Our major contribution to this work is twofold. On the one hand, we simplify the method’s
approach, when the approximate solution at the first iteration is a root of nonlinesirity -

0). While giving a sufficient condition for the convergence of the approximate solution at the
first iteration, we propose a new analysis of the method’s convergence. On the other hand, we
demonstrate the strength of the SBA method in a very important aspect. In the SBA approach,
when the solution approximated at the first iteration doesn’t cancel out the nonlinearity (i.e.
Nu' # 0), we replace the initial problem by an equivalent transformation, Witthe new
nonlinear term, so that by repeating the algorithm we can olYaih = 0. Here, this work
shows that whevu! # 0, we can by successive iterations determine the convergent series of
general term/* and deduce the solution to the problem.

After recalling some basic notions of fractional calculus in Section 2 and describing the SBA
method in Section 3, we devote Section 4 to illustrating the method’s effectiveness on a few
examples of fractional Fredholm integro-differential equations in the Caputo sense. Section 5
is the conclusion.

2. PRELIMINAIRES

Most of the definitions and properties we present for our work can be found in/[9,/15,/17, 22].
We invite the reader to refer to them for further details.
2.1. Fractional integral in the Riemann-Liouville sense.

Definition 2.1. : Riemann-Liouville fractional integral
Let f € C([0; +00]). The fractional Riemann-Liouville integral (on the left) of order> 0 of
the functionf denotedZ® f is defined by:

Tof(t) = ﬁ/o (t— )01 f(7)dr, t > 0.
°f(t) = f(t)

(2.1)

wherel'(«) is the Gamma function.
2.2. Fractional derivation in the Caputo sense.

Definition 2.2. : Fractional derivative in the sense of Caputo
Let f € C™([0; +00[), @« > 0 andn = [a] + 1. The fractional derivative in Caputo’s sense (on
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the left) of ordera of the functionf denoted“D* f is defined by:

(2.2)
dr t
D) =T 0 (1) = s [ (= i if n =1 <a<n
D) = S I (), if a=n

B dt”
where[a] denotes the integer part of

Proposition 2.1. Leta > 0,n = [n] + 1 and f € AC™([a,b])

(2.3) DYIf(t) = f(b);
@ ey — (t_a>k (k)
2.4 D) = 1) - Y )
k=0 '

3. SBAMETHOD

3.1. Description of the SBA method applied to nonlinear fractional Fredholm integro-
differential equations. Consider the following nonlinear fractional Fredholm-type integro-
differential equation:

Doy(x) = / K(z,t)F(u(t))dt
u<i>(0) =b;, (i =0,1,2,....,h — 1)

in a suitable functional spacg, whereD® is the fractional derivative of Caputo of order
a > 0, F andK are continuous functions definedliy F' is a non-linear operator andis the
unknown function defined ifv'; h = [o] + 1 wherelq] is the integer part of

By posing

(3.1)

(3.2) F=L+N

whereL is a linear operator and¥ is a non-linear operator, equation (3.1) becomes:
“Du(x) = Kz, t)L(u(t))dt + | K(x,t)N(u(t))dt

(3:3) / @ / (& )N (u(t))dt

u@‘)(()) =b;,(i=0,1,2,...,h —1).

By composing the two members of the first line pf {3.3) B(.), we obtain thanks to the
proposition[(2.]1) and the following relation:

3.4) u(z) =0+ T(g(x)) +I° (/ Kz t)L )dt) 410 (/ K t)N(u(t))dt)

where

h—1
xr

(3.5) o= §'_0j i

Using the successive approximation method, the first ling of (3.1) becomes:

W (@) = 0° 4T (g(2))+T </ Kz )L ))dt) 470 (/ K(z, )Nt (t))dt) k>
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+oo
Assumingu® = Z u® , we derive the following SBA algorithm:
n=0
ul = 0% + 7(g( HP(/Tth @Mg
(3.6) k>1,n2>0.

uglzza(ézr@oLm(wmQ S

Explicitly, the development of the 3.6 algorithm consists in first calculating the terms of the
+oo

sequencéu’),, for k > 1 fixed, and deducing® if the seriesz u® converges.

n=0
So for the first iterationk = 1, we chooseu® such thatN«° = 0, calculate the terms

ud, ul, ud, ud..ul of the sequenceu) ), and deduce

+o00
(3.7) u' = Z u;
n=0

Then we evaluaté&Vu!. If Nu! = 0 thenu! is the general solution of the problem. Otherwise,
we can:

. calculateu?, u®, u*, ..., v* and deduce lim u*;

k—400

. if possible, replace the initial problem by an equivalent transn‘_ormation,Mithe new
nonlinear term, so that by repeating the algorithm we can ob¥aih= 0.

3.2. Convergence of the SBA method By posing
L=cD* )'L*l()ZI (.);p* = 6" + I%(g(x));
(3.8) Ruk —/ K(z,t)L(uk(t))dt
uk-1 /](xt “1(4))dt

the algorithmSBA defined by|[(3.) is written:

{u'g =p"+ L' Nur!

(3.9)
upp = L™ Ruy;

k>1,n>0;

with the assumption that the operafor! R is contracting.
For convergence, we need to show that:

+o0o
(1) if L' R s contracting then the serids_ u), converges;

n=0
(2) if Nu' = 0 then the solution of the problemis.

+00
Let's show that ifL ' R is contracting, then the serig u), converges.
n=0
For k = 1 and for a good choice af’ such thatVu° = 0 and assumingg = —L~ 'R, the
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algorithm [3.9) is written:

(3.10)

u111+1 = \II(U}L)
We can see thaft (3.10) can be reduced to the search for a seqdghdefined by
S() = ul
3.11 0
(3.11) {Sn:ué—l—u%—i—u%—l—ué—i—...—i—u;
and verifying the recurrence relation:

_ 1
(3.12) S0 = tg
Sn+1 = \I/(Sn),n Z 0

Theorem 3.1. If the operatorV is contracting (i.e. its norm verifie$¥|| < A < 1) then the
sequencés,, ),y satisfying the recurrence relation

SO = 'LL%]
Sn+l = \P(Sn),n 2 0

+o0
converges taS where S is the solution of the equatiof = ¥(S) and the seriesz ul is

n=0

convergent.

Proof: The proof of this theorem as well as the demonstration of the second part of convergence
can be found in our previous article [11].

4. APPLICATIONS

Example 4.1.
“Du(x) = g(x) + fol xtNu(t)dt
4.1
@ u(0) =0,
wherez > 0; 0 < a < 1; u € CY([0; T)); ¢D*(.) the derivative in Caputo’s sensg?(.) the
63— 1
[ lin Ri -Liouville’ =————-x;N = u?(x).
integral in Riemann-Liouville’s senseg(z) Ta—a) % u(r) = u*(z)

From the above description, we derive the following SBA algorithm:

uk = uF(0,2) + Z%(g(x)) + Z° (fol xtNuk_ldt)

(4.2) k>1,n2>0.
Upq =0
Calculation of u*
Fork = 1, (4.2) becomes:
up =TI g(x)) + I < 1xtNu0dt>
w3 b= 2@ + 72 (Jy .
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Let's takeu? such thatVu® = 0 and expand (4]3). We obtain:
«a . 1
(44) Ul = I’S + wll’ +1, with wl = —m

Fork = 2, we have
v’ = 2® 4 (1—85;)z* !
— 1‘3+¢2Ia+1,
. 1 2 2
with 0; = - + L4 + L andy, = ¥, (1 — 864).

8 a+6 2a+4
Fork = 3, we have

v = 2% 4 (1 — 859)z >t
— .%‘3 4 w3xa+1
2
With 3, = -+ 292 4 Y3 andy — g (1 - 85,).

8 a+6 2a+4
Recursively, we find

(4.5) uf = 23 4+ 2t
where
Yy, = w1<1 - Spk—l) )
1 29 (e
4.6 S1 4 == k—1 k—1
(4.6) 1= 83T 046 T 2014
0o = 0.

By doing a formal calculation on matlab we find thigt tends to O wher tends to+oo.

o 0.75 0.5 0.25

1 | -0.0777] -0.0940| -0.1103
1, | -0.0136| -0.0204| -0.0288
15 | -0.0025] -0.0047| -0.0080
1, | -0.0004| -0.0011| -0.0022
15 | -0.0000( -0.0002| -0.0006
¢ | -0.0000] -0.0000| -0.0001

Y| 0 0 0

Therefore, the exact solution of the problem is :
(4.7) u =z
Example 4.2.
1 1
“Du(z) = g(x) —/ xtu(t)dt—l—/ xtNu(t)dt
(4.8) 0 0

wherez > 0; 0 < a < 1; u € C'([0; T)); °D*(.) the derivative in Caputo’s sensg?(.) the

21
’ + —x; Nu(z) = u?(x).

integral in Riemann-Liouville’s senseg(z) = r3—a) 12
—

AIJMAA Vol. 21 (2024), No. 1, Art. 17, 11 pp. AIMAA


https://ajmaa.org

SOLVING STRONGLY NONLINEAR FRACTIONAL FREDHOLM INTEGRAL-DIFFERENTIAL EQUATIONS 7

From the approach described above, we derive the following SBA algorithm:

ul = uk(0) +Z%g(z)) + I ( /0 1 xtNuk_l(t)dt>

(4.9) 1 k>1,n>0.
uf = -1~ ( xtuk(t)dt)
0
Calculation of u*
Fork =1, (4.9) becomes:
1
up = ul(0,2) + I%(g(z)) + I ( wtNu(t)dt
(4.10) 0 .n>0

1
ub = —1I¢ </ xtul(t)dt>
0

Let's takeu? such thatVu = 0 and expand (4.10). We obtain:

(u(l) — 33'2 + K.CEOH_I
1 K
b= 12K ( - atl
uy (4 + a3 x
1 K \ (12K)?
(4.11) “5:(Z+a+3) T
1 K —12K\""!
ul = —12K | - + 2Tt n > 1;
. 4 a+3 o+ 3
. 1
with K = —————.
12T (a + 2)
. 1 K 12K
Then posingVl = —12K | - + and\ = — , we deduce
4 a+3 a+

—+00
1 _ § 1
Uu = Un
n=0

= 224 Kz — M2 lim ﬂ
n—s-+00 1—A

M
— 2 _ a+1
= :c—l—(K 1_/\):6

— SL’2+Q0113&+1

M
with o, = K — ——
A1 1—\
For k = 2, we have:

ui = I%g(z)) +I¢ (/letNul(t)dt)

2 a+1 1 1 a+1

= 22+ K(1+12E))z*"
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2¢, 1 ‘P%
a+bd 2a+4

by posingE; = é +

(uk =22 + K(1+ 12E)2*!

1 K(1+12E)

2= 12K ( - atl
Uy 1 -+ oL 3 X
1 K(1+12E))\ (12K)?
2 = —_ Oé+].
(4.12) Uy (4+ a3 ) a3’

1 K(1+12E)

2 _ 19K (-
i <4+ a+3

\

“+00
2 2 2
Uu = Un
n=0

1

= 22+ (K(l + 12F,) — (- +

4

= 2%+ ppaot

n—1
(0%

K(1+412F7)\ 12K ot
a+3 1—A

4 o+ 3

by posingg, = K (1 + 12E;) — <_ +

Fork = 3, we have
(up = 2% + K(1 4 12E,) 2t
1
3— _12K | =
i 4 + a+3

1 K(1+ 12E1)) 12K

K(1+ 12E,)

1-X\

xa—i—l

(4.13) Uz =17 013

a-+3

1 K(1+12E)

\ (1 L KO+ 1232)) (12K) .,

5 19K (-
i (4+ at3

\

2¢9 ‘P%
a+b 2a-+4

. 1
by posingE, = g +
The result is

—+o00
3 § 3
Uu = un
n=0

1

= 2*+ (K(l + 12F5) — <- +

4

= 2%+ paa*t!

n—1
) () e
(0%

K(1+412E5)\ 12K atl
T
o+ 3 1—A

by posingp; = K(1 + 12F5) — (— +

4 a+3

Recursively, we find

1 K(1+12E2)> 12K

I

(4.14) uf = a? + gt
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where
1 K(1+12E,4)\ 12K
=K1+ 12E,_1)— | - kE>1
op = K1+ 12E) (4+ at3 R
1 2 2
(4.15) B— >+ Pk Pk
6 a+d5 2a+4
Ey=0
with
( 1
K= ———
12F§c{v+2)
(4.16) A= 12
) - a+3 . e ’
M=—-12K =+
L 4 a—+3

By doing a formal calculation on matlab one finds thatends to O wherk tends to+oo.

a | 075 ] 05 [ 0.25
¢, | 0.1925| 0.2286] 0.2628
¢, | 0.0393| 0.0579| 0.0801
©5 | 0.0074| 0.0135] 0.0222
¢, | 0.0014| 0.0031| 0.0059
¢s [2.1071]6.107% | 0.0016

©10 | 51078 [3.1078 | 2.10°°
Therefore, the exact solution of the problem is :

(4.17) u =z

5. CONCLUSION

In this paper, an improved version of the SOME BLAISE ABBO (SBA) method is presented
for finding exact solutions of fractional Fredholm integro-differential equations in the Caputo
sense. This technique is used to overcome the difficulties associated with computing Adomian
polynomials. Compared with existing classical numerical methods, it is easy to see that this
approach is simple, easy to understand and fast, requiring far fewer calculations to find the
exact solution to the problem, where it exists. Numerical results obtained with the technique
confirm its ease, accuracy and efficiency.
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